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Abstract. We demonstrate new techniques to speed up the Rijndael
(AES) block cipher using vector permute instructions. Because these
techniques avoid data- and key-dependent branches and memory ref-
erences, they are immune to known timing attacks. This is the first
constant-time software implementation of AES which is efficient for se-
quential modes of operation. This work can be adapted to several other
primitives using the AES S-box such as the stream cipher LEX, the
block cipher Camellia and the hash function Fugue. We focus on Intel’s
SSSE3 and Motorola’s Altivec, but our techniques can be adapted to
other systems with vector permute instructions, such as the IBM Xenon
and Cell processors, the ARM Cortex series and the forthcoming AMD
“Bulldozer” core.
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1 Introduction

Since the 2001 selection of the Rijndael block cipher [6] as the Advanced Encryp-
tion Standard (AES), optimization of this cipher in hardware and in software
has become a topic of significant interest.

Unfortunately, fast implementations of AES in software usually depend on a
large table – 4kiB in the most common implementation – to perform the S-box
and the round mixing function. While the table’s size is problematic only on
the most resource-constrained embedded platforms, the fact that the lookups
are key- and data-dependent leads to potential vulnerabilities [2]. In an extreme
case, Osvik et al. demonstrate how to extract the key from the Linux dm-crypt
encrypted disk implementation with 65 milliseconds of measurements and 3 sec-
onds of analysis [11].

This weakness seems to be intrinsic to the Rijndael algorithm itself. Except
in bit-sliced designs, no known technique for computing the S-box is remotely
competitive with table lookups on most processors, so that constant-time imple-
mentations are many times slower than table-based ones except in parallelizable
modes of operation. Despite this issue, the Rijndael S-box’ excellent crypto-
graphic properties have led to its inclusion in other ciphers, including the LEX
stream cipher [5], the Fugue hash function [7] and the Camellia block cipher [10].



Several processors — including the VIA C3 and higher, the AMD Geode
LX and the forthcoming Intel “Sandy Bridge” and AMD “Bulldozer” cores —
support hardware acceleration of Rijndael. This acceleration both speeds up the
cipher and reduces its vulnerability to timing attacks. However, such hardware
accelerators are processor-specific, and may not be useful in accelerating and
protecting Fugue, Camellia or LEX.

We examine another hardware option for accelerating and protecting Rijn-
dael: vector units with permutation instructions, such as the PowerPC AltiVec
unit or Intel processors supporting the SSSE3 instruction set. Such units allow us
to implement small, constant-time lookups with considerable parallelism. These
vector units have attracted attention from AES implementors before: Bhaskar
et al. considered a permutation-based implementation in 2001 [4], and Osvik et
al. mention such an implementation as a possible defense against cache-based
attacks [11].

To implement the S-box, we take advantage of its algebraic structure using
composite-field arithmetic [12], that is, by writing F28 as a degree-2 field exten-
sion of F24 . This allows efficient computation of the AES S-box without a large
lookup table, and so is commonly used in hardware implementations of AES [14].
Käsper and Schwabe’s software implementation in [8] takes this approach in a
bit-sliced software implementation; this implementation holds the current PC
processor speed record of 7.08 cycles/byte on the Intel Core i7 920 (“Nehalem”)
processor. Our technique achieves fewer cycles/byte on the PowerPC G4, but
not on Intel processors.

As usual, hardware-specific optimizations are necessary to achieve optimal
performance. This paper focuses on the PowerPC G4e1 and Intel Core i7 920
“Nehalem”, but the techniques can be used in other processors. To this end, we
demonstrate techniques that are not optimal on the G4e or Nehalem, but might
be preferable on other processors.

2 Preliminaries

2.1 Notation

Because we are working with fields of characteristic 2, addition of field elements
amounts to a bitwise exclusive or. We will still write it as “+”.

Over subfields of F28 , we will write x/y for xy254, which are equal when y 6= 0
because y255 = 1. This extension of ·/· adds some corner cases when dividing
by 0. We will note such corner cases as they arise, and write ≈ instead of = for
formulae which are incorrect due to these corner cases.

The most frequent remedy for division by zero will be to set an “infinity flag”.
When dividing by a number with the infinity flag set, we will return 0 instead of
the normal value. The flag is bit 4 on AltiVec and bit 7 in SSSE3, for simplicity
1 “G4e” is an unofficial designation of the PowerPC 744x and 745x G4 processors,

commonly used to distinguish them from the earlier and considerably different line
of G4 processors, the PowerPC 7400 and 7410.



we simply set all 4 high bits. On AltiVec, use of an infinity flag requires extra
masking to prevent the high bits of the input from interfering with the flag; in
SSSE3, this masking is required anyway.

We write a||b for the concatenation of a and b.
If v is a vector, then vi is its ith component. By 〈f(i)〉15i=0, we mean the

16-element vector whose ith element is f(i). For example, if v has 16 elements,
then v = 〈vi〉15i=0.

We number bits from the right, so that bit 0 is the 20 place, bit 1 is the 21

place, and so on.

2.2 The Galois fields F28 and F24

AES is expressed in terms of operations on the Galois field F28 . This field is
written as

F28 ∼= F2[x]/(x8 + x4 + x3 + x+ 1)

When we write a number in hexadecimal notation, we mean to use this repre-
sentation of F28 . For example, 0x63 = x6 + x5 + x+ 1.

Because F28 is too large for convenient multiplication and division using
AltiVec, we will work with the field F24 , which we will write cyclotomically:

F24 ∼= F2[ζ]/(ζ4 + ζ3 + ζ2 + ζ + 1)

For this generator ζ, we will express F28 as

F28 ∼= F24 [t]/(t2 + t+ ζ)

The obvious way to represent elements of F28 is as a + bt where a, b ∈ F24 . A
more symmetric, and for our purposes more convenient, representation is to set
t̄ := t+ 1 to be the other root of t2 + t+ ζ, so that t+ t̄ = 1 and tt̄ = ζ. Then we
may write elements of F28 uniquely as xt + yt̄ with x, y ∈ F24 (here y = a and
x = a+ b from above). We will use these representations throughout this paper,
and they will be reflected at the bit level: our implementations will compute
with either x||y or y||(x+ y), depending on timing constraints.

2.3 AltiVec and the PowerPC G4

We implemented AES on the PowerPC G4’s AltiVec SIMD architecture, specif-
ically the PowerPC 7447a G4e. We will be treating its 128-bit vectors as vectors
of 16 bytes. In addition to bytewise arithmetic instructions, this processor has a
vector permute instruction:

vperm(a, b, c) := 〈(a||b)ci mod 32〉15i=0

That is, vperm(a, b, c) replaces each element ci of c with the element of the
concatenation of a and b indexed by ci’s 5 low-order bits.

We will find two uses for vperm. The first is to permute the block for the
ShiftRows and MixColumns steps of AES. In this case, c is a fixed permutation



and a = b is the input block. The second use is 16 simultaneous lookups in a
32-element table, or a 16-element lookup table when a = b.

The processor can dispatch and execute any two vector instructions of dif-
ferent types2 per cycle, plus a load or store. The arithmetic operations that we
will use have a 1-cycle effective latency, and the permute operations have a 2-
cycle effective latency; both types have a 1/cycle throughput. Because we won’t
be saturating either the dispatcher or the load-store unit, loads and stores are
effectively free in moderation.

2.4 Intel SSSE3

Intel’s SSSE3 instruction set includes a weaker vector permute operation called
pshufb. It differs from vperm in three ways. First, it only implements a 16-way
shuffle, implicitly taking a = b. Second, if the highest-order bit of ci is set, then
the ith output will be 0 instead of aci mod 16. This is useful for implementing
an infinity flag. Third, its operands follow a CISC 2-operand convention: its
destination register is always the same register as a, but c can be loaded from
memory instead of from a register.

We will show benchmarks on three different Intel processors: a Core 2 Duo
L7600 “Conroe”, a Xeon E5420 “Harpertown” and a Core i7 920 “Nehalem”.
These processors have much more complicated pipelines than the G4e. All three
can execute up to 3 instructions per cycle, all of which can be SSE logical instruc-
tions. Their shuffle units have different configurations as shown in Table 1 [1].

Core SSE units pshufb units pshufb throughput pshufb latency

Conroe 3 1 2 cycles 3 cycles
Harpertown 3 1 1 cycle 1 cycle

Nehalem 3 2 1 cycle 1 cycle

Table 1: Intel SSE configurations.

2.5 Log tables

Implementing multiplication and division with log tables is a well-known tech-
nique. However, it is not trivial to apply it in SIMD. AltiVec’s vperm instruction
only uses the low-order 5 bits of the permutation, so we must ensure that these
5 bits suffice to determine the result. Furthermore, when dividing we may wish
to distinguish between 0/1, 0/0 and 1/0 in order to implement an infinity bit.

2 There are 4 types of vector operations: floating-point operations; simple integer op-
erations; complex integer operations such as multiplies; and permutations including
whole-vector shifts, repacks and immediate loads.



Within these constraints, we worked out the following tables largely by trial and
error.
For log tables over F24 , we set

lognum(x) =
{

log(x) + 97, x 6= 0
−64 ≡ 192, x = 0 and logdenom(y) =

{
log(1/y)− 95, y 6= 0

65, y = 0

For multiplication, we perform an unsigned addition with saturation, defined as
a ] b := min(a+ b, 255) so that

lognum(x) ] lognum(y) =
{

194 + log(xy) ≡ 2 + log(xy) ∈ [2, 30], xy 6= 0
255 ≡ 31, xy = 0

For division, we perform a signed addition with saturation, defined as a

]

b :=
min(max(a+ b,−128), 127) so that

lognum(x)

]

logdenom(y) =


−128 ≡ 0, x = 0 6= y

1, x = 0 = y
2 + log(x/y) ∈ [2, 30], x 6= 0 6= y

127 ≡ 31, x 6= 0 = y

Because these sums’ residues mod 32 depend only on xy or x/y (and in the same
way for both), a lookup table on the output can extract xy or x/y. Furthermore,
these log tables allow us to distinguish between 0/1, 1/0 and 0/0.

2.6 Cubic multiplication

Because pshufb operates on tables of size at most 16, it does not appear to admit
a efficient implementation of log tables. It would be desirable to multiply instead
using the “quarter-squares” identity xy = (x+y)2/4−(x−y)2/4. Unfortunately,
this identity does not work over fields of characteristic 2. We can instead set ω
to a cube root of unity (so that ω2 = ω + 1) and use an “omega-cubes” formula
such as

xy2 = ω(x+ ωy)3 + ω2(ωx+ y)3 + (ω2x+ ω2y)3

which is not as horrible as it looks because the map (x, y)→ (x+ω
√
y, ωx+

√
y)

is linear. If x and y are given in this basis, xy can be computed with 3 table
lookups and 3 xors, but transforming into and out of this basis will cost 4-6
instructions. Alternatively, the above formula can be used to compute x/y2 and
x2/y in the high and low nibbles of a single register, but the lack of room for an
infinity flag makes this strategy less useful.

On the processors we studied, cubic multiplication does not appear to be
optimal technique for implementing AES, but it might be useful in other algo-
rithms.

3 Implementing inversion

This section deals with algorithms for inverting an element xt+ yt̄ of F28 .



3.1 Classical inversion

The simplest way to compute 1/(xt + yt̄) is to rationalize the denominator:
multiplying top and bottom by xt̄+ yt gives

1
xt+ yt̄

=
xt̄+ yt

x2tt̄+ xyt2 + xyt̄2 + y2tt̄
=

xt̄+ yt

xy + (x2 + y2)ζ
=

xt̄+ yt

(
√
xy/ζ + x+ y)2ζ

This last, more complicated expression is how we actually perform the computa-
tion: the multiplications are computed with log tables; the squares, square roots
and multiplications and divisions by ζ come for free. This technique requires few
operations, but it has many lookups on the critical path. Therefore it is optimal
on the G4e in parallel modes, but not in sequential modes.

3.2 Symmetric inversion

To improve parallelism, we can rearrange the above to the near-formula:

1
xt+ yt̄

≈ t

x+ ζ(x+ y)2/y
+

t̄

y + ζ(x+ y)2/x

This formula is incorrect when x = 0 or y = 0, but this is easily fixed using an
infinity flag. Since this technique can be computed in parallel, it is faster than
classical inversion in sequential modes.

3.3 Nested inversion

The most efficient formula that we found for Intel processors uses the fact that

1
1/x+ 1/ζ(x+ y)

+ y ≈ xy + ζ(x2 + y2)
(1 + ζ)x+ ζy

which leads to the monstrous near-formula

1
xt+ yt̄

≈ t+ ζ
1

1/y+1/ζ(x+y) + x
+

t̄+ ζ
1

1/x+1/ζ(x+y) + y

Division by zero is handled by using an infinity flag, which remarkably makes this
formula correct in all cases. This technique performs comparably to symmetric
inversion on the G4e3, but much better on Intel because it does not require
multiplication.

Figure 1 compares the parallelism of nested inversion and classical inversion.
This diagram omits setup and architectural details, but is nonetheless represen-
tative: nested inversion completes faster despite having more instructions.
3 In fact, their code is almost exactly the same. Nested inversion has different (and

fewer) lookup tables, and some xors replacing adds, but its dependencies are iden-
tical. It is due entirely to momentum that our G4e implementation uses symmetric
inversion.
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Fig. 1: Nested inversion (top) has more parallelism than classical inversion (bottom).

3.4 Factored inversion

Another approach is to separate the variables, for example:

1
xt+ yt̄

≈ 1
x
· 1
t+ (y/x)t̄

Once we compute log(y/x), we can compute (the log of) the right term in the
form at+bt̄ with a pair of lookups. The formula is wrong when x = 0, but we can
look up a correction for this case in parallel with the rest of the computation.
This technique combines the low latency of symmetric inversion with the high
throughput of classical inversion. However, its many different lookup tables cause
register pressure, so we prefer to use the more specialized formulas above.

3.5 Brute force

The implementation in [4] uses a brute-force technique: a lookup in each of 8
tables of size 32 can emulate a lookup in a table of size 256. This technique is
less efficient than symmetric or nested inversion on all the processors we tested.
For example, nested inversion requires 7 lookups into 4 tables of size 16 (with
an infinity flag) and 6 xors.

4 Implementing AES

4.1 The S-box and the multiplication by 0x02

Every inversion algorithm described above (other than brute force) ends by
computing f(a)+g(b) for some (f, g, a, b) using two shuffles and an xor. Therefore
the S-box’s linear skew can be folded into the tables for f and g. However, the



use of infinity flags (which may force a lookup to return 0) prevents folding in the
addition. Therefore, we use tables for skew(f(a)) and skew(g(b)); we add 0x63
to the key schedule instead. Similarly, we can multiply by 0x02 by computing
2 skew(f(a)) + 2 skew(g(b)).

On the G4e, we make another modification to accomodate classical inversion.
It happens that in the basis we use for classical inversion, skew(at) and skew(bt̄)
are functions of the low-order 4 bits of 0x2 · skew(at) and 0x2 · skew(bt̄) but not
vice-versa. As a result, we use fewer registers if we compute 0x2 · skew(at) first.

4.2 ShiftRows and MixColumns

We have three options to perform the ShiftRows step and the MixColumns
rotations.

1. We could keep AES’ natural alignment, with each column in 4 contiguous
bytes. This would allow us to use an unmodified key schedule. On the G4e,
this technique makes MixColumns fast at the expense of ShiftRows. On Intel,
both require permutations.

2. We could align each row into 4 contiguous bytes. On the G4, this makes
ShiftRows fast at the expense of MixColumns, but relieves register pressure.
On Intel, it allows the use of pshufd for MixColumns, but the lack of SIMD
rotations means that ShiftRows requires a permutation. Also, an both an
input and an output permutation are required.

3. We could use permutations for the MixColumns step. We conjugate by the
ShiftRows permutation, so we need not physically perform ShiftRows at
all. There will be a different forward and backward permutation each round,
with a period of 4 rounds. For 128- and 256-bit keys, the number of rounds
is not a multiple of 4, so this technique requires either an input or an output
permutation, but not both. (With the MixColumns technique used for classi-
cal inversion on the G4e, this method will always require an input or output
permutation.) This technique seems to be the fastest both on the G4e and
on Intel.

In any case, it is not advantageous to compute ShiftRows directly before com-
puting MixColumns, because there are at least 2 registers live at all times. If
ShiftRows is to be physically computed at all, this should be done at the be-
ginning or end of the round, when only 1 register is live.

Let rk denote a left rotation by k elements. To compute MixColumns, we
compute x := (a, b, c, d) and 0x02 · x as above. We compute

y := r1(x) + 0x02 · x = (0x02 · a+ b, 0x02 · b+ c, 0x02 · c+ d, 0x02 · d+ a)

We then compute the desired output

r1(y) + y + r3(x) = (0x02 · a+ 0x03 · b+ c+ d, . . .)

When using classical inversion, we compute 0x02 ·x before x, so we use a similar
addition chain that rotates 0x02 · x first.



4.3 AddRoundKey and the modified key schedule

Näıvely we would add the round key either at the end of the round, or just
before the end of the round, while waiting for a MixColumns permutation to
finish executing. However, for some implementations, it is more convenient to
add the round key during the S-box. Since every implementation of the S-box
other than brute force ends with f(a)+g(b) for some (f, g, a, b), we can compute
f(a) +k′ + g(b), with the addition of k′ in parallel with the computation of g(b).
This technique is more efficient on Intel and on the original G4, while performing
the same on the G4e.

However, this trick makes the key schedule more complicated: the vector k′

will be multiplied by

M :=


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


during MixColumns. Since M is its own inverse, this means that we should set
k′ = Mk. As a result, this trick may not be desirable when very high key agility
is required.

Our key schedule also differs from the standard schedule in that keys must
be transformed into the (t, t̄) basis for F28 and rotated by the ShiftRows per-
mutation.

5 Parallelism and related optimizations

5.1 Interleaving

On the G4e, the classical inversion algorithm gives few instructions, but a high
latency. What is more, the instructions are balanced: they put an equal toll on
the simple integer and permute units. As a result, they interleave very well: we
can run 2 rounds in 24 cycles, compared to 1 round in 20 cycles using classical
inversion or 17 cycles using symmetric inversion. For modes which allow parallel
encryption, this boosts encryption speed by about 40%. Similiarly, we can inter-
leave 4 rounds in 46 cycles, which should boost encryption speed by another 4%
or so.

5.2 Byte-slicing

A more extreme transformation is to byte-slice encryption. This technique per-
forms 16 encryptions in parallel. Instead of holding state for each of the 16 bytes
in one encryption, a vector holds state for one byte in each of the 16 different
encryptions. This allows two speedups. First, since each byte is in a separate
register, no permutations are needed for ShiftRows and MixColumns. Second,
the same key byte is added to every position of the vector. As a result, we can
simply add this key byte to the exponentiation tables each round. Of course, to



add this byte every round would save no time at all, but if we schedule each
round’s exponentiation table ahead of time, we will save an xor instruction.

We implemented this technique on the G4e, and found two difficulties. One
is that we must split the data to be encrypted into byte-sliced form, and merge
it back into ordinary form at the end of the encryption, which costs about 1/8
cycle per byte in each direction. A second problem is that the byte-sliced round
function becomes limited by integer operations, so that saving permutations
doesn’t help. To alleviate this problem, we can replace a vsrb (element shift
right) instruction with a vsr (whole-vector shift right) instruction, which uses
the permutation unit on the G4e. In conjunction with double-triple mixing, this
optimization reduces the cipher to 9.5 cycles per main round and 6.5 cycles for
the final round.

Conveniently, Rogaway et al’s OCB mode for authenticated encryption with
associated data [13] is simpler in byte-sliced form. The offset ∆ may be stored
for each slice; then most of the multiplication by 216 – that is, shifting left by
2 bytes – consists of renumbering slice n as slice n − 2. The lowest three slices
will be a linear function of the upper two slices and the lowest slice; this can
be computed with two shifts, 8 permutations and 6 xors. This representation is
highly redundant; it is possible that a more concise representation would allow
a more efficient computation of the OCB offset ∆.

5.3 Double-triple mixing

Let (a, b, c, d) be the output of the S-box. Our implementation of mixing for
standard round functions computed 2a then a. For highly parallel modes, we
can do better by computing 2a and then 3a. If we let

(α, β, γ, δ) := (3a+ 2b, 3b+ 2c, 3c+ 2d, 3d+ 2a)

then the output of the mixing function is

(β + γ + δ, α+ γ + δ, α+ β + δ, α+ β + γ)

This output is easily computed using 10 xors instead of 12. The technique we
use computes

c0 := α, c1 := α+ β, c2 := α+ β + γ, c3 := α+ β + δ,

c4 := β + γ = c2 + c0,

c5 := α+ γ + δ = c3 + c4

c6 := β + γ + δ = c1 + c5

and outputs (c6, c5, c3, c2). In addition to taking only 10 xors, this method takes
its inputs in order (α, β, γ, δ) and immediately xors something into them. These
features lead to significant savings in register usage, latency and complexity. We
suspect that the savings would be even better on Intel hardware.



5.4 Counter-mode caching

Bernstein and Schwabe [3] call attention to a useful optimization in Hongjun
Wu’s eStream implementation of counter mode. Except in every 256th block,
only the last byte of the input changes. As a result, only one S-box needs to
be computed the first round. Its output affects only 4 bytes, so only 4 S-boxes
need to be computed the second round. In a 10-round, 128-bit AES encryption,
this saves about 1.7 rounds on average, or about 17% (slightly more, because
the last round is shorter). What is more, it allows us to avoid transforming the
input into byte-sliced form.

5.5 Scalar-unit assistance

Following [4], we considered using the G4e’s scalar unit to perform two of the
vector xors, reducing the cipher to 9 cycles per round. However, the expense of
shuttling data between the vector and scalar units nullifies any advantage from
this technique.

6 Decryption

Decryption is more difficult than encryption, because the MixColumns step is
more complicated: the coefficients are (0x0E, 0x09, 0x0D, 0x0B), which are lin-
early independent over F2. As a result, all four coefficients must be looked up
separately. This requires 4 more tables than encryption (minus one for permu-
tations, because we can use only forward permutations with this method), and
on Intel means that the lookup tables spill to memory.

7 Benchmarks

We initially tested several experimental implementations on the G4e. They in-
clude heavily optimized implementations of several modes several modes, but
are also somewhat incomplete; in particular, we did not implement encryption
of unaligned data or any sort of decryption.

After realizing that the same techniques are applicable to Intel using SSSE3,
we set out to build a practical AES library for Intel machines. However, opti-
mization on x86 processors is much more difficult than on the PowerPC, so our
library does not yet approach its theoretical maximum performance. Our Intel
library also does not yet implement as many modes or techniques, but it does
implement encryption and decryption on aligned and unaligned data.

We tested our implementation on four machines, whose specifications are
listed in Table 2.

Our byte-sliced implementations are experimental and so far incomplete. We
benchmarked each individual component of the algorithm and added together
the times. Similarly, on the G4e we benchmarked only the streaming steps of
OCB mode, not the nonce generation and finalization. These consist of one



Machine Processor Core Speed

altacaca Motorola PowerPC G4 7447a Apollo 7 1.67 GHz
peppercorn Intel Core 2 Duo L7500 Conroe 1.60 GHz
WhisperMoon Intel Xeon E5420 Harpertown 2.50 GHz
lahmi Intel Core i7 920 Nehalem 2.67 GHz

Table 2: Bechmark machine specifications.

encryption each, so we have added the time required for two encryptions. We
expect that a complete implementation would be slightly more efficient due to
function call overhead.

We tested encryption and decryption on messages of size 32, 512 and 4096
bytes, with 128-, 192- and 256-bit keys.

Our classical encryption code was optimized for OCB mode; we expect that
its ECB and CTR timings could be improved by 1-2% with further tuning. Due
to cache effects, encryption of long messages is slightly slower than encryption
of short messages in some cases.

Implementation Par Mode 128-bit key 192-bit key 256-bit key
32 512 long 32 512 long 32 512 long

Symmetric 1 ECB 11.3 10.6 10.7 14.1 12.7 12.8 17.0 14.8 14.9
1 CBC 11.3 10.8 10.8 14.1 12.9 12.9 17.0 15.0 15.1

Classical 2 ECB 8.5 7.9 7.8 11.3 9.4 9.3 11.3 10.8 10.8
2 CTR 9.4 7.9 7.9 11.3 9.4 9.3 11.3 10.8 10.8
2 OCB 19.5 8.6 7.8 25.4 10.2 9.3 25.4 12.0 10.8

Classical (sliced) 16 CTR 5.4 6.7 7.9
16 OCB 6.6 7.8 9.0

openssl speed 1 CBC 32.6 36.4 40.5

Table 3: Encryption timings on altacaca in cycles per byte.

7.1 Architecture-specific details

Alignment We tested with 16-byte-aligned input, output and key. Our Intel
code supports unaligned input and output; our G4e code does not. Both im-
plementations require 16-byte-aligned round keys, but this is enforced by our
library. Our code currently only supports messages which are an integral num-
ber of blocks; we are intending to change this before release.



Implementation Mode 128-bit key 192-bit key 256-bit key
32 512 long 32 512 long 32 512 long

Nested ECB 22.0 21.6 21.5 26.3 25.3 25.5 30.6 29.9 30.1
ECB−1 27.0 26.5 26.3 32.3 31.7 31.4 37.8 37.1 37.0
CBC 22.3 21.6 21.4 26.5 25.8 25.6 31.0 30.0 30.0
CBC−1 27.4 26.3 25.9 32.4 31.7 31.4 37.8 37.3 36.9
CTR 22.2 21.5 21.8 26.5 25.8 25.8 30.7 30.1 29.9
OCB 44.2 23.6 22.3 52.8 28.2 26.5 61.4 32.5 30.8
OCB−1 54.7 28.7 27.4 64.5 34.4 32.8 75.4 40.0 37.8

openssl speed CBC 18.8 21.4 24.1

Table 4: Encryption timings on peppercorn in cycles per byte.

Implementation Mode 128-bit key 192-bit key 256-bit key
32 512 long 32 512 long 32 512 long

Nested ECB 11.8 11.1 11.0 13.9 13.2 13.3 16.1 15.4 15.4
ECB−1 14.7 14.3 14.4 17.7 17.0 17.1 20.4 19.9 19.9
CBC 11.6 11.1 11.2 14.3 13.3 13.5 16.1 15.4 15.8
CBC−1 14.8 14.2 14.2 17.6 17.0 17.0 20.4 20.2 20.2
CTR 11.9 11.1 11.1 14.1 13.3 13.4 16.4 15.4 15.8
OCB 23.3 12.3 11.7 27.6 14.5 13.7 31.8 17.0 16.1
OCB−1 29.4 15.4 14.6 35.0 18.5 17.5 40.9 21.5 20.4

openssl speed CBC 18.7 21.3 23.9

Table 5: Encryption timings on WhisperMoon in cycles per byte.

Implementation Mode 128-bit key 192-bit key 256-bit key
32 512 long 32 512 long 32 512 long

Nested ECB 10.3 10.0 9.9 12.4 11.9 11.9 14.8 13.9 13.9
ECB−1 12.9 12.4 12.4 15.3 15.0 15.0 18.0 17.6 17.6
CBC 10.8 10.3 10.3 12.9 12.4 12.3 14.6 14.4 14.2
CBC−1 13.0 12.6 12.5 16.1 15.1 15.2 18.2 17.8 17.8
CTR 10.4 10.0 10.0 12.4 12.0 11.9 14.2 13.9 13.9
OCB 21.4 11.1 10.5 25.5 13.2 12.5 29.5 15.3 14.5
OCB−1 26.4 13.8 13.1 31.4 16.5 15.6 36.6 19.2 18.2

openssl speed CBC 17.6 20.2 22.6

Table 6: Encryption timings on lahmi in cycles per byte.



Loop unrolling We did not unroll the round function at all, except in the byte-
sliced case, in which we unrolled it 4 ways. Experiments showed that unrolling
was generally unnecessary for optimum performance on the G4e, and our Intel
code is still largely unoptimized.

8 Other processors

Our techniques are applicable to the PowerPC e600 (modern, embedded G4)
with essentially no modification. Other processors have different instruction sets,
pipelines and numbers of registers, and so our techniques will require modifica-
tion for optimimum implementation.

The earlier PowerPC 7410 (original G4) can only issue 2 instructions per
cycle instead of three. Because we no longer have “free” loads and branches,
more unrolling and caching is necessary. However, the 7410’s vperm instruction
has an effective latency for only 1 cycle. After accounting for these differences,
performance should be slightly faster than on the 7447 when using symmetric
inversion, and about the same speed when using interleaved classical inversion.
As a result, the interleaved case is less desirable.

The PowerPC 970 (G5) has much higher instruction latencies than the G4,
and penalties for moving data between functional units. As a result, more paral-
lelism is required to extract reasonable performance from the G5. It is possible
that brute force is the best way to compute the S-box, due to its very high
parallelism.

The IBM Cell’s SPEs have many more registers than the G4e. Furthermore,
their spu shuffle instruction differs from vperm in that it assigns a meaning
to the top 3 bits of their input, so inputs need to be masked before permuting.
Furthermore, the SPEs lack a vector byte add with saturation, so a different
log-table technique needs to be used. For multiplication, we suggest mapping 0
to 0x50 and nonzero x to 0x30 + log x, so that log(0 · 0) → 0xA0 and log(0 ·
x) → [0x80, 0x8E], all of which code for 0x00 in the spu shuffle instruction.
We estimate that with a byte-sliced 128-bit implementation, a Cell SPU would
require approximately 8 clock cycles per byte encrypted.

The forthcoming AMD “Bulldozer” core will feature an SSE5 vector permute
instruction similar to AltiVec’s. Like the Cell’s spu shuffle, this instruction
assigns additional meaning to the 3 bits of the input field, which means that
more masking and different log tables will be needed. SSE5 has fewer registers
than AltiVec, but its ability to take arguments from memory instead of from
registers may make up for this if the latency penalty is low enough.

ARM’s NEON vector instruction set features a vector permute instruction,
but its performance is significantly worse than SSSE3 or AltiVec. Nested inver-
sion is probably the most practical technique due to its smaller tables.



9 Conclusions and future work

We have presented a technique for accelerating AES using vector permute units,
while simultaneously thwarting known timing- and cache-based attacks. Our
technique is the first software design to yield a fast, constant-time implementa-
tion for sequential modes of operation. Our results include some 150% improve-
ment over current implementations on the G4e4. On recent x86-64 processors,
it is some 41% slower than Käsper and Schwabe’s bitsliced implementation [8],
but doesn’t require a parallel mode to attain this speed.

We expect that microarchitectural optimization can improve the speed of our
code significantly. This will be a major focus of future work. We also expect that
this work can be applied to other primitives; it would be interesting to see if
Camellia, Fugue or LEX can be implemented as efficiently.
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