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Abstract. Since its first introduction by Bellcore researchers [BDL97],
fault injections have been considered as a powerful and practical way
to attack cryptosystems, especially when they are implemented on em-
bedded devices. Among published attacks, Brier et al. followed the work
initiated by Seifert to raise the problem of protecting RSA public ele-
ments.
We describe here a new fault attack on RSA public elements. Under a
very natural fault model, we show that our attack is more efficient than
previously published ones. Moreover, the general strategy described here
can be applied using multiple transient fault models, increasing the prac-
ticability of the attack.
Both the theoretical analysis of the success probability, and the exper-
imental results – obtained with the GMP Library on a PC –, provide
evidence that this is a real threat for all RSA implementations, and con-
firm the need for protection of the public key.
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1 Introduction

Since the advent of fault attacks, most cryptographic algorithms have been en-
dangered [BECN+04,BS97,CJRR99]. The difficulty of modeling the fault, de-
pending on the attacker abilities, makes it uneasy to define countermeasures
[Gir05b]. It is particularly the case for the RSA algorithm, which has been shown
vulnerable to many attacks injecting faults on temporary values during the com-
putation, or on value of the private key itself.

Moreover, the vulnerability of the public key elements has been recently
proved to be a new security potential threat against various RSA implementa-
tions [Sei05,Mui06,BCMCC06]. As the effect of a computation perturbation can
take multiple forms, mounting an attack based on the use of an altered public
modulus is quite realistic.

In this context we describe here a new efficient attack that exploits a few
faults on the modulus and leads to a full recovery of the private exponent in a
very reasonable time.



After a brief presentation of RSA, Sect. 3 provides an overview of the previous
attacks on standard RSA. We particularly focus on modulus attacks so as to
compare them with our new attack. Then we will explain the principle of our
method, and give a detailed theoretical analysis of its complexity, based on a
detailed computation of the involved probabilities.

2 Background

Let N , the public modulus, be the product of two large prime numbers p and
q. The length of N is denoted by n. Let e be the public exponent, coprime to
ϕ(N) = (p−1)·(q−1), where ϕ(·) denotes Euler’s totient function. The public key
exponent e is linked to the private exponent d by the equation e·d ≡ 1 mod ϕ(N).
The private exponent d is used to perform the following operations:

RSA Decryption: Decrypting a ciphertext C boils down to compute m̃ ≡
Cd mod N ≡ C

Pi=n−1
i=0 2i·di mod N where di stands for the i-th bit of d. If

no error occurs during computation, transmission or decryption of C, then
m̃ equals m.

RSA Signature: The signature of a message m is given by S = ṁd mod N
where ṁ = µ(m) for some hash and/or deterministic padding function µ.
The signature S is validated by checking that Se ≡ ṁ mod N .

2.1 Modular exponentiation: ”Right-To-Left” algorithm

In all the paper, we will consider the ”Right-To-Left” algorithm (see for instance
[YKLM02]), which is one of the most used algorithm to perform the modular
exponentiation. This algorithm scans the bits of the private exponent d from the
least to the most significant ones.

Algorithm 1: ”Right-To-Left” modular exponentiation

INPUT: m, N , d

OUTPUT: A ≡ md mod N

1 : A:=1;
2 : B:=m;
3 : for i from 0 upto (n− 1)
4 : if (di == 1)
5 : A := (A ·B) mod N ;
6 : endif
7 : B := B2 mod N ;
8 : endfor
9 : return A;



3 Previous work

3.1 Bellcore’s DFA against Standard RSA

Bellcore’s researchers not only introduced the concept of Differential Fault Anal-
ysis [BDL97] by attacking RSA in CRT mode but they also showed how this
new side channel attack can be applied to many public key cryptosystems and
their various implementations, such as standard RSA. They explain in [BDL97]
and [BDL01] how to advantageously analyse the injection of a fault during the
standard RSA signature process to recover the secret exponent. Their attack
is described against a particular exponentiation algorithm: the ”Right-To-Left”
one (see Sect. 2.1).

The considered fault model is a transient or permanent bit modification of
the memory area containing the current value of the exponentiation algorithm.
According to [BDL97,BDL01], recovering d by using windows of length l with a
probability greater than 1/2 requires (n/l) · log(2n) (message, faulty signature)
pairs. In terms of complexity, this attack needs to perform O(n3 · 2l · log2(n)/l2)
modular exponentiations. It is worth noticing that the choice of the window
length l has an impact on the global complexity of the attack.

This attack principle was later studied and generalized by J. Blömer and M.
Otto [Ott04].

Bellcore’s attack principle. The attack can be divided into two parts. The
first one is “on-line” and consists in getting sufficiently many erroneous signa-
tures Ŝi from known plaintexts mi that are randomly distributed over Z/NZ.
The second part is completely “off-line” and consists in analysing the previously
obtained faulty signatures. The attack principle is described below in the case
of a transient fault model:

1. Getting sufficiently many (mi, Ŝi) pairs, by injecting a transient fault on the
current value during each signature execution.

2. Error analysis. Let Sv be the correct signature and ε = ±2b the induced
error with 0 ≤ b < n. The effects of such a transient error, that has occurred
during some unknown iteration j, can be modeled as:

Ŝv ≡

[(
j−1∏
i=0

ṁv
2idi

)
± 2b

]
·

n−1∏
i=j

ṁv
2idi (1)

≡ Sv ±

2b ·
n−1∏
i=j

ṁv
2idi

 mod N (2)

⇒ Sv ≡ Ŝv ± 2b · ṁv
w mod N, where w =

n−1∑
i=j

2idi (3)



Using the public exponent e, we finally obtain:

ṁv ≡ (Ŝv ± 2b · ṁv
w)e mod N (4)

One can notice from the previous equation that it only depends on the message
ṁv and its faulty signature Ŝv.

The analysis consists in recovering the whole private exponent d by scanning
l-bit long windows from the most to the least significant bits. To reach this goal,
the values of b and w satisfying (4) are simultaneously searched. The value of w
contains a known part of d and at most l unknown bits. These bits are recovered
by testing values in [[0; 2l − 1]] until one of them satisfies (4). A priori, from a
given pair (mi, Ŝi), an attacker can not guess when the fault occurs during the
signature’s computation. So, for each searched value of w, he has to test all the
obtained couples (mi, Ŝi).

In [BDL01], Boneh et al. proved that this method allows an attacker to
recover the whole private exponent d with a probability greater than 1/2.

3.2 Fault Attack on RSA private exponent

This attack was published by F. Bao et al. in [BDJ+96,BDJ+98] and then
in [BECN+04]. The principle is to induce a transient error during the decryption,
that produces the same effect as a bit modification of the private exponent. In
practice this fault will be a shunt of the conditional test on the private bit value
during the binary exponentiation algorithm.1 Note that this attack is suitable
for multiple errors [BDJ+98]. Moreover the principle can be adapted to attack
cryptosystems based on discrete logarithm (DSA, El-Gamal, . . . ). The following
paragraph only describes the attack for a bit error on the exponent d.

Attack principle. In case of a faulty computation, the deciphered text m̂ is:

m̂ ≡ C d̂ mod N

The fault is exploited by dividing the erroneous result by a correct one: m̂
m . The

induced error can be modeled as a bit-flip of the j-th bit of d. We thus have:

m̂ ≡ C
Pi=n−1

i=0,i 6=j 2i·di+2j d̄j mod N

That implies, either m̂
m ≡

1

C2j mod N ⇒ dj = 1,

or m̂
m ≡ C

2j

mod N ⇒ dj = 0.
This method can be repeated until we obtain enough information on the

private exponent. This attack strategy was later extended and generalized by
M. Joye et al. [JQBD97], who describes an improved attack relying on the mere
knowledge of the faulty deciphered text.

1 Algorithms ”Right-To-Left” or ”Left-to-Right”.



3.3 J-P. Seifert and J. Muir’s attacks

Seifert’s attack on RSA signature [Sei05] was the first one using a modification
of some public parameter (i.e. the modulus N). Unlike the previously described
attacks, the objective does not consist in retrieving the secret key, but in com-
promising the signature verification mechanism.

Attack principle. Seifert’s attack is composed of two different phases.
The first – “off-line” – phase consists in finding an altered modulus N̂ , that

satisfy some interesting properties, and generating the corresponding signature.
In practice the attacker modifies the modulus N̂ so that e is coprime to ϕ(N̂) 2

and N̂ is a possible altered value of N . Then the attacker has to choose an
adequate model for the fault that will disrupt the signature verification mecha-
nism. Seifert proposes to require N̂ to be prime, so that the previous condition
is satisfied and d̂ ≡ e−1 mod ϕ(N̂) is easily computable. Muir generalizes the
condition and imposes that N̂ should be easily factorized [Mui06]. The attacker
signs a message m with the computed d̂ value and saves the signature with its
corresponding message (m,Ŝ).

In the second – “on-line” – phase, the attacker inputs (m,Ŝ) into the signa-
ture’s verification mechanism and tries to inject a fault during the loading of the
N value, so that all computations are performed with this altered modulus. The
generated fault has to correspond to the chosen fault model (i.e. the altered N
value equals to previously computed N̂ value). In that case, the signature Ŝ will
be accepted by the algorithm. Otherwise, the attacker performs the “on-line”
phase until its faulty signature is accepted.

The success rate of this attack and the average number of faults depends
on the suitability of the chosen fault model. Moreover the attacker must be
able to induce a fault corresponding to N̂ with a reasonable probability. The
resulting implementation of this attack and a further optimization are proposed
in [Mui06].

3.4 E. Brier et al.’s attack

Whether it is necessary or not to protect RSA public elements was an open
question until Brier et al. attack proposal for recovering the whole private key.
This attack, inspired from Seifert’s one [Sei05], was published in [BCMCC06]
and reviewed in [Cla07]. It makes it possible to extract the private key using
a modulus perturbation. Moreover, in its simplest version, it does not require
any hypothesis on the type of induced fault during the signature process. This
represents a significant advantage, compared to Seifert’s attack.

Attack principle without dictionary. The attacker proceeds in two distinct
phases. The feature of this method (without dictionary) is that it does not require

2 This is equivalent to e being invertible in Z/ϕ(N̂)Z.



any fault model.
In the first “on-line” phase, the attacker conducts a perturbation campaign in

order to obtain a large enough number of (message, faulty signature) pairs of the
form (mi, Ŝi)1≤i≤K , corresponding to computations with unknown (modified)
moduli N̂i 6= N . As in Seifert’s attack, the N value is modified during its loading,
so that each pair satisfies the following relation:

∀i ∈ [[1;K]], Ŝi ≡ ṁi
d mod N̂i

The ”off-line” phase consists in analysing the gathered data in order to re-
trieve the secret key, by an application of the Chinese Remainder Theorem.
The value d mod rk is gradually determined for small power of some small
prime numbers rk. When R =

∏
k rk is greater than N (and so than ϕ(N)),

the Chinese Remainder Theorem is applied for finding d. The way the values
dk ≡ d mod rk are found, is based on a probabilistic approach that is described
in [BCMCC06,Cla07]. We note that the method does not require to model the
induced fault.

Implementing the attack shows that approximately 25000 faults are neces-
sary to recover 512 bits of exponent d. In comparison, approximately 60000 faults
(more than twice) are necessary to extract 1024 bits.

Attack principle with a dictionary. The attack with dictionary requires
the choice of a fault model. From this model and the correct modulus N , the
attacker builds a list of possible modified moduli, called modulus dictionary. As
in the previous case, this attack is divided into two phases.

The first phase is “on-line”. As before, the attacker conducts a fault campaign
in order to obtain sufficiently many (message, faulty signature) pairs, denoted
by (mi, Ŝi)1≤i≤K .

The attacker begins the “off-line” phase by building the dictionary. To do so,
the attacker experiments and validates an adequate fault model. Then he lists all
the possible values for a modified public modulus. Next, for each dictionary entry
vj , he identifies the pairs (mi, Ŝi) satisfying vj = N̂i. Each pair that matches a
value in the dictionary, a so-called “touch”, brings some information about d as
shown in [BCMCC06,Cla07].

In terms of performance the use of a dictionary is advantageous, because
1100 faults and 28 “touches” are necessary to retrieve 1024 key bits. On the
other hand, it requires a relevant fault model.

A third attack proposed in [BCMCC06] and revisited in [Cla07] explains how
to optimally exploit fault injections. Authors claims that, in good conditions, this
allows to reduce the number of fault injections from 1100 to a dozen.

3.5 Summary

The RSA standard algorithm is not immune to fault attacks. The previously
presented attacks show that the protection of the public modulus during the
decryption or signature processing has to be considered. Now we will present



a brand new attack on the public modulus that have some advantages over
the previous methods because of the use of a realistic fault model and greater
performance.

4 Principle of our Attack

4.1 Fault model

Our attack is based on modifying the public modulus during the computation
of the exponentiation corresponding to the signature scheme. The injected fault
affects a byte of the modulus by modifying it in a random way, namely:

N̂ = N ⊕ ε (5)

where ε = R8 · 28i, i ∈ [[0; n
8 − 1]] and R8 is a non-zero random byte value. These

two values are supposed unknown by the attacker because they depend on the
fault injection itself. The fault is supposed to be transient, and the modified
value N̂ is used until the end of the exponentiation. The consistency of this
model was already checked in the smart card context, leading to successful ap-
plications [BECN+04,Gir05a,BO06].

To make our description easier, we assume that the ”Right-To-Left” algo-
rithm is used for the exponentiation and the attack will be presented in that
specific context. Moreover, whereas the transient fault can first occur during the
computation of a square or a multiplication, we will focus on the effect of the
perturbation on the square. Perturbating the multiplication will be treated in
Appendix A.

4.2 Faulty computation

Let d =
∑n−1

i=0 2i · di be the binary representation of d. Then an RSA signature
can be written as:

S ≡ ṁ
Pn−1

i=0 2i·di mod N (6)

If a fault occurs j steps before the end of the exponentiation, then this step will
begin with a faulty square, whatever the value of dn−j may be:

B̂ ≡
(
ṁ2(n−j−1)

mod N
)2

mod N̂ (7)

Then the algorithm continues its execution by computing faulty operations. De-
noting by A ≡ ṁ

P(n−j−1)
i=0 2i·di mod N as the correct beginning of the computa-

tion, we finally obtain:

Ŝ ≡ ((A · B̂)...)B̂2j−1
mod N̂ (8)

≡ A · B̂
Pn−1

i=(n−j) 2[i−(n−j)]·di mod N̂ (9)

≡ [(ṁ
P(n−j−1)

i=0 2i·di mod N) (10)

·(ṁ2(n−j−1)
mod N)

Pn−1
i=(n−j) 2[i−(n−j)+1]·di ] mod N̂



As a consequence, the fault injection splits the computation into a correct part
and a faulty one. For a given faulty signature Ŝ, the value of j is supposed to be
known by the attacker. This assumption comes from the fact that an attacker
can trigger its fault injection using a Simple Power Analysis. Hence, he can
know which step of the computation was first infected by the fault and – as a
consequence – the number of bits of d that are handled with the wrong modulus.

4.3 Cryptanalysis

The attack consists in recovering a part of the private exponent using the effects
of the fault. It is a pure differential analysis because it requires the knowledge of
both the correct signature S and the faulty one Ŝ. Indeed, the difference between
these two computations resides in the end of the exponentiation (which is faulty
in the case of Ŝ). Therefore if the attacker chooses a candidate value for the faulty
modulus N̂ ′, and another candidate for the first part of d: d′(1) =

∑n−1
i=n−j 2i ·di

′,
he can then compute:

S′
(d′(1),N̂

′)
≡ [(S · ṁ−d′(1)) mod N · (ṁ2(n−j−1)

mod N)2[1−(n−j)]·d′(1) ] mod N̂ (11)

The idea of the attack consists in simulating a faulty computation from a
correct one. The first multiplication in Z/NZ is done to go backwards to the
perturbated step of the computation, whereas the second multiplication sim-
ulates the effects of the induced fault. Then he checks whether the following
equation is satisfied or not:

S′
(d′(1),N̂

′)
≡ Ŝ mod N̂ (12)

If it is the case, this means that the chosen candidates are the searched values
with high probability. If no solution is found among the candidate pairs, this
means that the attack occurs during a multiplication and the attacker has to
perform the cryptanalysis described in Appendix A.

The attacker can optimize the search of candidates for N̂ ′ by noticing that
the faulty modulus, has to be greater than Ŝ. Indeed, Ŝ is a result of a modular
reduction by the faulty modulus. This simple property can dramatically reduce
the search space for a suitable N̂ candidate.

The subsequent secret bits will be found by repeating this attack using the
knowledge of the (already found) most significant bits of d and a signature faulted
earlier in the process. As a consequence, the attacker has to gather a set of faulty
signatures Ŝk obtained by injecting faults at different steps jk before the end of
the exponentiation. Then, the collected information (Ŝk, jk)1≤k≤n/l are sorted
in descending fault location.

The number of bits recovered each time corresponds to the window length
denoted by l. Hence, the k-th l-bit part of d recovered is dk =

∑n−j(k−1)−1

i=n−jk
2i ·di.

For the sake of clarity, we assume that j0 = 0 and ∀k ∈ [[0; n
l ]], jk+1 − jk = l.

But, this assumption can be easily extended to a more general case where faults
are not injected regularly: ∀k ∈ [[0; n

l ]], jk+1 − jk < lmax.



4.4 Attack algorithm

In this section, we detail the implementation of our new Differential Fault Anal-
ysis, described above. It generalizes the analysis to recover the whole private
exponent by taking advantages of faults injected during squaring operations of
the ”Right-To-Left” algorithm. The following attack algorithm has been suc-
cessfully implemented on PC using the GMP Library. We assume that, in input,
the set of pairs (faulty signature, fault location) is sorted in descending fault
location.

Algorithm 2: DFA against RSA in Standard mode

INPUT: N , ṁ, the correct signature S, the set of pairs (Ŝk, jk)1≤k≤n/l

OUTPUT: the private exponent d

1: //Initialisation
2: d := 0;
3: for k from 1 upto bn/lc
4: //We want to recover the next l-bit window dk of d

5: for d′k from 0 upto (2l − 1)
6: d′ := [d′k << (n− jk)] + d;

7: //We search a suitable value for N̂
8: for R8 from 1 upto (28 − 1)
9: for pos from 0 upto ( n

8
− 1)

10: N̂ ′ := N ⊕ (R8 << 8.pos);

11: S′
(d′,N̂′) := [(S · ṁ−d′) mod N

12: ·(ṁ2(n−jk−1)
mod N)2

[1−(n−jk)]·d′ ] mod N̂ ;
13: //We test if the rebuilt value equals the faulty one

14: if (S′
(d′,N̂′) == Ŝ mod N̂)

15: //If the condition is satisfied, the current value of d′ suits
16: d := d′;
17: //So, we can search the next l-bit of d
18: goto line 3 ;
19: endif
20: endfor
21: endfor
22: endfor
23: endfor
24: //Don’t forget the purpose of our attack ...
25: return d;

From our presented algorithm, one can notice that correct and faulty sig-
natures are obtained from the same plaintext m. But, the attacker can recover
parts of d from different plaintexts and their associated correct and faulty signa-
tures. To perform this he has to replace the algorithm’s input by the quadruplets
(ṁk, Sk, Ŝk, jk)1≤k≤n/l.



4.5 Complexity

Computational complexity. To perform our attack, we need to recover both
the induced fault and the part of d affected by the perturbation. For each possible
candidate pair, a modular exponentiation is performed. Therefore, according to
the previously presented algorithm, the complexity Cattack of our attack is :

Cattack ∼ O(
n2 · 2l · (28 − 1)

8.l
) exponentiations (13)

Observing the algorithm, one can notice that the computation of candidates for
the faulty modulus can be replaced by a precomputed dictionary of candidates
N̂ ′. But, such a time optimisation has to be done according to the chosen fault
model.

As a comparison, the attack presented by Bellcore researchers against a stan-
dard RSA [BDL97,BDL01] requires O(n3 · 2l · log2(n)/l2) full modular exponen-
tiations (i.e. mod N), which is more complex. Concerning the attack of Brier et
al. [BCMCC06], it needs to resolve O(n) discrete logarithm problems of reason-
able sizes (i.e. less than 230 bits). If the Shank’s Baby-Step Giant-Step algorithm
(∼ O(

√
N · log(N)) is used, the associated complexity is in O(n ·230 ·30 · log(2)).

If the chosen window length l is small enough (i.e. l ≤ 20 bits for a 1024-bit
RSA) this computational complexity is bigger than our attack’s one.

Number of required faults. The principle of our algorithm is based on recov-
ering the secret exponent by using windows of bits. Each faulty signature is used
to recover a different window of d. Therefore, if l is the length of the window,
recovering the whole secret exponent requires:

Number of faults ∼ O(n/l) (14)

For Bellcore’s attack against a plain RSA [BDL97,BDL01], the number of re-
quired faults is O((n/l) · log(2n)) and for Brier et al. [BCMCC06] it is O(n).

4.6 Performance

The performance of our proposed attack are evaluated according to our detailed
cryptanalysis (see Sect. 4.3). So, to determine the real (d(1), N̂) pair among all
possible candidates, the attacker tests if (12) is satisfied by its rebuilt value
S′

(d′1),N̂
′)

(see (11)). However this equation is checked in Z/N̂Z, so that some

wrong candidates for the searched values d(1) and N̂ could be accepted by mis-
take. This is the problem of false-acceptance. We thus have to evaluate the prob-
ability for a given (accepted) pair to be a false one. This phenomenon can be
modeled as the probability to pass the test knowing that the values are incorrect:

Pr[Equation (12) is satisfied | (d′(1), N̂
′) 6= (d(1), N̂)] (15)

⇐⇒ Pr[Equation (12) is satisfied | (d′(1) 6= d(1) or N̂ ′ 6= N̂)] (16)



Since, this probability is quite difficult to evaluate, we propose in next section
a method to maximize it. First, we use the well-known property of conditional
probability. If A and B are two dependent events, then, the probability of the
event A to occur knowing that B has occurred is:

Pr[A|B] =
Pr[A ∪B]

Pr[B]
(17)

This property can be applied to evaluate our probability of false-acceptance by
substituting:

– A by the event: “Equation (12) is satisfied”;
– B by the event: “d′(1) or N̂ ′ is a false candidate value respectively for d(1)

and N̂”.

Our probability will be given by computing Pr[A ∪ B] and Pr[B]. For the sake
of clarity, both computations are detailed in Appendix B. The obtained results
are summarized below:

– Pr[A∪B]: This represents the probability that (12) is satisfied if at least one
candidate is not equal to its expected value. Hence:

0 < Pr[A ∪B] < min

(
N̂ − 1
N̂

,
2l · n · (28 − 1)− 1

8 · N̂

)
(18)

– Pr[B]: Applying the B’s above definition, this is the probability that at least
one candidate is not equal to its expected value.

Pr[(d′(1), N̂
′) 6= (d1), N̂)] =

n · (28 − 1) · 2l − 8
n · (28 − 1) · 2l

(19)

The false-acceptance probability. Using the two partial results, established
in Appendix B, and the property of conditional probabilities, the false acceptance
probability can be approximated by:

0 < Pr[A|B] < min

(
n·(N̂−1)·(28−1)·2l

n·N̂ ·(28−1)·2l − 8
,

(n·(28−1)·2l−1)·n·(28−1)·2l

N̂ ·(n·(28−1)·2l − 8))

)
(20)

Even though the false-acceptance probability is bounded by a value close to 1
when n < 16 bits, it is interesting to notice that this probability decreases with N̂
(and so exponentially with n). As a consequence, the false-acceptance probability
rapidly becomes negligible. These theoretical results have been confirmed by our
GMP implementation of the attack.



5 Extension of the attack model

5.1 Extension of our fault model

The fault model we have chosen to present our attack principle can be extended
to another transient fault model. Such a fault can be induced by the pertur-
bation of a read-access to the public modulus N before computing a square or
a multiplication. The perturbation has to influence only the current operation.
Indeed, subsequent accesses to N must remain error-free [Wag04]. As previously
described, the fault still modifies a byte of N by adding a random byte value.
With this new assumption, the attacker has to face different cases, depending on
the value of d and on the targeted operation. These cases are described below
for a fault injected j steps before the end of the exponentiation:

1. dn−j = 0 or 1 and the square is perturbated. Whatever the value of dn−j may
be, A keeps the same expression: A ≡ ṁ

P(n−j−1)
i=0 2i·di mod N . Moreover, the

fault injection modifies the value of B such that the square is computed with
a faulty modular reduction B̂ ≡ (ṁ2(n−j−1)

mod N)2 mod N̂ . This faulty
computation then spreads in the exponentiation:

Ŝ ≡ ((A · B̂)...) · B̂2j−1
mod N (21)

≡ A · B̂
Pn−1

i=(n−j) 2[i−(n−j)]·di mod N (22)

≡ (ṁ
P(n−j−1)

i=0 2i·di mod N) (23)

·[(ṁ2(n−j−1)
mod N)2 mod N̂ ]

Pn−1
i=(n−j) 2[i−(n−j)]·di mod N

This case differs from the previously described one by the modular reduc-
tion by N̂ applied to the second part of the expression. Moreover, the main
product is done here in the finite field Z/NZ instead of Z/N̂Z. Hence, under
this transient fault model, the attacker has to apply small changes on the
cryptanalysis described in Sect. 4.3 to recover l bits of d.

2. dn−j = 1 and the multiplication is perturbated. This second case deals with
a perturbation of the multiplication performed j steps before the end of the
exponentiation. If Â stands for the faulty result, then:

Â ≡ [(ṁ
P[(n−j−2)]

i=0 2i·di mod N) · (ṁ2(n−j−1)
mod N)] mod N̂ (24)

≡ (ṁ
P(n−j−1)

i=0 2i·di mod N) mod N̂ (25)

No more error occurs during the end of the computation. As a consequence,
B ≡ ṁ2n−j

mod N and the faulty signature Ŝ can be explained as:

Ŝ ≡ ((Â ·B)...)B2j−1
mod N (26)

≡ Â ·B
Pn−1

i=(n−j) 2[i−(n−j)]·di mod N (27)

≡ [(ṁ
P(n−j−1)

i=0 2i·di mod N) mod N̂ (28)

.(ṁ
Pn−1

i=(n−j) 2i·di mod N)] mod N



This expression can also be cryptanalyzed as described in Sect. 4.3 to obtain
l bits of d by noticing that a modular reduction by N̂ is applied to A whereas
B is not infected by the fault. Moreover the main multiplication is, in this
case, computed in Z/NZ.
Finally, one can notice that the case ”dj = 0 and the multiplication is per-
turbated” is missing. In fact, this case can not occur if we consider the
previously presented ”Right-To-Left” algorithm.

The previous analysis shows that our new attack is not limited to a unique
transient fault model. Accordingly, this increases the practicability of the attack
on cryptographic devices that implement the ”Right-To-Left” algorithm.

6 Conclusion

This paper introduces a new fault attack against the ”Right-To-Left” implemen-
tation of RSA. We detail a new way of exploiting faulty RSA public elements
(i.e. the public modulus N). We show in our theoretical analysis that our at-
tack is more efficient than previously published ones [Sei05,Mui06,BCMCC06].
Moreover its GMP implementation as well as the use of practicable fault mod-
els demonstrate that this new attack represents a real threat for RSA public
elements. As a consequence, the protection of RSA public key elements against
Differential Fault Analysis is more than ever a hot topic.
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A Fault injection before a multiplication

The principle of our attack was described for a permanent fault injected before a
square. But, if dn−j = 1, then a multiplication is done and can be the first opera-
tion modified. So, in this appendix, we present the effects of such a perturbation
and how to take advantage of it to recover the bits of the private exponent d.

A.1 Faulty computation

Our attack is performed against the ”Right-To-Left” exponentiation algorithm
with the fault model previously described (see Sect. 4.1). In this case, the fault



first occurs during a multiplication, j steps until the end of the exponentiation,
so:

Â ≡ (ṁ
Pn−j−2

i=0 2i·di mod N) ·B mod N̂ (29)

≡ [(ṁ
Pn−j−2

i=0 2i·di mod N) · ṁ2(n−j−1)
mod N ] mod N̂ (30)

Then, this operation is followed by a square:

B̂ ≡ (ṁ2(n−j−1)
mod N)2 mod N̂ (31)

After, the cryptographic device finishes the exponentiation:

Ŝ ≡ ((Â · B̂)...) · B̂2j

mod N̂ (32)

≡ Â · B̂
Pn−1

i=n−j 2i−(n−j)·di mod N̂ (33)

≡ [(ṁ
Pn−j−2

i=0 2i·di mod N) (34)

·(ṁ2(n−j−1)
mod N)

Pn−1
i=n−j−1 2i−(n−j)+1·di ] mod N̂

where dn−j = 1

A.2 Cryptanalysis

As shown in Sect. 4.3, the cryptanalysis consists in guessing possible values for
the private exponent’s value d′(1) =

∑n−1
i=n−j−1 2i ·d′i and the public modulus one

N̂ ′. Then the attacker uses the correct signature to forge a possible faulty one.
If this forged signature equals to the real faulty one, this means that the chosen
candidates are probably the searched values. As described before, the attacker
has to compute:

S′
(d′(1),N̂

′)
≡ [(S · ṁ−d′(1)) mod N · (ṁ2(n−j−1)

mod N)2−(n−j)·d′(1) ] mod N̂ ′ (35)

And then, he checks if the following equation is satisfied :

S′
(d′(1),N̂

′)
≡ Ŝ mod N̂ ′ (36)

In that case, the value d′(1) gives l − 1 bits of d (and dn−j is already known).

B Details of performance evaluation

B.1 Evaluation of Pr[A ∪ B]

According to A and B’s respective definitions (see Sect. 4.6), Pr[A∪B] represents
the probability that the equation is satisfied if at least one candidate, d′(1) or N̂ ′,
is not equal to its expected value. This probability is quite difficult to evaluate
since it depends on all the unknown values of (12). However, we can find a



maximum and a minimum for this probability. Indeed, this equation is satisfied
in the finite field Z/N̂Z, so that, if the correct value is removed, the probability
of this event to occur is at least (1 − 1)/N̂ = 0. But d′(1) is a l-bit value and

so, can take 2l possible values. N̂ ′ can take (28 − 1) · n
8 values (possible values

and position for the error ε). Hence, at most, the equation can be satisfied for
2l·n·(28−1)−1

8·N̂ different values. As a result, the probability can be upper-bounded:

0 < Pr[A ∪B] < min

(
N̂ − 1
N̂

,
2l · n · (28 − 1)− 1

8 · N̂

)
(37)

B.2 Evaluation of Pr[B]

This probability seems easier to evaluate than the last one. Indeed, it is the
probability that at least one of the two candidates d′(1) or N̂ ′, is not equal to
its expected value. But one can notice that this event can be divided into two
independent events. Hence, we have:

Pr[(d′(1), N̂
′) 6= (d(1), N̂)] (38)

= 1− Pr[(d′(1) = d(1)) and (N̂ ′ = N̂)] (39)

= 1− Pr[d′(1) = d(1)] · Pr[N̂ ′ = N̂ ] (40)

As seen in the previous paragraph, d′(1) and N̂ ′ can take respectively 2l and
(28− 1) · n

8 possible values. In both cases, there is only one correct value to find.
As a consequence, we finally obtain:

Pr[(d′(1), N̂
′) 6= (d(1), N̂)] = 1− 8

n · (28 − 1) · 2l
(41)

=
n · (28 − 1) · 2l − 8
n · (28 − 1) · 2l

(42)


