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Abstract. Dynamically reconfigurable systems are known to have many
advantages such as area and power reduction. The drawbacks of these
systems are the reconfiguration delay and the overhead needed to provide
reconfigurability. We show that dynamic reconfiguration can also improve
the resistance of cryptographic systems against physical attacks. First,
we demonstrate how dynamic reconfiguration can realize a range of coun-
termeasures which are standard for software implementations and that
were practically not portable to hardware so far. Second, we introduce a
new class of countermeasure that, to the best of our knowledge, has not
been considered so far. This type of countermeasure provides increased
resistance, in particular against fault attacks, by randomly changing the
physical location of functional blocks on the chip area at run-time. Third,
we show how fault detection can be provided on certain devices with neg-
ligible area-overhead. The partial bitstreams can be read back from the
reconfigurable areas and compared to a reference version at run-time
and inside the device. For each countermeasure, we propose a prototype
architecture and evaluate the cost and security level it provides. All pro-
posed countermeasures do not change the device’s input-output behavior,
thus they are transparent to upper-level protocols. Moreover, they can
be implemented jointly and complemented by other countermeasures on
algorithm-, circuit-, and gate-level.

1 Introduction

After the production of the first Complex Programmable Logic Devices (CPLD)
and Field Programmable Gate Arrays (FPGA) in the 1980s, research in pro-
grammable devices has evolved in many directions. To put our idea in context,
the following advances are worth mentioning. Partial reconfiguration increases
the performance of a reconfigurable system by reducing the reconfiguration time.
This can be done dynamically at run-time and without user interaction, while
the static part of the chip is not interrupted. The idea we put into practice is
a coarse-grained partially dynamically reconfigurable implementation of a cryp-
tosystem. Our prototype implementation consists of a FPGA which is partially



reconfigured at run-time to provide countermeasures against physical attacks.
The static part is only configured upon system reset.

Some advantages of dynamic reconfiguration for cryptosystems have been
explored before. In such systems, the main goal of dynamic reconfigurability is
to use the available hardware resources in an optimal way. This is the first work
that considers to use a coarse-grained partially dynamically reconfigurable ar-
chitecture in cryptosystems to prevent physical attacks by introducing temporal
and/or spatial jitter. Note that the proposed countermeasures do not represent
an all embracing security solution and should be complemented by other coun-
termeasures.

The first experimental results of power analysis attacks on FPGAs were given
by Örs et al. [20]. Standaert et al. examined the effect of pipelining and unrolling
techniques on the power consumption of FPGAs [23]. Power analysis counter-
measures based on the random pre-loading of pipelining registers are evaluated
in [22]. Successful fault injection on FPGAs is reported by Maingot et al. in [16].
The concept of spatial jitter for hardware implementations has been addressed
in [2] and [8], where architectures are proposed that consist of several identical
elementary cells. An algorithm’s suboperations are randomly mapped on these
cells. In our solution, the suboperations are always performed in the same func-
tional blocks, but these blocks are randomly relocated.

This paper is organized as follows: Section 2 gives an overview of the physical
attacks and countermeasures relevant for this work. Section 3 describes the initial
assumptions and the setup. Sections 4, 5, and 6 introduce the countermeasures
temporal jitter, combination of spatial and temporal jitter, and fault detection
for partially dynamically reconfigurable systems. Finally, Sect. 7 concludes the
paper.

2 Physical attacks and countermeasures

Differential Side Channel Attacks (DSCA), as introduced by Kocher et al. [14],
are passive attacks. They exploit the fact that there exists a relation between
the bit-flips in an electronic cryptographic device and its instantaneous power
dissipation. Since the bit-flips in the device depend on the values it is processing,
and since these data depend on a secret, e.g. a cryptographic key, there exists a
link between the secret and the power dissipation. First, an adversary observes
the target device’s power dissipation during the encryption of several messages
X. She targets an intermediate result fkc(X) of the cryptographic computation
that depends on the known and varying data X and a (small) part of the secret
key kc. At the time instant tc when this particular value is computed, there
exists a significant correlation between the intermediate values fkc(X) and the
observed power dissipation O(tc). Since, in general, both tc and kc are unknown,
the adversary performs an exhaustive search over all time instants t and key
hypotheses k. For this search, she computes the values of fk′(X) based on a
key guess k′ and applies a power consumption model to derive hypothetical
power consumption values h(·). Then, she applies a statistical test to measure



the correlation between the predicted and the observed power dissipation at
all instants t. For one combination of the parameters t and k′, the correlation
will be significantly higher than for all others. This reveals not only the correct
key kc but also the time instant tc when the targeted intermediate result is
computed. We apply Correlation Power Analysis [7], predict the hypothetical
power dissipation h(fk′(X), R) as the Hamming distance between fk′(X) and
a reference state R, and use the Pearson correlation coefficient ρ(h(·), O(t)) as
statistical test.

In practice, countermeasures aim at making an attack more difficult and
ideally infeasible. In this context infeasible means to raise the cost of an attack
beyond the gain due to a success. A metric for measuring the difficulty of an
attack is the number of samples required. Although this is not an ideal metric
(the number depends on too many factors which are difficult to rate) it is often
applied in practice. Hence, DSCA countermeasures aim at increasing the number
of required samples. There exist many approaches to achieve this goal. They can
be categorized along the implementation axis (algorithm-, circuit-, and gate-
level) or according to their functionality (masking and hiding), see Table 1.

Table 1. Overview of Differential Side Channel Analysis Countermeasures

Algorithm Circuit Gate

Masking Algorithmic masking – Gate level masking

Random precharge Noise Generators Dual-Rail Precharge
Hiding Dummy cycles Decoupled power Logic

Random Order Execution supply Current Mode Logic

Reference [18] presents a coarse-grained architecture that uses reconfigura-
bility to provide an algorithmic masking scheme. In this work we focus on power
analysis countermeasures that aim at introducing temporal jitter into the se-
quence of operations, i.e. distributing the instant tc over time for several ob-
servations. Such countermeasures are effective because the intermediate result
fkc(X) is no longer computed at a fixed instance. It rather occurs at a set of
different time instants T with probability distribution P. Examples of this type
of countermeasure for software implementations are Random Process Interrupts
(Dummy Cycles) [10], and Random Order Execution [24]. Reference [1] presents
a “Smart Processor” that inserts random delays autonomously and code inde-
pendent. For hardware implementations the only countermeasure of this category
we are aware of are asynchronous circuits [6]. Note that they can introduce vul-
nerabilities to timing attacks, since the execution time of the implementation
might depend on the processed data itself. Moreover, asynchronous circuits gen-
erally require a longer design time than synchronous circuits. While the software
countermeasures are easy to implement and virtually platform independent, an
asynchronous circuit needs to be designed from scratch and implemented care-
fully.



Fault attacks are active attacks. In the broadest sense, they expose the target
device to physical stress in order to provoke abnormal behavior. An additional
information flow can be caused, if the cryptographic device returns erroneous
cryptograms or a modified execution path is entered. The exploitation of faulty
cryptograms may involve mathematical cryptanalysis. We distinguish between
transient and permanent faults. A fault is transient if the device remains fully
functional and the effect is of short duration (e.g. one clock cycle). A fault is per-
manent if its effect persists during the lifetime of the device. We also distinguish
two classes of attacks. One class is composed of attacks that require a single suc-
cessful fault injection to achieve the goal as for example the Bellcore attack [5]
against a RSA-CRT implementation. Attacks in the other class usually require
many successfully injected faults to achieve their goal. As examples we mention
Collision Fault Analysis (CFA) [12], Differential Fault Analysis (DFA) [3], and
Ineffective Fault Analysis (IFA) [9, 4].

Fault analysis countermeasures can be divided in at least three categories.
Countermeasures of the first kind do not aim at preventing fault injection and the
fault’s effect, but intend to make the exploitation of the fault difficult and ideally
infeasible. These countermeasures aim, as in the context of DSCA, at distributing
the instant tc at which a given operation is executed over a time interval. The
second kind of countermeasure aims at detecting a fault injection by, for instance,
introducing redundancy and checking for errors. This can be done at the data
level using a suitable code and at the software level by executing the algorithm
twice and comparing the results. In hardware, one can also implement the circuit
twice and run both executions in parallel, or implement the circuit in dual-rail
logic with a dedicated error state. The third kind of countermeasure aims at
detecting the fault injection attempt. Usually, dedicated sensors are integrated
into the circuit and/or the chip package.

In this paper we introduce countermeasures of all aforementioned types for
partially dynamically reconfigurable devices.

3 Setup and assumptions

3.1 Adversarial model

The adversary is a malicious user of the device under attack, though she can be
the legitimate owner. She wants to extract confidential data, e.g. cryptographic
keys. The adversary can perform all kinds of passive attacks, in particular power
analysis.

With respect to fault analysis, we apply the notions of the adversarial model
introduced by Lemke-Rust and Paar in [15]. The adversary can also perform a
range of active attacks, namely those categorized as semi-invasive. Summarizing
this means, that the adversary can penetrate the device as much as to open the
chip’s package. Penetration of what is called the cryptographic boundary is not
included. However, the adversary may use fault injection mechanisms that cross
this line, e.g. photons.



An attack is successful, if enough key information is obtained to recover the
entire key with or without further cryptanalysis. The adversary is able to inject
at most q faults per second, where q is a small number. The adversary can
use r fault injection setups in parallel where again r is a small number. Fault
injection is a probabilistic process with success rate p. Complementary events
with probability 1−p have no or not the intented effect and cannot be exploited.
In specific attack scenarios, unsuccessful fault injection can even turn an attack
infeasible because the adversary can not distinguish a cryptogram where the
fault effect is as desired from a cryptogram where the fault effect is different.

Faults can be injected by precisely timed modifications of the clock signal or
the power supply (glitches), intense illumination with focused white light or a
laser beam, intense electromagnetic fields, rapid changes of the temperature, etc.
Note that we exclude precise and deterministic permanent modification of the
chip, e.g. cutting and re-wiring using a focused ion beam, from the adversary’s
capabilities. That is, we do not consider invasive adversaries. For all fault injec-
tion techniques, we assume that a successfully injected fault has a random and
non-predictable effect on the targeted volume in the device. Although this makes
the adversary appear weaker than she might be, it allows a compact analysis of
the security level of the proposed countermeasures. Further, it is without doubt
the most general and realistic model. Considering more specific fault models,
such as deterministic bit-set and bit-reset, is beyond the scope of this work.
To evaluate the adversary’s success probability, we use the following definitions
from [15].

Spatial resolution: let dA denote the target area at depth z with depth dz so
that dA · dz is the target volume. ∆A is the area and ∆z is the depth affected
by the fault. The probability to stimulate the correct area on the chip surface is
given as parea = 1 if ∆A ≤ dA, and as parea = dA/∆A else. Since the penetra-
tion depth depends on various technological factors and cannot be estimated for
a general case, we conservatively assume that the fault injection process always
penetrates to the right depth, i.e. pdepth = 1. Combining the probabilities for
area and depth therefore leads to pvolume = parea.

Temporal resolution: let dt denote the targeted time interval during which
a fault must be injected in order to be successful. Let ∆T denote the time
resolution of the fault injection process. The probability to inject a fault at an
instant where it leads to success is given as ptime = 1, if ∆T ≤ dt, and as
ptime = dt/∆T else.

The overall success probability is a function of (at least) these two probabil-
ities. Thus in our case and given that they are independent p = pvolume · ptime.

3.2 Reference architecture and system overview

To explain our countermeasures, we assume that the cryptographic algorithm to
be implemented is a repetitive instruction that consists of a number of subfunc-
tions. This is a realistic assumption for both symmetric and public key cryp-
tosystems. Figure 1 shows the general architecture (bottom right) and floorplan
(top right), respectively, consisting of n blocks each representing a subfunction.



These n blocks are executed a number of times and the intermediate result is
saved in a register.
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Fig. 1. General architecture and floorplan for the implementation of a repetitive algo-
rithm consisting of n subfunctions (right) and reference architecture for our AES-128
prototype implementation (left).

Moreover, we propose prototype implementations of AES with a 128-bit
key [19]. The architecture of the fully parallel reference design of AES is depicted
in Fig. 1 (left), where ARK, SB, SR and MC denote the subfunctions AddRound-
Key, SubstituteBytes, ShiftRows and MixColumns, respectively. AES-128 con-
sists of 10 rounds, where the round results are stored in an intermediate register.
The roundkeys are computed on-the-fly using the KeyExpansion (KE) function
and stored in the roundkey register. The intermediate register, the roundkey reg-
ister, the multiplexors and the output buffer are controlled by the Finite State
Machine (FSM) in combination with the round counter (CTR).

Our reference and prototype architectures are implemented on a Virtex-II
Pro FPGA of Xilinx. In order to provide self-reconfiguration, an Internal Con-
figuration Access Port (ICAP) [25] is added to the design. Figure 2 shows how a
softcore MicroBlaze (µB) processor is connected to the partially reconfigurable
AES coprocessor, the True Random Number Generator (TRNG) and the ICAP
through the On-chip Peripheral Bus (OPB). The connection of the processor
to the data and instruction memory (block RAM or BRAM) is realized over
the Local Memory Bus (LMB). Since this paper only focuses on the security
of the AES coprocessor, the bitstreams for our prototype implementations are
stored in an external flash memory. More secure solutions include storing the
bitstreams in the internal block RAM, although this has a limited capacity, or



using secure external flash memory, as for example described by Handschuh and
Trichina in [11].

TRNG ICAP AES flash

BRAM

µΒ

LMB

OPB

Fig. 2. Architectural view of the reconfigurable system.

4 Temporal jitter

As stated above, many attacks against physical implementations of crypto-
graphic algorithms require that the timing of the executed operations is aligned
for multiple executions. Since software countermeasures are flexible to apply and
provide a high level of protection at the same time, we dedicate this section to
the application of these well studied techniques to hardware implementations.

4.1 Description of a generic architecture

To port the idea of temporal jitter to hardware implementations, many registers
could be foreseen in combination with multiplexors deciding whether to bypass
a register or not. Because this would create a large overhead in resources, this
option is highly impractical. We propose an architecture with a dynamically re-
configurable switch matrix to avoid such a problem. The matrix determines the
position of one or more registers in between functional blocks. Since a register
causes a delay of one clock cycle, randomly positioning registers in between sub-
functions de-synchronizes the observations. Our architecture is shown in Fig. 3.
It is an improvement of the reference architecture shown in Fig. 1 in Sect. 3.2.

The number of possible configurations depends on the number m of registers
and the number n of blocks. The value n depends on the number of reasonable
subfunctions in the algorithm, which may depend on the width of the data-path.
The number of options increases if we allow cascaded registers in between func-
tional blocks. This is shown in the third option for the switch matrix in Fig. 3.
Note, however, that if we allow cascaded registers, there exist several configu-
ration options that lead to identical sequences of combinatorial and sequential
logic. Concerning this matter and allowing up to m cascaded registers, the num-
ber c of distinct configurations is

(
n+m−1

m

)
, i.e. the number of combinations of
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m elements out of n, where the order does not matter and repetition is allowed.
The probability to observe the same configuration twice is 1/c. However, the
number of possible configurations determines the size of the memory needed to
store the configuration data and is therefore bounded. Further, an increasing
number of intermediate registers increases the number of cycles needed for one
encryption. The number of registers, however, does not affect the maximal clock
frequency, because we allow more than one register to be cascaded. In general,
the number of options for the temporal shift is determined by the number m of
registers and the number n of blocks, and is bounded above by c.

As illustrated in Fig. 3, a True Random Number Generator (TRNG) is used
to select the next configuration of the switch matrix. It is important to note
that the security of the architecture depends on strength of the TRNG and its
resistance against fault and power analysis attacks. In this paper, we assume
that the TRNG provides strong random numbers and withstands all adversaries
covered by our model.

4.2 Example for AES-128 encryption

In the fully parallel implementation of AES-128 in Fig. 1, four obvious sub-
functions can be distinguished: AddRoundKey (ARK), SubstituteBytes (SB),
ShiftRows (SR), and MixColumns (MC). We implemented a prototype based
on the generic architecture proposed in the previous section where n = 4 and
m = 2. The prototype and some options for the reconfiguration matrix are
shown in Fig. 4. In this particular case and if we allow up to m cascaded
registers in between functional blocks, the number of distinct configurations is
c =

(
4+2−1

2

)
= 10.

The performance results of our implementation are compared to a static de-
sign in Table 2. The static design contains one register after each AES round,
while the partially reconfigurable design contains m = 2 registers. The reconfig-



Table 2. Implementation results for the static design (one register) and the prototype
dynamic design (two registers) on a Virtex-II Pro FPGA.

occupied max. clock through- reconf. reconf. # conf.
area frequency put time data size options

(# slices) (MHz) (Mbit/s) (ms) (kB)

Static design 685(5%) 111 10 1

Prototype: 3251(23%) 33 1.5 3 91 10
static/dynamic 1547(11%)/1704(12%)

uration time of the switch matrix is approximately 3 ms. However, technological
improvements reduce this number by a factor of at least 10. We also observed a
decrease of the maximal clock frequency by a factor of more than 3. This is due
to the communication between the static and the dynamic part of the design.
The static part of the prototype design is larger than the fully static design. This
is because of the extra 128-bit register and because of the logic that is needed
for the communication over the boundaries between the static and the dynamic
part of the design.
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4.3 Can the countermeasure be circumvented?

An obvious approach to circumvent the countermeasure is to distinguish the dif-
ferent active configurations. If that is possible, an adversary can entirely undo
the effect of the countermeasure by using only an appropriate subset of the ob-
servations that represent a single configuration. Therefore we examine, whether
such a distinction is feasible using Timing Analysis (TA) [13] and Simple Power
Analysis (SPA) [14].



The overall encryption time is constant and does therefore not reveal infor-
mation about the circuit’s internal configuration. The execution time is equal to
11 ·m cycles, where m ≥ 1 is the number of intermediate registers.

Figure 5 shows power traces obtained from the prototype implementation
while performing AES encryption in 2 out of 10 possible configurations. The
two intermediate registers are pre-loaded with random data before the encryp-
tion starts. In this way, an attacker cannot deduce the position of the registers
from the height of the first two peaks. This technique is similar to randomly
pre-loading registers in a pipeline, as described in [22]. The plots support our
claim that all implementations execute the algorithm in the same constant time.
Additionally one can see that both plots look very similar, though not exactly
the same. The slight differences are due to the pre-loading with random data
and they are not configuration dependent features. These observations hold for
all 10 possible configurations. Hence the power traces do not allow the distinc-
tion of the circuit’s internal configuration. However, both TA and SPA allow an
adversary to find out the number m of registers, which was fixed at design time.
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Fig. 5. Power traces of AES encryption in 2 configurations, with n = 4, m = 2 and a
clock frequency of 1 MHz.

Another approach to circumvent the countermeasure could consist of analyz-
ing the circuit during dynamic reconfiguration. If an adversary can distinguish
the different configurations, an attack as outlined above is feasible. We examine
whether TA or SPA of the reconfiguration process might leak information about
the circuit’s current or next configuration. The spatial size of the reconfigurable
area is constant and so is the size of the different bitstreams. Therefore, the tim-
ing of the entire reconfiguration process is constant and TA cannot reveal the
circuit’s current or next configuration. Similarly, the power consumption during
reconfiguration does not show obvious configuration dependent features.

Without having exhausted all possibilities of TA and SPA, we assume that
more elaborate analysis of both, the reconfiguration process and the actual en-
cryption, does not allow to distinguish the configurations with a significant rate
of success.



4.4 Resistance against DSCA

In this section we evaluate the level of protection that our countermeasure pro-
vides against DSCA. Recall that (standard) DSCA requires intermediate results
to be synchronized in the time domain and that our countermeasure introduces
time jitter.

In [17], Mangard studies the effectiveness of temporal de-synchronization as
a DSCA countermeasure. He derives that, in the case of insertion of random
delays, tc is binomially distributed over time. Our proposal has the same effect.
Note that he implicitly assumes that tc occurs at each t ∈ T equally likely, which
is the most obvious choice. He derives a formula which allows to easily estimate
the maximum correlation coefficient ρmax as seen by an adversary. Taking his
further simplifying steps into account and adapting to our notation, the equation
becomes

ρmax =
ρ(h(fkc

(X), R), O(tc))√
1 + 1

SNR

· p̂ = ρ′ · p̂ (1)

where ρ(h(fkc
(X), R), O(tc)) is the correlation coefficient achieved for the correct

key hypothesis kc at the correct time instant tc at an unprotected implementation
and SNR is the signal to noise ratio. p̂ is the the maximum probability in P and
indicates the time instant t̂c ∈ T at which the targeted intermediate result occurs
most likely. It is further possible to estimate the number S of samples required
to break the protected implementation based on ρmax and a quantile Zα:

S = 3 + 8

(
Zα

ln( 1+ρmax

1−ρmax
)

)
= 3 + 8

(
Zα

ln( 1+ρ′·p̂
1−ρ′·p̂ )

)
. (2)

The probability α expresses the likelihood of an attack to be successful.
We evaluate our AES-128 prototype implementation w.r.t. these figures.

When an attacker focuses on the storage of an intermediate result in a register,
the first round is hard to attack, since all intermediate registers are pre-loaded
with random values. Attacking the second round is difficult because of the dif-
fusion property of AES. Therefore, we evaluate the effectiveness of our counter-
measure under the assumption that an attacker analyzes the power consumption
of the combinatorial logic. In our prototype design, the number of options for
the temporal shift depends on which functional block is analyzed. Since SB is
a common choice, we evaluate the number of options for the temporal shift of
the computation of SB. We take into account that SB and SR can be swapped,
which doubles the number of distinct configuration options and leads to c = 20.
However, since tc only depends on the number of registers preceding SB and
the position of the last register, some configurations lead to the same tempo-
ral shift. In fact, there are 8 options with probabilities between 1/20 and 6/20,
thus p̂ = 6/20. Under the conservative assumption of ρ′ = 1, ρmax decreases to
6/20 and S, the amount of measurements required to break the implementation,
increases by a factor of more than 3 for Zalpha = 0.5 (the median). This num-
ber is not impressive at first sight, but note that this countermeasure can be
complemented with for example a masking scheme and that we assumed ρ′ = 1.



In [10], Clavier et al. propose the Sliding Window DPA. Although this attack
is smarter since it takes into account what is actually happening in the target
device, it is also much more difficult to mount in practice. The basic idea is to
jointly analyze several time instants where the target value might occur, therefore
effectively reversing the process of de-synchronization. The attack consists of a
usual DSCA attack and a postprocessing of the differential traces. Clavier et al.
suggest to choose a suitable number of instants with a suitable distance between
them to form a “comb”. They suggest to slide the comb over each differential
trace with a given offset and, at each position, to integrate the trace at all instants
selected by the comb. As a result, one obtains the same number of integrated
traces as differential traces. The integrated trace corresponding to the correct
key guess does not show not a spike, but a clearly visible Gaussian ’peak’. They
conclude that if the targeted intermediate result is spread over g consecutive
cycles (a cycle is the smallest time unit for a software implementation) their
attack requires g times more measurements. It remains, however, unclear how to
choose the number of instants or their distance in practice, when one has little
knowledge about the device and the implementation. For our prototype with
two registers the spreading factor g is 8.

We also note that this countermeasure does not protect the functional blocks
but rather the overall architecture.

4.5 Resistance against Fault Analysis

Here we evaluate the level of protection against fault attacks provided by the
time jitter countermeasure. Using the definitions introduced in Sect. 3.1, the
probability of a successful fault injection is p = pvolume · ptime = 6/20, since
we assume pvolume = 1. However, it is not necessarily possible for the adversary
to distinguish between a successful and a non-successful fault injection. This
can have a major impact if the fault attack requires multiple successful fault
injections and further mathematical cryptanalysis, which is sensitive to incorrect
input data. DFA, for example, usually requires several successful fault injections
and might sieve out the correct key if a non-successfully faulted cryptogram
is amongst the input data. Therefore, the countermeasure is effective although
p = 6/20 is not that small in this example.

An adversary could also try to inject a fault that alters the circuit’s behavior.
The effect of a successfully injected fault on the switch matrix would only remain
until the next dynamic reconfiguration of the matrix. Since the fault is transient,
reconfiguration will bring the circuit back to its normal behavior. A successfully
injected fault on any other functional block, on the other hand, remains until
system reset. However, since we assume the random fault model and do not
consider invasive adversaries it is highly unlikely that an adversary can modify
the circuit’s behavior in an exploitable way. Nevertheless, the functional blocks
can be protected with complementary countermeasures.

We want to mention here one specific attack, though out of the model, that
can pose a great risk. Should it be possible to inject a fault that flips a random
number of bits in the key register to either zero or one with high probability, an



attack as described in [3] can be carried out. Therefore a system designer might
want to add further protection. For instance this can be done by duplicating the
key register and comparing the contents to the original key register or apply-
ing the techniques described in the next section. These countermeasures can in
general be applied to the static control part of the design.

5 Spatial and temporal jitter

In this section, we protect the cryptographic implementation using both tem-
poral and spatial jitter. To achieve this, not only the moment in time when a
value is stored or computed needs to be determined by dynamic reconfigura-
tion, but also the position of the functional blocks. Therefore the time and place
when/where a subfunction is executed in the resulting architecture is based on
the reconfiguration option.

5.1 Description of a generic architecture

In order to further improve the resistance of the implementation against fault
analysis attacks, we propose a dynamically reconfigurable architecture in which
the location of the subfunctions and intermediate registers is altered randomly
based on the output of a TRNG. The general architecture of a system including
this countermeasure is depicted in Fig. 6. For each functional block, both a
registered and a non-registered variant can be inserted dynamically, depending
on the output of the TRNG, causing temporal jitter as described in Sect. 4.1.
Moreover, the position of the blocks can be altered depending on a second output
of the TRNG, causing spatial jitter. In order to connect the output of the last
subfunction in the algorithm to the output of the design, all blocks have an extra
output, which is connected to an OR-gate that combines all these extra outputs.
Only the last block sends a value to the output, while the other blocks provide
the OR-gate with zeros.

Suppose that the order of execution of the subfunctions in the algorithm is
fixed and equal to f0, f1, . . ., fn−1, where fi is the function that is implemented
in block i. Then the number of possible positions of the functional blocks is
n. The probability of injecting a fault at a certain intended area on the chip
surface, as denoted by parea in Sect. 3.1, depends on the technology and the
fault injection process. This countermeasure aims in particular at preventing
local fault injection processes such as optical fault injection. We assume that the
typical spatial focus in such an attack, e.g. the focus of a laser, is so small that
the probability that a laser fault injection at the same (x,y) coordinates would
still affect the same functional block after it has been relocated is negligible.
Hence we have parea = 1/n.

Suppose that each block can be followed by at most one register. Then the
number of possible positions for the intermediate registers is n. The probability
of injecting a fault at a certain intended moment in time, as denoted by ptime

in Sect. 3.1, depends on the targeted subfunction and has a lower bound of
1/(m + 1).



Fig. 6. Modified architecture for improved fault attack resistance.

5.2 Example for AES-128 encryption

The high-level architecture of our AES-128 prototype is the same as the one in
Fig. 2 in Sect. 3.2. The AES coprocessor is implemented according to the general
architecture in Fig. 6 with n = 4. This means there are four regions which can
be configured in eight possible ways, i.e. each region can be loaded with ARK,
SB, SR, or MC, and each of these functions can be followed by a register. In
this case, parea = 1/4 and ptime = 1/3 with m = 2. Note that SR and SB can
also be interchanged in the round sequence of AES, which increases the number
of possible configurations even more. The reconfiguration time for this design is
significantly higher than for the one shown in Fig. 4, since more regions need to
be reconfigured. The maximal clock frequency on the other hand is similar.

5.3 Can the countermeasure be circumvented?

Again we examine whether the countermeasure can be undone using TA or SPA.
The results are similar to those presented in Sect. 4.3. In summary we observed
a constant execution time both of the encryption and the partial reconfiguration
process and no remarkable patterns in the power traces in either case. Therefore
we conclude that neither TA nor SPA enables an adversary to distinguish the
configurations with a significant rate of success.

5.4 Resistance against Fault Analysis

Here we evaluate the level of protection against fault attacks provided by the
combined spatial and temporal jitter countermeasure. Most of the analysis pre-
sented in Sect. 4.5 also applies in this case. However, thanks to the jitter in both



domains, the probability of a successful fault injection is p = pvolume · ptime =
1/12.

Another interesting property of the spatial jitter is, that all functional blocks
of the cryptosystem are now implemented in reconfigurable areas. Since the effect
of a long-lasting transient fault can be undone by dynamic partial reconfigura-
tion, the circuit can effectively recover from an injected fault. For the proposed
fault attack countermeasure, the trade-off between security and reconfiguration
delay should be seen in the context of the fault injection frequency. For example:
the optical fault injection setup presented in [21] has a maximum laser pulse fre-
quency of 50 Hz. Assuming a fault injection process with this kind of laser, the
reconfiguration frequency can be lowered to 50 Hz (plus an additional security
margin).

6 Fault detection

In particular for FPGAs, fault detection can be realized by reading back one,
some, or all bitstreams from the reconfigurable areas and comparing them with
the reference copy stored in the block RAM. Certain FPGAs already allow to
read back bistreams. Comparison to the reference bitstream can be done us-
ing (protected) logic gates inside the FPGA. Some vendors provide the stored
bitstream with redundant CRC bits. In this case, it is more efficient to exam-
ine the bitstream that is read back based on its CRC value. The procedure of
reading back the bitstream and comparing it (through logic or CRC check) to
the reference copy of the bitstream only detects faults if the reference bitstream
cannot be altered in the same way as the bitstream in the reconfigurable area. In
our fault model, it is practically infeasible to insert a fault in the reconfigurable
area and on the bitstream stored in block RAM with the same effect. Therefore,
the probability that this kind of fault detection fails is negligible. Moreover, the
scheme can be complemented with traditional fault detection mechanisms such
as dual-rail precharge logic with an error state. Another option is to execute
the implemented algorithm twice, either in parallel (which doubles the area) or
sequentially (which doubles the execution time). In the architectures that we
propose, both executions can run in different configurations, which increases the
probability of fault detection.

All methods mentioned in this section focus on fault detection. It remains the
system designer’s choice how to react to an alarm signal. We note that for some
attacks outputting the result first and then checking the bitstream for faults
might raise an alarm when it is already too late. Checking before outputting
seems to be more appropriate in such cases.

7 Conclusion

This paper introduces the use of partial dynamic reconfigurability as a counter-
measure against physical attacks. On the one hand, side channel attack resistance
can be improved by introducing temporal jitter. On the other hand, fault attack



resistance can be improved by introducing spatial and/or temporal jitter. We
also suggest a method to add a fault detection mechanism to a reconfigurable
hardware design with negligible area overhead.
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