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Abstract. This paper proposes compact hardware (H/W) implemen-
tation for the MISTY1 block cipher, which is an ISO/IEC18033 stan-
dard encryption algorithm. In designing the compact H/W, we focused
on optimizing the implementation of FO/FI functions, which are the
main components of MISTY1. For this optimization, we propose two
new methods; reducing temporary registers for the FO function, and
shortening the critical path for the FI function. According to our logic
synthesis on a 0.18-µm CMOS standard cell library based on our pro-
posed method, the gate size is 3.95 Kgates, which is the smallest as far
as we know.
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1 Introduction

The MISTY1 64-bit block cipher [1] is an ISO/IEC18033 [2] standard encryption
algorithm. MISTY1 can be implemented in various ways in order to meet differ-
ent performance requirements, such as compact design or high-speed preference.
So, MISTY1 is suitable for embedded systems, such as mobile phones.

A number of MISTY1 ASIC implementations have been studied [3] [4] [5]. In
[3] [4], compact MISTY1 architectures were designed. To realize compact design,
these architectures use the only one FI function module repeatedly, and use S-
boxes that are implemented in combinational logic. However, these architectures
do not use common methods for the compact design, in which extended keys are
sequentially generated in the encryption/decryption process in order to limit the
register size of extended keys to 16 bits. Furthermore, they do not optimize the
implementation method of the FO/FI function in consideration of using one FI
function module. This optimization is very significant for the compact MISTY1
H/W.

In this paper, we focus on four strategies for the compact design. First, we
choose to implement the H/W by using one FI function. Secondly, we use S-boxes
implemented in the combinational logic. Thirdly, extended keys are generated
sequentially in our H/W. Fourthly, we optimize the implementation of the FO/FI
function. To realize this optimization, we propose two new methods. One reduces
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the temporary register for the FO function by the optimization of an FO function
structure. Another shortens the critical path around the FI function by reducing
the number of XOR gates in the critical path.

With our strategies, we synthesize MISTY1 H/W by a 0.18-µm CMOS stan-
dard cell library (CS86 technology[18]), and the performance evaluations are
shown. As a result, an extremely small size of 3.95 Kgates with 71.1 Mbps
throughput is obtained for our MISTY1 H/W. This is the smallest MISTY1
H/W, as far as we know.

Our proposed methods can be applied not only to MISTY1 but also to
MISTY2 [1] and KASUMI [6], which have a similarly structured MISTY1 FO
function. In [7], the compact H/W of KASUMI is proposed. A further gate count
reduction of the KASUMI H/W can be realized by using our proposal.

The rest of the paper is organized as follows. A survey of related work is found
in Chapter 2. Chapter 3 explains the algorithm of MISTY1. Our strategy for the
smallest H/W of MISTY1 is discussed in Chapter 4. Chapter 5 proposes two new
methods for an effective H/W implementation of MISTY1. Chapter 6 presents
evaluation results for gate counts and the performance of our H/W, compared
with previous results. Finally, we conclude with a summary and comment on
future directions in Chapter 7.

2 Previous work

A large number of MISTY1 H/W implementation evaluations on FPGA and
ASIC have been studied.

The implementation on FPGA platform was reported in [8] [9] [10] [11] [12]
[13] [14]. In [8] [9] [10], designers of MISTY1 have implemented MISTY1 H/W
based on three types of H/W architectures; the fully loop unrolled architecture,
the pipeline architecture, and the loop architecture. The two former architec-
tures allow high processing speed, while the latter architecture allows a compact
circuit. The implemented H/W based on the loop architecture uses a large 128-
bit register for extended keys. In [11] [12], the implemented H/W was aimed not
at compact design but high H/W efficiency, and it had an encryption function
without a decryption function. In [13] [14], the implemented H/W had both
the encryption and decryption function. Also, RAM blocks embedded in the
considered FPGA devices were used for the implementation of S-boxes, so the
implemented H/W realized higher H/W efficiency.

Implementation on the ASIC platform was reported in [3] [4] [5]. In [3] [4],
developers of MISTY1 implemented and evaluated MISTY1 H/W. In particular,
the research purpose in [4] is to reduce the gate count, and the implementation
methods of FO/FI functions are well-studied. However, the gate size of their
H/W is not small enough because one large 128-bit register is used for the
extended key. The H/W performances of various block ciphers including MISTY1
are compared in [5]. In [5], the MISTY1 H/W is implemented straightforwardly
based on the cipher specification. S-boxes are implemented by a lookup table
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in consideration of the fairness among ciphers, and a 128-bit register is used for
extended keys, so the gate count of the implemented H/W is not small.

3 MISTY1

Figure 1 shows the nested structure of MISTY1 excluding the key scheduler [1].
MISTY1 encrypts a 64-bit plaintext using a 128-bit secret key. MISTY1 has the
Feistel network with a variable number of rounds n including FO functions and
FL/FL−1 functions. Since n = 8 is recommended in [1], we set n = 8 in the rest of
this paper. The FOi(1 ≤ i ≤ 8) function uses a 48-bit extended key KIi and a 64-
bit extended key KOi. The FLi(1 ≤ i ≤ 10) function is used in the encryption,
meanwhile the FL−1

i function is used in the decryption with a 32-bit extended
key KLi. In Fig. 1, 16-bit KLi1 and KLi2 are the left and right data of 32-bit
KLi, respectively. The FOi function has three FI functions FIij(1 ≤ j ≤ 3).
Here, KOij(1 ≤ j ≤ 4) and KIij(1 ≤ j ≤ 3) are left j-th 16-bit data of KOi and
KIi, respectively. The FI function uses the 7-bit S-box S7 and the 9-bit S-box
S9. Here, the zero-extended operation is performed to 7-bit blocks by adding
two ‘0’s. The truncate operation truncates the two most significant bits of a
9-bit string. KIij1 and KIij2 are the left 7 bits and the right 9 bits of KIij ,
respectively. Here, the key scheduler of MISTY1 is explained. Ki(1 ≤ i ≤ 8) is
the left i-th 16 bits of a 128-bit secret key. K ′

i(1 ≤ i ≤ 8) corresponds to the
output of FIij where the input of FIij is assigned to Ki and the key KIij is
set to K(imod8)+1. The assignment between the 16-bit secret/extended keys Ki,
K ′

i and the 16-bit round key KOij，KLij，KIij is defined in Table 1, where i
equals (i − 8) when (i > 8).

Table 1. The assignment between Ki, K′
i and KOij，KIij

Round KOi1 KOi2 KOi3 KOi4 KIi1 KIi2 KIi3 KLi1 KLi2

Secret/ Ki Ki+2 Ki+7 Ki+4 K′
i+5 K′

i+1 K′
i+3 K i+1

2
(odd i) K′

i+1
2 +6

(odd i)

Extended K′
i
2+2

(even i) K′
i
2+4

(even i)

4 Four strategies for the compact design

4.1 The number of the FO/FI function module

The FO/FI function is the main component of MISTY1, so the FO/FI function
is one of the most influential factors for gate counts of MISTY1 H/W. Thus,
it is important to decide the number of the FO/FI function module. MISTY1
has a nested structure including FO functions and FL/FL−1 functions, so the
number of the FO/FI function module can be variously selected. When MISTY1
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Fig. 1. MISTY1 encryption algorithm

is implemented with a pipelined H/W architecture, eight FO function modules
are performed in the same clock cycle. This is suitable for high-speed imple-
mentation, but leads to a large circuit size. Therefore, we choose to implement
only one FI function module for the compact design. That is, the FO function
is executed in three clock cycles by repeatedly using one FI function module.
This architecture leads to low speed processing, but is suitable for compact im-
plementation.

4.2 Extended key generation method

The generation method of extended keys in MISTY1 is classified into two meth-
ods; called the “register method” and the “on-the-fly method”. It is important
for the compact design to choose between two methods. In the register method,
a 128-bit extended key is generated and stored into a 128-bit register in advance
of the encryption/decryption process, and the required extended key is read di-
rectly from the register. In the on-the-fly method, a 16-bit required extended key
is generated in the encryption/decryption process sequentially. The on-the-fly
method is more suitable for the compact design than the register method be-
cause of the 128-bit register. Therefore, we chose the on-the-fly method, which
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has not been reported in the existing H/W implementation of MISTY1, but has
been employed in other algorithm implementations, such as AES. That is, all of
the previous architectures of MISTY1 are based on not the on-the-fly method
but the register method. Also, because of the MISTY1 algorithm, the FI function
is used not only in the encryption/decryption process but also in the extended
key generation process. Therefore, we chose the implemented method, in which
one FI function module is shared with these two processes. Thus, both the en-
cryption/decryption process and the extended key generation process cannot be
performed in the same cycle. So, a 16-bit register is required to retain a 16-bit
extended key generated sequentially. Here, our on-the-fly method requiring a
16-bit register is called the “sequential method”.

4.3 S-box Implementation method

The S-box performance of MISTY1, including gate counts, depends on the S-box
implementation method, so it is important for the compact design to discuss
them. The implementation method of two S-boxes (S7 and S9) is considered
as follows. The two S-boxes of MISTY1 have been designed so that they can
be easily implemented in combinational logic as well as by a lookup table [1].
On MISTY1, S-boxes in combinational logic show better performance both in
terms of the area size and the delay time than that by a lookup table [3]. We
confirmed that the same results are obtained when the implemented S-boxes are
synthesized by using a 0.18-µm CMOS standard cell library. Therefore, we used
S-boxes implemented in combinational logic.

4.4 Optimization of FO/FI function

The proposed H/W uses one FI function module repeatedly. Furthermore, it
is very significant for the smallest MISTY1 H/W to discuss the following two
methods; a concrete implementation method of FO function in three cycles by
using one FI function module, and the method of reducing the gate count of the
FI function itself. In Chapter 5, we propose these two new methods.

5 Proposed methods for the compact design

5.1 Reducing the temporary register for the FO function

When an FO function is executed in three cycles by repeatedly using one FI
function module, an intermediate result in each cycle must be stored into a
register. The FO function transforms 32-bit data, so a 32-bit temporary register
for the intermediate result (i.e., is “temporary register”) is required. We reduced
the size of the temporary register to 16 bits.

The concept of the proposed method is explained by reference to Fig. 2. It
shows the method of dividing an FO function into three cycles. The previous
method is straightforward based on MISTY1 specification. An FO function is
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separated horizontally for every cycle in the previous method, so a 32-bit tempo-
rary register is required for left and right 16-bit data. Meanwhile, an FO function
is separated vertically for every cycle in the proposed method. In fact, the output
data from the FI function in Cycle2 is directly XORed with a data register, so
the 16-bit temporary register for the data is reduced by the proposed separation.

Cycle1
Cycle2
Cycle3

++

++
++

++

FI++
++

Previous Proposal+ +
FI
FI

FI
FI
FI

32bit Register
32bit Register 16bit Register

Fig. 2. Concept of temporary register reduction

The detail and effectiveness of the proposed method is explained in the follow-
ing steps. First, the straightforward architecture based on MISTY1 specification
is explained as “existing method”. Next, the proposed architecture based on the
proposed concept shown in Fig. 2 is explained as “proposed method (a)”. Then,
we propose the second proposed architecture, which is maximally optimized for
compact design as “proposed method (b)”. Finally, the gate counts of FI func-
tions are estimated. By using proposed method (b), the size of the FO function
is estimated to be reduced 17% of the existing method.

Existing method The common partition algorithm based on MISTY1 specifi-
cation is shown in Fig. 3 (I) as the existing algorithm. Equation (1) in Appendix
shows each process for three cycles in this algorithm. Let Reg-RH , Reg-RL,
Reg-LH , and Reg-LL be 16-bit registers (called “Feistel data register”), respec-
tively. The Feistel data register means the register for storing intermediate results
for each round plaintext/ciphertext. Also, let Reg-FOR and Reg-FOL be the
16-bit temporary registers, so the total size of temporary registers is 32 bits in
the existing algorithm. Next, the existing architecture based on the existing al-
gorithm is shown in Fig. 3 (II). Note that the registers described in the following
architecture figures include a 2-1MUX. This 2-1MUX can select the value stored
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in the register or the value of the external input. The value stored into the reg-
ister can be updated to the selected value. Consequently, two 16-bit registers,
Reg-FOR and Reg-FOL, are required in the existing method.

Proposed method (a) We discuss the proposed algorithm (a) shown in Fig. 4
(I), which is designed based on the proposed concept shown in Fig. 2. Comparing
Fig. 4 (I) with Fig. 3 (I), the output data from the FI function is directly XORed
with Reg-RH and Reg-RL in Cycle2 in Fig. 4 (I). This makes it possible to
remove a 16-bit temporary register because the output data from the FI function
in Cycle2 does not need to be stored into the temporary register. The proposed
architecture (a) based on the proposed algorithm (a) is shown in Fig. 4 (II).
Equation (2) in Appendix shows each process for three cycles shown in Fig. 4
(I). Although the proposed architecture (a) shown in Fig. 4 (II) can remove the
16-bit temporary register, there is another issue. The issue is that the number
of MUX operators is increased compared with the existing method, because
the circuit structure differs in every three cycles, which comes from the vertical
separation of the proposed method. Concretely, different values are input into
input1 and input4 in the FI function in three cycles, so the existing architecture
has two 16-bit 2-1MUX, meanwhile the proposed architecture (a) has two 16-bit
3-1MUX. Also, the proposed architecture (a) has a 16-bit 2-1MUX instead of a
16-bit XOR operator located above Reg-RH . This 2-1MUX selects the output
data from the FI function in Cycle2, and the extended key KOi4 in Cycle3. In
other words, the proposed method (a) reduces the 16-bit temporary register, but
increases the 48-bit 2-1MUX compared with the existing method.

Proposed method (b) The algorithm (b) shown in Fig. 5 (I) aims to reduce
the 2-1MUX increased in the proposed method (a). One of the redundant MUX
operators is a 2-1MUX located above Reg-RH in Fig. 4 (II). If KOi4 is XORed
with Reg-RH without this 2-1MUX, then the 2-1MUX can be removed. To
remove the 2-1MUX, we focused on the input4 in the FI function. KOi4 is input
into the input4 in both Cycle2 and Cycle3 as shown in Fig. 5 (I). That is,
KOi4 is XORed with both Reg-RH and Reg-RL in Cycle2, and KOi4 is XORed
with only Reg-RL in Cycle3, so KOi4 is cancelled on Reg-RL, and XORed with
only Reg-RH finally. This algorithm can remove the 2-1MUX located above
Reg-RH . Moreover, the input4 in both Cycle2 and Cycle3 in this algorithm is
the same value KOi4. Therefore, not 3-1MUX but 2-1MUX is assigned above
the input4 in the proposed method (b). In other words, the proposed method
(b) reduces the 32-bit 2-1MUX compared with the proposed method (a). The
proposed architecture (b) based on the proposed algorithm (b) is shown in Fig.
5 (II). Equation (3) in Appendix shows each process for the three cycles shown
in Fig. 5 (I).

The gate counts of FI functions based on the above three architectures are
estimated as shown Table 2. Let MUX, REG, and XOR be the 2-1multiplexer,
the register, and the exclusive-OR, respectively. We supposed 1-bit 2-1MUX =
3.5 NAND gates, 1-bit REG = 13.5 NAND gates, 1-bit XOR = 2.5 NAND
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gates. In the row of MUX in Table 2, the value is based on a 1-bit 2-1MUX.
For example, 16-bit 3-1MUX is regarded as two 16-bit 2-1MUX (= one 32-bit
2-1MUX). From Table 2, the gate count of the FI function based on the proposed
architecture (b) is 17% smaller than the existing architecture.

Table 2. Comparison of gate counts of FI function

Existing Proposed (a) Proposed (b)

# 1-bit MUX 32 80 48

# 1-bit REG 64 48 48

# 1-bit XOR 80 64 64

Total [gate] (†) 1176 1088 976

(†) MUX = 3.5gate/bit (in 2-1MUX) REG = 13.5gate/bit XOR = 2.5gate/bit
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+ +
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Fig. 3. Existing method

5.2 Shortening the critical path around an FI function

MISTY1 has a Feistel network with eight FO functions, and an FO function com-
prises three FI functions. Also, MISTY1 extended key is obtained by using the
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Fig. 4. Proposed method (a)
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FI function. Thus, the performance of any MISTY1 H/W depends on the pro-
cessing speed of the FI function. The proposed method improves the processing
speed, which is important as well as the area size for the compact H/W.

Figure 6 shows the straightforward and the proposed algorithm of the FI
function. XOR gates under a FI function in a FO function are described in Fig.
6. In Fig. 6, the critical path with two S-boxes S9 in the FI function including
these XOR gates is illustrated by the thick line. The XOR gate into which KIij2

is input in the straightforward algorithm is transferred just below the first zero-
extend operation in the proposed algorithm (Move1). This movement reduces
one XOR gate on the critical path. To guarantee the logic equivalence in both
algorithms of the FI function, the KIij1 input in the straightforward algorithm is
modified to the (KIij1 XOR KIij2) input (Move2). Here, the two most significant
bits of KIij2 are truncated, and XORed with KIij1. Next, the 9-bit XOR gate
under the FI function is transferred just below the second zero-extend operation
(Move3). In other words, the proposed algorithm reduces two XOR gates on the
critical path in the FI function, and realizes higher processing speed of the FI
function almost without the gate counts increase.
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Fig. 6. Method for shortening the critical path around FI function
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6 ASIC performance evaluation

6.1 Structure of implemented H/W

The implemented H/W comprises two circuits; the interface circuit(called the
“I/F circuit”) and the core circuit. The I/F circuit comprises a plaintext/ciphertext
register and a secret key register. The core circuit comprises FI/FL/FL−1 func-
tion, selectors, counter circuit, and various registers (four 16-bit Feistel data
registers, 16-bit temporary register, and 16-bit extended key register). The core
circuit has only one FI function module, and the module is shared with the ex-
tended key generation process and the encryption/decryption process. Also, the
core circuit has a 16-bit temporary register because of the proposed method,
and has a 16-bit small extended key register due to the sequential method. By
connecting the core circuit to the I/F circuit, MISTY1 H/W can be implemented
as a VLSI chip. The block structure of the I/F circuit and the core circuit is
shown in Fig. 7.

CoreCircuit
Plaintext/Ciphertext Register64 128

I_DATA[6
3:0]

O_DATA[6
3:0] I_KEY[127

:0]64
Secret KeyRegister I/FCircuit

Fig. 7. The block structure of the I/F circuit and the core circuit

The implemented H/W generates a 64-bit ciphertext (plaintext) from a 64-
bit plaintext (ciphertext) in 60 clock cycles. The details are as follows. The data
input and output requires 2 cycles. The encryption/decryption processes in FO
and FL/FL−1 function require 24 cycles and 10 cycles, respectively. The extended
key generation process in the FI function requires 3 (cycles) × 8 (rounds) = 24
cycles, because an extended key generated by using the FI function is input into
FL/FL−1 function in the same cycle.

6.2 Comparison of our MISTY1 H/W results

This section evaluates the ASIC performance of the proposed H/W based on the
structure shown in Section 6.1. The evaluation environment is as follows.

H/W description language Verilog-HDL
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Design library Fujitsu 0.18-µm CMOS standard cell library (CS86 technology
[18])

Logic synthesizer Design Compiler 2006.06-SP5-1
Synthesis condition Worst case condition (Supply voltage: 1.65V, Junction

temperature: 125̊ C)

In this evaluation, the proposed H/W is not based on scan design, and is synthe-
sized with the Design Compiler with size optimization and ungroup command.
Also, one gate is equivalent to 2-1NAND gate.

Table 3 shows the ASIC performance of three types of the proposed H/W; the
core circuit (Proposed 1), the core circuit with the secret key register (Proposed
2), and the core and I/F circuit (Proposed 3). In Table 3, “Block Structure” in
the last column means the above-mentioned three types of the proposed H/W.
Also, “H/W efficiency” means the throughput per gate, so the implementation
with higher throughput and smaller gate counts show higher values. In this
paper, the H/W efficiency is defined as the throughput divided by area size by
reference to [5]. From Table 3, it is confirmed that a size of 3.95 Kgates with
71.1 Mbps throughput is obtained for our MISTY1 core (Proposed 1).

Table 3. H/W performance comparison in ASICs

Source Process Cycle S-box Freq. Thr’put Area Efficiency Block
[µm] [Mhz] [Mbps] [Kgates] [Kbps/gates] Structure

Proposed 1 0.18 60 Logic 66.7 71.1 3.95 18.0 Core

Proposed 2 0.18 60 Logic 66.7 71.1 4.79 14.9 (‡)
Proposed 3 0.18 60 Logic 66.7 71.1 5.29 13.4 Core + I/F

[4] 0.60 35 (†) 29.9 66.3 8.099 8.19 Core

[5] 0.18 30 Table 92.6 197.5 9.3 21.3 (‡)
[15] 0.18 (†) (†) (†) 70.2 5.39 13.0 (†)
[16] 0.18 35 (†) (†) 78.4 6.10 12.85 (†)

(†) Unknown, (‡) Core + Secret Key Register

6.3 Further comparison

This section compares the performance of existing and proposed architectures.
The lower rows in Table 3 show the performance of existing architectures re-
ported in [4] [5] [15] [16]. The implemented architectures shown in [4] [5] are
based on the register method and have the only one FI function module. The
core circuits in [4] [5] include a 128-bit extended key register. Meanwhile, the
information of implementation methods is not clear in [15] [16]. From Table 3,
our H/W is implemented with the smallest size and good efficiency.

Because the synthesis condition, such as design library, S-box implementa-
tion method, and Block Structure, are different from one another, it might be
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difficult to fairly compare the performance of each implementation shown in Ta-
ble 3. In the following evaluation, both MISTY1 H/W based on the available
RTL code [17] in [5] and the proposed H/W are synthesized under the same
synthesis condition in order to compare performance fairly. These two architec-
tures are based on the same implemented method except for two differences,
one is to apply the proposed methods or not, the other is the extended key
generation method. The following evaluation compares the performance of three
implemented architectures. First, implementation (a) is the MISTY1 H/W based
on the RTL code [17], which is implemented straightforwardly based on MISTY1
specification. Second, implementation (b) is obtained from the RTL code [17],
where the S-box code was changed from the lookup table to combinational logic.
Finally, implementation (c) is our MISTY1 H/W (Proposed 2 in Table 3), which
is the core circuit with a secret key register, because implementation (a) and (b)
have the only secret key register. Here, implementation (b) and (c) are based
on the same implementation methods of S-boxes and Block Structure, so the
performance of both implementations can be compared fairly.

Figure 8 shows a comparison of the gate counts of the above three imple-
mentations under various delay requirements. From Fig. 8, the gate count of
implementation (c) is about 2K gates smaller than that of implementation (b).
The reasons are as follows. First, implementation (b) has the 128-bit extended
key register due to the register method, while implementation (c) has the 16-bit
small one due to the sequential method. Second, implementation (c) has reduced
the temporary register due to our proposal described in Section 5.1.

Next, Fig. 9 shows a comparison of the H/W efficiency of the above three
implementations under various delay requirements. From Fig. 9, the H/W ef-
ficiency of implementation (c) is lower than that of implementation (b). This
is mainly because implementation (b) is based on the register method, while
implementation (c) is based on the sequential method.

Through the above evaluation, it is confirmed that the H/W efficiency of
our MISTY1 H/W is lower than implementation (b), but is better than that
of the other reports. The proposed H/W realized the smallest-area of less than
4K gates, which is about 2K gates smaller than the area of straightforward
implementation. This is because our MISTY1 H/W is based on the sequential
method and our proposed methods described in Section 5.1, 5.2. This paper aims
to implement the smallest H/W of MISTY1, so it is significant to maximally
reduce the gate count even though the H/W efficiency is not the highest.

7 Conclusion

In this paper, we presented the smallest H/W of the MISTY1 64-bit block cipher,
and proposed two new methods. The first method reduced the temporary register
for the FO function from 32 bits to 16 bits. The second method shortened the
critical path around the FI function by the reduction of the number of XOR
gates on the critical path. The implemented MISTY1 H/W was synthesized by
a 0.18-µm CMOS standard cell library, then an extremely small size of 3.95
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Kgates with 71.1 Mbps throughput was obtained for our MISTY1 core circuit.
In this paper, it was first shown that MISTY1 H/W is implemented with a size of
less than 4K gates. Our two proposed methods described in Section 5.1, 5.2 can
be applied to MISTY2 [1] and KASUMI [6]. Future work will include discussion
on the smallest H/W implementation of MISTY2 and KASUMI by using the
proposed methods.
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Appendix

Existing method

Cycle1 : Reg-FOR = FI(Reg-LH ⊕ KOi1) ⊕ Reg-LL

Reg-FOL = Reg-LL

Cycle2 : Reg-FOR = FI(Reg-FOL ⊕ KOi2) ⊕ Reg-FOR

Reg-FOL = Reg-FOR

Cycle3 : Reg-RH = Reg-RH ⊕ (Reg-FOR ⊕ KOi4)
Reg-RL = Reg-RL ⊕ FI(Reg-FOL ⊕ KOi3) ⊕ Reg-FOR (1)

Proposed method (a)

Cycle1 : Reg-FO = FI(Reg-LH ⊕ KOi1) ⊕ Reg-LL

Cycle2 : Reg-RH = Reg-RH ⊕ FI(Reg-LL ⊕ KOi2) ⊕ Reg-FO

Reg-RL = Reg-RL ⊕ FI(Reg-LL ⊕ KOi2) ⊕ Reg-FO

Cycle3 : Reg-RH = Reg-RH ⊕ (KOi4 ⊕ 0)
Reg-RL = Reg-RL ⊕ FI(Reg-FO ⊕ KOi3) ⊕ 0 (2)

Proposed method (b)

Cycle1 : Reg-FO =
{
FI(Reg-LH ⊕ KOi1) ⊕ Reg-LL

}
Reg-RH = Reg-RH ⊕

{
FI(Reg-LH ⊕ KOi1) ⊕ Reg-LL

}
Reg-RL = Reg-RL ⊕

{
FI(Reg-LH ⊕ KOi1) ⊕ Reg-LL

}
Cycle2 : Reg-RH = Reg-RH ⊕

{
FI(Reg-LL ⊕ KOi2) ⊕ KOi4

}
Reg-RL = Reg-RL ⊕

{
FI(Reg-LL ⊕ KOi2) ⊕ KOi4

}
Cycle3 : Reg-RH = Reg-RH

Reg-RL = Reg-RL ⊕
{
FI(Reg-FO ⊕ KOi3) ⊕ KOi4

}
(3)


