Attacking State-of-the-Art Software
Countermeasures—A Case Study for AES

Stefan Tillich and Christoph Herbst

Graz University of Technology
Institute for Applied Information Processing and Communications
Inffeldgasse 16a, A—8010 Graz, Austria
{Stefan.Tillich,Christoph.Herbst}@iaik.tugraz.at

Abstract. In order to protect software implementations of secret-key
cryptographic primitives against side channel attacks, a software devel-
oper has only a limited choice of countermeasures. A combination of
masking and randomization of operations in time promises good pro-
tection and can be realized without too much overhead. Recently, new
advanced DPA methods have been proposed to attack software imple-
mentations with such kind of protection. In this work, we have applied
these methods successfully to break a protected AES software imple-
mentation on a programmable smart card. Thus, we were able to verify
the practicality of the new attacks and to estimate their effectiveness in
comparison to traditional DPA attacks on unprotected implementations.
In the course of our work, we have also refined and improved the original
attacks, so that they can be mounted more efficiently. Our practical
results indicate that the effort required for attacking the protected im-
plementation with the examined methods is more than two orders of
magnitude higher compared to an attack on an unprotected implemen-
tation.

Keywords: Advanced Encryption Standard, smart card, side channel
attacks, power analysis, software countermeasures, masking, operation
randomization, advanced DPA attacks.

1 Introduction

Today, an increasing amount of data is processed and distributed in electronic
form. This trend is driven by advances in digital microprocessing and network
technologies, which are leading us towards visions of “ubiquitous computing”
and “ambient intelligence”. One of the most pressing problems on the way to
realizing these visions is the challenge of security. Cryptographic algorithms are
an indispensable tool to establish reasonable security assurances for digital data,
e.g. privacy, integrity, and authenticity. The presumption of most cryptographic
methods is that the employed key is only known to authorized entities. A funda-
mental principle of cryptography is that cryptographic algorithms are designed
in such a way that observable cryptographic data (e.g. the ciphertext) contains
as little information about the key as possible.



However, in practice keys have to be stored on physical devices like PCs
or smart cards and it has been shown that the physical properties (the so-
called side channels) of these devices can be exploited to extract information
about the cryptographic keys they contain. Amongst such side channel attacks,
power analysis developed by Kocher et al. [8] has proven to be a very potent
method. The improvement of such attacks and possible countermeasures as
defence against them has since been the topic of a wide array of scientific
publications.

In power analysis, an attacker has to record the power consumption of a
device while it performs cryptographic operations with an unknown key. A par-
ticularly powerful attack method is Differential Power Analysis (DPA) [8], which
predicts intermediate values of the cryptographic algorithm and an according
power consumption and matches it against the recorded power traces. In this
fashion, the used key can be recovered even if the relevant information is deeply
buried within noise.

Two principal countermeasures have been proposed against power analysis:
Masking and hiding [9]. Masking tries to break the link between the predicted
intermediate values and the values processed by the device. Hiding seeks to
minimize the effect of the processed values on the power consumption. Many
specific countermeasures have been proposed on different levels for hardware
and software. For software implementations on a given platform, the options
tend to be limited to masking schemes and to hiding through the randomization
of executed operations in time.

Masking schemes split each intermediate value in a number of shares, which
are then processed independently. Only by combining all the shares, the original
value can be reconstructed. In its simplest form, a value a is split into two shares
a o m and m, where m is a random mask, so that a = (a o m) o m. A common
choice for the operation o is the logical XOR (Boolean masking). Masking
is generally susceptible to higher-order DPA attacks. Such attacks combine
information of the power consumption of the different shares (higher-order DPA
preprocessing) so that the resulting power consumption is again dependent on the
unprotected value a and thus susceptible to a “normal” 1st-order DPA attack.

As the effort for higher-order DPA attacks is expected to grow exponentially
with the order, it is assumed that a masking scheme with enough shares will
make practical attacks infeasible. A higher-order masking scheme for AES [10]
based on this idea has been developed by Schramm et al. [13]. However, Coron et
al. have demonstrated that this scheme is susceptible to 3rd-order DPA attacks
irrespective of the number of used shares [3]. Another problem is posed by the
large computational overhead which is required for refreshing the masks. In [13],
it has been shown that a single AES encryption with resistance against 2nd-order
DPA attacks requires over 40 times more clock cycles (about 200,000 clock cycles
in total).

Irrespective of the security aspects, overheads of this order are not likely to be
acceptable for every implementation. Therefore, it is necessary to resort to more
“light-weight” countermeasures. A possible solution which requires significantly



less overhead is a combination of 1st-order masking and operation randomization
as proposed in [4]. Advanced DPA attacks targeted at such a combination of
masking and randomization have been proposed in [15], but so far no practical
evaluation of their effectiveness has been available. The work described in this
paper puts these new attacks to the practical test. Our goals were twofold:
First, we sought to verify that these attacks are practicable in a state-of-the-art
measurement setup. Second, we wanted to collect empirical evidence for the
degree of protection offered by this combination of countermeasures. Note that
we did not have the goal to develop new attacks on these countermeasures.
Furthermore, we stress that—as with any practical evaluation—our results may
not necessarily be optimal for the targeted device. Therefore, the increase in the
number of required power traces for the protected implementation indicated in
Section 5 should not be taken as a fixed “security gain factor” but only as an
upper border of this factor.

The rest of this paper is organized as follows. In Section 2, we describe the
protected software implementation of AES which we attacked and we give details
on the countermeasures. The advanced DPA methods which have been proposed
to break these countermeasures and which we have evaluated practically are
presented in Section 3. Some details on the attacked smart card device (especially
a characterization of its power leakage) are given in Section 4. In Section 5, we
present the results of our practical work. A further discussion of some issues
relating to the effectiveness of the attacks in dependence on the attacker’s
capabilities follows in Section 6. Finally, conclusions are drawn in Section 7.

2 Protected AES Software Implementation

The protection of our AES software implementation is based on the strategy of
combining masking, shuffling and dummy operations as published in [4]. At the
beginning and at the end of the AES operations there are so-called “randomiza-
tion zones”. Within each zone all intermediate values are protected with a single
mask and the sequence of processing of the bytes of the State is randomized. In
[4], the initial zone extends to the first MixColumns transformation. Jaffe showed
that it is possible to attack the AES after the MixColumns operation [6]. This
principally means that a protection of the first round alone would be insufficient.
However, Tillich et al. showed that it is quite easy to extend this randomization
zone beyond the second SubBytes operation [15], thus thwarting Jaffe’s attack!.

We are using the same masking scheme with six different random masks? as
published in [4]. All intermediate values of the State and the key are masked. In
our implementation, the randomization is achieved by shuffling of the sequence
of operations on the bytes of the State. Furthermore, it would be possible

! The randomization zone at the end can be extended in a similar fashion to protect
against Jaffe’s attack.

2 One mask for S-box inputs, one for S-box outputs, and one for each State row before
MixColumns. All other occurring masks (e.g. after MixColumns) are derived from
these six masks.



to process additional dummy States to increase the degree of randomization.
The randomization is controlled by random values which are—similarly to the
mask bytes—unknown to the attacker. We denote the degree of randomization
with R, i.e. the number of points in time where a specific State byte can be
processed during a specific AES encryption. In our case, the 16 bytes of the
AES State are fully shuffled and no dummy States are added. This means that
the randomization degree R = 16. Hence, a specific byte of the State will be
processed with a probability of p = 11—6 at one of the 16 possible points in
time. One protected AES encryption requires less than 12,000 clock cycles on
our targeted platform, which is described in Section 4. The cost per additional
dummy State would be about 1,000 clock cycles.

The consequences of this randomization for a plain 1st-order DPA attack are
illustrated in the following. In Figure 1, the result of an attack on the first S-box
output of an unmasked and randomized implementation is shown. Note that
only the section of the trace which corresponds to the SubBytes transformation
was used. One can clearly identify four groups of peaks. When zooming into
one of these groups, again four pairs of peaks can be identified. Each group of
peaks corresponds to the transformation of a single State column, which again
encompasses four State bytes. As a specific State byte can occur at any of these
times, there are all in all 16 different positions where the output value of the
unmasked S-box correlates. Furthermore if we compare the achieved correlation
of this attack to the achieved correlation of an attack on the unprotected imple-
mentation (cf. also Figure 5 in Section 4) we end up with a correlation which is
reduced by a factor of approximately 16. As expected, the correlation coefficient
scales down linearly with the degree of randomization R [9].

3 Description of the Advanced DPA Attacks

From an implementor’s view, a combination of masking and operation random-
ization countermeasures is a good bet for protecting software implementations of
secret-key cryptographic algorithms against power analysis. Proper masking can
prevent lst-order DPA attacks while the randomization of operations in time
can offer some protection against more elaborate attacks like higher-order DPA
and template-based methods. At the same time, the implementation complexity
and overhead can be kept within somewhat acceptable limits.

Higher-order DPA attacks and template attacks have been shown to be very
effective to circumvent masking. In higher-order DPA attacks, power leakage of
several intermediate values is combined in such a way that the resulting power
consumption value is again dependent on the original unmasked value [7,12,
14,16]. Template-based methods can be applied to enhance higher-order DPA
attacks or to make first-order DPA attacks feasible [9,11]. On the other side,
the technique known as “windowing” is a good way to limit the protection of
randomization of operations [2]. In this method, all R possibilities of appearance
of a protected value are considered and combined so that the effective protection
of the countermeasure is lowered.



0.035

0.025F 1

0.0151 J

0.011 J

Correlation

0.005F J

=

-0.005 J

. . . . . . . . .
500 600 700 800 900 1000 1100 1200 1300
Clock Cycle

Fig. 1. Result of DPA attack on randomized AES implementation using the Hamming
weight model and compressed traces

It has been shown in [15] that the attacks on masking and randomization can
be combined to form effective attacks on implementations which employ a single
mask and which randomize the course of operations. Three possible combinations
have been presented and their effectiveness has been compared by estimations
techniques and high-level simulation which neglected electronic noise.

Mask m Masked value (a ® m)
b >t
to t1 t2 tR

Fig. 2. Points in time relevant for an attack

Figure 2 shows the timeline for a part of the execution of a protected secret-
key cipher implementation. Towards the beginning at time index %y, the mask
m is processed in some form (it is generated, stored, used in some precomputa-
tion, etc.). Subsequently, the intermediate value a masked with m appears. The
occurrence of this masked intermediate value is protected by randomization, i.e.



in each execution the specific value a @& m can appear in any of the R points at
the times t1..t g with equal probability p = %. The power consumption at these
points in time is used in all attacks from [15]. An adversary must therefore be able
to find these points in time. As will be discussed in Section 6, the constraints
for t1..tg can be relaxed, so that knowledge of the exact time indices is not
necessary. The attacks are described in the following.

3.1 Biasing Masks and Windowing followed by 1st-Order DPA
Attack

One precondition for effective masking is that the used masks must be uniformly
distributed. If this condition is not met, lst-order DPA attacks can become
feasible. Therefore, the principal idea of this attack is to try to determine the
Hamming weight of the used mask and to select a subset of the collected power
traces, where the mask fulfills some property, e.g. has a high Hamming weight.
This selection of power traces effectively equals a bias which is introduced into
the distribution of the mask values. The selected power traces are then only
protected by the randomization of the operations (¢1..tr), whose effect can be
minimized by windowing. A subsequent 1st-order DPA attack can be successfully
applied on the selected power traces. This attack has been shown to be rather
effective under most circumstances in [15].

3.2 2nd-Order DPA Attack followed by Windowing

The idea of this attack is to take the randomization of the operations into account
during 2nd-order DPA preprocessing. The power consumption values for m at tg
and a ® m at t;..tg are pairwise combined (2nd-order DPA preprocessing). For
each pair, this preprocessing results in a joint leakage value of the two points.
If the correct points in time have been chosen, one of these R joint leakage
points is always dependent on the actual unmasked value. Which of these points
is the correct one is determined by the randomized course of operations of the
corresponding execution. When all points are windowed (i.e. summed up), the
correct one is inevitably included and the resulting power consumption is to
some degree dependent on the unmasked value. A 1st-order DPA attack can
then be mounted to determine the correct key hypothesis. This attack has been
evaluated in [15] to be less effective than the first one in most cases.

3.3 Windowing followed by 2nd-Order DPA Attack

A third option for attacking is to reverse the order of windowing and 2nd-order
DPA preprocessing. First, randomization is compensated by summing up all R
points in time where the targeted masked value a & m can occur. Then, 2nd-order
DPA preprocessing is performed with this sum and a point of the power trace
which depends on the corresponding mask m. The result of this preprocessing
can be attacked with a lst-order DPA attack. In [15], this attack variant has
been shown to be rather ineffective in comparison to the previous two methods.



4 Attacked Device

The device used to implement and attack the protected AES software imple-
mentation is a smart card with an ATMegal63 core [1]. The ATMegal63 is
an 8-bit microcontroller based on AVR, which is a single-cycle instruction RISC
architecture from Atmel. It is equipped with 1,024 bytes of internal RAM, 16 KB
in-system self-programmable FLASH and 512 bytes of EEPROM. The core of
the controller contains 32 general purpose registers which are directly connected
to the arithmetic-logic unit (ALU). Three register pairs can be used to store a
16-bit address into the internal memory.

The used smart card is shipped without any software or operating system.
This means the card is under full control of the designer and all parts of the
software (including boot code and operating system) have to be implemented
from scratch. In our scenario, there is only a minimum version of an operating
system implemented which can handle the basic functions of the T=1 protocol
specified in ISO 7816 [5]. The card can execute the protected AES implemen-
tation described in Section 2. For the sake of performance, the randomization
parameters and mask bytes are sent to the smart card along with the plaintext.
The key used for the AES encryption is stored in the EEPROM of the smart
card.

In general, the device leaks the Hamming weight as well as the Hamming
distance of the processed values. When attacking the non-randomized S-box
output using the Hamming weight model, the maximum achievable correlation
is 0.458. In a similar attack using the Hamming distance between the S-box
input and the S-box output—which occur as subsequent values of a register—the
maximum correlation is 0.257. The results for these attacks on uncompressed
traces are displayed in Figure 3 and in Figure 4. It can be seen that for this
device and the sequence of instructions used to implement the S-box lookup, the
Hamming weight model leads to a higher correlation.

0.6 0.6
0.4 0.4
=
§ 0.2 2 02f
= =
° 2
§ 0 v I S 0 W v A
0.2 -0.2¢
-0.4 : - : : : : -0.4
27 272 274 276 278 2.8 282 2.84 27 272 274 276 278 2.8 282 284
Time x10* Time <10

Fig.3. Result of DPA attack on un- Fig.4. Result of DPA attack on un-
protected AES implementation using the protected AES implementation using the
Hamming weight model and uncompressed Hamming distance model and uncom-
traces pressed traces



For minimization of the amount of data used for an attack, it is a common
technique to compress the measured traces [9]. When using the compression
described in Section 5.2, the achievable correlation using the Hamming weight
model reduces from 0.458 to 0.383. With the Hamming distance model the
correlation reduces from 0.257 to 0.236. The results of an attack on compressed
traces can be seen in Figure 5 and Figure 6. For our practical attacks, this means
that most of the information is preserved in the compressed power traces.

04 ‘ : ‘ 04
03 ] 0.3}
=] E=]
2 02 2 02}
= =
L S
g 0.1 5 0.1}
&) &)
0 0
0.1 0.1
400 450 500 550 600 400 450 500 550 600

Clock Cycle Clock Cycle

Fig.5. Result of DPA attack on un- Fig.6. Result of DPA attack on un-
protected AES implementation using the protected AES implementation using the
Hamming weight model and compressed Hamming distance model and compressed
traces traces

5 Practical Results

In order to demonstrate the effectiveness and practicability of the methods
described in [15], we have attacked the protected AES software implementation
presented in Section 2. For the randomization of operations, we have used full
shuffling of the 16 State bytes, i.e. R = 16. Power traces were collected with a
LeCroy LC584AM digital oscilloscope and a differential probe by measurement
over a 1 {2 resistor in the ground line of the smart card reader. A trigger signal
has been supplied by the smart card at the beginning of encryption. We have
collected a set of 500,000 power traces, which took about 134 hours in our
measurement setup, i.e. a rate of approximately one trace per second. The
uncompressed traces required about 50 GB of disk space. For comparison, a set
of compressed traces was between 700 MB and 2 GB in size, depending on the
actual compression function. An uncompressed trace contained 100,000 points,
whereas a compressed trace consisted of about 1,800 points (one per clock cycle).

The power traces included about 1,800 clock cycles at the start of AES
encryption spanning over various precomputations (parts of the masked key
scheduling, mask preprocessing, and the masking of the plaintext), the initial
AddRoundkey, and the first AES round. In order to keep the size of the traces
small, the sampling rate has been limited to 200 - 106 samples/second.



All statistical analyses were carried out on a PC featuring a quad-core Intel
Xeon processor at 2.33 GHz and 8 GB of RAM. Attack times were generally
determined by the number and size of the analyzed traces, and not by the kind
of statistical analysis. An attack using all 500,000 power traces took about 140s
for compressed traces and about 1,7 hours for uncompressed traces. For an attack
with biased masks, the template-building took about 160 s when 100 traces were
used for each of the nine templates. The time for attacks involving fewer traces
would scale down almost linearly.

For our attacks we have used the S-box output of the first round as interme-
diate value a and the S-box output mask as corresponding m. The time indices
t1..t16 for a @ m were determined by lst-order DPA attacks using the known
masked S-box outputs as attacked intermediate values. Suitable indices to were
found accordingly by using the S-box output mask as attacked value. For both
cases, the time indices resulting in high correlation values were used.

5.1 Results: Biasing Masks and Windowing followed by 1st-Order
DPA Attack

In order to introduce a bias in the mask values, we have used templates to
derive the Hamming weight of the mask m. Templates were built from the
uncompressed traces for each Hamming weight of the mask. We used 100 traces
per template with 16 interesting points per trace. The multivariate Gaussian
distribution model has been employed. The traces used for the lst-order DPA
attack have been compressed (integration of absolute values per clock cycle).
Randomization has been countered by windowing, i.e. the power consumption
values at times t¢1..t16 have been summed up. The Hamming weight of an un-
masked S-box output byte has been used as predicted power consumption. The
attack itself is therefore similar to the one described in [11] (“Templates During
Preprocessing”), except for the additional compensation of the randomization
countermeasure.

In practice, it is important to find a good tradeoff between a sharp bias and
a minimal number of discarded traces. For example, only choosing traces with a
mask Hamming weight of 8 (i.e. m = 0xFF) will lead to the highest correlation
but on the other hand, this would mean to discard % = 99.6% of the recorded
power traces. Selecting masks with a Hamming weight greater or equal to six
has been shown to be a good choice [9,11,15] and therefore we have also used
it for our evaluations.

The effectiveness of the attack depends on the accuracy of the biasing process.
In order to show the best outcome, we have also biased the masks following
their actual values (ideal case). The results for biasing with the actual Hamming
weights and with the Hamming weights predicted by template matching are
show in Figures 7 and 8, respectively.

In the ideal case, the correlation for the correct key hypothesis was about
—0.04 while the use of template matching yielded a correlation of about —0.025.
With increasing accuracy of the template method in predicting the actual Ham-
ming weight of the used mask, the result of the attack should get closer to that



0.02
0 I \

5 ‘ 5
B B
e e
5 -0.02 5
o o

-0.04

0 50 100 150 200 250 0 50 100 150 200 250
Key hypothesis Key hypothesis

Fig. 7. Result of attack with ideal mask Fig. 8. Result of attack with mask biasing
biasing through templates

of the ideal case. We use the rule of thumb from [9] to estimate the required
number of power traces for a successful attack. We have also taken those traces
into account which were discarded during the biasing process (about 85% of
all traces). For ideal biasing, about 122,000 power trace are sufficient, for our
biasing with templates, about 305,000 power traces are required.

0.05

0.025

Correlation
o

-0.025

-0.05

Traces x 10°

Fig. 9. Evolution of correlation in dependence on number of traces for mask biasing
through templates

Figure 9 shows the evolution of the correlation with increasing number of
power traces for the attack depicted in Figure 8. Note that the trace count on the
x-axis also includes the discarded traces. The correct key hypothesis is plotted in
black, the incorrect hypotheses are displayed in light gray. The outer dark gray
lines indicate the confidence interval for p = 0. Roughly speaking, this is the
expected region for incorrect key hypotheses. The point where the correct key
hypothesis leaves this region gives another estimation for the number of traces
required for a successful attack. In this case, the estimate lies in the vicinity of
300,000 traces, which is in line with the result from the rule of thumb from [9].



5.2 Results: 2nd-Order DPA Attack followed by Windowing

This attack can be seen as multiple 2nd-order DPA attacks in parallel, with
their results combined by windowing. Nevertheless, a successful attack is not
quite as simple to achieve as in a conventional 2nd-order DPA attack. Normally,
most 2nd-order DPA attacks can be conducted in a more or less “brute-force”
manner. More precisely, it is not necessary to determine the exact points in time
which carry the most information about the targeted intermediate values and
which are therefore suited most for 2nd-order DPA preprocessing. In fact, it is
sufficient to predict the general regions of the power traces which are expected
to contain the required points. By examining all possible combinations of the
points of both regions in a 1st-order DPA attack, the correct key hypothesis
can be identified without giving much thought to the actual points of the power
trace which carry the required information.

When there is a need to compensate for the randomization countermeasure
as well, it quickly becomes evident that this “brute-force” approach is no longer
feasible. Even if all of the R parallel 2nd-order DPA attacks could be done in
this manner, the subsequent windowing of the results requires that only those
points are summed up which might contain information about the unmasked
intermediate values. Our experiments have shown that the attack result is ex-
tremely sensitive even to slight variations in time of the two input points to the
2nd-order DPA preprocessing function. Therefore, choosing the best points from
the power trace becomes a crucial precondition for windowing. Unfortunately,
the best points only become known after a successful attack.

An effective way out of this dilemma can be made with a suitable compression
function. If there is only a single point per clock cycle in the power trace, the
2nd-order DPA preprocessing and windowing can be done at the exact points in
time where the maximal information is contained. However, care must be taken
that not too much information is lost during compression. Our experiments have
shown that none of the standard compression functions (maximum extraction,
integration) [9] deliver satisfying results. After careful analysis of the 2nd-order
DPA leakage profile of the attacked device, we have developed a new compression
function, which retains most of the required information and hence delivers good
results. Our new compression function extracts a small range of points around
the maximum of each clock cycle and forms the average value of those points.
At our sampling rate of 200 - 10° samples/second, a range of two points around
the maximum (i.e. 5 points in total per clock cycle) was sufficient to achieve
satisfying results.

As 2nd-order DPA preprocessing function we have employed the absolute of
the difference of the two input points, as it has the best correspondence to single
bits of unmasked values and still a good correspondence to the Hamming weight
of larger values [9]. We have used the bit model (LSB of the S-box output) as
power model for our attack. The results are shown in Figure 10.

The correlation peak for the correct key hypothesis has a height of approxi-
mately 0.024, requiring about 50,000 power traces for a successful attack [9].



0.03 i T T " " 0.05

0.02 ] 0.025

Correlation
o
o
=
Correlation
o

-0.025

o

o 50 100 150 200 250 0 2 4 6 8 10
Key hypothesis Traces x 10

Fig. 10. Result of 2nd-order DPA attack Fig. 11. Evolution of correlation in depen-
followed by windowing dence on number of traces

The evolution of the correlation with the number of power traces used in the
attack is shown in Figure 11. In this case, the correlation curve for the correct
key hypothesis leaves the confidence interval for p = 0 at about 65,000 traces.
Note that this number is a bit higher than the estimate from the rule of thumb
from [9]. In our experience, the evolution of the correlation is quite dependent
on the measurements, so the rule of thumb should normally be preferred for a
more general prediction.

5.3 Results: Windowing followed by 2nd-Order DPA Attack

This attack had already a very low effectiveness in the simulated evaluation
of [15]. For completeness, we have conducted attacks with this method on all
500,000 power traces. As suspected, this number of power traces was not suffi-
cient to lead to a correct prediction of the key.

5.4 Dependence of Attack Efficiency on Randomization Degree

The AES implementation allows to change the degree of randomization R in
order to trade performance against security. Table 1 shows how the effectiveness
of the two attacks from Section 3.1 and 3.2 changes with increasing R. Concep-
tually, the correlation coefficient should scale down with a factor of /R [15]. Tt
can be seen from Table 1 that both attacks approximately follow this behavior,
whereby the second one (2nd-order DPA attack followed by windowing), tends
to perform worse at a higher R.

Table 1. Maximal absolute correlation coefficient in dependence on randomization
degree R

R 1 2 4 8 16
Biasing masks 0.104 | 0.072 | 0.052 | 0.035 | 0.025
2nd-order and windowing | 0.125 | 0.102 | 0.073 | 0.042 | 0.024




6 Discussion of the Practicality of the Attacks

As shown in Section 5, two of the three examined attacks succeeded with a
reasonable amount of samples. Mask biasing turned out to lead to a potentially
higher correlation, which is in line with the estimation results from [15]. However,
this attack requires to discard a large number of power traces, which increases
the total number of required power traces considerably. Furthermore, the 2nd-
order DPA attack followed by windowing puts less demands on the attacker’s
knowledge and control over the device. In order to introduce a bias in the mask,
templates for the mask values have to be built. This requires the availability of a
device for profiling which is sufficiently similar to the attacked one. Moreover, the
profiling device must offer the possibility to extract some information about the
actually occurring mask values in order to allow template building. Depending
on the attack scenario, these preconditions might not be always given.

Both methods require a windowing for the time indices t¢;..tg, i.e. all points
in time where the attacked masked intermediate value can occur due to the
randomization countermeasure (cf. Figure 2). However, for a practical attack it
is not necessary to identify the exact points in time, but it is sufficient to know
the distance between those points. In our attack, we have first compressed the
power traces (see Section 5.2) so that there was only a single power consumption
value per clock cycle. When the distance (in clock cycles) between the R points
in time is known, all possible combinations of points with this distance can be
used in the attack. The selection of possible combinations of R points can be
seen as pulling a comb with R teeth over the power trace. The distances between
the comb’s teeth correspond to the clock cycle distances between the possible
occurrences of the masked value a & m. This is illustrated in Figure 12.

oL

>t

Fig. 12. Extracting viable points for 2nd-order DPA preprocessing

For each position of the comb and each point in time where the mask value
m is suspected to appear (“area for mask m” in Figure 12), a new correlation
value can be calculated. Thereby, 2nd-order DPA preprocessing is applied with
the current mask point and each comb tooth. The resulting 16 preprocessed
points are then summed up (windowed) to produce a single predicted power
consumption value for the attack.

Normally, an attacker has some general idea of the order of operations which
are performed by the attacked device so that it is possible to specify some areas in
the power traces where certain values are likely to appear. This limits the number



of possible combinations of comb positions and mask positions and makes the
attack faster. But even if all possible combinations are used in our case, the total
number ranges around 3 - 10%, which is quite feasible for an attack®.

Depending on the scenario, an attacker can obtain information about the
distance of the R randomized points (i.e. the distance between the teeth of the
comb) through different means. If a device is available for profiling, then the
relevant points in time can be determined through a DPA attack with known
intermediate values. When the relevant sections of the implementation’s source
code are available, the distances can be derived with a cycle-accurate simulator.
Even if those options are not available, some general knowledge about the
protected implementation can be enough to establish a set of “candidate combs”
with different distances between the teeth. If this set is not too large, the correct
comb can be determined by trying out all combs of the set in an attack.

For our protected AES implementation it would be sufficient to know that
there is a randomization of the columns of the State and a randomization of the
bytes within each column. The distance between the processing of the columns
and between the four S-box lookups of one column are constant. Thus there are
only two configuration parameters for the comb, resulting in a manageable set
of candidate combs.

Hence, the method of 2nd-order DPA attack followed by windowing can be
regarded as a fairly generic attack which requires only little more knowledge
about the implementation than a plain 1st-order DPA attack.

7 Conclusions

In this paper we have practically demonstrated the effectiveness of advanced
DPA attacks on an AES smart card implementation with state-of-the-art soft-
ware countermeasures. We have evaluated the three principal attack methods
described in [15], which have so far only been subject to theoretical estimation
and high-level simulation. Two of these methods work well in defeating the
masking and randomization of operations countermeasures of the AES software
implementation. One of the methods leads to a potentially higher correlation,
but requires the attacker to be able to profile the attacked device in detail. The
second attack is not quite as effective but is more general. It can be mounted
without profiling and requires only little knowledge about the implementation.
Nevertheless, it must not be overlooked that the effort for the attacks is consider-
ably larger than for an unprotected implementation. While 100 power traces are
normally enough to break the unprotected implementation, the advanced DPA
attacks on the protected implementation require a minimal number of about
50,000 traces for success. Hence, DPA becomes more than two orders of magni-
tude (i.e. 100 times) harder under use of the described attacks. Although there
is no guarantee that there are no better attacks on a specific implementation,

3 There are about 1,800 points per compressed trace, which is hence the upper limit
for comb positions and mask positions. The maximal number of combinations is
therefore 1,800 - 1,800 = 3,240, 000.



our work has delivered empirical evidence that a combination of masking and
operation randomization can offer significant protection against advanced DPA
attacks.

Acknowledgements. The research described in this paper has been supported
by the Austrian Science Fund (FWF) under grant number P18321-N15 (“Inves-
tigation of Side-Channel Attacks”), by the European Commission under grant
number FP6-IST-033563 (Project SMEPP) and, in part, by the European Com-
mission through the IST Programme under contract IST-2002-507932 ECRYPT.
The information in this document reflects only the authors’ views, is provided
as is and no guarantee or warranty is given that the information is fit for any
particular purpose. The user thereof uses the information at its sole risk and
liability.

References

1. Atmel Corporation. 8-bit Microcontroller with 16K Bytes In-System Pro-
grammable Flash. Available online at http://www.atmel.com/dyn/resources/
prod_documents/doc1142.pdf, February 2003.

2. C. Clavier, J.-S. Coron, and N. Dabbous. Differential Power Analysis in the
Presence of Hardware Countermeasures. In Cetin Kaya Ko¢ and C. Paar,
editors, Cryptographic Hardware and Embedded Systems — CHES 2000, Second
International Workshop, Worcester, MA, USA, August 17-18, 2000, Proceedings,
volume 1965 of Lecture Notes in Computer Science, pages 252—263. Springer, 2000.

3. J.-S. Coron, E. Prouff, and M. Rivain. Side Channel Cryptanalysis of a Higher
Order Masking Scheme. In P. Paillier and I. Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems — CHES 2007, 9th International Workshop,
Vienna, Austria, September 10-13, 2007, Proceedings, volume 4727 of Lecture Notes
in Computer Science, pages 28—44. Springer, September 2007.

4. C. Herbst, E. Oswald, and S. Mangard. An AES Smart Card Implementation
Resistant to Power Analysis Attacks. In J. Zhou, M. Yung, and F. Bao, editors,
Applied Cryptography and Network Security, Second International Conference,
ACNS 2006, volume 3989 of Lecture Notes in Computer Science, pages 239-252.
Springer, 2006.

5. International Organisation for Standardization (ISO). ISO/IEC 7816-3: Informa-
tion technology - Identification cards - Integrated circuit(s) cards with contacts
- Part 3: Electronic signals and transmission protocols. Available online at
http://wuw.iso.org, September 1997.

6. J. Jaffe. Introduction to Differential Power Analysis, June 2006. Presented at
ECRYPT Summerschool on Cryptographic Hardware, Side Channel and Fault
Analysis.

7. M. Joye, P. Paillier, and B. Schoenmakers. On Second-Order Differential Power
Analysis. In J. R. Rao and B. Sunar, editors, Cryptographic Hardware and
Embedded Systems — CHES 2005, Tth International Workshop, Edinburgh, UK,
August 29 - September 1, 2005, Proceedings, volume 3659 of Lecture Notes in
Computer Science, pages 293-308. Springer, 2005.



10.

11.

12.

13.

14.

15.

16.

P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. Wiener,
editor, Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings,
volume 1666 of Lecture Notes in Computer Science, pages 388-397. Springer, 1999.
S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks — Revealing the
Secrets of Smart Cards. Springer, 2007. ISBN 978-0-387-30857-9.

National Institute of Standards and Technology (NIST). FIPS-197: Advanced
Encryption Standard, November 2001. Available online at http://www.itl.nist.
gov/fipspubs/.

E. Oswald and S. Mangard. Template Attacks on Masking—Resistance is Futile.
In M. Abe, editor, Topics in Cryptology - CT-RSA 2007, The Cryptographers’
Track at the RSA Conference 2007, San Francisco, CA, USA, February 5-9, 2007,
Proceedings, volume 4377 of Lecture Notes in Computer Science, pages 243-256.
Springer, February 2007. ISBN 978-3-540-69327-7.

E. Oswald, S. Mangard, C. Herbst, and S. Tillich. Practical Second-Order
DPA Attacks for Masked Smart Card Implementations of Block Ciphers. In
D. Pointcheval, editor, Topics in Cryptology - CT-RSA 2006, The Cryptographers’
Track at the RSA Conference 2006, San Jose, CA, USA, February 13-17, 2006,
Proceedings, volume 3860 of Lecture Notes in Computer Science, pages 192-207.
Springer, 2006.

K. Schramm and C. Paar. Higher Order Masking of the AES. In D. Pointcheval,
editor, Topics in Cryptology - CT-RSA 2006, The Cryptographers’ Track at the
RSA Conference 2006, San Jose, CA, USA, February 13-17, 2006, Proceedings,
volume 3860 of Lecture Notes in Computer Science, pages 208—225. Springer, 2006.
F.-X. Standaert, E. Peeters, and J.-J. Quisquater. On the Masking Countermeasure
and Higher-Order Power Analysis Attacks. In International Conference on
Information Technology: Coding and Computing (ITCC 2005), April 4-6, 2005,
Las Vegas, Nevada, USA, Proceedings, volume 1, pages 562-567. IEEE Computer
Society, April 2005. ISBN 0-7695-2315-3.

S. Tillich, C. Herbst, and S. Mangard. Protecting AES Software Implementations
on 32-bit Processors against Power Analysis. In J. Katz and M. Yung, editors,
Proceedings of the 5th International Conference on Applied Cryptography and
Network Security (ACNS 2007), volume 4521 of Lecture Notes in Computer
Science, pages 141-157. Springer, June 2007.

J. Waddle and D. Wagner. Towards Efficient Second-Order Power Analysis. In
M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and Embedded
Systems — CHES 2004, 6th International Workshop, Cambridge, MA, USA, August
11-13, 2004, Proceedings, volume 3156 of Lecture Notes in Computer Science, pages
1-15. Springer, 2004.



