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Abstract. Secret key recovery from weak side channel leakage is always
a challenge in the presence of standard counter-measures. The use of ran-
domised exponent recodings in RSA or ECC means that, over multiple
re-uses of a key, operations which correspond to a given key bit are not
aligned in the traces. This enhances the difficulties because traces cannot
be averaged to improve the signal-to-noise ratio.
The situation can be described using a hidden Markov model (HMM)
but the standard solution is computationally infeasible when many traces
have to be processed. Previous work has not provided a satisfactory way
out. Here, instead of ad hoc sequential processing of complete traces,
trace prefixes are combined naturally in parallel. This results in the sys-
tematic extraction of a much higher proportion of the information theo-
retic content of the leakage, enabling many keys of typical ECC length
to be recovered with a computationally feasible search through a list of
most likely values. Moreover, likely errors can now be located very easily.

Key Words. Side channel leakage, simple power analysis, SPA, Hidden
Markov Models, Forward-Backward Algorithm, Viterbi Algorithm.

1 Introduction

Side channel leakage from embedded cryptographic devices may contain sub-
stantial information. When possible this is averaged to improve the signal to
noise ratio and enable recovery of the secret key. However, some randomised
exponentiation algorithms are designed so that averaging over contemporane-
ous operations reduces rather than increases the useful information [4, 8, 9, 15].
With a perfect side channel that distinguishes squares from multiplications in
each trace, it is possible to recover the secret exponent key for most of these
algorithms without substantial effort [12, 13, 15].

In the real world the side channels are rarely so clear, especially where design-
ers have taken steps to reduce the leakage. Then standard statistical techniques
can be applied to detect correlations between possible key bits and the trace
data, but they are computationally infeasible for the length of cryptographic
keys and the expected level of leakage. Instead, dedicated algorithms are re-
quired to extract meaningful information and search for the most likely keys.
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Karlov and Wagner [5] modelled this using input-driven Hidden Markov Mod-
els, and suggested the sequential processing of complete traces as an effective way
of limiting the computational complexity. However, they only consider traces of
equal length where the ith observation always corresponds to the ith exponent
digit. Green, Noad and Smart [3] show how to deal with the traces of different
lengths which are more typical of randomised exponentiation algorithms, and
they provide some heuristic methods for the sequential processing of complete
traces. Nevertheless, even with strong leakage it is clear from their tables (e.g. op.
cit. Table 1) that very little of the information content of the traces is success-
fully extracted. Moreover, it is unclear whether their methods would converge
to any solution in the presence of weak leakage.

The hidden Markov model (HMM) of [5] and [3] leads to a forward algorithm
that provides a global minimum for a metric that measures distance from a best-
fit solution. A backward algorithm then generates the state sequence and hence
the input key which yields that minimum value. On the other hand, the ran-
domised exponentiation algorithms of interest perform recodings which influence
the side channel traces only locally for a small number of operations. Therefore
it seems better to attempt recovery of input key bits using a more locally-based
algorithm. This, of course, is an approach which proved very successful with
weak side channels in the original timing and power analysis attacks of Kocher
et al. [6, 7]. Their averaging of contemporaneous trace outputs does not work
here because such values no longer correspond to the same input symbol. Thus,
some new ideas are required but, to benefit from very weak leakage, averaging
is still key to avoiding previous convergence problems of [5] and [3].

Here the proposed algorithm adjusts trace positions in an attempt to align
outputs which correspond to the same input symbol. This allows averaging to
take place and also makes it possible to take into account the influence of recod-
ing decisions on neighbouring operations. There are a number of parameters to
choose in the algorithm. Their choice enables the calculations to be kept within
available computational resources. The output is a set of good guesses at the
secret key. Moreover, each bit is naturally assigned a correctness probability
which enables likely errors to be located easily. This seems to be a new feature:
Green et al. [3] do not say if they can locate possible errors, but the ability en-
ables many more errors to be corrected. Simulation results are provided to show
what fraction of keys are recoverable for a given effort.

As the whole process is computationally feasible, the immediate conclusion
is that designers should assume most leakage can be converted successfully into
useful knowledge when a secret key is re-used with these random recoding exp-
onentiation algorithms. Indeed, they should be able to calculate upper bounds
on the number of times the key can be safely re-used.

2 The Leakage Model

The context of the attack is the repeated use of a randomised exponentiation
algorithm for computing MD in any cryptographic group where D is a fixed
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secret key which is not subject to blinding by a random multiple of the group
order, and M is an unknown ciphertext which may vary and may be whitened.
The adversary is assumed to know all the details of the exponentiation algorithm.
Use of the key provides him with a side channel trace for the exponentiation itself,
but no further information is assumed: he is not expected to be able to choose
any input, view any output, or usefully observe any pre- and post- processing.

It is assumed that occurrences of multiplicative operations in the exponenti-
ation can be identified accurately from the corresponding side channel trace, but
that their identities as squares or multiplications can only be determined with a
substantial degree of inaccuracy1 [2]. The adversary’s aim is to discover D using
computationally feasible resources.

3 The Randomised Exponentiation

Examples of the randomised exponentiation algorithms which can be attacked
in the way described here include those of Liardet-Smart [8], Oswald-Aigner [9]
and Ha-Moon [4, 15]. Their common, underlying basis is a recoding of the binary
representation of the key D into a form

D = ((...(dm−12mm−2 + dm−2)2mm−3 + ... + d2)2m1 + d1)2m0 + d0

where the digits di ∈ D and 2-power exponents mi ∈ M belong to some fixed,
pre-determined sets D and M respectively. Both di and mi are selected according
to some finite automaton which has the bits of D and the output from a random
number generator (RNG) as inputs. Different bit streams from the RNG result
in different recodings of D.

The exponentiation MD begins with the pre-calculation of the table {Md | d ∈
D}. Then the main iterative step of the exponentiation consists of mi squarings
followed by a multiplication by the table value Mdi when di �= 0. This results
in a sequence of multiplicative operations which is most easily presented using
di to denote multiplication by the table entry Mdi and mi copies of 0 to denote
the squarings. We call this a recoding sequence for D. For example, the exponent
D = 1310 = 11012 has a recoding D = (1.22+3)21+1̄ which gives the operation
sequence 100301̄. (Alternatives in processing the first digit are ignored.)

The exponentiation algorithms of interest here are assumed to have the prop-
erty that perfect knowledge of the multiplication/squaring sequences for a small
number of recodings of D yields enough information to reconstruct the secret
key D with at most a small number of ambiguities. This is the case for the algo-
rithms mentioned above: attacks on them using such information are described
in [12], [13] and [15] respectively.

1 For the table-driven exponentiation algorithms under attack here it may also be
possible, with a degree of uncertainty, to identify which table element is used in a
multiplication, and hence guess at the most likely value for the exponent digit. The
methods below can be extended easily to such cases.
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4 Notation for Leakage Traces

The above-mentioned exponentiation algorithms are reasonably secure when the
key D is used only once, as in ECDSA [1], because a single recoding pattern
does not generally yield sufficient information to determine a computationally
feasible search space for the key. However, for key re-use, the pattern must
be hidden. Hence implementers generally employ both hardware and software
counter-measures to prevent leakage of the recoding pattern through any side
channels. Consequently, an attacker only obtains partial information about any
recoding through side channels. But extensive testing of the cryptographic sys-
tem and some pre-computation enables the adversary to process the side channel
information from each exponentiation into a sequence of probabilities that each
component operation is a squaring. For convenience, this will be referred to as a
trace. So the operation sequence 100301̄ yields a trace such as (0.23, 0.87, 0.69,
0.15, 0.83, 0.42), with the larger probabilities occurring for doublings.

For consistency, exponent bit strings, recoding sequences and traces are all
written in the same left-to-right order. For convenience, this is the order in which
the recoding process consumes key bits and generates operation sequences. Then,
in an obvious sense, a prefix in one list always corresponds to some prefix in
another. These prefixes are extended incrementally as the attack progresses.

Recodings are pairs consisting of (i) the operation sequence r which the re-
coding automaton has generated for D, and (ii) the state s which the automaton
has entered at that point. R(D) denotes the set of all these recodings (r, s) of
D. Let • denote the end-of-list symbol and also the final state of the recoding
automaton. A list is called terminated or un-terminated according to whether
or not it ends with this symbol. When the recoding automaton reads • at the
end of D, it performs the post-processing stage required to reach its final state
• and then stops. Recoding D• will result in a pair (r•, •) ∈ R(D•) for which r
applied to M yields MD. r is terminated with • to indicate that the operation
sequence is complete. If D is not terminated, the pair (r, s) ∈ R(D) has s �= •
and it can be extended to a recoding of any D′ with prefix D.

In the above example with D = 1310, both r = 100301̄ with borrow 0 and
r′ = 10030 with borrow 1 could represent the output and state of the recoding
automaton after processing D when further input bits are possible. They belong
to R(D). Reading • next gives (r•, •) ∈ R(D•) from (r, 0) as no further process-
ing is required. However, from (r′, 1̄) there needs to be post-processing to obtain
an element in R(D•), for example, by appending 1̄ to obtain (r′1̄•, •).

5 The Metric

A metric µ(D, T ) is constructed to provide a measurement of how well a bit
string D matches the side channel leakage presented in a set T of traces. Roughly
speaking, the “best” guesses at the secret key D are those strings which provide
the smallest distances under this metric. As indicated above, the metric for a
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set of traces T is just the average of the value of the metric for a single trace t:

µ(D, T ) = |T |−1
∑

t∈T

µ(D, t)

Here µ(D, t) is the minimum of the metric applied to t and a single recoding
r ∈ R(D), i.e.

µ(D, t) = Min{µ(r, t) | r ∈ R(D)}
If r is an un-terminated recoding which is no longer than trace t, i.e. len(r) ≤
len(t), then we define

µ(r, t) = len(r)−1
∑

0≤i<len(r)

(1 − ti(ri))

where r = (r0, r1, ..., rlen(r)−1), t = (t0, t1, t2, ...), and ti(ri) is the probability2

observed through the side channel that the ith element of trace t corresponds
to the same operation as ri. The same definition is also used for µ(r, t) if r is a
terminated recoding such that len(r) = len(t). If len(r) > len(t) then t is too
short to correspond to the recoding r and so we define µ(r, t) = ∞ whether r is
terminated or not. Similarly, if r is a terminated recoding with len(r) < len(t)
then r is too short to correspond to trace t and again we set µ(r, t) = ∞.

Scaling by len(r) prevents shorter recodings of D being given an unjustified
selection bias. Then, being the average of a set of probabilities in most cases,
µ(r, t) lies in [0, 1] ∪ ∞. Hence µ(D, t) ∈ [0, 1] ∪ ∞ and µ(D, T ) ∈ [0, 1] ∪ ∞.
Clearly µ(r, t) is small when the operations in r are those which have high
probability in the corresponding initial segment of t. Thus µ(D, T ) is small when
an initial segment of each trace in T closely matches some recoding of D.

If trace t is too short or too long to correspond to any recoding of D, then
the above definitions give µ(D, t) = ∞, and therefore µ(D, T ) = ∞ for any T
containing t. Suppose dmax is the largest digit in D and k the length of the
shortest trace in T . Then the shortest trace represents the leakage from too few
operations to correspond a recoding of any string satisfying D > dmax2k. Hence
µ(D, T ) will only be finite for D with at most k+�log2 dmax� bits.

The main problem with evaluating µ is that for cryptographically sized keys
D, R(D) is too large a set over which to compute a minimum – it is exponential
in the bit length of D. Consequently, we use an approximation

µ′(D, t) = Min{µ(r, t) | r ∈ St(D)}
to µ(D, t) which is determined iteratively by the best attempts to minimise µ
for shorter strings. Specifically, for each trace and a suitable parameter R, we
iteratively create a set St of up to R triples (d, i, s) which consist of the metric
value d = µ(r, t) for an underlying “good” recoding r of D, the number i of

2 It may be desirable to augment this definition of ti(ri) to take account of the relevant
transition probability from the recoding FA, so that less likely events would yield
larger contributions to the sum for µ(r, t).



6 C. D. Walter

operations in r, and the state s of the recoding finite automaton after generating
r from D. Set St is constructed as follows. First, for D being the empty bit string,
St is initialised to contain just the triple (0, 0, s0) corresponding to the empty
recoding sequence when the recoding automaton is initialised with start state
s0. For the iterative step, suppose D = D′b for bit b, and St

′ is the set of triples
constructed for D′. Then, for each (d′, i′, s′) ∈ St

′, s′ and b are fed into the FA.
The output is a set of new states s and operations to extend the underlying
recoding of D′ to ones for D. These are used to create new triples (d, i, s) for D
where i comes from increasing i′ by the number of these operations, and d comes
from a scaled incrementing of d′ by the terms (1 − ti′′(ri′′ )) with i′ ≤ i′′ < i.
As the triple also depends on a random input to the FA, there can be several
new triples for each one in St

′. These are then rationalised by removing triples
(d2, i, s) for which there is already a triple (d1, i, s) with d1 ≤ d2. Then the R
triples with the smallest values for d are chosen for inclusion in St.

If the recoding automaton had s possible states and tmax were the maximum
length of any trace, then stmax would be an upper bound on the size of St. Hence

µ′(D, T ) = µ(D, T ) for R = stmax

since all the smallest intermediate values for µ are retained. Whatever R is, µ′

can be computed easily and accurately in time which is polynomial rather than
exponential in log D. It avoids enumerating all the recodings of D. R can often
be picked much smaller than stmax without significantly affecting the accuracy
of the method, and this helps reduce the complexity of the attack.

6 The Search Tree

The main phase of the attack is the construction and pruning of a (nearly)
binary tree where internal edges are labelled by bits and edges to leaves by the
end-of-list symbol •. Each node N is labelled with the (possibly terminated) bit
string DN given by concatenating the labels along the branch from the root to
N . Nodes are also labelled with µN = µ′(DN , T ) and the sets of triples St,N

(t ∈ T ) for D = DN , each of which is computed incrementally as described in
§5. The root ρ is labelled by the empty string Dρ = ε, µρ = µ(ε, T ) = 0 and
St,ρ = {(0, 0, s0)}. For each non-terminated node N , up to three child nodes are
constructed with edges labelled 0, 1 and • respectively. Only the first two can
grow further branches, so the tree is almost binary. Upon completion, a set of
possible keys D is obtained from the labels DN on the leaves N , and they can
be arranged in order of likelihood using the values µN .

The tree is constructed breadth-first to aid pruning. Pruning is driven by the
values of µN , although not quite directly. There are three pruning rules which
are applied whenever possible. First, nodes N with µN = ∞ are deleted because
DN cannot be the correct key, nor a prefix of the correct key. This limits the
depth of the tree, thereby ensuring the construction terminates. It also removes
leaves near the root so that leaves only appear towards the bottom of the tree.
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Secondly, un-terminated nodes whose children have all been pruned are also
deleted because every line of descent from them eventually leads to a problem.

The third, and final, pruning rule uses two threshold parameters. The first, B,
is the maximum breadth of the tree after pruning. The second, λ, is the number
of “lookahead” bits. These parameters are chosen to make the construction of
the whole tree and subsequent calculations computationally feasible.

The level of a node N is its distance from the root, namely len(DN). Suppose
the tree has been fully constructed down to level l+λ and all pruning rules have
been applied to the levels above l. For a node N at level l, let NN be the set of
all its un-terminated descendents at level l+λ, and its terminated descendents
with level at most l+λ. Let3 µ̄N = min{µN ′ | N ′ ∈ NN}. Then the set of nodes
at level l is pruned to leave the B nodes with the smallest values µ̄N .

This rule removes the nodes whose recodings provide the poorest match to
the observed leakage. Since recoding choices affect the pattern of subsequent op-
erations and this effect may only become apparent in the metric after processing
several more bits, larger values of λ tend to give better results in determining
the best match D. Larger values of B clearly make the inclusion of the correct
key D more likely. Even the best fit key with smallest value at its leaf node may
not have the smallest value for µN or µ̄N at each intermediate node N . So B
and λ must be kept large enough to include the correct key; their values can be
determined only after practical experiment on the leaking device. It also pays to
be increasingly light handed in pruning the final λ levels.

7 Locating Bit Errors

By their nature, all key searching algorithms suffer from unavoidable deficiencies:
one is that the best fit key may not be among the good keys which they generate;
another is that the correct key may not be the best fit. The first problem arises
because the ultimately best fit key is not always the best at intermediate points.
To ameliorate this, a number of the best keys need to be continued all the time.
This action should also solve the second problem and is achieved by appropriate
choice of the parameters, as illustrated in the tables of the next section.

However, there are more subtle causes of errors. A single bit error can com-
pletely de-rail the process for several reasons. Firstly, because of nature of the
exponentiation algorithm, it may be possible for different key bit sequences to
generate identical leakage. An example is described in Appendix 2, and it is in-
deed a main cause of errors when dealing with the Ha-Moon recoding algorithm.
Secondly, there may be so many good choices when the wrong bit is chosen that
the correct one does not survive.

Most of these bit errors are at predictable points, namely those for which the
relative difference in the values of µ̄ for the 0-bit and 1-bit choices is very small.
Specifically, the set NN is partitioned into subsets N (0)

N and N (1)
N corresponding

3 Different definitions of µ̄ are possible: e.g. one might weight the metric contribution
at level l+i by i−1 instead of 1 for i > 0.
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to the 0- and 1- branches at N and the minimum metric values are compared for
the two sets, where the sums only include terms 1−ti(ri) from levels l+1 to l+λ.
The difference is a useful measure of confidence in the decision. It enables the
search for the correct key to be prioritised by trying alternatives for the most
doubtful bit decisions first. This reduces the search cost very considerably.

Finally we note that the smaller µ is at the end of the process, the better
the fit, and so, on average, the fewer the number of errors. Hence it is possible
to select the most likely candidates to break. Sometimes the traces can become
incorrectly aligned during key recovery. This leads to a large number of errors
and a high value for the metric, but such cases are easily detected and avoided.

8 Example Simulation

This section contains results from a simulation of the attack applied to the
Ha-Moon algorithm [4], showing variations from the choice of parameters. The
metric difference described in the previous section was used to order the bit
decisions for 192-bit keys, and the bit error with the highest difference between
the choices 0 or 1 was located. The probability of it lying at a particular point
in this list was recorded. The tables show that errors are strongly associated
with smaller differences. Consequently, for example, from Table 1 there is a
probability of 0.3868+0.0058 that, with the stated parameters and 0.4 leakage,
all the bit errors will be among the 2

16 th of bits with the lowest difference. In
practice, this means checking the alternatives for only 24 bits in order to have
a good probability of recovering a key. This is clearly computationally feasible.
The last column states that on average only 9.082 of these bits will be in error,
and so 1

2

(
24
9

) ≈ 219 key tests is a realistic average for the effort involved. For the
tabulated cases, the total number of errors is typically around 20 if the position
of the worst error is anywhere in the top half of the ordered bit list, but, with
extra computation, it can become under 11, as happens for the last line of Table
3, which covers 99.5% of all cases.

The investigation did not assess performance on the final λ bits, but any
variation in the recovery rate of those bits would not affect the computational
complexity significantly.

For the simulation, the trace probability values were approximately normally
distributed with expectation 1

2 (E+1) where E is the “strength of leakage” value
in the first column of Table 14. A leakage of 0 means probability 1

2 that the
operation is a squaring rather than a multiplication, i.e. no information content.

Tables 1 and 2 illustrate the effect of different amounts of leaked data on
the key recovery process. Given that the work involved is proportional to the
number of traces |T | and to the number of recoding choices R which are stored,
but exponential in the lookahead distance λ, it is clear from Tables 3 to 5 that
the most efficient way of recovering the highest number of Ha-Moon recoded
exponents is by increasing R.
4 Green et al. [3] use a simpler model: trace probabilities are 0 or 1, with average

1
2
(E+1). They need stronger leakage, and tabulate only E = 0.6 and E = 0.8.
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Leakage In 1st In 3rd In 7th In 15th In last #Bit errors when
Level Half Quarter Eighth Sixteenth Sixteenth all in last Eighth

0.10 1.0000 0.0000 0.0000 0.0000 0.0000 —
0.20 1.0000 0.0000 0.0000 0.0000 0.0000 —
0.30 0.9697 0.0270 0.0031 0.0002 0.0000 10.00
0.35 0.5760 0.2212 0.1542 0.0478 0.0008 9.414
0.40 0.1186 0.1456 0.3433 0.3868 0.0058 9.082
0.45 0.0143 0.0358 0.1956 0.7407 0.0136 8.925
0.50 0.0019 0.0081 0.0811 0.8913 0.0176 8.853
0.60 0.0000 0.0001 0.0304 0.9500 0.0195 8.790

Table 1. Distributions for the Worst Error in a 192-bit best-fit Exponent as Leakage
varies for Ha-Moon Exponentiation [4] with |T | = 10, λ = 5, R = 10, B = 2.

Traces In 1st In 3rd In 7th In 15th In last #Bit errors when
|T | Half Quarter Eighth Sixteenth Sixteenth all in last Eighth

1 0.9994 0.0006 0.0000 0.0000 0.0000 —
2 0.9344 0.0656 0.0000 0.0000 0.0000 —
3 0.7140 0.2218 0.0642 0.0000 0.0000 —
4 0.5154 0.1986 0.2860 0.0000 0.0000 —
5 0.3873 0.2010 0.4090 0.0027 0.0000 12.07
6 0.3081 0.1984 0.4579 0.0356 0.0000 11.08
8 0.1923 0.1830 0.3849 0.2394 0.0004 10.17
10 0.1186 0.1456 0.3433 0.3868 0.0058 9.082
20 0.0095 0.0369 0.1850 0.4619 0.3067 5.847
40 0.0000 0.0025 0.0403 0.2456 0.7116 3.754

Table 2. Distributions for the Worst Error in a 192-bit best-fit Exponent as the Num-
ber of Traces varies for Ha-Moon Exponentiation with 0.4 leakage, λ=5, R=10, B=2.

In the case of Liardet-Smart recoding [8], it is much harder to extract the
correct key than for the Ha-Moon recoding because it is much more difficult to
align the traces correctly. For example, for a maximum base 24, digits 0, ±1, ±3,
±5, ±7, 0.4 leakage, λ = 5 and B = 2, but taking 30 traces and R = 30, 0.38
of 192-bit exponents have all errors located in the last eighth of the ordered bit
list. For 0.38 of cases the worst error occurs in the first half of the list, but, on
average key guesses have fewer than 7.5 bit errors, so it is still computationally
feasible to recover almost all keys.

The Oswald-Aigner recoding [9] has comparable strength to that of Ha-Moon:
with the reference values of 0.4 leakage, 10 traces, λ=5, R=10 and B=2, 0.2714
of 192-bit exponents have all errors located in the last eighth of the ordered bits.

The standard, deterministic binary method is also susceptible to the algo-
rithm. Coding decisions are unique and do not propagate to other positions, so
only λ=1, R=1 and B=1 make sense. With 0.3 leakage and 10 traces, over 98%
of 192-bit exponents are recovered with no errors at all. Unlike that of Green et
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Recodings In 1st In 3rd In 7th In 15th In last #Bit errors when
R Half Quarter Eighth Sixteenth Sixteenth all in last Eighth

6 0.5547 0.2508 0.1599 0.0341 0.0005 9.431
7 0.3576 0.2871 0.2668 0.0864 0.0021 9.023
8 0.2541 0.2359 0.3268 0.1807 0.0025 9.264
9 0.1662 0.1929 0.3584 0.2777 0.0048 9.029
10 0.1186 0.1456 0.3433 0.3868 0.0058 9.082
12 0.0605 0.0876 0.2930 0.5516 0.0073 9.012
15 0.0228 0.0472 0.2208 0.6999 0.0093 8.945
20 0.0104 0.0175 0.1553 0.8045 0.0123 8.960
30 0.0051 0.0112 0.1087 0.8579 0.0171 8.755

Table 3. Distributions for the Worst Error in a 192-bit best-fit Exponent as the Num-
ber of Recodings varies for Ha-Moon Exponentiation with 0.4 leakage, |T |=10, λ=5,
B=2.

Lookahead In 1st In 3rd In 7th In 15th In last #Bit errors when
λ Half Quarter Eighth Sixteenth Sixteenth all in last Eighth

1 0.2456 0.2037 0.3370 0.2107 0.0030 9.331
2 0.2019 0.1873 0.3277 0.2782 0.0049 9.222
3 0.1632 0.1685 0.3403 0.3220 0.0060 9.269
4 0.1378 0.1572 0.3341 0.3659 0.0050 9.209
5 0.1186 0.1456 0.3433 0.3868 0.0058 9.082
6 0.0997 0.1348 0.3502 0.4095 0.0058 9.039
8 0.0829 0.1380 0.3423 0.4312 0.0056 8.977

Table 4. Distributions for the Worst Error in a 192-bit best-fit Exponent as the Look-
ahead Value λ varies for Ha-Moon Exponentiation with 0.4 leakage, |T |=10, R=10,
B=2.

al. [3], this algorithm reduces to the obvious, and probably optimal, one for the
binary algorithm: it simply averages the leakage from each operation to see if a
squaring is more or less likely than a multiplication followed by a squaring.

9 Complexity

For algorithm complexity, constant time and space is assumed for individual
machine-level instructions, i.e. they are independent of the volume of data and
the required arithmetic accuracy. It is also assumed that generation and storage
of all possible recodings of a single input digit require O(1) time and space.

There are two main terms in the time complexity for processing level l of the
search tree. First, tree construction consists primarily of incrementing the metric
values at level l+λ to those for level l+λ+1. This takes O(2λBTR log R) time
since there are O(2λB) nodes to consider, each having T traces with R recodings
apiece. Each recoding is extended in all possible ways – constant time order – but
it takes O(R log R) time to select the R best recodings to keep. Secondly, pruning
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Tree Width In 1st In 3rd In 7th In 15th In last #Bit errors when
B Half Quarter Eighth Sixteenth Sixteenth all in last Eighth

1 0.1521 0.1534 0.3285 0.3613 0.0047 9.199
2 0.1186 0.1456 0.3433 0.3868 0.0058 9.082
4 0.0983 0.1493 0.3348 0.4103 0.0073 9.038
8 0.0882 0.1313 0.3286 0.4440 0.0079 9.012
12 0.0857 0.1325 0.3346 0.4378 0.0094 8.926
16 0.0898 0.1357 0.3233 0.4433 0.0079 8.949

Table 5. Distributions for the Worst Error in a 192-bit best-fit Exponent as the Tree
Width B varies for Ha-Moon Exponentiation with 0.4 leakage, λ=5, |T |=10, R=10.

is dominated by the O(B log B) time required to order nodes. The first of these
terms is the most likely to dominate for expected choices of the parameters. Both
must also be multiplied by the bit length of the key, viz. log D, to obtain the
time for processing complete traces. The space complexity has two contributions.
The first is O(2λBRT ) for storing details of the R recodings per trace associated
with the O(2λB) nodes between levels l and l+λ during tree construction. The
other is O(B log D) for storing details of nodes in the completed, pruned part.

10 Conclusion

A computationally feasible algorithm has been presented for determining the
secret key used repeatedly in exponentiations where there is weak side channel
leakage and randomised recoding has been employed to nullify the leakage. It
has been shown that it is still frequently possible to recover the key. Moreover,
it is easy to determine which results have few bit errors, and it is easy to locate
the potential errors.
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11 Appendix 1: A Markov Model

This section describes the construction of a hidden Markov Model H for dealing
with multiple traces [10]. We start with the case of a single trace.

The recoding automaton is a Markov process with a finite number of states
and transitions which depend on the next key digit and bits from a random
number generator. On entering a state after traversing the appropriate transition,
the recoding algorithm generates a recoded digit which is transformed into a
sequence of multiplicative operations. The attacker observes these operations
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with restricted clarity. Because the observations do not correspond directly to
the states, the sequence of states is not known, giving a hidden Markov process.

Without loss of generality, we can assume that the sequence of states deter-
mines D uniquely. Then the problem is to determine the most likely sequence
of states which generates the given sequence of observations. An algorithm for
finding an optimal solution is due to Viterbi [11]. It computes the maximum
probability Pi(si) of any sequence of states s0s1...si from the start state s0 to
state si at the time of the ith observation, given the sequence of observations up
to that point. By keeping track of which state si−1 leads to Pi(si), the optimal
sequence of states can be reconstructed from the final best state.

The model H for many traces is constructed as follows. Assume there are |T |
copies of the recoding automaton indexed by the elements of the trace set T .
These generate the operation sequences that are observed through the traces.
Let S be the set of states of the automaton. When i digits of D have been
processed by each copy of the automaton, we have an element of S×N for each
t∈T , which provides the state sti reached by the automaton of index t, and the
number of operations nti so far in its recoding. This T -tuple of pairs is a state
in H. The start state has (st0, nt0) = (s0, 0) for each t∈T . So the state set of H
is the subset of (S×N)T which is reachable from the start state. This is finite
because each nti is bounded above by the length of its trace t.

Transitions in H are T -tuples of transitions from the basic recoding automa-
ton, subject to the consistency requirement that they all correspond to the same
input bit (or digit). So the inputs which determine a transition in H are a digit
from D and a T -tuple of random numbers. The probability of this transition is
the product of the probabilities of the |T | constituent transitions of the original
automaton. When the end-of-list symbol • is read from D, each finite automaton
enters its final state, and the final state • of H is reached. The transition to this
state generates any necessary final operations in the |T | recoding sequences.

A path p = s0s1...si in H represents the first i recoding steps which have
been performed for each of the traces. So p determines a path pt = s0,ts1,t...si,t

in copy t ∈ T of the recoding automaton. If rt is the recoding sequence along
that path then it has a metric value µ(rt, t) defined in §5. This leads to defining
a path metric µ(p) =

∑
t∈T µ(rt, t). The “goodness” value of a state is the

minimum µ(p) over all paths p to that state. It is easily computed incrementally
by increasing path length. By keeping a pointer back to the previous state on
the minimum path, the best path from start to final state can be constructed,
and hence the best-fit key obtained.

If the number of operations is completely determined by the key so that all
traces have the same length, then there are typically O(|S||T |) states which need
processing for each input digit. There are more when trace lengths can vary. So,
being exponential in |T |, the usual Viterbi algorithm becomes totally impractical
when the leakage is so weak that more than a few tens of traces are needed. The
algorithm in the main body of the paper is a pruned and re-organised version of
this which is linear in |T |.
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12 Appendix 2: Errors in Attacking Ha-Moon

In the Ha-Moon algorithm [4], the recoding automaton reads one bit at a time
and the recoding state is determined by a borrow of 0 or 1. If either the guessed
bit or the borrow is 1, but not both, then a given recoding can be extended in
two ways: either the next re-coding digit is −1 with borrow 1, or it is +1 with
borrow 0. Both result in a squaring and a multiplication and hence give rise to
the same new metric value and the same new position along the trace, but they
differ in the borrow value.

Now select a level l node N in the search tree where this property holds for
the best recoding of every trace. These recodings occur in pairs with complemen-
tary borrow values. Suppose bλ is the λ-bit label on the branch from N down to
a level l+λ node which is labelled with the minimum value µ̄N of the metric µ.
This minimum arises from taking a good recoding of the prefix DN for each trace
t and appending the best recoding of bλ+bt where bt is the existing borrow for
the recoding. However, using the complementary λ-bit sequence 2λ−1−bλ and
complementary borrows 1−bt of the other recodings in each pair, we can obtain
the same value of the metric for each trace, and therefore achieve the same mini-
mum µ̄N at the complementary level l+λ node. This is because, for each trace t,
2λ−bλ−bt has a recoding with the same pattern of squares and multiplications
as the chosen recoding for bλ+bt. Specifically, interchanging digits +1 and −1 in
a recoding of bλ+bt will give a recoding of 2λ−bλ−bt with exactly the same pat-
tern5 (and the complementary overflow borrow). Consequently, we obtain best
metric values at level l+λ from descending the branches corresponding to both
bλ and 2λ−1−bλ. As one is odd and the other even, we don’t know whether the
next bit for the best choice should be 0 or 1 – both are equally likely.

If the wrong bit is chosen, the subsequent bits are all wrong until the next
point at which the same problem arises. This is because, as in the branch from
level l to level l+λ, the algorithm will continue to generate the best patterns of
squares and multiplications, but now by choosing complementary bits, borrows
and digits to those which would have been derived had the error not been made.

A consequence of this is that, if no other errors are made, roughly half the bits
of the best fit guess at D are incorrect. They occur in sequences of consecutive
bits, with changes occurring at predictable points, namely those for which the
metric is totally inconclusive about the next bit.

5 The other digits in the recoding are all 0, and they are the same for both recodings.


