
The Carry Leakage on the Randomized ExponentCountermeasurePierre-Alain Fouque1, Denis R�eal2;3, Fr�ed�eri Valette2, and Mhamed Drissi31 �Eole normale sup�erieure/CNRS/INRIA, 75 Paris, FranePierre-Alain.Fouque�ens.fr2 CELAR, 35 Bruz, FranefDenis.Real;Frederi.Valetteg�dga.defense.gouv.fr3 INSA-IETR, 20 avenue des oesmes, 35043 Rennes, FranefDenis.Real;Mhamed.Drissig�insa-rennes.frAbstrat. In this paper, we desribe a new attak against a lassial di�erential poweranalysis resistant ountermeasure in publi key implementations. This ountermeasurehas been suggested by Coron sine 1999 and is known as the exponent randomization.Here, we show that even though the binary exponentiation, or the salar produt on ellip-ti urves implementation, does not leak information on the seret key, the omputationof the randomized seret exponent, or salar, an leak useful information for an attaker.Suh part of the algorithm an be not well-proteted sine its goal is to avoid attakduring the exponentiation. Consequently, our attak an be mounted against any kindof exponentiation, even very resistant as soon as the exponent randomization ounter-measure is used. We target an `-bit adder whih adds `-bit words of the seret exponentand of a random value. We show that if the arry leaks during the addition, then wean almost learn the high order bits of eah word of the seret exponent. Finally, suhinformation an be then used to reover the entire seret key of RSA or ECC basedryptosystems.1 IntrodutionSide hannel attaks are very powerful attaks and today most embedded appliations thatrequire high level of seurity use ountermeasures against suh kind of attaks. Two of themost arefully studied algorithms are the square-and-multiply algorithm and its analog onEllipti Curve, the double-and-add algorithm, sine its wide usage. There exists a lassialountermeasure to avoid simple power analysis (SPA) attak, that always performs the multiplyor the add operation so that all the operations of the implementation are not key dependent.This ountermeasure is very eÆient in pratie, so that most implementations use it. However,suh implementations an be attaked by using di�erential power analysis (DPA [13℄) tehniquessuh as in [14℄ and a popular ountermeasure onsists in randomizing the seret exponent orseret salar by a multiple of the order of the elements '(N) in the ase of RSA modulus orof the order of the base point in the ase of Ellipti Curve. Suh ountermeasure has beenproposed by Coron in [7℄ sine 1999. With this ountermeasure, the seret exponent will neverbe the same and DPA attaks that reover the seret bit by bit annot be mounted.Related Work. This well-known ountermeasure has been �rst attaked by Fouque andValette in [11℄ using the Doubling Attak. However, in suh attak the adversary is assumed



to be able to send many times the same message and that no randomization of the messageis performed before the exponentiation. Here, our attak avoids these two drawbaks sine theattak does not need the knowledge of the message.In [10℄, Fouque et al. show that if Coron's ountermeasure is used with some windowingexponentiation algorithms and a small publi key e, then a simple SPA followed by a very leverattak an reover the seret key d and '(N) in the same time. In [10℄, the implementation is notproteted against SPA attaks sine the lassial SPA attak does not work on the windowingalgorithms. In this work, the authors have to solve a problem similar of that whih we try tosolve here, namely, reovering the seret d in RSA, knowing some non-onseutive bits of d.Indeed, side hannel tehnique allows Fouque et al. to learn some key bits of many randomizedexponents of the form dj = d+ �j'(N), for many �j in a small set, the set of 20-bit or 32-bitintegers in typial implementations.Reovering seret RSA key knowing some bits of d is an old problem starting from thepionerring work of Boneh, Durfee and Frankel in [2℄ sine 1998. However, the tehniques usedin Boneh et al.'s paper are based on Coppersmith's lattie algorithm [5, 6℄ that works well whenthe bits are onseutive. Later, other attaks suh as [9, 1℄ have been proposed on RSA, but noone exept [10℄ targets the ase when bits are non onseutive.In the Ellipti Curve ase, the problem of reovering seret salar when nononseutive bitsare known has also been studied. The Baby Step Giant Step algorithm an always be used,however reduing the memory requirement is not always possible as with Pollard algorithm orthe lambda method, a.k.a. the kangoroo algorithm in [19, 15℄. However, Stinson desribes analgorithm due to Coppersmith in [18℄ that an be used to redue the memory requirement.A similar algorithm has been devised by Coron et al. in [8℄ for RSA modulus. However, themissing bits must not be too numerous sine the method is based on the birthday paradox andmemory and time requirements are almost in the square root or fourth root of the number ofmissing bits.Our Results. In this paper, we show that the exponent randomization ountermeasure anbe attaked very eÆiently and the whole seret key an be reovered. The main novelty ofthe attak is to target the omputation of the randomization itself dj = d + �j � '(N) in aseof an RSA modulus and not the exponentiation x 7! xdj mod N . In the addition of a randomvalue with a �x and seret one, the targeted operation is the sum of the seret salar witha random number, a random multiple of the order of the base point P . Seifert in [17℄ andBrier et al. in [3℄ have also studied attaks on other part of the algorithm, on some publiinformation for example. Here, our attak is less invasive sine we do not hange parametersand we only reord some eletromagneti radiations. Finally, this attak is very eÆient sineit works against very seure or even \provably-seure" exponentiation that uses the exponentrandomization sine the side hannel leakage omes from the ountermeasure and not from theexponentiation algorithm.We show that when the seret exponent, or salar, and the randomization are ut into `-bitword, then the arries of the adder an leak and suh information an be used to guess the highorder bits of eah `-bit word of the seret with a good preision. Then to reover the wholeseret key, either the number of missing bits is small enough so that a lassial baby step giantstep method ould be used or other tehniques are required to �nd the other bits. In the aseof RSA keys or large ECC keys, the idea onsists in reovering the randomized value �j usingthe known bits of the order. One the �j 's are known, the addition or the exponentiation are2



unproteted against lassial DPA attaks suh as address-bit DPA [12℄ or Correlation PowerAnalysis (CPA) attak [4℄.Organization of the paper. The priniple of the attak is presented in setion 2. Then, insetion 3, we theoretially explain how the knowledge of the number of arries allows us toguess the high order bits of eah word of the seret key. In setion 4, we show that the internalarries of the full addition involved in the masking proess an be observed by SCA. Finally, insetion 5 we desribe the attaks against lassial implementations of RSA and ECC to retrievethe whole seret key.2 The Attak PrinipleThe idea of the attak is to target the ountermeasure operation and not the exponentiationor salar produt operation. The former operation is usually not well proteted sine it is usedto protet the latter one. So, in the sequel, we assume that the exponentiation is protetedagainst SPA by using the square-and-multiply always algorithm and against DPA attak byusing randomization of the message even with unknown blinding and the randomization of theexponent.2.1 The Seret Randomization CountermeasureIt is well-known that randomizing d with dj = d + �j'(N) for RSA and dj = d + �j#Efor ECC leads to the same results. Furthermore, if �j is di�erent at eah exeution of thealgorithm, lassial DPA attaks whih retrieve the seret bit by bit beome ine�etive. Suha ountermeasure is known as the exponent randomization. Fig. 1 desribes this tehnique forRSA and ECC. { Inputs: a message M for RSA (resp. a point P of a urve E forECC), a word size in bits �, an exponent d, a modulus N (resp.#E , the ardinal of E).{ Output: Md mod N for RSA (resp. d � P for ECC)1. Take a �-bit random integer �j2. Compute dj = d+ �j'(N) (resp. dj = d+ �j#E)3. Return SCA proteted exponentiation Mdj mod N (resp. dj � P )Fig. 1. The Private Exponent Randomization for RSA (resp. ECC)2.2 The Sketh of the AttakIf someone adds random integers Ri to a �xed integer S, the probability over the di�erent valuesof Ri to observe a arry ag only depends on S. Indeed, on 8-bit integers, random additionwith the �xed value 0xFF is more likely to raise a arry ag than with the �xed integer 0x01.3



Integers are often too large to be added through a digital iruit. The operands are usuallybroken into `-bit words and the full addition funtion is splitted into `-bit additions. An `-bitaddition is the sum of two `-bit integers. A arry ag is raised for a bu�er overow, i.e. whenthe `-bit sum is larger or equal to 2`.These arry ags raised during the full addition an be observed by side hannel analysis.An attaker who observes a devie for many seret randomizations an use the arry ag as asoure of information to retrieve the seret RSA or ECC exponent. Our attak uses two stages:the side hannel analysis to obtain information on the seret and the ryptographi attakwhih uses the information to reover the entire seret key.2.3 The Exponent Randomization Ripple Carry AdditionThis subsetion desribes the notations used in the rest of the paper. The attaker performs mexponent randomizations and j denotes the indie of the randomization from 0 to m� 1.

Fig. 2. jth Exponent randomizationThe addition funtion used for the exponent randomization is assumed to be designed asa k-word ripple arry addition. The two operands of the addition are broken in k `-bit wordswith ` = 8; 16 or 32. The full addition is then performed word by word using a `-bit adderwhih takes as input two `-bit operands and a arry-in and outputs the sum and the arry-out. The ripple strategy onsists in haining the arry-out and the arry-in together. Let i bethe word indie from 0 to k � 1. The private exponent and the mask are denoted by d andA(j) = �j'(N) for RSA and A(j) = �j#E for ECC. The arry ag raised during the ith `-bitaddition for the jth randomization is (j)i and Ci is the sum of the arry ags raised duringthe m exponent randomizations, Ci =Pm�1j=0 (j)i . The priniple of the ripple adder for the jthexponent randomization is desribed in Fig. 2 and the notations are the following:{ `: The atomi adder size 4



{ k: The number of words.{ m: The number of exponent randomizations observed.{ d: The private exponent d =Pk�1i=0 Di2`�i.{ d0: The randomized private exponent d0 =Pk�1i=0 D0i2`�i.{ A(j): The jth mask A(j) =Pk�1i=0 a(j)i 2`�i.{ (j)i : The arry involved in the addition of the ith `-bit word:{ (j)�1 = 0 (no initial arry.){ (j)i = 1 if Di + a(j)i + (j)i�1 � 2` with 0 � i < k and (j)i = 0 otherwise.{ Ci: The number of arries in the addition of the ith `-bit word: Ci =Pm�1j=0 (j)i3 The Exponent Randomization AttakThe exponent randomization onsists in summing the private exponent with a mask. To do so,both exponent and mask are divided into k `-bit words. In this setion, we assumed that theattaker an observe or dedue the number Ci of arries involved on the ith `-bit addition inthe m exponent randomizations. In the next setion, we show that suh information an beobserved by using side hannel attak.In the following, we assume that the randomization �j'(N) (or �j#E) are uniformly dis-tributed values. Even though suh an assumption is not orret, we an assume that it isloally orret. For eah word of �j'(N), we an assume this property sine the number ofurves needed is less than the 232 values of the �j 's and the multipliation has the property toquikly spread the random values of the �js into all words of �j'(N) exept maybe the �rstand last words.Probability of Guessing a Word given the Number of Carries. The attaker hasto guess the ith word of the seret exponent knowing the number of arries involved duringthe m randomizations. Theorem 1 gives us the probability of a orret guess of the probabilitydistribution of guessing the ith word of the seret knowing the number Ci of arry ags involvedin its making is given by Eq. 1.Theorem 1. The probability distribution of guessing the ith word of the seret knowing Ci thenumber of arries ags involved in the m randomizations isPr(Di = njCi = q) = (n=2`)q(1� n=2`)m�qP2`�1�=0 (�=2`)q(1� �=2`)m�q (1)Proof. First, we ompute the probability distribution of the �rst `-bit word D0 of the seretexponent given the number of arries C0 involved with a `-bit adder implementation during mrandomizations, i.e. we prove the above formula for i = 0. Then, we use an indution on i toprove the theorem for all values i.During a single randomization, the probability Pr(C0 = 1jD0 = n) of observing one arry forthe �rst word is n=2`. Indeed, let a given mask Aj , a given seret d, and their �rst `-bit wordsare respetively aj0 and D0. These words an take 2` di�erent values with the same probability.The value D0 is �xed while aj0 is purely random, thus: Pr(C0 = 1jD0 = n) = Pr(n + aj0 >5



2`�1) = Pr(aj0 > 2`�n�1): Then a arry is observed when aj0 takes one of the n values largerthan or equal to 2` � n and smaller than or equal to 2` � 1. Therefore:Pr(C0 = 1jD0 = n) = n=2` (2)Now, we ompute the probability distribution Pr(D0 = n \ C0 = q) using the de�nition of theonditional probability: Pr(D0 = n \ C0 = q) = Pr(C0 = qjD0 = n) � Pr(D0 = n): Sine thereexist �mq � possible ases where q arries are observed during m randomizations. Therefore:Pr(D0 = n \ C0 = q) = ��mq �Pr(C0 = 1jD0 = n)q(1� Pr(C0 = 1jD0 = n))m�q� � (1=2`) (3)Then, we need to ompute the probability distribution of the event C0 = q. Sine, the seretD0 an take 2` di�erent values, we an thus ompute the probability by summing on all valueof D0 as follows: Pr(C0 = q) =P2`�1�=0 Pr(C0 = q \D0 = �) and using (3), we get:Pr(C0 = q) = 12` � �mq � 2`�1X�=0 (�=2`)q(1� �=2`)m�q (4)Finally, we ompute the probability distribution Pr(D0 = njC0 = q) by using (3) and (4):Pr(D0 = njC0 = q) = (n=2`)q(1� n=2`)m�qP2`�1�=0 (�=2`)q(1� �=2`)m�q (5)Now, we prove theorem (1) for i > 0. For the jth randomization, the (i + 1)th addition arryji+1 does not only depend on the value of Di+1 + aji+1 but also on the ith addition arry ji .More preisely, the (i+1)th addition arry does not depend on the ith addition arry exept ifDji+1 + aji+1 = 2`� 1. Then, as Di+1 is �xed, ji+1 depends on ji one time out of 2`. If we omitthis fat, then equation (5) an be generalized to:Pr(Di+1 = njCi+1 = q) = (n=2`)q(1� n=2`)m�qP2`�1�=0 (�=2`)q(1� �=2`)m�q (6)utEven if this funtion is disrete, the probability distribution of the random variable Di=2`knowing Ci an be approximated as the Beta distribution �(q+1;m�q+1). This approximationis detailed in Appendix B and Fig. 3 represents the evolution of the probability distributionaording to the number m of experiments.The probability distribution shape tends to zero exept on a lobe whih is maximal for�q � (2` + 1)=m� or �q � (2` + 1)=m�. The attaker an then take a deision. The most probableof these two words is de�ned as the seret estimate D̂i. The attaker's probability to take theright deision, i.e. the probability of D̂i = n, inreases with m. The worst ase, i.e. when theprobability of D̂i = n is the lowest, is for m = 2q leading to D̂i = 2`�1.Furthermore, instead of hoosing one single word, the attaker an selet the most probablewords that ould math to the seret. He owns then not anymore one estimate but a set ofestimates. He an then aumulate the di�erent probabilities, meaning he tries to guess part ofthe seret instead of the whole seret itself. This strategy an be very eÆient. Indeed, just a6
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Fig. 3. Probability Distribution of DjC Aording to the Number of Experiments with ` = 8 and` = 16few words ahieve a non negligible probability, the other ones having a probability lose to 0.This strategy onsists then in using umulative properties instead of the density properties.This gain an be illustrated through an example: an attaker observes 10; 000 exponentrandomizations and observes 1; 250 arries on a 8-bit adder. What an he dedue? The proba-bility that 0x20 is the seret word is 0:47. But the probability that 0x1F or 0x20 is the seretword inreases to 0:7. Cumulating 4 words (0x1E,0x1F,0x20 0x21) leads to a probability ofsuess higher than 0:99. In the worst ase, m = 2q, the variane of �(m=2 + 1;m=2 + 1) is�2 = 1=4(m + 3) [16℄. Then, the number of estimates to aumulate for reahing a suessprobability of at least 0:99 is proportional with 2`=pm by using Chebyshev bound. We veri-�ed experimentally this result: for 10; 000 exponent randomizations, 4 estimates are needed forgetting a probability of 0:99 when q = 5; 000 and ` = 8.4 The Exponent Randomization SCAIn this setion, we show that the value Ci an be learned by the adversary. The target of our sidehannel attak is the arry-out of the atomi adder. We have tested its feasibility by simulatinga 160-bit masking on the ProASIC 3/E starter kit from Atel whih is a FPGA developmentkit. We have designed a full ripple addition funtion with a 32-bit adder. In appendix A, wegive some information onerning addition design.7



4.1 The Loation and Pro�ling StagesThe SCA feasibility is demonstrated with EMA tehniques, studying the eletromagneti sidehannel. Radiation is measured in the near �eld zone using a small loop probe sensitive to thehorizontal magneti �eld. The used test benh is represented on Fig. 4. The two operands arerandomly hosen to loalise in spae the adder on the hip and time slot where the additionis performed during the implementation. The arry ag an then be loalised more sharply byusing a DPA attak.

Fig. 4. EM Test BenhIn order to build the jth 160-bit mask used for the jth exponent randomization, the randomgenerator of the FPGA is used. The 32-bit addition is performed in two stages: the loadingstage (the new operands of the adder are loaded) and the addition stage (the add instrutionis exeuted).4.2 The Attaking StageThe 160-bit seret d is split in 5 32-bit words. Then, it is randomized m times and the averageEMA trae �m is omputed. From the pro�ling stage, we an loate on �m the arry ontributionfor eah word Di. This ontribution is noise free. Indeed, the noise is assumed to be zero-mean.It is lose to zero with m large enough. For eah word Di, the orresponding arry ontributionis expeted to be proportional with the arry probability. The number of arry ags raisedduring the m masking operations an be then dedued aording to the previous setion.The previous statements are illustrated on a onrete ase. We performed 1000 maskingoperations. The least signi�ant bits (LSB) of eah wordDi are hosen randomly, the probabilityto have a arry depends then only on the most signi�ant bits (MSB) of Di. Thus, we build dsuh as:{ D0=0x00FC3478: the expeted arry probability is around 0{ D1=0x40FE56AC: the expeted arry probability is around 63=256{ D2=0x804890BD: the expeted arry probability is around 127=256{ D3=0xC0C2A4C8: the expeted arry probability is around 200=256{ D4=0xFF98ACBF: the expeted arry probability is around 255=2568



Fig. 5 shows �1000 where the ontribution of the masking of D0 is subtrated. To do so, anextra loading is made with D0 parameters but the addition is not performed: this yields theharateristi of the unrelated instrutions.
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Fig. 5. Average Trae �1000 where the ontribution of the masking of D0 is subtratedFor a given word of d, the expeted arry probability and the arry radiation are proportionalas it is shown in Tab. 1. The relative amplitude di�erene between two onseutive maskingsis 5�V. Masking Absolute Amplitude Relative AmplitudeD0 �D0 0:012mV 0mVD1 �D0 0:031mV 0:019mVD2 �D0 0:036mV 0:024mVD3 �D0 0:043mV 0:031mVD4 �D0 0:049mV 0:037mVTable 1. Absolute and relative ontributions of the arry on �10004.3 Results and ConlusionFor a ripple arry addition, the attaker an have aess to the information Ci even in thepresene of noise. If the addition funtion has been designed another way, we laim that the9



attaker has aess to the same amount of information. Indeed, the omputational ost of thearry-out of a `-bit adder depends on the way it is built. The more the arry-out is omplex toobtain, the more its omputation osts power and the more it leaks with the side hannel. Theripple arry adder is the adder whose arry-out is the lowest side hannel available. Indeed, itneeds 2 OR and 3 AND while the arry-out of a 4-bit look-ahead adder osts 10 OR and 4AND as it is stated in Appendix A.Furthermore, independently of the addition design, it takes into aount word adder whoseoperands are a word of the private exponent and the orresponding word of the mask: theunique di�erene is the arry-in treatment. However this di�erene is negligible: as Di is �xed,the arry-out of the word adder depends one time out 2` on the arry-in. Then, irrespetive ofthe addition funtion used, we assume that the multiple bits adder takes into aount a arry-inequals to zero.5 Reovering the Entire Seret KeysIn this setion, we present two ways to use the information extrated by the side hannelmeasurements. The �rst tehnique onsists in �nding enough bits with the arry leakage tobe able to realize a kind of exhaustive searh of the seret by using the baby step-giant stepmethod. The seond tehnique onsists in ombining two side hannel attaks to retrieve theentire seret key. Both attaks are omplementary as their eÆieny depends on the size of thekey and on the size of the registers. Some examples are disussed in the last subsetion.5.1 A Kind of Exhaustive SearhWe assume that the attaker performs m measurements of the exponent randomization of theseret d, stored in k `-bit words. In the previous analysis, he is able to redue the number ofpossible values in eah word of d. For eah word, a fration 2`=pm of the orresponding keyword is possible (the probability the seret is in this set is then higher than 0:99) so the numberof possible values for d will be (2`=pm)k. If the attaker an redue the set of possible valuesfor d to a subset of size lower than 2128, we onsider that he an �nd the whole seret exponentd with lassial baby-step giant-step methods for a omputational ost lower than 264. We annote that this attak will be more eÆient on shorter keys and smaller register suh as elliptiurve implementations on 8-bit or 16-bit registers. So the omputational ost of the attak is(2`=pm)k=2.5.2 The Combined AttakThe other solution uses the arry leakage information to �nd partial information on d whih willbe used to �nd for eah masking operation dj = d+�j�'(N) (or dj = d+�j�#E) the randomvalue �j . One suÆiently many �j 's are known, a lassial DPA attak an be mounted eitheron the masking operation or diretly on the exponentiation to retrieve the missing bits of d.In fat, the knowledge of �j will unprotet the exponentiation against lassial attaks suh asan address bit DPA whih does not need to know the value of the message. We will see in thefollowing that the suess of this attak depends more on the size of key and on the size of �than on the number of possible measurements.10



Sketh of the attak. The attak an be divided into three steps:{ with m measurements, the attaker approximates the value Di of eah register with apreision of pm,{ with this approximation, he an try all possible values for � and ompute for the knownbits of the order Ord = '(N) or #E all the possible values for � � Ord. In ase of RSA,only half of the bits are known as the most signi�ant bits of '(N) are equal to those of N ,but in the disrete logarithm ase, the order of the group is known so all the bits of Ord areknown. With the approximation of d, the attaker an ompute for eah value � the valueof the arry of the ith register. The arry at register i will be perfetly de�ned exeptedwhen it omes from the unknown bits of Di whih an happen with probability 1=pm. Ifthe number of arries information is suÆient, eah urve an be assoiated with a singlevalue of �. This will happen when the number of registers where the arry is known, islarger than the size of �.{ with themmeasurements and their assoiated value of �, an address-bit DPA or CPA attakan be mounted to retrieve the value of d. If the attaker targets the masking operation orthe address during the exponentiation, he will have to guess reursively the unknown bitsof d and eventually, the unknown bits of '(N) in ase of RSA.The number of measurements m is de�ned by the number of urves needed to ompletean address bit DPA attak on the masking operation or on the exponentiation without theexponent masking protetion. Usually, 10; 000 urves are suÆient to mount suh an attak butthis depends on the noise level. With suh a number of urves, the approximation of the valueDi of eah register has a preision of 26. If � is a 32-bit long random value, the attaker needsthe seret key to be stored on more than 32 registers in ase of disrete logarithm problem ormore than 64 in ase of RSA as only the most signi�ant bits of '(N) are known.5.3 Results on RSA and ECCIn this setion, we will present some appliations of the previous attaks. The omplexity interms of measurement and omputation is evaluated aording to the onsidered attak with a� of 32 bits.Cryptographi implementation attak Measurements omputational ostRSA 1024 on a 8-bit adder ell ES 216 1RSA 1024 on a 8-bit adder ell CA 10; 000 232RSA 1024 on a 16-bit adder ell CA 10; 000 232RSA 1024 on a 32-bit adder ell NPRSA 2048 on a 32-bit adder ell CA 10; 000 232ECC 160 on a 16-bit adder ell ES 216 � (216=p216)10=2 = 240ECC 160 on a 32-bit adder ell ES 220 � (232=p220)5=2 = 255Table 2. Attak omplexity on some examples. \ES" stands for exhaustive searh, \CA" forombined attaks, and \NP" for Not Pratial.
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Fig. 6. The Ripple Carry AdderThe Carry Look-Ahead Adder. This adder aims to generate all arry-ins in parallel for notwaiting until the arry propagates from the stage of the FA it has been generated. The arrypropagation signal fPig and the arry generation signal fGig are introdued using the previousnotations: Pi = ai � bi, Gi = ai � bi and then in;i+1 = Gi + in;i � Pi. These expressions an beomputed in parallel for all the arries. As, an example, for a 4-bit adder, we have:in;0 = Cinin;1 = G0 + in;0 � P0 = G0 + Cin � P0in;2 = G1 + in;1 � P1 = G1 +G0 � P1 + Cin � P0 � P1in;3 = G1 + in;2 � P2 = G2 +G1 � P2 +G0 � P1 � P2 + Cin � P0 � P1 � P2in;4 = G3 + in;3 � P3 = G3 +G2 � P3 +G1 � P2 � P3 +G0 � P1 � P2 � P3 + Cin � P0 � P1 � P2 � P3Cout = in;4B The Beta DistributionThe last probability distribution of the seret estimate knowing the arry funtion given byformula (6) an be approximated by a disrete beta distribution. Indeed: the beta distributionis de�ned as �(q + 1;m� q + 1) = Z 10 tq(1� t)m�qdtand using Riemann sums, we obtain:�(q + 1;m� q + 1) = limn!1 1n nX�=1 �n q �1� �n�m�q :Finally, if we assume that 2` is large enough, then2` � �(q + 1;m� q + 1) � 2`�1X�=0 �q2` �1� �2`�m�q :14


