
Efficient Helper Data Key Extractor on FPGAs

Christoph Bösch1?, Jorge Guajardo2, Ahmad-Reza Sadeghi1, Jamshid
Shokrollahi1??, and Pim Tuyls2

1 Horst-Görtz-Institute for IT-Security, Ruhr-University Bochum, Germany

{christoph.boesch,jamshid.shokrollahi,ahmad.sadeghi}@trust.rub.de
2 Philips Research Europe, Eindhoven, The Netherlands

{jorge.guajardo,pim.tuyls}@philips.com

Abstract. Physical Unclonable Functions (PUFs) have properties that
make them very attractive for a variety of security-related applications.
Due to their inherent dependency on the physical properties of the device
that contains them, they can be used to uniquely bind an application to a
particular device for the purpose of IP protection. This is crucial for the
protection of FPGA applications against illegal copying and distribution.
In order to exploit the physical nature of PUFs for reliable cryptography
a so-called helper data algorithm or fuzzy extractor is used to generate
cryptographic keys with appropriate entropy from noisy and non-uniform
random PUF responses. In this paper we present for the first time effi-
cient implementations of fuzzy extractors on FPGAs where the efficiency
is measured in terms of required hardware resources. This fills the gap
of the missing building block for a full FPGA IP protection solution.
Moreover, in this context we propose new architectures for the decoders
of Reed-Muller and Golay codes, and show that our solutions are very at-
tractive from both the area and error correction capability points of view.

Key Words. Physical Unclonable Functions, Intrinsic PUF, Fuzzy Ex-
tractor, Helper Data Algorithm, FPGAs, Implementation.

1 Introduction

Virtually all keyed cryptographic primitives, regardless of whether they are based
on public-key or private-key cryptography, assume the secrecy of the key used to
encrypt/sign a given message. Since the late 90’s, there has been a lot of interest
in developing methods to guard against key compromise at the protocol level but
also at the physical level [1–3]. By physical level, we mean mechanisms which
can make the platform where cryptographic primitives run (more) secure to key
compromise. One of the most interesting of these methodologies is the idea of
Physical Unclonable Functions (PUFs) as introduced in [1]. A PUF is a primi-
tive that maps challenges Ti to responses Ri, which are highly dependent on the
physical properties of the device in which the PUF is contained or embedded.

? Part of this work was done while the author was at Philips Research Europe.
?? Current contact address: jamshid.shokrollahi@de.bosch.com



We will write Ri ← PUF(Ti) to denote the response Ri of a PUF to a challenge
Ti. Physical Unclonable Functions have essentially two parts: i) a physical part
and ii) an operational part. The physical part is a physical system that is very
difficult to clone. It inherits its unclonability from uncontrollable process varia-
tions during manufacturing. In the case of PUFs on an IC such process variations
are typically deep-submicron variations such as doping variations in transistors.
The operational part corresponds to the function. In order to turn the physical
system into a function a set of challenges Ti (stimuli) has to be available to which
the system responds with a set of sufficiently different responses Ri. Examples
of PUFs include optical PUFs [1], silicon PUFs [4], coating PUFs [2], Intrinsic-
PUFs [5], and LC-PUFs [6]. Regardless of their particular instantiation, their
unclonability, and tamper evidence properties have made PUFs very useful tools
in IP protection and secure key storage applications.

IP Protection For FPGAs. Field Programmable Gate Arrays (FPGAs) are gain-
ing widespread acceptance as substitutes for ASICs in many applications. In
fact their re-programmability has made them very attractive in the embedded
market, where software and functionality updates can be common and desir-
able by customers. As a result of this shift, it is increasingly the case that the
functionality of an embedded system is presented in the form of a bit configu-
ration file or, in the case of microprocessors, in the form of a program. Thus,
the very property that makes FPGAs so attractive (their programmability) also
makes it very easy for counterfeiters to copy an IP developer’s configuration file
and create a similar product without the up-front cost of Intellectual Property
(IP) development. This problem was introduced most recently3 by Simpson and
Schaumont [8]. In particular, the authors in [8] showed that by using a PUF on
an FPGA they could develop protocols that allow binding of a particular IP to
a particular FPGA. Their protocols also allow proving authenticity of the IP
to the hardware platform. In [5], the authors further reduce the computation
and communication complexity of the protocols in [8] and introduce the idea
of Intrinsic-PUFs based on the start-up values of SRAM memory values. Both
based their protocols on symmetric-key primitives. In [9], the authors observe
that by introducing public-key cryptography, the corresponding private-key does
not need to ever leave the FPGA, even during the enrollment stage, thus increas-
ing the security of the overall system. A common characteristic of all PUF-based
protocols in [5, 8, 9] is the derivation of a key(s) from the PUF, which is used
to encrypt a piece of IP and authenticate its origin. In the remainder of the
paper, we will refer to the encrypting operation for ease of presentation but it is
clear that our discussion extends to the computation of Message Authentication
Codes (MACs) and/or signatures on a particular IP block.

The Need for a Helper Data Algorithm. Notice that PUF responses are noisy by
nature. In other words, two calls to the PUF with the same challenge Ti will
produce two different but closely related responses Ri, R

′
i, where the measure of

3 See [7] for earlier references to the problem.



closeness can be defined via a distance function. We will make the distance func-
tion more explicit in Sect. 2. Intuitively, the distance function should be small
among responses originating from the same device and very large for PUF re-
sponses originating from different devices. Nevertheless, it is clear that the plain
PUF response can not be used as the key, since this would mean that the data
encrypted under response Ri could not be decrypted with response R′

i, even if
both responses originate from the same PUF embedded in the same device4. In
order to derive reliable and uniform strings from (imperfect) sources of random-
ness, such as a PUF, the concept of a fuzzy extractor or helper data algorithm
were introduced in [10, 11].

Related Work. To our knowledge, there is no previous description of the complex-
ities and design choices made to implement a helper data algorithm on hardware
and, more specifically, on FPGAs. In both [12, 13] the noisy nature of a PUF is
acknowledged. Their solution to the problem is to add an error correcting stage
based on BCH codes. Other codes are not considered and no detailed explanation
of how to choose the code is given. Gassend [14] also considers the problem of
noisy measurements in PUFs by considering Hamming codes and product codes.
The solutions based on product codes in [14] is only able to correct up to two
errors. Gassend gets around this problem by trying different challenges until the
response has a sufficiently small number of errors that they can be solved. It is
worth noticing that a similar problem to the one we are considering is present
in biometrics. In fact, the first fuzzy extractor construction [15] was aimed at
biometric applications. Dodis et al. [11] also describe a software implementation
of a fuzzy extractor based on BCH codes. Somewhat related to our construction
is the construction of Hao et al. [16] where they implement a two stage error cor-
recting scheme for biometric applications (iris recognition). The scheme in [16]
uses first a Hadamard code and then a Reed-Solomon code in a concatenated
manner. Notice that the authors in [16] do not consider the hardware implemen-
tation of their schemes. In addition, Reed-Solomon codes are optimized for burst
errors and thus, are not applicable to our solution since errors present in PUF
responses tend to be random.

Our Contributions. In this paper, we focus on the study and implementation
of fuzzy extractors on FPGAs, as [5, 8, 9] assume the existence of such a block
but do not provide explicit constructions nor investigate the hardware costs of
fuzzy extractors on FPGAs. Our work can be seen as the final block necessary
to generate cryptographic keys and, thus, allows for the construction of full IP-
protection solutions on FPGAs. We focus on making an efficient choice of code.
By efficient, we mean two things. First, we aim to be able to reconstruct the same
key with high probability. In other words, given a code we want to achieve an
error probability (the probability that an error pattern happens that can not be
corrected by the chosen error correcting code) of at least 10−6 ≈ 2−20. We argue
in Sect. 3.2 that this is a conservative estimate, which can be applied for most

4 This would only work if Ri = R′
i, which in general is highly unlikely.



applications. In this respect, we show empirically that from the codes considered,
the best codes (meaning those that can achieve a low error probability) are BCH
codes [17, 18].

Our second efficiency measure refers to hardware resources. In particular,
once we have achieved a certain error probability, we desire that the error cor-
recting decoding algorithm implementation be as area efficient as possible. This,
in fact, is a key requirement and makes our work fundamentally different from
other helper data algorithm implementations. In particular, the aim of our solu-
tion is not the implementation of a helper data algorithm on an FPGA by itself.
Rather, our aim is to implement a helper data algorithm in as little hardware
as possible and, in the process, allow for the secure deployment of IP. The IP
block, in fact, is the one that should determine the FPGA resources, not the
helper data algorithm. In our search for an area efficient solution, we turned to
different code constructions. We find that concatenation of codes as introduced
by Forney [19], allows for the use of codes that are much simpler to implement
and possibly more area efficient than BCH codes. In particular, an odd repeti-
tion code followed by a Reed-Muller code or a Golay code can satisfy our error
probability requirements. We expect that such construction will incur in con-
siderable area savings with respect to a construction based on BCH codes only.
We also propose new architectures for the decoders of Reed-Muller and Golay
codes, which are of independent interest. In addition, we identify which universal
hash function constructions from those already known in the literature are most
suitable for small area implementations. These results are described with focus
on an implementation results targeting a Spartan-3E Xilinx FPGA, which is a
typical FPGA used in low cost applications.

Notation. Algebraically a binary linear code C with message length k and code-
word length n is a k-dimensional subspace of F

n
2 . The messages specify each el-

ement of the subspace and the codewords are their representations in F
n
2 . Given

two codewords v = (v1, v2, . . . , vn), and w = (w1, w2, . . . , wn), with vi, wi ∈ F2,
the Hamming distance between the two words, denoted by dH , is the number
of coordinates in which v and w differ. The minimum distance dmin of a linear
code C is the smallest Hamming distance between any two different codewords
in C. For linear codes the minimum distance is equal to the minimum non-zero
weight in C. We write an [n, k, d]-code to mean a binary code C of length n, car-
dinality 2k (encoding messages of length k), and minimum distance d. A linear
code with minimum distance d has error correcting capability or error correct-
ing distance t =

⌊
dmin−1

2

⌋
. An important data structure related to the linear

code is the generator matrix G whose rows are elements of a basis for the linear
code. For a binary linear [n, k, d]-code, we can write the generator matrix in the
standard form as G = (Ik|P ), where Ik is the k × k identity matrix and P is a
k × (n − k) matrix. The parity check matrix is then found as H = (P T |In−k).
This is an n− k by n matrix such that the inner product of any codeword with
any column of H equals zero. Encoding a message m is accomplished by com-
puting v = mG. The syndrome of a received word r = v +e, where v and e are



a codeword and error, respectively, is defined as Sr = Hr = He. We refer the
reader to [20, 21] as standard references for error correcting codes.

2 Helper Data Algorithms

PUF responses can not be used as a key (as in e.g. [2]) in a cryptographic prim-
itive for two reasons. First, PUF responses are obtained through measurements
on physical systems, which are typically noisy. This leads to a problem since
cryptographic functions are very sensitive to noise on their inputs. Second, PUF
responses are not uniformly distributed. Hence, even if there was no noise, the
response would not form a cryptographically secure key. In order to deal with
both issues a Helper Data Algorithm (HDA) or Fuzzy Extractor or has to be
used. In the remainder of this paper, we will use the two terms interchangeably.
For the precise definition of a Fuzzy Extractor and Helper Data algorithm we
refer to [10, 11].

In general a helper data algorithm deals with both issues (noise and non-
uniformity of keys) by implementing first an information reconciliation phase and
second, by applying a privacy amplification or randomness extraction primitive.
In order to implement those two primitives, helper data W are generated during
the enrollment phase. During this phase, carried out in a trusted environment, a
probabilistic procedure called Gen is run. Later, during the key reconstruction or
authentication phase, the key is reconstructed based on a noisy measurement R′

i

and the helper data W . During this phase, a procedure called Rep is performed.
We present one of the constructions for such procedures previously described in
[11]. Other constructions as well as constructions for other metrics can be found
in [11]. Notice that all constructions have an error correcting stage. Optimizing
such stage will be our focus in the next sections.

Construction Based on Code Offset. In order to implement the procedures Gen

and Rep an error correction code C and a set H of universal hash functions [22]
is required. The parameters [n, k, d] of the code C are determined by the length
of the responses R and the number of errors t that have to be corrected. The
distance d of the code is chosen such that t errors can be corrected. The Gen-
procedure takes as input a PUF response(s) R and produces as output a key K
and helper data W = (W1, W2), i.e., (K; W ) = (K; (W1, W2)) ← Gen(R). This
is achieved as follows. First, a code word CS ← C is chosen at random from C.
Then, a first helper data vector equal to W1 = CS⊕R is generated. Furthermore,
a hash function hi is chosen at random from H and the key K is defined as
K ← hi(R). The helper data W2 is set to i. During the key reconstruction phase
the procedure Rep is run. It takes as input a noisy response R′ from the same
PUF and helper data W and reconstructs the key K i.e. K ← Rep(R′, W ). This
is accomplished according to the following steps: (1) Information Reconciliation:
Using the helper data W1, W1 ⊕R′ is computed. Then, the decoding algorithm
of C is used to obtain CS . From CS , R is reconstructed as R = W1 ⊕ CS ; and
(2) Privacy amplification: The helper data W2 is used to choose the correct



hash function hi ∈ H and to reconstruct the key as K = hi(R). Notice that
we have implicitly assumed the use of a binary code. The security of the above
constructions has been established in [10, 11].

3 Searching for Good Linear Codes and Efficient HDAs

We will model the noise present in PUF responses as a binary symmetric chan-
nel (BSC). In particular, in a BSC, the bit error probability pb specifies the
probability that a transmitted information bit is received in error. Then, with
probability 1− pb the sent information bit equals the received one. We assume
that all bits are independent, which turns out to be a good assumption as shown
in [9, 5]. In [9], the authors also show that the probability that a string of n bits
has more than t errors is given by:

Ptotal =

n∑

i=t+1

(
n

i

)
pi

b(1− pb)
n−i = 1−

t∑

i=0

(
n

i

)
pi

b(1− pb)
n−i (1)

Notice that the value of Ptotal will determine the minimum distance of the code
and thus, the size of the code. We argue that a conservative value is Ptotal ≤ 10−6.
To see this, we relate the failure error probability of our system to the error
probability of the hardware platform (in this case FPGAs), which is given in
terms of the Failure-In-Time (FIT) unit. Given a FIT rate λ, the probability that
a failure will occur until time t is given by PFailure until time t(t) = 1− exp(−λt).
For both Xilinx and Altera devices, the lowest FIT rate that we found in [23,
24] was five for older devices. All device families manufactured in newer process
technology have a FIT rate higher than twelve. Assuming conservatively a FIT
rate equal to five, for a 15-year period the resulting failure probability is 6.610−4.
Thus, it is clear that assuming Ptotal ≤ 10−6 is quite conservative for any realistic
application (i.e. applications that should last more than a month).

3.1 The Naive Approach: Simple Codes

We consider codes which can be used to correct random errors (as opposed to
burst errors) in a received word r. Thus, we do not consider Reed-Solomon codes,
which have very good burst error correcting capabilities, as well as convolutional
codes for similar reasons. We also discarded LDPC codes [25], which are very
efficient but require very large and sparse binary matrices, thus making them
resource intensive in hardware applications (see e.g. [26, 27] for designs targeting
FPGAs, which occupy more than 50% of a high-end FPGA). We do not consider
Hadamard codes explicitly but notice that they are equivalent to first-order
Reed-Muller codes. Similarly, the Hamming code is a [2m − 1, 2m − m − 1, 3]-
code and can therefore correct only one error. Thus, it is not very useful to decode
received vectors with high error rates as in the applications we are considering. In
order to attain the desired error probability of 10−6, we simply start by looking
at what can be achieved via straight forward use of the following codes: repetition



code, Reed-Muller codes of the first order5, binary Golay code, and binary BCH
codes. We refer to [28] for extensive tables for different error probabilities. For
our particular case, we summarize the relevant code parameters in Table 1. In

Table 1. Results for different codes with pb = 0.15. A code denoted with a star (∗)
means it has been shortened.

Code [n, k, d] t = bd/2c Ptotal source bits
for 171 bits

Repetition [33, 1, 33] 16 1.0010−6 5643
Reed-Muller [256, 9, 128] 63 2.0410−5 4864
Reed-Muller [512, 10, 256] 127 2.5410−9 9216

Golay [23, 12, 7] 3 0.4604 345
BCH [511, 19, 239] 119 2.9710−7 4599
BCH [1023, 46, 439] 219 1.8510−8 4092
BCH [1020, 43, 439]∗ 219 1.4410−8 4080

Table 1, the last column refers to the number of SRAM source bits required to
obtain 171 “error-free” bits which can then be hashed to obtain 128 random and
uniformly distributed bits. This is based on the amount of entropy in SRAM
PUFs reported in [5]. Then, the last column in Table 1 can be computed as
nd171/ke, where n and k, refer to the code parameters. We observe that in
this table, we have only considered the code as stated in the first column or a
shortened version of it in the case of the [1020, 43, 439]-BCH code. Shortening a
code6 is one of many different code modifications and one which we found useful
empirically. We also notice that the number of errors that a shortened code can
correct is at least t. However, correcting the additional error patterns enabled by
the code shortening results in additional decoder complexity. Notice that neither
the Golay code nor the [256, 9, 128]-Reed-Muller code provide our desired error
probability and that the BCH codes provide a very low error rate. Thus, the
question that we ask is if we can extract a 128-bit cryptographically secure key
with less than 4080 bits of SRAM.

3.2 A New Construction Based on Concatenated Codes

Notice that the previous scheme has several disadvantages. First, a scheme based
on the repetition code alone, although low complexity, requires more than 5000
bits of SRAM. Second, although we have not discussed the complexity of the
decoders yet, BCH decoder algorithms are very complex and, thus, we expect
it to be expensive in terms of area. Thus, in this section we propose a new

5 Reed-Muller codes of higher order offer better error correction performance at a
considerable higher cost in decoder complexity. Thus, we do not consider them.

6 One way to shorten an [n, k, d]-code, is to set i information symbols to zero to obtain
an [n− i, k − i, d]-code.



scheme based on concatenation of two error correcting codes C1 and C2 [19] to
get less complexity while achieving the same or comparable error probabilities.
Given two codes C1 and C2 with parameters [n1, k1, d1] and [n2, k2, d2] respec-
tively, the concatenated code Cc is a [nc, kc, dc]-code with nc = n1n2, kc = k1k2

and dc = d1d2. Notice that very long codes can be constructed from consider-
ably shorter ones. Furthermore, a concatenated code can correct (depending on
construction) random and burst errors simultaneously and the decoding com-
plexity of two short codes is lower than the complexity of the entire code. Based
on our discussion on fuzzy extractors in Sect. 2, our new constructions for the
procedures Gen and Rep are described in Algorithms 1 and 2, respectively.

Algorithm 1 Genc Algorithm for Concatenated Codes

Require: An [n1, k1, d1]-code C1, an [n2, k2, d2]-code C2, a family H of universal hash
functions, and a PUF response R of size sR = l2 · n2 bits, where l2 = d l1·n1

k2
e and

l1 = d sK

k1

e or l1 = d sK

k1

e+ 1.
Ensure: Helper data (W1, W2) and a key K of size sK

1: Set l1 ← d
sK

k1
e if k2 divides l1 · n1, otherwise l1 ← d

sK

k1
e + 1

2: Generate uniformly at random code words v1i from C1, for i = 1, 2, . . . , l1.
3: Form the string u by concatenating the binary representation of v1i for i =

l1, . . . , 2, 1. At the end u = (u1, u2, · · · , ulu ), where ui ∈ {0, 1} and lu = l1 · n1.
4: Set l2 ← d

lu

k2

e. If k2 does not divide lu, extend u by adding l2k2 − lu zero bits to

it. The resulting string u′ is of size l2 · k2 bits.
5: Write u′ = (U ′

1, U
′
2, . . . , U

′

l2
), where U ′

i are words of size k2 bits.
6: For i = 1, 2, . . . , l2, compute v2i ← EncodeC2

(U ′

i), where EncodeC2
is the encoding

algorithm for the code C2.
7: Form the string w by concatenating the binary representation of v2i for i =

1, 2, . . . , l2. At the end w = (w1, w2, · · · , wlw ), where wi ∈ {0, 1} and lw = l2 · n2.
8: Set W1 ← w ⊕R, where ⊕ is the bitwise logical XOR operation.
9: Choose a random hash function hi ∈ H

10: Set W2 ← i
11: Set RK to the first (l2 − 1) · n2 bits of R. This essentially ignores n2 bits of the

response R.
12: Set K ← hi(RK)

Before considering specific examples, we discuss what the error probability
will be for our concatenated codes. Intuitively, the main idea of our construction
is to first use a rather simple code, let’s say C2 to bring the number of errors
down. Then, with the second code, C1, the remaining errors are corrected. By a
clever choice of the first code also the second code, has to correct only a few errors
making the scheme more efficient. A similar idea is presented in [29] as a way to
cope with extremely noisy channels. In particular, [29] reduced the error prob-
ability by using a repetition code and then combine the first stage with a more
powerful code. For example, a simple calculation with (1) will demonstrate that
just using the [3, 1, 3] repetition code, it is possible to bring the error probability
from 15% to 6%. In general, the resulting error probability can be estimated as



follows. Given two codes C1, C2 with parameters [n1, k1, d1; t1 = b(d1−1)/2c] and
[n2, k2, d2; t2 = b(d2 − 1)/2c], respectively, the Repc-procedure will first decode
with DecodeC2

and the result will be decoded with DecodeC1
. Thus, the error

probabilities P2 and P1 after decoding with the decoding algorithms of C2 and
C1, respectively, correspond to:

P2 =

n2∑

i=t2+1

(
n2

i

)
pi

b(1− pb)
n2−i = 1−

t2∑

i=0

(
n2

i

)
pi

b(1− pb)
n2−i (2)

P1 =

n1∑

i=t1+1

(
n1

i

)
P i

2(1− P2)
n1−i = 1−

t1∑

i=0

(
n1

i

)
P i

2(1− P2)
n1−i

where pb is the bit error probability of the source, in our case the noise in the
PUF response. Notice that Pi is the word error probability. In other words,

Algorithm 2 Repc Algorithm for Concatenated Codes

Require: Helper data (W1, W2), the decoding algorithms DecodeC1
and DecodeC2

cor-
responding to the [n1, k1, d1]-code C1 and [n2, k2, d2]-code C2, respectively, and a
noisy PUF response R′ of size sR = l2 · n2 bits, where l2 and l1 are as determined
in Algorithm 1.

Ensure: A key K of size sK

1: Set w̃ ←W1 ⊕R′, where ⊕ is the bitwise logical XOR operation. This results in a
bit string w̃ = (w̃1, w̃2, · · · , w̃lw ), where w̃i ∈ {0, 1} and lw = l2 · n2.

2: Set ṽ2i = (w̃(i−1)n2+1, w̃(i−1)n2+2, . . . , w̃in2
) for i = 1, 2, . . . , l2.

3: Compute v′

2i ← DecodeC2
(ṽ2i) and recover the perturbed string ũ′ =

(Ũ ′
1, Ũ

′
2, . . . , Ũ

′

l2
), where Ũ ′

i are words of size k2 bits.
4: If zero bits were added during the Genc procedure, delete them and obtain a string

ũ = (ũ1, ũ2, · · · , ũlu), where ũi ∈ {0, 1} and lu = l1 · n1. Otherwise (if no zero bits
were added) set ũ← ũ′.

5: Set v′

1i = (ũ(i−1)n1+1, ũ(i−1)n1+2, . . . , ũin1
) for i = 1, 2, . . . , l1.

6: Compute v1i ← DecodeC1
(v′

1i) and recover the original string u = (u1, u2, · · · , ulu ),
where ui ∈ {0, 1} and lu = l1 · n1.

7: Perform Steps 4 through 12 of Algorithm 1 to recover K.

the probability that a word will be in error after decoding. This is equal to
the bit error probability in the case of the repetition code but not in the case
of Golay, Reed-Muller or BCH codes. However, it is well known [30] that the
resulting bit error probability is always less or equal to the word error probability
as estimated in (2). Thus, we are being conservative in our estimates and the
results in Table 2 correspond to worst case error probabilities. We report in
Table 2 the best constructions that we found. Extensive tables for different PUF
bit-error probabilities can be found in [28]. Our first observation about Table 2
is that we can achieve probabilities ≤ 10−6 not using BCH codes. This is a
nice outcome of the construction, since this allows us to consider other codes
which accept a more efficient implementation. Nevertheless, BCH codes error



Table 2. Output error probabilities for several concatenated codes with an input bit
error probability of pb = 0.15. Codes denoted with a star (∗) have been shortened.

C2 C1 P1 source bits
[n2, k2, d2] [n1, k1, d1] for 171 bits

repetition [3, 1, 3] BCH[127, 29, 43] 8.48 E-06 2286
RM [64, 7, 32] 1.02 E-06 4800
BCH[63, 7, 31] 8.13 E-07 4725

repetition [5, 1, 5] RM [32, 6, 16] 1.49 E-06 4640
BCH[226, 86, 43]∗ 2.28 E-07 2260

repetition [7, 1, 7] G23[23, 12, 7] 1.58 E-04 2415
G23[20, 9, 7]∗ 8.89 E-05 2660
BCH[255, 171, 23] 8.00 E-05 1785
RM [16, 5, 8] 3.47 E-05 3920
BCH[113, 57, 19]∗ 1.34 E-06 2373

repetition [9, 1, 9] BCH[121, 86, 11] 6.84 E-05 2178
G23[23, 12, 7] 8.00 E-06 3105
RM [16, 5, 8] 1.70 E-06 5040

repetition [11, 1, 11] G24[24, 13, 7] 5.41 E-07 3696
G23[23, 12, 7] 4.52 E-07 3795

correction capabilities are indisputable. A second and perhaps more important
observation is that when we combine a repetition code with a BCH code in a
concatenated construction, the code size and thus, the number of SRAM source
bits required decreases considerably (compare 4080 in Table 1 with the shortened
[226, 86, 43]-BCH code at 2260 bits). Thus, it is clear that our construction offers
considerable advantages.

4 HDA Architecture and Implementation Results

In addition to the error correcting properties of the codes that we previously
considered, we also consider their performance from a hardware perspective. In
particular, in this work we aim to make designs as small as possible in order to
reserve space for the actual IP block to be implemented on the FPGA. We pro-
pose decoder architectures for first order Reed-Muller codes and for the binary
Golay codes. For hash functions, we take the architecture proposed by Krawczyk
[31] since this family accepts a more efficient implementation than all the other
ones proposed or described in [32, 31, 33]. Due to space constraints, we refer to
[28] for an exact analysis of their complexity.

Reed-Muller Codes. In this work we only consider first-order Reed-Muller codes
because of their simple decoding algorithms. The procedure for decoding these
codes is shown in Algorithm 3. To describe the process of generating the charac-
teristic vectors let us denote the row of the generator matrix corresponding with

the variable vi by v
(1)
i and its logical negation by v

(0)
i . Then the characteristic



vectors of vi are different vectors

∏

j=1,··· ,m,j 6=i

v
(kj )
j , (3)

where kj is either 0 and 1. The values of kj for each of the m−1 values of j assign
to each characteristic vector for each variable a number between 0 and 2m−1−1.
Thus an m − 1 bit counter can be used to enumerate all of the characteristic
vectors corresponding with a variable. We are aware of two different hardware

Algorithm 3 Decoding R(1, m) codes using Majority logic

Require: x = (x0, x1, . . . , x2m−1) (the received vector) and G ∈ F
(m+1)×2m

2 the gen-
erator matrix of R(1, m)

Ensure: û = (u0, u1, · · · , um) the original message
1: for i = 1 to m do do

2: Find 2m−1 characteristic vectors for the row i of G (the index of the rows of G
begin with zero).

3: Compute the dot product of each of these vectors with the received message.
4: Compute the majority of the values of the dot products and assign it to ui.
5: end for

6: Multiply (u1, · · ·um) by the sub-matrix consisting of the last m rows of G to get
the vector s with 2m entries.

7: Assign the majority of the entries in s + x to u0.

structures proposed in the literature for hardware based decoding of R(1, m)
codes which are also described in [21, Chapter 13]. However, since we target a
low resource implementation, we propose an architecture that is a factor of m
(asymptotically) smaller than those proposed in [21] at the cost of additional
processing time. We defer a more detailed comparison of the architectures to the
full version of the paper.

The newly proposed design is based on Algorithm 3 and is shown in Fig. 1.
The most important parts of this circuit are the GM-generator and the CV-
generator modules. The output of the GM-module periodically consists of each
column of the generator matrix. Due to the structure of the R(1, m) generator
matrix and considering the fact that only the last m rows of the (m + 1) × 2m

generator matrix are required, it is easy to verify that GM-generator can be real-
ized using an m-bit counter. The CV-generator module generates the bits of each
of the characteristic vectors using the current column of the generator matrix,
based on the index of the characteristic vector, the m− 1 values of kj from (3),
which is the output of CV Index and the variable being currently decoded which
is the output of Variable counter. CV-generator consists of several multiplexers,
which output an input value or its logical inverse, and the required circuitry to
compute the product in (3). The Majority Decoder is a counter which can be
either m bit or m + 1 bit wide and its content must be compared with 2m−1 or
2m, respectively. Hence its output is its (m− 1)th or mth bit, respectively. The



Control
Circuit

GM−generator

CV−generator 

V
ar

ia
bl

e

C
V

 I
nd

ex

Received Word

Accumulator

Majority Detector

Decoded Message

Inner Product

Input

Output

Fig. 1. Block diagram of our Reed-Muller decoder

output of Algorithm 3 is the message corresponding to the appropriate code-
word whereas for PUF applications the codeword is needed. After the message
is correctly decoded it is multiplied, again using the inner product module, by
the generator matrix and the result is stored in the Received Word module. Our
decoder requires m2m−12m = m22m−1 iterations to process each row of the gen-
erator matrix with 2m columns for each of the 2m−1 characteristic vectors and
each of the m decoded messages. To this time the 2m iterations for processing
each of the 2m columns of the generator matrix should be added. The Received
Word module is used for both input and output of the values. The overall com-
plexity of the decoder is shown in Table 3.

Golay Code. An arithmetic decoder as seen in Algorithm 4 uses the weight
structure of the syndrome to determine the error patterns [34]. P is the non-
identity part of the generator matrix. The vector cpi is the ith column of P and
rpi the ith row, respectively. The error vector is denoted as e = (x, y) where
x and y are vectors of length 12. A vector xi is the zero vector with a 1 at
the ith position. Our proposed circuit shown in Figure 2 can be derived from
Algorithm 4. The main steps in the decoding process are the computation of
the syndrome and helper syndrome, the determination of the Hamming weight,
GF (2) addition and the comparison of the Hamming weights with a constant.

We use a dot product block, which consists of 1 AND, 1 XOR and 1 FF
for the serial computation of the syndrome and the helper syndrome. These
syndromes are of length 12 and therefore the Hamming weight is at most 12
which can be represented with 4 bits. The result of the dot product or the
GF (2) addition respectively is loaded into a 12-bit shift register and a simple
4-bit counter counts the number of ones. The 4-bit counter requires 8 XOR, 8
AND and 4 OR gates. The result is then compared with a constant depending
on the step of Algorithm 4. This step requires a 4-bit comparator and therefore
12 AND, 8 OR and 8 NOT gates. The constants are stored in memory and need
3 FFs.The GF (2) addition is done with an XOR gate. Furthermore we need 24
FF for the error vector e, 24 FF to store the received vector and 288 FF for the
generator matrix. The gate complexity without the control circuit is shown in



Algorithm 4 Arithmetic Decoding of the Golay G24 code [34]

Require: r (the received vector), G = [I|P ] (the generator matrix)
Ensure: v (the encoded message)
1: Compute the syndrome s = Gr
2: if wt(s) ≤ 3 then

3: e = (sT , 0)
4: else if wt(s + cpi) ≤ 2 for a column vector cpi then

5: e = ((s + cpi)
T , yi)

6: else

7: Compute the helper syndrome z = P T s
8: if wt(z) ≤ 3 then

9: e = (0, (z)T )
10: else if wt(z + rpT

i ) ≤ 2 for a row vector rpi then

11: e = (xi, (z)T + rpi)
12: else

13: Too many errors
14: end if

15: end if

16: v = r + e

Table 3. The above circuit can be optimized by removing the shift register and
constructing the generator matrix on the fly, so we need to store only 24 bits
for the first column and 23 bits for the second column. The other columns are
determined by a simple shift operation. The complexity of the circuit without
control can be seen in Table 3.

Table 3. Area complexity of a serial implementation of arithmetic Golay decoding and
low resources Reed-Muller decoder.

Decoder Variant FF XOR AND OR NOT

Golay store matrix 352 10 21 12 8

Golay generate matrix 99 10 21 12 8

Low resource R(1, m) decoder 2m + 6m− 1 m
2

2
+ 13m

2
− 2 9m 5m

2

2
+ m

2
− 1 m

Universal Hashing. As previously mentioned, we use a construction due to Krawczyk
[31]. This construction makes use of random binary matrices, where the hash
value hA(x) is the Boolean multiplication of the matrix A by the message x.
Krawczyk [31] shows how this can be implemented using a simple LFSR. We
only need to store the first column of the matrix and the next columns are gen-
erated by the LFSR. The circuit is shown in Fig. 3. For a 128-bit key the LFSR
and the register for the accumulator need to be of size 128, thus requiring 256
FF. In addition the LFSR requires about 128

2 XOR gates and the accumulator
128 XOR gates. The size of the shift register in Fig. 3 depends on the parameter



Shift Register Counter

Dot Product GF(2) Adder

RAMROM ControllerComparator

Fig. 2. Block diagram of our arithmetic Golay decoder

n of the error correcting code used. Thus, for the Reed-Muller codes and Golay
code it needs between 16 and 64 FFs depending on the code. Altogether without
control the circuit requires 272-320 FFs and 192 XOR gates.

RegisterShift Register Control

LFSR

Accumulator

Fig. 3. LFSR-based Toeplitz hashing

Implementation Results. We have implemented the repetition code, Golay and
Reed-Muller code decoders (R(1, 4),R(1, 5),R(1, 6)) as well as the Toeplitz de-
sign for a universal hash function based on [31] in VHDL. We target the Spartan-
3E 500 FPGA and use Xilinx ISE v9.2 for our tooling. We synthesized and
mapped all designs. The Spartan-3E family of devices corresponds to low end
FPGAs typically used in automotive and consumer electronic applications. The
results are shown in Table 4. We observe that our designs our very space efficient.
In particular, combining any repetition code decoder (a counter plus logic), a
Reed-Muller or Golay code, any of the designs for the hash function our utiliza-
tion is not greater than 10%. It seems clear that the Reed-Muller code is both
superior in area but also in error correction performance (based on Table 2). Al-
though, the Golay code decoder can be optimized by generating the parity check
matrix on the fly, in terms of area it is still outperformed by the Reed-Muller
codes. We can estimate the complexity of the overall helper data algorithm by
assuming a concatenated construction with a Repetition code, a Reed-Muller
code, a Toeplitz-based hash function and 100% overhead for control. Even then,
the overall fuzzy extractor requires less than 10% of the FPGA resources. Un-
fortunately, we have not found any BCH code implementations on FPGAs to
which we can compare. However, the BCH decoding algorithms themselves are
much more complex, thus, it is expected that their hardware complexity will be
similarly higher. In the full version of the paper, we expect to have a full BCH
decoder and thus, be able to fully compare all our constructions.



Table 4. Implementation Results on Xilinx Spartan-3E-500 FPGA

Code / Hash Output Slices Latency Critical Path Performance for 128-bit
(bits) (cycles) (nsec) key@50 MHz (sec)

Repetition [3, 1, 3] 3 41 (1%) 6 5.3 2.1 10−5

Repetition [5, 1, 5] 5 41 (1%) 10 5.3 3.4 10−5

Repetition [7, 1, 7] 7 41 (1%) 14 5.3 4.8 10−5

Repetition [9, 1, 9] 9 41 (1%) 18 5.3 6.2 10−5

Repetition [11, 1, 11] 11 41 (1%) 22 5.3 7.5 10−5

R(1, 4) 16 69 (1%) 503 5.5 3.5 10−4

R(1, 5) 32 90 (1%) 1743 5.6 1.0 10−3

R(1, 6) 64 127 (1%) 6495 5.6 3.2 10−3

Golay G24 24 539 (5%) 1188 6.6 3.6 10−4

Toeplitz Hash 16 [31] 128 319 (3%) 64 5.7 1.0 10−5

Toeplitz Hash 24 [31] 128 327 (3%) 96 5.7 1.2 10−5

Toeplitz Hash 32 [31] 128 335 (3%) 128 5.7 1.0 10−5

Toeplitz Hash 64 [31] 128 367 (3%) 256 5.7 1.0 10−5

5 Conclusion

We present the first efficient implementations of helper data algorithms on FP-
GAs. Helper data algorithms are used to extract cryptographic keys from the
noisy response of, e.g., a Physical Unclonable Function (PUF). PUFs have be-
come an attractive subject of research due to their nice properties for unforgeable
authentication and secure key storage purposes. In particular, one can deploy
them to securely bind applications to the underlying hardware, a mechanism
that has various applications and most prominently IP protection. Our solution
offers the last missing building block toward real world IP protection on FPGAs.
Our helper data algorithms are efficient with regard to the required hardware
resources, which is important for hardware design. In the design of our helper
data algorithms, we make use of various linear codes constructions, each with
own advantages and shortcomings. These constructions are then compared in
terms of error correction capabilities and hardware resource usage, giving the
designer the necessary tools to make an informed decision when implementing a
helper data algorithm.

References

1. Pappu, R.S., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions.
Science 297(6) (2002) 2026–2030

2. Tuyls, P., Schrijen, G.J., S̆korić, B., van Geloven, J., Verhaegh, N., Wolters, R.:
Read-Proof Hardware from Protective Coatings. In Goubin, L., Matsui, M., eds.:
Cryptographic Hardware and Embedded Systems — CHES 2006. Volume 4249 of
LNCS., Springer (October 10-13, 2006) 369–383



3. Trusted Computing Group: TPM main specification. Technical Report Version
1.2 Revision 94 (March 2006)

4. Gassend, B., Clarke, D.E., van Dijk, M., Devadas, S.: Silicon physical unknown
functions. In Atluri, V., ed.: ACM Conference on Computer and Communications
Security — CCS 2002, ACM (November 2002) 148–160

5. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: FPGA Intrinsic PUFs and
Their Use for IP Protection. In Paillier, P., Verbauwhede, I., eds.: Cryptographic
Hardware and Embedded Systems — CHES 2007. Volume 4727 of LNCS., Springer
(September 10-13, 2007) 63–80

6. Škorić, B., Bel, T., Blom, A., de Jong, B., Kretschman, H., Nellissen, A.: Random-
ized resonators as uniquely identifiable anti-counterfeiting tags. Technical report,
Philips Research Laboratories (January 28th, 2008)

7. Kean, T.: Cryptographic rights management of FPGA intellectual property cores.
In: ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
— FPGA 2002. (2002) 113–118

8. Simpson, E., Schaumont, P.: Offline Hardware/Software Authentication for Re-
configurable Platforms. In Goubin, L., Matsui, M., eds.: Cryptographic Hardware
and Embedded Systems — CHES 2006. Volume 4249 of LNCS., Springer (October
10-13, 2006) 311–323

9. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: Physical Unclonable Functions
and Public Key Crypto for FPGA IP Protection. In: International Conference on
Field Programmable Logic and Applications — FPL 2007, IEEE (August 27-30,
2007) 189–195

10. Linnartz, J.P.M.G., Tuyls, P.: New Shielding Functions to Enhance Privacy and
Prevent Misuse of Biometric Templates. In Kittler, J., Nixon, M.S., eds.: Audio-
and Video-Based Biometrie Person Authentication — AVBPA 2003. Volume 2688
of LNCS., Springer (June 9-11, 2003) 393–402

11. Dodis, Y., Reyzin, M., Smith, A.: Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In Cachin, C., Camenisch, J., eds.: Advances
in Cryptology —- EUROCRYPT 2004. Volume 3027 of LNCS., Springer-Verlag
(2004) 523–540

12. Suh, G.E., O’Donnell, C.W., Devadas, S.: AEGIS: A Single-Chip Secure Processor.
IEEE Design & Test of Computers 24(6) (Nov.-Dec. 2007) 570–580

13. v. Dijk, M., Lim, D., Devadas, S.: Reliable Secret Sharing With Physical Random
Functions. Computation Structures Group Memo 475, CSAIL — Massachusetts
Institute of Technology (2004)

14. Gassend, B.: Physical Random Functions. Master’s thesis, Computer Science and
Artificial Intelligence Laboratory, MIT (February 2003) Computation Structures
Group Memo 458.

15. Juels, A., Wattenberg, M.: A Fuzzy Commitment Scheme. In Motiwalla, J., Tsudik,
G., eds.: ACM Conference on Computer and Communications Security — ACM
CCS ’99, ACM (November 1-4, 1999) 28–36

16. Hao, F., Anderson, R., Daugman, J.: Combining Crypto with Biometrics Effec-
tively. IEEE Transactions on Computers 55(9) (2006) 1081–1088

17. Hochquenghem, A.: Codes Correcteurs D’erreurs. Chiffres 2 (1959) 147–156
18. Bose, R.C., Ray-Chaudhuri, D.K.: On a Class of Error-Correcting Binary Group

Codes. Information and Control 3 (1960) 68–79
19. Forney, Jr., G.D.: Concatenated Codes. MIT Press (1966) Research Monograph

No. 37.
20. Blahut, R.E.: Theory and Practice of Error Control Codes. first edn. Addison-

Wesley Publishing Company (1985)



21. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. Vol-
ume 16 of North-Holland Mathematical Library. North-Holland/Elsevier, Amster-
dam, The Netherlands (1977)

22. Carter, L., Wegman, M.N.: Universal Classes of Hash Functions. J. Comput. Syst.
Sci. 18(2) (1979) 143–154

23. Xilinx: Device Reliability Report — Fourth Quarter 2007. Technical Re-
port UG116 (v4.3) (February 6, 2008) Available from http://www.xilinx.com/

support/documentation/.
24. Altera: Reliability Report 45 — Q2 2007. Technical report (2007) Available from

http://www.altera.com/literature/lit-index.html.
25. MacKay, D.J.C.: Good Error-Correcting Codes Based on Very Sparse Matrices.

IEEE Transactions on Information Theory 45(2) (1999) 399–431
26. Levine, B.A., Reed Taylor, R., Schmit, H.: Implementation of Near Shannon Limit

Error-Correcting Codes Using Reconfigurable Hardware. In: IEEE Symposium on
Field-Programmable Custom Computing Machines — FCCM 2000, IEEE Com-
puter Society (April 17-19, 2000) 217–226

27. Brack, T., Kienle, F., Wehn, N.: Disclosing the LDPC code decoder design space.
In Gielen, G.G.E., ed.: Conference on Design, Automation and Test in Europe
— DATE 2006, European Design and Automation Association, Leuven, Belgium
(March 6-10, 2006) 200–205

28. Bösch, C.: Efficient fuzzy extractors for reconfigurable hardware. Master’s thesis,
Chair for System Security, Department of Electrical Engineering and Information
Science, Ruhr-Universität Bochum (March 2008)

29. Desset, C., Macq, B., Vandendorpe, L.: Block error-correcting codes for systems
with a very high BER: Theoretical analysis and application to the protection of
watermarks. Signal Processing: Image Communication 17(5) (May 2002) 409–421

30. Desset, C., Macq, B.M., Vandendorpe, L.: Computing the word-, symbol-, and bit-
error rates for block error-correcting codes. IEEE Transactions on Communications
52(6) (2004) 910–921

31. Krawczyk, H.: LFSR-based Hashing and Authentication. In Desmedt, Y., ed.:
Advances in Cryptology — CRYPTO ’94. Volume 839 of LNCS., Springer (August
21-25, 1994) 129–139

32. Nevelsteen, W., Preneel, B.: Software Performance of Universal Hash Functions.
In Stern, J., ed.: Advances in Cryptology — EUROCRYPT’99. Volume 1592 of
LNCS., Springer (May 2-6, 1999) 24–41

33. Kaps, J.P., Y., K., Sunar, B.: Energy Scalable Universal Hashing. IEEE Trans.
Computers 54(12) (2005) 1484–1495

34. Vanstone, S.A., van Oorschot, P.C.: An Introduction to Error Correcting Codes
with Applications. Kluwer Academic Publishers (1989)


