
High-performance Concurrent Error Detection

Scheme for AES Hardware

Akashi Satoh1, Takeshi Sugawara2, Naofumi Homma2, and Takafumi Aoki2

1 Research Center for Information Security,
National Institute of Advanced Industrial Science and Technology (AIST)

Sotokanda, Tokyo, Japan
akashi.satoh@aist.go.jp

2 Graduate School of Information Sciences, Tohoku University
Sendai, Miyagi, Japan

{sugawara, homma}@aoki.ecei.tohoku.ac.jp
aoki@ecei.tohoku.ac.jp

Abstract. This paper proposes an efficient concurrent error detection
scheme for hardware implementation of the block cipher AES. The pro-
posed scheme does not require an additional arithmetic unit, but simply
divides the round function block into two sub-blocks and uses the sub-
blocks alternately for encryption (or decryption) and error detection. The
number of clock cycles is doubled, but the maximum operating frequency
is increased owing to the shortened critical path of the sub-block. There-
fore, the proposed scheme has a limited impact on hardware performance
with respect to size and speed. AES hardware with the proposed scheme
was designed and synthesized using a 90-nm CMOS standard cell library
with size and speed optimization options. The compact and high-speed
implementations achieved performances of 2.21 Gbps @ 16.1 Kgates and
3.21 Gbps @ 24.1 Kgates, respectively. In contrast, the performances of
AES hardware without error detection were 1.66 Gbps @ 12.9 Kgates
for the compact version and 4.22 Gbps @ 30.7 Kgates for the high-speed
version. There is only a slight difference between the performances with
and without error detection. The performance overhead caused by the er-
ror detection is evaluated at the optimal balance between size and speed
and was estimated to be 14.5% at maximum. Conversely, the AES hard-
ware with the proposed scheme had better performance in some cases.
If pipeline operation is allowed, as in the CTR mode, throughputs can
easily be boosted by further dividing the sub-blocks. Although the pro-
posed error detection scheme was applied to AES in the present study,
it can also be applied to other algorithms efficiently.

1 Introduction

The fault injection attack is a physical attack to obtain internal secret informa-
tion from cryptographic modules by causing a malfunction in operating units or
the sequencer logic using electrical noise injection on the power source or clock
signal or by illuminating the module by an electronic beam. In 1996, Boneh,

Demillo, and Lipton [1] proposed a fault injection attack against public key
cryptosystems, and Biham and Shamir [2] extended this attack to symmetric
key cryptosystems. Since then, research on the fault injection attack has been
rapidly evolved [3-5], and several papers have proposed attacks on the standard
block cipher AES [7-13].

On the other hand, several countermeasures that detect errors in processing
have also been proposed [14-29]. Fig. 1 summarizes the conventional error detec-
tion schemes for block cipher hardware with a loop architecture that iteratively
uses one round function block. The figures illustrate error detection schemes for
encryption process, but the same schemes can be applied to decryption circuits
and to implementations merging encryption and decryption datapaths.

In Fig. 1(a), the data in register RegX is processed by the round function
block for encryption (Enc), and then an error detection code, such as a parity bit,
is generated. The code is compared with an expected value output from another
data path (Predict) [14, 17-20]. It is very easy to calculate the expected value for
linear functions by using a small amount of hardware resources, and thus sev-
eral studies have proposed error detection codes for the non-linear substitution
function S-box [15, 16, 21-23]. The operation “Predict” is much simpler than
“Enc” and usually outputs a smaller number of bits, and thus it is impossible to
detect all of the error patterns. Therefore, the trade-off between overhead of the
additional circuit, “Predict”, and the error detection ratio should be considered
carefully.

In Fig. 1(b), two encryption operations for the same data in the register RegX
are performed by duplicated round function blocks, and the results are compared
[24]. The architecture of Fig. 1(c) has encryption and decryption datapaths, and
the data in RegX is encrypted and soon decrypted. The result is then compared
with the original data in RegY [24, 25]. These two schemes have a disadvantage
in that the hardware size is almost double compared to that of the circuit without
error detection.

The scheme of Fig. 1(d) encrypts the same data twice using one round func-
tion block and two results are compared [26, 27]. In Fig. 1(e), the round function
block supports both encryption and decryption, and confirms that encrypted
data can be decrypted correctly. This scheme can also be applied efficiently to
the round function F (x) with the characteristic of x = F (F (x)) [28]. The draw-
back of these schemes is that twice as many clock cycles are required.

Fig. 1(f) is similar to Fig. 1(d), where two encryptions are performed to
confirm that the same encrypted data are generated, but the round function
block is divided into two sub-blocks and encryption and error detection (another
encryption) are performed simultaneously in each sub-block [29]. Hardware size
and the number of clock cycles are almost the same between these schemes, but
the maximum operating frequency of Fig. 1(f) is much higher than any other
scheme in Fig. 1 because the critical path (the round function block) is halved.

Fig. 1(f) is the best scheme in terms of circuit size and speed, but the use of
the same datapath for two encryptions (one of which is for error detection) causes
a major problem. When an attacker injects an electron beam to cryptographic

RegX

Enc

RegY

=?

RegX

Enc

=?

Dec

RegX

Enc

=?

Enc

RegY

RegX

Enc/Dec

RegY

=?

RegX

Enc

=?

Predict

Parity

(a) (b) (c)

(d) (e)

In

Out Error

In In

Out Error Out Error

In In

Out Error Out Error

RegY

=?

(f)

=?

In

Out Error

RegX

½ Enc

½ Enc

Fig. 1. Conventional error detection schemes (Encryption)

circuit, it is very difficult to control the beam precisely in order to make an error
in only one clock period. In contrast, it is incomparably easy to keep the beam
on during certain periods and to keep the circuit in failure. In this case, the same
error occurs repeatedly and thus the scheme of Fig. 1(f) that repeats the same
encryption twice for data checking cannot detect the error. The beam might
cause different types of errors in each cycle, but defects on transistor devices
and metal interconnections in LSI chips always make the same error, and thus
the scheme of Fig. 1(f) is unworkable for these static errors.

In order to solve these problems, this paper proposes a new error detection
scheme that performs encryption (or decryption) and error detection simulta-
neously in different operating blocks with limited impact on hardware size and
speed. AES hardware using the proposed scheme is designed and synthesized
using an ASIC library, and the effectiveness of the scheme is evaluated.

2 Proposed Error Detection Scheme

2.1 Normal AES Circuit

Fig. 2 shows a block diagram of an AES circuit using a loop-architecture based
on the compact implementation proposed in references [30] and [31], which does
not support error detection feature. A 128-bit input is encrypted (or decrypted)

Dreg

ShiftRows
InvShiftRows

128

GF(28)
Inverters

affine-1

affine

MixCol.
InvMixCol.

EncKreg

128

<<8
S-box

Rconi

MixCol.

DecKreg

32

128

32 32 32

32

32 32 32 32

128

128

SubBytes
InvSubBytes

Out

In

AddRoundKey

Fig. 2. Normal AES circuit

with a 128-bit secret key in 10 clock cycles. The encryption and decryption paths
are merged by sharing GF (28) inverters in S-boxes and common terms between
the permutation functions MixColumns and InvMixColumns. The circuit size is
almost halved in comparison to an implementation with two different datapaths
for encryption and decryption. In order to merge the datapaths, the location of
AddRoundKey and InvMixColumns (shown as InvMixCol. in Fig. 2) is switched
from the original order. Then, the MixColumns function block is placed at the
output of the key scheduler on the right in Fig. 2 to compensate the side effect.
In the next section, the proposed error detection scheme is explained in contrast
with this normal architecture.

2.2 AES circuit with the proposed scheme

The proposed scheme uses a datapath that supports both encryption and de-
cryption, which is similar to that shown in Fig. 2, and divides the merged round
function block into pre- and post-blocks. Then, one of the blocks is used for

encryption (or decryption), and another block is used for decryption (or encryp-
tion) for error detection. Fig. 3 shows the outline of the proposed scheme in the
encryption mode. Decryption can be carried out in a similar way. SR and ISR
denote ShiftRows and InvShiftRows, respectively, SB and ISB denote SubBytes
and InvSubBytes, respectively, and MX and IMX denote MixColumns and In-
vMixColumns, respectively. In Fig. 3(b), the order of ISB and ISR is switched
to share components between the encryption (Enc.) and decryption (Dec.) flows
of Fig. 3(a). Then SR and ISR are merged, and SB and ISR are merged, and
a half round function block, BlockS, is composed. The permutation functions
MX and IMX are also merged and compose another half round block, BlockM,
with two 128-bit XORs (AddRoundKey). These two blocks are used alternately
for encryption (or decryption) and error detection, as shown in Fig. 3(c), and
each round of Round1, · · ·, Round10 in Fig. 3(a) is processed in two clock cycles
as Round1X, Round1Y, · · ·, Round10X, Round10Y. The number of operating
cycles is doubled, but the maximum operating frequency is boosted because
the critical path of the round function block is divided into two sub-blocks.
Therefore, this has a minor impact on the operating speed. It is also possible
to increase the operating frequency of the normal AES circuit in Fig. 1 by di-
viding the round function block. However, it is only efficient for the Electric
Code Book (ECB) and Counter (CTR) modes that can process 128-bit data
blocks independently but cannot increase the speed for feedback modes, such as
Cipher Block Chaining (CBC). When speed performance with the CTR is the
first priority, the proposed architecture can also respond to this requirement by
increasing the number of pipeline stages from 2 to 2n. For example, it is easy
to perform two encryptions (or decryptions) and two decryption (or encryption)
as error detections by dividing sub-block BlockS and BlockM into two smaller
sub-blocks each.

In Fig. 3(c), the XOR output from Round0 is processed by the SR and SB
functions of BlockS in the clock cycle Round 1X, and the result is fed to BlockS
and BlockM. In the following cycle Round 1Y, the inverse operation of Round1X
is performed by BlockS, and the result is compared with the input to BlockS
in the previous cycle Round1X for error detection. At the same time, the MX
and XOR (AddRoundKey) operations are executed by BlockM to continue the
encryption process. In the next cycle Round2X, BlockS performs the following
encryption process, and BlockM checks the previous result. In a similar manner,
the remainder of the encryption and error detection operations are executed by
BlockS and BlockM interchangeably. The same round function blocks are used
for encryption and error detection, but these operations are different, and thus
static errors caused by defects in LSIs can be detected, while the scheme of Fig.
1(f) cannot find the errors, where the same operation is executed twice by the
same function block for encryption and error detection.

Fig. 4 shows the datapath architecture of the AES circuit using the pro-
posed error detection scheme. This architecture does not switch the order of
AddRoundKey and InvMixColumns to share the XOR gates for AddRoundKey,
as in Fig. 2. The critical path of the round function block in Fig. 2 is shortened by

SR

Round1
SB

MX

SR
SB

MX

SR
SB

ISB
ISR

IMX

ISB
ISR

ISB
ISR

IMX

SR
SB

MX

SR
SB

MX

SR
SB

ISR
ISB

IMX

ISR
ISB

ISR
ISB

IMX

Round2

Round10

Round0

Enc. Dnc. Enc. Dnc.

SR
SB

MX

SR

SB

MX

SR

SB

ISR

ISB

IMX

ISR
ISB

ISR

ISB

Enc.&Check

IMX

Round1X

Round2X

Round10X

Round0

Round1Y

Round2Y

Round10Y

(a) (c)(b)

BlockM

BlockS

Fig. 3. Proposed error detection scheme for AES (Encryption)

sharing the XOR gate, but the additional MixColumns block is required at the
output port of the key scheduler. In contrast, when the proposed scheme that
divides the round function block into two sub-blocks was applied, implemen-
tations without sharing the XOR gates showed better performance in balance
between size and speed. When the signal delay time for the round function block
is shortened by the division, the key scheduler becomes the critical path. There-
fore, the scheduler is also divided in two by inserting a register and uses two
clocks to generate one round key. In Fig. 4, the datapaths of the round function
block and the key scheduler are divided at the end of S-boxes for simplicity, but
pipeline registers are actually placed inside the S-boxes in order to balance the
signal delay times before and after the registers.

Even if the round function block works correctly, the key scheduler can also
be attacked [11, 12, 13], or malfunction in a control counter may output inter-
mediate data soon after the first round key is XORed without waiting for the
completion of 10-round operations [3]. In order to prevent this, the key scheduler
in Fig. 4 compares the round-key generated in the round key register with the
pre-calculated keys in the key registers DecKreg or EncKreg in the final round

DregX

ShiftRows
InvShiftRows

128

GF(28)
Inverters

affine-1

affine

EncKreg

128

DecKreg

128

Out

In

MixCol.
InvMixCol.

DregY

Error0 Error1

Switching Box

1

1

=?

=?
128

128

128

Round
Key

Register

<<8
S-box

Rconi

32

128

32 32 32

32

32 32 32 32

Fig. 4. AES circuit with the proposed error detection scheme

of encryption or decryption, respectively. The register DecKreg holds the first
round-key for decryption that is the last round-key for encryption, and the regis-
ter EncKreg holds the first round-key for encryption that is the last round-key of
decryption. Even if an attacker can flip a few bits in the control counter to skip
the round operations, it is impossible to control the unknown 128-bit round-key
to match the final value.

2.3 Example operation

Fig. 5 shows the example encryption process of the AES circuit with the proposed
error detection scheme. It is assumed that the initial key for decryption K10 has
been calculated from the initial key K0 for encryption, and the keys K0 and
K10 are stored in registers EncReg and DecReg, respectively. In Fig. 5(a), a
plaintext input XORed with the initial key K0 has been stored in the data
register DregX as D0, and the first half of the round function (Shiftrows and
SubBytes) is applied to the data D0, and then the result D1X is fed back to
the register DregX. At the same time, the data D0 is transferred to the register
DregY for error detection, and the key register generates the first round-key K1
from K0.

In Fig. 5(b), the datapath for encryption in Fig. 5(a) is used for decryption
as error detection. The data D1X in DregX is processed by InvShiftRows and
InvSubBytes, and the result is compared with the data D0 in RegY. In the other
data path, the last half of the round function, MixColumns and AddroundKey

D0

SR

K0

KGen

K10

Plain Text

SB

D1X

D1X

ISR

K0

K1

K10

MX

D0

ISB

D1

D0

D1

SR

K0

K1

K10

IMX

D1X

SB

D2X

D10X

ISR

K0

K10

K10

D9

ISB

D10

D9

D10

K0

K10

D10X

D10X

Cipher
Text

K10

=?

=?

=?
=? =?

=?

(b)

(c)

(d) (e)

(a)

D0 D1X

D1

D10X

D1X

Fig. 5. Example operation of the proposed AES circuit

(XOR with the round-key K1), is applied to the data D1X, and the result of the
first round function is obtained in DregX as D1.

In Fig. 5(c), the same encryption datapath of Fig. 5(a) encrypts the data D1
in DregX to D2X, and the datapath on the right (InvMixColumns and XOR)
decrypts the same data D1 to D1X for error detection. The output from the
right datapath is then compared with the data in RegY. In a similar manner,
the encryption and error detection process are continuously performed.

Fig. 5(d) shows the operation in the final round, where AddRoundKey with
the 10-th round key K10 for encryption, and InvShiftRows and InvSubBytes are

performed for error detection. As shown in Fig. 3(c), the MixColumns block is
bypassed for this final round. In order to check whether the sequencer logic and
key scheduler worked correctly and all 10 rounds are processed without skip,
the final round key generated in the round key register is compared with the
pre-calculated key K10 in EncKreg. The ciphertext D10 can be output in this
cycle, but it is output in the next cycle of Fig. 5(e) after confirming that D10
can return to D10X. The next plaintext cannot be input before this final check
and thus requires 21 clocks, 20 clocks (= 10 rounds × 2 clocks) + one additional
clock for the final check, to encrypt (or decrypt) one data block.

3 ASIC Performance Comparison

Table 1 shows a comparison of the performance between the AES circuits with
and without the proposed error detection scheme, as shown in Figs. 2 and 4. The
designs were synthesized by a Synopsis Design Compiler using a 90-nm CMOS
standard cell library. In addition to size and speed optimizations, implementa-
tions that achieve the highest hardware efficiency, defined as throughput per
gate, are shown.

The signal delay time for the round function block is approximately halved
by using the proposed scheme, but the maximum operating frequency is not dou-
bled because of the setup and hold times of the inserted register. In addition,
the proposed scheme requires an additional clock cycle and additional hardware
resources for error detection. Therefore, simple prediction may indicate that the
proposed scheme is slower and larger than the simple AES circuit without the
error detection scheme. However, the throughputs of compact implementations
are 2.21 Gbps with 16.1 Kgates for the proposed scheme and 1.66 Gbps with 12.9
Kbps for the simple architecture. Thus, the proposed scheme is faster. Moreover,
the gate counts of the high-speed versions are 24.1 Kgates with 3.21 Gbps for the
proposed scheme and 30.7 Kgates with 4.22 Gbps for the simple architecture.
Thus, the proposed scheme is smaller. This is because the longer combinatorial
logic path in the round function block of the simple architecture causes wide
variations in logic synthesis. The range of gate counts and throughputs in Table

Table 1. Hardware performance comparison

16,099 362.32 2,208.40 137.18 Size
17,087 406.50 2,477.70 145.01 Efficiency
24,114 526.32 3,208.00 133.04 Speed
12,949 129.37 1,655.90 127.88 Size
20,003 265.25 3,395.20 169.48 Efficiency
30,708 330.03 4,224.40 137.57 Speed

Hardware
Efficiency

(Kbps/gate)

Archi-
tecture

Optimi-
zation

21

Size
(gates)

Maximum
Frequency

(MHz)

Through-
put

(Mbps)

10

Proposed
(Fig. 4)

Proposed
(Fig. 2)

Clock
Cycles

(90-nm CMOS, 1 gate = 2-input NAND, worst condition)

1 are ×2 for the simple architecture, while this range is within ×1.5 for the pro-
posed scheme. To achieve compact implementation, it is important to reuse gate
logic, even though the critical path becomes longer, and to use smaller cells, even
though their drivability is lower. On the other hand, parallel processing without
sharing gate logic and use of large cells with higher drivability are efficient for
high-speed implementation. This means that smaller circuits become slower and
faster circuits become larger. Therefore, the simple implementation with a wide
range of synthesis optimization had smaller but “slower” performance for the
compact implementation, and the high-speed version is faster but “larger” than
the proposed architecture.

The results indicate that total hardware performance cannot be determined
by simply measuring gate counts and throughput, and thus the performance over-
head caused by the error detection circuit cannot be evaluated either. Therefore,
as the criterion, we use the balance between hardware size and operating speed,
that is, the hardware efficiency is defined as the throughput per gate. How-
ever, the hardware efficiency still varies somewhat depending on the synthesis
constraints. Consequently, the optimal balance between size and speed, i.e., the
highest hardware efficiency, was chosen as the score of the hardware performance.
To investigate the highest hardware efficiency, logic synthesis was repeated sev-
eral times by changing the constraints. Then, the proposed AES architecture
and the simple AES architecture achieved efficiencies of 145.0 Kbps/gate (=
2.48 Gbps/17.1 Kgates) and 169.5 Kbps/gate (= 3.40 Gbps/20.0 Kgates), re-
spectively. The efficiency of the proposed scheme is 85.5% compared to the simple
architecture, and thus we can say that the performance overhead of the error
detection scheme is at most 14.5%. Meanwhile, in many cases, the AES cir-
cuit with the error detection showed better performances. These results clearly
demonstrate the advantage of the proposed scheme.

4 Conclusion

This paper proposed an error detection scheme for the AES circuit, and evaluated
its performance using a 90-nm standard cell library. The scheme divides a round
function block into two sub-blocks and uses them alternatively for encryption (or
decryption) and error detection. Therefore, no extra calculation block is needed,
even though only a pipeline register, a selector and a comparator are added. The
number of operating cycles is doubled, but the operating frequency is boosted
because the round function block in the critical path is halved. Therefore, the
scheme has only a minor impact on hardware performance.

Logic synthesis was repeated by changing the optimization conditions, and
the AES circuit with the proposed scheme achieved a range of 16.1 ∼ 24.1 Kgates
for hardware size and 2.21 ∼ 3.21 Gbps for throughput. Those of the simple ar-
chitecture without error detection are 12.9 ∼ 30.7 Kgates and 1.66 ∼ 4.22 Gbps.
The simple implementation has a longer combinatorial logic path, which leads
to a wider range of performance optimization. These different ranges make it
difficult to compare the performance between the proposed and simple archi-

tectures. Therefore, the highest hardware efficiency (throughput/gate), which
gives the optimal balance between hardware speed and size was chosen for the
performance comparison. The hardware efficiencies are 145.0 kbps/gate for the
proposed scheme and 169.4 Kbps/gate for the simple implementation, and thus
the performance overhead due to the error detection is only 14.5%. In addition,
the AES circuit with the proposed scheme had better performance than the
simple implementation depending on the constraints of logic synthesis.

Although the round function block was divided by 2 in the above implemen-
tations, it should be possible to increase the number of pipeline stages to 4, 6,
and 8, in which half of the stages are used for encryption and the other half are
used for error detection. This is a very efficient way to achieve a much higher
throughput when pipeline operation, such as that for the CTR mode, is possi-
ble. The proposed scheme does not depend greatly on the algorithm, and thus it
can also be applied to hardware implementations of several coding algorithms,
as well as cryptographic hardware. As a result, the proposed error detection
scheme has significant advantages in both efficiency and versatility.

We have developed experimental ASIC and FPGA boards called SASEBO
(Side-channel Attack Standard Evaluation BOard) and have distributed these
boards to research institutes in an attempt to contribute to establish stan-
dard evaluation criteria and test requirements for cryptographic modules against
physical analysis attacks including fault injection attacks. A cryptographic ASIC
chip with countermeasures is currently under development, and the AES circuit
proposed in this paper will be implemented on the chip. Detailed technical in-
formation and specifications about the experimental chip and the boards will be
disclosed on the Website of the SASEBO project [32].

References

1. D. Boneh, R. Demillio, and R. Liotin, “On the Importance of Checking Crypto-
graphic Protocols for Fault,” Advances in Cryptology (Eurocrypt ’97), LNCS 1233,
pp. 37-51, May 1997.

2. E. Biham and A. Shamir, “Differential Fault Analysis of Secret Key Cryptosys-
tems,” Advances in Cryptology (Crypto ’97), LNCS 1294, pp.513-525, Aug. 1997.

3. R. Anderson and M. Kuhn, “Low Cost Attacks on Tamper Resistant Devices,”
Security Protocols: 5th Int. Workshop, LNCS 1361, pp125-136, Apr. 1997.

4. H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The Sorcerer’s
Apprentice Guide to Fault Attack,” IACR ePrint archive, Report 2004/100, 2004.

5. G. Giraud and H. Thiebeauld, “A Survey on Fault Attacks,” Proc. Sixth Smart
Card Research and Advanced Application IFIP Conf. (CARDIS ’04), pp. 159-176,
Aug. 2004.

6. National Institute of Standards and Technology (NIST), “Advanced
Encryption Standard (AES) FIPS Publication 197,” Nov. 2001,
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

7. J. Blömer, J. -P. Seifert, “Fault Based Cryptanalysis of the Advanced Encryption
Standard (AES),” Financial Cryptography : 7th International Conf., (FC 2003),
LNCS 2742, pp. 162-181, Jan. 2003.

8. J. Blömer and V. Krummel, “Fault Based Collision Attacks on AES,” Fault Diag-
nosis and Tolerance in Cryptography (FDTC 2006), LNCS 4236, pp. 106-120, Oct.
2006.

9. G. Piret, J. -J. Quisquater, “A Differential Fault Attack Technique against SPN
Structures, With Application to the AES avd Khazad,” Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES 2003), LNCS 2779, pp.77-88,
Sep. 2003.

10. P. Dusart, G. Letourneux, and O. Vivolo, “Differential Fault Anal-
ysis on AES,” Cryptology ePrint Archive, Report 2003/010. 2003,
http://eprint.iacr.org/2003/010.pdf

11. C. -N. Chen and S. -M. Yen, “Differential Fault Analysis on AES Key Schedule and
Some Countermeasures,” Australasian Conf. on Information Security and Privacy
(ACISP 2003), LNCS 2727, pp.118-129, Jul. 2003.

12. C. Giraud, “DFA on AES,” Fourth Conf. on the Advanced Encryption Standard
(AES4), LNCS 3373, pp. 27-41, May 2004.

13. J. Takahashi, T. Fukunaga, and K. Yamakoshi, “DFA Mechanism on the AES Key
Schedule,” Proc. Fault Diagnosis and Tolerance in Cryptography (FDTC 2007),
pp. 62-72, Sep. 2007.

14. G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri, “Error Analysis and
Detection Procedures for a Hardware Implementation of the Advanced Encryp-
tion Standard,” IEEE Trans. Comp. Special Issue on Cryptographic Hardware
and Embedded Software, vol.52, no.4, pp. 492-505, Apr. 2003.

15. G. Bertoni, L. Breveglieri, I. Koren, and P. Maistri, “An Efficient Hardware-Based
Fault Diagnosis Scheme for AES Performances and Cost,” Proc. the 19th IEEE
Int. Sym. Defect and Fault Tolerance in VLSI Systems (DFT ’04), pp. 130-138,
Oct. 2004.

16. L. Breveglieri, I. Koren, and P. Maistri, “Incorporating Error Detection and Online
Reconfiguration into a Regular Architecture for the Advanced Encryption Stan-
dard,” Proc. the 20th IEEE Int. Sym. Defect and Fault Tolerance in VLSI Systems
(DFT ’05), pp.72-80, Oct. 2005.

17. R. Karri, g. Kuznetsov, and M. Gossel, “Parity-Based Concurrent Error Detec-
tion of Substitution-Permutation Network Block Ciphers,” Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES 2003), LNCS 2779, pp. 113-124,
Sep. 2003.

18. M. Karpovsky, K. J. Kulikowski, and A. Taubin, “Robust Protection against Fault-
Injection Attacks on Smart Cards Implementing the Advanced Encryption Stan-
dard,” Proc. 2004 International Conference on Dependable Systems and Networks
(DSN ’04), pp. 93-101, Jul. 2004.

19. M. Karpovsky, K. J. Kulikowski, and A. Taubin, “Differential Fault Analysis At-
tack Resistant Architectures for the Advanced Encryption Standard,” Proc. Sixth
Smart Card Research and Advanced Application IFIP Conference (CARDIS ’04),
pp. 177-192, Aug. 2004.

20. Chih. -H. Yen and B. -F. Wu, “Simple Error Detection Methods for Hardware
Implementation of Advanced Encryption Standard,” IEEE Trans. Comp, vol. 55,
no. 6, pp. 720-731, Jun. 2006.

21. K. Wu, R. Karri, G. Kuznetsov, and M. Goessel, “Low Cost Concurrent Error
Detection for the Advanced Encryption Standard,” Proc. The 2004 Int. Test Conf,
pp. 1242-1248, Oct. 2004.

22. M. M. Kermani and A. R-. Masoleh, “Parity-Based Fault Detection Architecture
of S-box for Advanced Encryption Standard,” Proc. the 21st IEEE Int. Symp.
De-fect and Fault-Tolerance in VLSI Systems (DFT ’06), pp. 572-580, Dec. 2006.

23. M. M. Kermani and A. R-. Masoleh, “A Structure-independent Approach for
Fault Detection Hardware Implementations of the Advanced Encryption Stan-
dard,” Proc. Fault Diagnosis and Tolerance in Cryptography (FDTC 2007), pp.
47-53, Sep. 2007.

24. K. Wu, P. Mishra, and R. Karri, “Concurrent Error Detection of Fault-Based Side-
Channel Cryptanalysis of 128-Bit RC6 Block Cipher,” Special Issue on Defect and
Fault Tolerance in VLSI Systems. Microelectronics Journal, Vol 34, No. 1, pp 31-39,
Jan. 2003.

25. R. Karri, K. Wu, P. Mishra, and Y. Kim, “Concurrent Error Detection Schemes
for Fault-Based Side-Channel Cryptanalysis of Symmetric Block Ciphers,” IEEE
Trans. CAD of Integrated Circuits and Systems, vol. 21, no.12, pp.1509-1517, Dec.
2002.

26. L. Anghel and M. Nicolaidis, “Cost Reduction and Evaluation of a Temporary
Faults Detecting Technique,” Proc. Design Automation and Test in Europe (DATE
’00), pp. 591-597, Mar. 2000.

27. P. Maistri, P. Vanhauwaert, and R. Leveugle, “A Novel Double-Data-Rate AES
Architecture Resistant against Fault Injection,” Proc. Proc. Fault Diagnosis and
Tolerance in Cryptography (FDTC 2007), pp. 54-61, Sep. 2007.

28. N. Joshi, K. Wu, and R. Karri, “Concurrent Error Detection Schemes for Involu-
tion Ciphers,” Workshop on Cryptographic Hardware and Embedded Systems
(CHES 2004), LNCS 3156, pp. 400-412, Aug. 2004.

29. T. G. Malkin, F. -X. Standaert, and M Yung, “A Comparative Cost/Security Anal-
ysis of Fault Attack Countermeasures,” Fault Diagnosis and Tolerance in Cryptog-
raphy (FDTC 2006), LNCS 4236, pp. 159-172, Oct. 2006.

30. A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A Compact Rijndael Hard-
ware Architecture with S-box Optimization,” 7th Int. Conf. on the Theory and
Application of Cryptology and Information Security (ASIACRYPT 2001), LNCS
2248, pp. 239-254, Dec. 2001.

31. P. Chodowiec and and K. Gaj, “Very Compact FPGA Implementation of the
AES Algorithm,” Workshop on Cryptographic Hardware and Embedded Systems
(CHES 2003), LNCS 2779, pp. 319-333, Sep. 2003.

32. “Side-channel Attack Standard Evaluation Board (SASEBO),”
http://www.rcis.aist.go.jp/special/SASEBO/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

