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Abstract. Modern Graphics Processing Units (GPU) have reached a dimension with respect to
performance and gate count exceeding conventional Central Processing Units (CPU) by far. Many
modern computer systems include – beside a CPU – such a powerful GPU which runs idle most
of the time and might be used as cheap and instantly available co-processor for general purpose
applications.
In this contribution, we focus on the efficient realisation of the computationally expensive operations
in asymmetric cryptosystems on such off-the-shelf GPUs. More precisely, we present improved and
novel implementations employing GPUs as accelerator for RSA and DSA cryptosystems as well as
for Elliptic Curve Cryptography (ECC). Using a recent Nvidia 8800GTS graphics card, we are able
to compute 813 modular exponentiations per second for RSA or DSA-based systems with 1024 bit
integers. Moreover, our design for ECC over the prime field P-224 even achieves the throughput of
1412 point multiplications per second.
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1 Introduction

For the last twenty years graphics hardware manufacturers have focused on producing fast
Graphics Processing Units (GPUs), specifically for the gaming community. This has more re-
cently led to devices which outperform general purpose Central Processing Units (CPUs) for
specific applications, particularly when comparing the MIPS (million instructions per second)
benchmarks. Hence, a research community has been established to use the immense power of
GPUs for general purpose computations (GPGPU). In the last two years, prior limitations of
the graphics application programming interfaces (API) have been removed by GPU manufac-
turers by introducing unified processing units in graphics cards. They support a general purpose
instruction set by a native driver interface and framework.

In the field of asymmetric cryptography, the security of all practical cryptosystems rely on
hard computational problems strongly dependant on the choice of parameters. But with rising
parameter sizes (often in the range of 1024–4096 bits), however, computations become more
and more challenging for the underlying processor. For modern hardware, the computation
of a single cryptographic operation is not critical, however in a many-to-one communication
scenario, like a central server in a company’s data processing centre, it may be confronted with
hundreds or thousands of simultaneous connections and corresponding cryptographic operations.
As a result, the most common current solution are cryptographic accelerator cards. Due to the
limited market, their price tags are often in the range of several thousands euros or US dollars.
The question at hand is whether commodity GPUs can be used as high-performance public-key
accelerators.

In this work, we will present novel implementations of cryptosystems based on modular
exponentiations and elliptic curve operations on recent graphics hardware. To the best of our
knowledge, this is the first publication making use of the CUDA framework for GPGPU process-
ing of asymmetric cryptosystems. We will start with implementing the extremely wide-spread
Rivest Shamir Adleman (RSA) cryptosystem [30]. The same implementation based on modu-
lar exponentiation for large integers can be used to implement the Digital Signature Algorithm



2 Robert Szerwinski and Tim Güneysu

(DSA), which has been published by the US National Institute of Standards and Technology
(NIST) [25]. Recently, DSA has been adopted to elliptic curve groups in the ANSI X9.62 stan-
dard [2]. The implementation of this variant, called ECDSA, is the second major goal of this
work.

2 Previous Work

Lately, the research community has started to explore techniques to accelerate cryptographic
algorithms using the GPU. For example, various authors looked at the feasibility of the current
industry standard for symmetric cryptography, the Advanced Encryption Standard (AES) [21,
31, 18, 9]. Only two groups, namely Moss et al. and Fleissner, have aimed for the efficient imple-
mentation of modular exponentiation on the GPU [24, 14]. Their results were not promising, as
they were limited by the legacy GPU architecture and interface (cf. the next section). To the best
of our knowledge there are neither publications about the implementation of these systems on
modern, GPGPU-capable hardware nor on the implementation of elliptic curve based systems.

We aim to fill this gap by implementing the core operations for both systems efficiently
on modern graphics hardware, creating the foundation for the use of GPUs as accelerators for
public key cryptography. We will use Nvidia’s current flagship GPU series, the G80 generation,
together with its new GPGPU interface CUDA.

3 Using GPUs for General-Purpose Applications

The following section will give an overview over traditional GPU computing, followed by a more
in-depth introduction to Nvidia’s general purpose interface CUDA.

3.1 Traditional GPU Computing

Roughly, the graphics pipeline consist of the stages transform & light, assemble primitives,
rasterise and shade. First GPUs had all functions needed to implement the graphics pipeline
hardwired, but over time more and more stages became programmable by introducing specialised
processors, e.g. vertex and fragment processors that made the transform & light and shading
stages, respectively, more flexible.

When processing power increased massively while prices kept falling, the research commu-
nity thought of ways to use these resources for computationally intense tasks. However, as the
processors’ capabilities were very limited and the API of the graphics driver was specifically
built to implement the graphics pipeline, a lot of overhead needed to be taken into account.
For example, all data had to be encoded in textures which are two dimensional arrays of pixels
storing colour values for red, green, blue and an additional alpha channel used for transparency.
Additionally, textures are read-only objects, which forced the programmers to compute one step
of an algorithm, store the result in the frame buffer, and start the next step using a texture
reference to the newly produced pixels. This technique is known as ping-ponging. Most GPUs did
only provide instructions to manipulate floating point numbers, forcing GPGPU programmers
to map integers onto the available mantissa and find ways to emulate bit-logical functions, e.g.,
by using look-up tables.

These limitations have been the main motivation for the key GPU manufacturers ATI/AMD
and Nvidia to create APIs specifically for the GPGPU community and modify their hardware for
better support: ATI’s solution is called Close To the Metal (CTM) [1], while Nvidia presented
the Compute Unified Device Architecture (CUDA), a radically new design that makes GPU
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programming and GPGPU switch places: The underlying hardware of the G80 series is an
accumulation of scalar common purpose processing units (“unified” design) and quite a bit of
“glue” hardware to efficiently map the graphics pipeline to this new design. GPGPU applications
however directly map to the target hardware and thus graphics hardware can be programmed
without any graphics API whatsoever.

3.2 Programming GPUs using Nvidia’s CUDA Framework

In general, the GPU’s immense computation power mainly relies on its inherent parallel architec-
ture. For this, the CUDA framework introduces the thread as smallest unit of parallelism, i.e.,
a small piece of concurrent code with associated state. However, when compared to threads on
microprocessors, GPU threads have much lower resource usage and lower creation and switching
cost. Note that GPUs are only effective when running a high number of such threads. A group
of threads that is executed physically in parallel is called warp. All threads in one warp are
executed in a single instruction multiple data (SIMD) fashion. If one or more thread(s) in the
same warp need to execute different instructions, e.g., in case of a data-dependent jump, their
execution will be serialised and the threads are called divergent. As the next level of parallelism,
a (thread) block is a group of threads that can communicate with each other and synchronise
their execution. The maximum number of threads per block is limited by the hardware. Finally,
a group of blocks that have same dimensionality and execute the same CUDA program logically

in parallel is called grid.
To allow optimal performance for different access patterns, CUDA implements a hierarchical

memory model, contrasting the flat model normally assumed on computers. Host (PC) and de-
vice (GPU) have their own memory areas, called host memory and device memory, respectively.
CUDA supplies optimised functions to transfer data between these separate spaces.

Each thread possesses its own register file, which can be read and written. Additionally, it
can access its own copy of so-called local memory. All threads in the same grid can access the
same on-chip read- and writable shared memory region. To prevent hazards resulting from
concurrent execution of threads synchronisation mechanisms must be used. Shared memory is
organised in groups called banks that can be accessed in parallel. All threads can access a read-
and writable memory space called global memory and read-only regions called constant
memory and texture memory. The second last is optimised for one-dimensional locality of
accesses, while the last is most effective when being used with two-dimensional arrays (matrices).
Note that the texture and constant memories are the only regions that are cached. Thus, all
accesses to the off-chip regions global and local memory have a high access latency, resulting in
penalties when being used too frequently.

The hardware consists of a number of so-called multiprocessors that are build from SIMD
processors, on-chip memory and caches. Clearly, one processor executes a particular thread, the
same warp being run on the multiprocessor at the same time. One or more blocks are mapped
to each multiprocessor, sharing its resources (registers and shared memory) and get executed on
a time-sliced basis. When a particular block has finished its execution, the scheduler starts the
next block of the grid until all blocks have been run.
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Design Criteria for GPU Implementations To achieve optimal performance using CUDA,
algorithms must be designed to run in a multitude of parallel threads and take advantage of the
presented hierarchical memory model. In the following, we enumerate the key criteria necessary
for gaining the most out of the GPU by loosely following the CUDA programming guide [27]
and a talk given by Mark Harris of Nvidia [17].

A. Maximise use of available processing power

A1 Maximise independent parallelism in the algorithm to enable easy partitioning in
threads and blocks.

A2 Keep resource usage low to allow concurrent execution of as many threads as possible,
i.e., use only a small number of registers per thread and shared memory per block.

A3 Maximise arithmetic intensity, i.e., match the arithmetic to bandwidth ratio to the
GPU design philosophy: GPUs spend their transistors on ALUs, not caches. Bearing this
in mind allows to hide memory access latency by the use of independent computations
(latency hiding). Examples include using arithmetic instructions with high throughput
as well as re-computing values instead of saving them for later use.

A4 Avoid divergent threads in the same warp.

B. Maximise use of available memory bandwidth

B1 Avoid memory transfers between host and device by shifting more computations
from the host to the GPU.

B2 Use shared memory instead of global memory for variables.
B3 Use constant or texture memory instead of global memory for constants.
B4 Coalesce global memory accesses, i.e., choose access patterns that allow to combine

several accesses in the same warp to one, wider access.
B5 Avoid bank conflicts when utilising shared memory, i.e., choose patterns that result

in the access of different banks per warp.
B6 Match access patterns for constant and texture memory to the cache design.

CUDA Limitations Although CUDA programs are written in the C language together with
extensions to support the memory model, allow synchronisation and special intrinsics to ac-
cess faster assembler instructions, it also contains a number of limitations that negatively affect
efficient implementation of public key cryptography primitives. Examples are the lack for addi-
tions/subtractions with carry as well as the missing support for inline assembler instructions1.

4 Modular Arithmetic on GPUs

In the following section we will give different ways do realise modular arithmetic on a GPU
efficiently, keeping the aforementioned criteria in mind. For the RSA cryptosystem we need
to implement arithmetic modulo N , where N is the product of two large primes p and q:
N = p · q. The arithmetic of both DSA systems, however, is based on the prime field GF (p) as
the lowest-level building block. Note that the DSA systems both use a fixed – in terms of sessions
or key generations – prime p, thus allowing to choose special primes at build time that have
advantageous properties when reducing modulo p. For example, the US National Institute of
Standards and Technology (NIST) proposes a set of generalised Mersenne primes in the Digital

1 Nvidia published their own (abstract) assembler language PTX [28], however as of CUDA version 1.0 one kernel
cannot contain code both generated from the C language and PTX.
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Signature Standard (DSS) [25, Appendix 6]. As the RSA modulus N is the product of the two
secret primes p and q that will be chosen secretly for each new key pair, we cannot optimise for
the modulus in this case.

Modular Addition and Subtraction In general, addition s ≡ a + b mod m of two operands
a and b, where 0 ≤ a, b < m, is straightforward, as the result of the plain addition operation
a + b always satisfies 0 ≤ a + b < 2m and therefore needs at maximum one subtraction of m to
fulfil 0 ≤ s < m. Due to the SIMD design, we require algorithms that have a uniform control
flow in all cases and compute both a + b and a + b − m and decide afterwards which is the
correctly reduced result, cf. Criterion A4. Subtraction d ≡ a− b mod m can be treated similarly:
we compute both a − b and a − b + m and use a sign test at the end to derive the correctly
reduced result.

Modular Multiplication Multi-precision modular multiplication r ≡ a · b mod m is usually
the most critical operation in common asymmetric cryptosystems. In a straightforward ap-
proach to compute r, we derive a double-sized product r′ = ab first and reduce afterwards by
multi-precision division. Besides the quadratic complexity of standard multiplication, division is
known to be very costly and should be avoided whenever possible. Thus, we will discuss several
multiplication strategies to identify an optimal method for implementation on GPUs.

4.1 Modular Multiplication Using Montgomery’s Technique

In 1985 Peter L. Montgomery proposed an algorithm [23] to remove the costly division operation
from the modular reduction. Koç et al. [6] give a survey of different implementation options. As
all multi-precision Montgomery multiplication algorithms feature no inherent parallelism except
the possibility to pipeline, we do not consider them optimal for our platform and implement
the method with the lowest temporary space requirement of n + 2 words, coarsely integrated
operand scanning (CIOS), as a reference solution only (cf. to Algorithm 1).

Algorithm 1 Montgomery Multiplication for Multi-Precision Integers (CIOS Method) [6]

Require: Modulus M and radix R = 2wn s.t. R > M and gcd(R, M) = 1; M ′
0 = (−M−1 mod R) mod 2w , two

unsigned integers 0 ≤ A, B < M in Montgomery form, i.e. X = (Xn−1Xn−2 . . . X0)2w for X ∈ {A, B, M}.
Ensure: The product C = ABR−1 (mod M), 0 ≤ C < M , in Montgomery form.
1: T ← 0
2: for i from 0 to n− 1 do
3: c← 0
4: for j from 0 to n− 1 do {Multiplication}
5: (c, Tj)← Aj · Bi + Tj + c

6: end for
7: (Tn+1, Tn)← Tn + c

8: m← T0 ·M
′
0 mod 2w {Reduction}

9: (c, T0)← m ·M0 + T0

10: for j from 1 to n− 1 do
11: (c, Tj−1)← m ·Mj + Tj + c

12: end for
13: Tn−1 ← Tn + c

14: Tn ← Tn+1 + c

15: end for
16: return (Tn−1Tn−2 . . . T0)2w
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4.2 Modular Multiplication in Residue Number Systems (RNS)

As an alternative approach to conventional base-2w arithmetic, we can represent integers based
on the idea of the Chinese Remainder Theorem, by encoding an integer x as a tuple formed
from its residues xi modulo n relatively prime w-bit moduli mi, where |x|mi

denotes x mod mi:

〈x〉A = 〈x0, x1, . . . , xn−1〉A = 〈|x|m0
, |x|m1

, . . . , |x|mn−1
〉A (1)

Here, the ordered set of relatively prime moduli (m0,m1, . . . ,mn−1), gcd(mi,mj) = 1 for
all i 6= j, is called base and denoted by A. The product of all moduli, A =

∏n−1
i=0 mi is called

dynamic range of A, i.e., the number of values that can be uniquely represented in A. In other
words, all numbers in A get implicitly reduced modulo A. Such a representation in RNS has the
advantage that addition, subtraction and multiplication can be computed independently for all
residues:

〈x〉A ◦ 〈y〉A = 〈|x0 ◦ y0|m0
, |x1 ◦ y1|m1

, . . . , |xn−1 ◦ yn−1|mn−1
〉A, ◦ ∈ {+,−, ·} (2)

which allows carry-free computations2 and multiplication without partial products. However,
some information involving the whole number x cannot be easily computed. For instance, sign
and overflow detection and comparison of magnitude are hard, resulting from the fact that
residue number systems are no weighted representation. Furthermore, division and as a result
reduction modulo an arbitrary modulus M 6= A is not as easy as in other representations.

But similar to the basic idea of Montgomery multiplication, one can create a modular multi-
plication method for input values in RNS representation as shown in Algorithm 2, which involves
a second base B = (m̃0, m̃1, . . . , m̃n−1) with corresponding dynamic range B. It computes a value
v = XY + fM that is equivalent to 0 mod A and XY mod M . Thus, we can safely divide by
A, i.e., multiply by its inverse modulo B, to compute the output XY A−1 (mod M). Note that
the needed reduction modulo A to compute f is free in A.

Algorithm 2 Modular Multiplication Algorithm for Residue Number Systems [20]

Require: Modulus M , two RNS bases A and B composed of n distinct moduli mi each, gcd(A,B) = gcd(A,M) =
1 and B > A > 4M .
Two factors X and Y , 0 ≤ X, Y < 2M , encoded in both bases and in Montgomery form, i.e. 〈X〉A∪B and
〈Y 〉A∪B, X = xA (mod M) and Y = yA (mod M).

Ensure: The product C = XY A−1 (mod M), 0 ≤ C < 2M , in both bases and Montgomery form.
1: 〈u〉A∪B ← 〈X〉A∪B · 〈Y 〉A∪B

2: 〈f〉A ← 〈u〉A · 〈−M−1〉A
3: 〈f〉A∪B ← BaseExtend(〈f〉A)
4: 〈v〉B ← 〈u〉B + 〈f〉B · 〈M〉B {〈v〉A = 0 by construction}
5: 〈w〉B ← 〈v〉B · 〈A

−1〉B
6: 〈w〉A∪B ← BaseExtend(〈w〉B)
7: return 〈w〉A∪B

All steps of the algorithm can be efficiently computed in parallel. However, a method to
convert between both bases, a base extension mechanism, is needed. We take three different
options into account: the method based on a Mixed Radix System (MRS) according to Szabó
and Tanaka [37], as well as CRT-based methods due to Shenoy and Kumaresan [33], Kawamura et

al. [20] and Bajard et al. [3]. We present a brief introduction of these methods, but for more
detailed information about base extensions, please see the recent survey at [5].

2 Inner-RNS operations still contain carries.
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4.3 Base Extension Using a Mixed Radix System (MRS)

The classical way to compute base extensions is due to Szabó and Tanaka [37]. Let (m0, . . . ,mn−1)
be the MRS base associated to A. Then, each integer x can be represented in a mixed radix sys-

tem as
x = x′

0 + x′
1m0 + x′

2m0m1 + · · · + x′
n−1m0 . . . mn−2. (3)

The MRS digits x′
i can be derived from the residues xi by a recursive strategy:

x′
0 = x0 (mod m0) (4)

x′
1 = (x1 − x′

0)m
−1
(1,0) (mod m1)

...

x′
n−1 = (· · · ((xn − x′

0)m
−1
(n−1,0)

− x′
1)m

−1
(n−1,1)

− · · · − x′
n−2)m

−1
(n−1,n−2)

(mod mn−1)

where m−1
(i,j) are the pre-computed inverses of mj modulo mi. To convert x from this representa-

tion to a target RNS base, we could reduce Equation (3) by each target modulus m̃k, involving

pre-computed constants c̃(k,i) =
∣∣∣
∏i−1

l=0 ml

∣∣∣
emk

. But instead of creating a table for all c̃k, a recur-

sive approach is more efficient in our situation, eliminating the need for table-lookups [4], and
allowing to compute all residues in the target base in parallel:

|x|
emk

=
∣∣(. . . ((x′

n−1mn−2 + x′
n−2)mn−3 + x′

n−3)mn−4 + · · · + x′
1)m0 + x0

∣∣
emk

(5)

4.4 Base Extension Using the Chinese Remainder Theorem (CRT)

Recall the definition of the CRT and adopt it to the source base A with dynamic range A:

x =

n−1∑

k=0

Âk

∣∣∣∣
xk

Âk

∣∣∣∣
mk

− αA, α < n (6)

where Âk = A/mk and α is an integer s.t. 0 ≤ x < A. Note that α is strictly upper-bounded by
n. When reducing this equation with an arbitrary target modulus, say m̃i, we yield

|x|emi
=

∣∣∣∣∣

n−1∑

k=0

∣∣∣Âk

∣∣∣
emi

δk − |αA|emi

∣∣∣∣∣
emi

, δk =
∣∣∣xk · Âk

−1
∣∣∣
mk

(7)

where
∣∣∣Âk

∣∣∣
emi

,
∣∣∣Âk

−1
∣∣∣
mk

and |A|emi
are pre-computed constants. Note that the δk do not depend

on the target modulus and can thus be reused in the computation of a different target residue.
This is an efficient way to compute all residues modulo the target base, provided we know

the value of α. While involving a couple of look-ups for the constants as well, the instruction
flow is highly uniform (cf. Criterion A4) and fits to our SIMD architecture, i.e., we can use n
threads to compute the n residues of x in the target base in parallel (cf. Criterion A1).

The first technique to compute such an α is due to Shenoy and Kumaresan [33] and requires
a redundant modulus mr ≥ n that is relatively prime to all other moduli mj and m̃i, i.e.,
gcd(A,mr) = gcd(B,mr) = 1. Consider Equation 7, set m̃i = mr and rearrange it to the
following:

|α|mr =

∣∣∣∣∣|A
−1|mr ·

(
n−1∑

k=0

∣∣∣Âk

∣∣∣
mr

δk − |x|mr

)∣∣∣∣∣
mr

. (8)
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Since α < n ≤ mr it holds that α = |α|mr and thus Equation 8 computes the exact value of α,
involving the additional constant |A−1|mr .

Kawamura et al. propose a different technique that approximates α using fixed-point com-
putations [20]. Consider Equation 7, rearrange it and divide by A:

α =

n−1∑

k=0

δk

mk

−
|x|emi

A
=

⌊
n−1∑

k=0

δk

mk

⌋
. (9)

Next, they approximate α by using truncr(δk) as numerator and 2w as denominator and adding
a properly chosen offset σ, where truncr(δk) sets the last w − r bits of δk to zero:

α′ =

⌊
n−1∑

k=0

truncr(δk)

2w
+ σ

⌋
=

⌊
1

2r

n−1∑

k=0

⌊
δk/2

w−r
⌋

+ σ

⌋
, (10)

Thus, the approximate value α′ can be computed in fixed-point arithmetic as integer part of
the sum of the r most-significant bits of all δk. Provided σ is chosen correctly, Equation 10 will
compute α′ = α, and the resulting base extension will be exact.

Finally, Bajard et al. follow the most radical approach possible [3]: they allow an offset of
αA ≤ (n − 1)A to occur in Equation 7 and thus do not need to compute α at all. After the
first base extension we have f ′ = f + αA and thus w′ = w + αM , i.e., the result w′ will contain
a maximum offset of (n − 1)M , and thus be equivalent to w mod M . However, this technique
needs additional measures of precaution in the multiplication algorithm, which predominantly
condense in the higher dynamic ranges needed.

4.5 Multiplication Modulo Generalised Mersenne Primes

For some cryptosystems like DSA, arithmetic in an underlying prime field is required. Taking
advantage of the special structure of Mersenne primes, the reduction modulo p after a multiplica-
tion can be carried out very efficiently. Using such a method, we can compute r′ using a standard
multi-precision multiplication method first, followed by a reduction algorithm that is specific for
the given prime. In this work, we will use an algorithm to efficiently compute multiplications
modulo P-224, where P-224 is the 224 bit prime proposed by NIST [25]. Algorithm 3 performs
the complete reduction for this prime with only two additions and two subtractions of 224 bit
integers and a subsequent correction step to determine the correct value of r ≡ r′ mod p, since
−2p ≤ r′ < 3p must be considered. Note that this final correction step additionally needs the
same amount of computations, as we have to avoid data-dependant branches (cf. Criterion A4).

Algorithm 3 NIST Reduction for P-224 = 2224 − 296 + 1

Require: Double-sized integer r′ = (r′13, . . . , r
′
2, r

′
1, r

′
0) in base 232 and 0 ≤ r′ < P-2242

Ensure: Single-sized integer r ≡ r′ mod P-224, 0 ≤ r < P-224.
1: Concatenate r′i to following 224-bit integers tj :

t1 = (r′6, r
′
5, r

′
4, r

′
3, r

′
2, r

′
1, r

′
0), t2 = (r′10, r

′

9, r
′

8, r
′

7, 0, 0, 0), t3 = (0, r
′

13, r
′

12, r
′

11, 0, 0, 0)

t4 = (0, 0, 0, 0, r′13, r
′
12, r

′
11), t5 = (r′13, r

′

12, r
′

11, r
′

10, r
′

9, r
′

8, t7)

2: Compute r′′ = t1 + t2 + t3 − t4 − t5
3: return r = r′′ mod P-224
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5 Implementation

In this section we will describe the implementation of two primitive operations for a variety of
cryptosystems: first, we realise modular exponentiation on the GPU for use with RSA, DSA and
similar systems. Second, for ECC-based cryptosystems we present an efficient point multiplica-
tion method which is the fundamental operation, e.g., for ECDSA or ECDH [16].

5.1 Modular Exponentiation Using the CIOS Method

We implemented the CIOS Method as introduced in Algorithm 1 for sequential execution since
it does not include any inherent parallelism. Fan et al. describe efficient ways to pipeline such an
algorithm for the use on multi-core systems [13]. This would however need fairly complex coordi-
nation and memory techniques and thus will not be considered further for our implementation,
cf. Criteria A4 and B4-B6.

As all modular exponentiations are independent, we let each thread compute exactly one
modular exponentiation in parallel with all others. Resulting from that, this solution only profits
from coarse-grained parallelism. We assume the computation of distinct exponentiations, each
having the same exponent t – for example RSA signatures using the same key – and thus need to
transfer only the messages Pi for each exponentiation to the device and the result P t

i (mod N)
back to the host. As a result, every thread executes the same control flow, fulfilling Criterion A4.
To accelerate memory transfers between host and device, we use page-locked host memory and
pad each message to a fixed length that forces the starting address of each message to values
that are eligible for global memory coalescing (cf. Criteria B1 and B4).

For modular exponentiation based on Algorithm 1, we applied the straightforward binary
right-to-left method [35]. During exponentiation, each thread needs three temporary values of
(n + 2) words each that get used as input and output of Algorithm 1 in a round-robin fashion
by pointer arithmetic. Thus, 3(n + 2) words are required. This leads to 408 bytes and 792 bytes
for 1024 bits and 2048 bit parameters, respectively. Each multiprocessor features 16384 bytes of
shared memory, resulting in a maximum number of ⌊16386/408⌋ = 40 and ⌊16386/792⌋ = 20
threads per multiprocessor for 1024 and 2048 bits, respectively, if we use shared memory for tem-
porary values. Clearly, both solutions are inefficient when considering that each multiprocessor
is able to execute 768 threads per block in principle (i.e., we favour Criterion A2 over B2).

Thus, we chose to store the temporary values in global memory. We have to store the values
interleaved so that memory accesses of one word by all threads in a warp can be combined to
one global memory access. Hence, for a given set of values (A,B,C, . . .) consisting each of n + 2
words X = (x0, x1, . . . , xn+1), we store all first words (a0, b0, c0, . . .) for all threads in the same
block, then all second words (a1, b1, c1, . . .), and so on (cf. Criterion B4).

Moreover, we have to use nailing techniques, as CUDA does not yet include add-with-carry
instructions. Roughly speaking, nailing reserves one or more of the high-order bits of each word
for the carry that can occur when adding two numbers. To save register and memory space,
however, we store the full word of w bits per register and use bit shifts and and-masking to
extract two nibbles, each providing sufficient bits for the carry (cf. Criterion A3). This can be
thought of decomposing a 32 bit addition in two 16 bit additions plus the overhead for carry
handling.

5.2 Modular Exponentiation Using Residue Number Systems

Computations in residue number systems yield the advantage of being inherently parallel. Ac-
cording to Algorithm 2 all steps are computed in one base only, except for the first multiplica-
tion. Thus, the optimal mapping of computations to threads is as follows: each thread determines
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values for one modulus in the two bases. As a result, we have coarse-grained (different exponen-
tiations) and fine-grained parallelism (base size), fulfilling Criterion A1. We call n′ the number
of residues that can be computed in parallel, i.e., the number of threads per encryption. The
base extension by Shenoy et al. needs a redundant residue starting from the first base extension
to be able to compute the second base extension. To reflect this fact, we use two RNS bases A
and B, having n moduli each, and an additional residue mr resulting in n′ = n+1. For all other
cases, it holds that n′ = n.

Considering the optimal number of bits per modulus, we are faced with w = 32 bit integer
registers on the target hardware. Thus, to avoid multi-precision techniques, we can use moduli
that are smaller than 2w. The hardware can compute 24 bit multiplications faster than full 32 bit
multiplications. However, CUDA does not expose an intrinsic to compute the most-significant
16 bits of the result. Using 16 bit moduli would waste registers and memory and increase the
number of memory accesses as well. Thus, we prefer full 32 bit moduli to save storage resources
at the expense of higher computational cost (cf. Criteria A2 and A3).

For Algorithm 1 to work, the dynamic ranges A and B and the modulus M have to be
related according to B > A > 22M , or B > A > (2 + n)2M when using Bajard’s method. For
performance reasons, we consider full warps of 32 threads only, resulting in a slightly reduced
size of M . The figures for all possible combinations can be found in Table 6 in the Appendix. For
input and output values, we assume that all initial values will have been already converted to
both bases (and possibly the redundant modulus mr) and that output values will be returned in
the same encoding. Note that it would be sufficient to transfer values in one base only and do a
base extension for all input values (cf. Criterion B1, transferring values in both bases results in a
more compact kernel together with a slightly higher latency). Different from the CIOS method,
temporary values can be kept local for each thread, i.e., every thread stores its assigned residues
in registers. Principally all operations can be performed in parallel on different residues and –
as a result – the plain multiplication algorithm does not need any synchronisations. However,
both properties do not hold for the base extension algorithms.

Mixed Radix Conversion Recall that the mixed radix conversion computes the mixed radix
representation from all residues in the source base first and uses this value to compute the target
residues. The second step involves the computation of n′ residues and can be executed in parallel,
i.e., each thread computes the residue for ’its’ modulus. As a result, we have to store the n MRS
digits in shared memory to make them accessible to all threads (cf. Criteria A1 and B2). The
first step however is the main caveat of this algorithm due to its highly divergent nature as
each MRS digit is derived from the residue of a temporary variable in a different modulus (and
thus thread) and depends on all previously computed digits, clearly breaking Criterion A4 and
resulting in serialisation of executions. Additionally, note that threads having already computed
an MRS digit do not generate any useful output anymore.

CRT-based Conversion The first step for all CRT-based techniques is to compute the δk for
each source modulus and can be carried out by one thread for each value. Second, all n′ threads
compute a weighted sum involving δk and a modulus-dependent constant. Note that all threads
need to access all δk and thus δk have to be stored in shared memory (cf. Criterion B2). Third,
α has to be derived, whose computation is the main difference in the distinguished techniques.
α is needed by all threads later and thus needs to be stored in shared memory as well. After
computing α all threads can proceed with their independent computations.

Bajard’s method does not compute α and consequently needs no further operations. For
Shenoy’s method, the second step above is needed for the redundant modulus mr as well, which
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can be done in parallel with all other moduli. Then, a single thread computes α and writes it to
shared memory. The redundant residue mr comes at the price of an additional thread, however
the divergent part needed to compute α does only contain one addition and one multiplication
modulo mr. Kawamura’s method needs to compute the sum of the r most significant bits of all
δk. While the right-shift of each δk can be done using all threads, the sum over all shifted values
and the offset has to be computed using a single thread. A final right-shift results in the integer
part of the sum, namely α.

Comparison and Selection Clearly, Bajard’s method is the fastest since it involves no compu-
tation of α. Shenoy’s method only involves a small divergent part. However, we pay the price of
an additional thread for the redundant modulus, or equivalently decrease the size of M . Kawa-
mura’s technique consists of a slightly larger divergent part, however it does neither include
look-ups nor further reduces the size of M .

Not all base extension mechanisms can be used for both directions required for Algorithm 2.
For Bajard’s method, consider the consequence of an offset in the second base extension: we
would compute some w′′ in base A that is not equal to the w′ in B. As a result, neither 〈w′〉A nor
〈w′′〉B could be computed leading to an invalid input for a subsequent execution of Algorithm 2.
Thus, their method is only available for A → B conversions. Shenoy’s method can only be
used for the second base extension as there is no efficient way to carry the redundant residue
through the computation of f modulo A. The technique by Kawamura et al. would in principle
be available for both conversions. However, the sizes of both bases would be different to allow
proper reduction in the A → B case, thus we exclude this option from our consideration. Table 1
shows the available and the practical combinations.

Table 1. Base Extension Algorithm Combinations

A → B
MRC (M) Shenoy (S) Kawamura (K) Bajard (B)

B
→
A

MRC (M) • ◦ ◦ •
Shenoy (S) • ◦ ◦ •
Kawamura (K) • ◦ ◦ •
Bajard (B) ◦ ◦ ◦ ◦

5.3 Point Multiplication Using Generalised Mersenne Primes

For realising the elliptic curve group operation, we chose mixed affine-Jacobian coordinates [8] to
avoid costly inversions in the underlying field and thus concentrated on efficient implementation
of modular multiplication, the remaining time critical operation. For this, we used a straight-
forward schoolbook-type multiplication combined with the efficient reduction technique for the
generalised Mersenne prime presented in Algorithm 3.

As for the CIOS method, there is no intrinsic parallelism except pipelining in this approach
(cf. Criterion A1). Thus, we use one thread per point multiplication. We assume the use of the
same base point P per point multiplication kP and varying scalars k. Thus, the only input that
has to be transferred are the scalars. Secondly, we transfer the result in projective Jacobian
coordinates back to the host. For efficiency reasons, we encode all coordinates interleaved for
each threads in a block again.

We used shared memory to store all temporary values, nailed to 28 bits to allow schoolbook
multiplication without carry propagation. Thus, we need 8 words per coordinate. Point addition



12 Robert Szerwinski and Tim Güneysu

and doubling algorithms were inspired by libseccure [29]. With this approach shared memory
turns out to be the limiting factor. Precisely, we require 111 words per point multiplication to
store 7 temporary coordinates for point addition and modulo arithmetic, two points and each
scalar. This results in 444 bytes of shared memory and a maximum of ⌊16384/444⌋ = 36 threads
per multiprocessor. This leaves still room for improvements as Criterion A1 is not fulfilled.
However, due to internal errors in the toolchain, we were not (yet) able to compile a solution that
uses global memory for temporary values instead. Note that the left-to-right binary method for
point multiplication demands only one temporary point. However, for the sake of a homogeneous
flow of instructions we compute both possible solutions per scalar bit and use a small divergent
section to decide which of them is the desired result (cf. Criterion A4).

6 Conclusion

With the previously discussed implementations on GPUs at hand, we finally need to identify
the candidate providing the best performance for modular exponentiation.

6.1 Results and Applications

Before presenting the benchmarking results of the best algorithm combinations we show our
results regarding the different base extension options for the RNS method. The benchmarking
scheme was the following: first, we did an exhaustive search for the number of registers per thread
that can principally be generated by the toolchain. Then, we benchmarked all available execution
configurations for these numbers of registers. To make the base extension algorithms comparable,
we would have to repeat this for all possible combinations, as shown in Table 1. However to reduce
the complexity of benchmarking, it suffices to measure all possible combinations in the first row
and all possible combinations in the second column to gain figures for all available combinations.
The results for the particular best configuration can be found in Table 2.

Table 2. Results for different Base Extension Techniques (RNS Method)

Base Ext. Throughput (1024 bits) Throughput (2048 bits)
A→ B B → A [Enc/s] (rel.) [Enc/s] (rel.)

M M 194 (46%) 28 (50%)
B M 267 (63%) 38 (67%)
B K 408 (97%) 55 (98%)
B S 419 (100%) 56 (100%)

Clearly, the mixed radix based approach also used in [24] cannot compete with CRT-based
solutions. Kawamura et al. is slower than the method of Shenoy et al. , but performs only
slightly worse for the 2048 bit range. Figure 1 shows the time over the number of encryptions
for the four cases and the 1024 bit and 2048 bit ranges, respectively.

Both graphs show the characteristic behaviour: Depending on the number of blocks that are
started on the GPU and the respective execution configuration we get stair-like graphs. Only
multiples of the number of warps per multiprocessor and the number of multiprocessors result
in optimal configurations that fully utilise the GPU. However, depending on the number of
registers per thread and the amount of shared memory used other configurations are possible
and lead to smaller steps in between.
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Fig. 1. Results For Modular Exponentiation with about 1024 (left) and 2048 bit (right) Moduli For Different Base
Extension Methods, based on a Nvidia 8800 GTS Graphics Card

Optimised Implementations Beside the reference implementation based on the CIOS algo-
rithm, we selected as best choice the CRT-RNS method based on a combination of Bajard’s and
Shenoy’s methods to compute the first and second base extension of Algorithm 2, respectively.

The selection of the implementation was primarily motivated to achieve high throughput
rather than a small latency. Hence, due to the latency, not all implementations might be suitable
for all practical applications. To reflect this, we present figures for data throughput as well as the
initial latency tmin required at the beginning of a computation. Note that our results consider
optimal configurations of warps per block and blocks per grid only. Table 3 shows the figures for
modular exponentiation with 1024 and 2048 bit moduli and elliptic curve point multiplication
using NIST’s P-224 curve.

Table 3. Results for Throughput and Minimum Latency tmin on a Nvidia 8800 GTS Graphics Card

Technique Throughput Latency tmin OPs at tmin

[OPs/s] [ms/OP] [ms]

ModExp-1024 CIOS 813.0 1.2 6930 1024
ModExp-1024 RNS 439.8 2.3 144 4

ModExp-2048 CIOS 104.3 9.6 55184 1536
ModExp-2048 RNS 57.9 17.3 849 4

ECC PointMul-224 1412.6 0.7 305 36

The throughput is determined from the number of encryptions divided by the elapsed time.
Note that this includes the initial latency tmin at the beginning of the computations. The
corresponding graphs are depicted in Figure 2. Note the relatively long plateau when using the
CIOS technique. It is a direct result from having coarse-grained parallelism only: the smallest
number of encryptions that can be processed is 128 times higher than for the RNS method.
Its high offset is due to storing temporary values in global memory: memory access latency is
hidden by scheduling independent computations, however the time needed to fetch/store the
first value in each group cannot be hidden.

Clearly, the CIOS method delivers the highest throughput at the price of a high initial
latency. For interactive applications such as online banking using TLS this will be a major
obstacle. However, non-interactive applications like a certificate authority (CA) might benefit
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Fig. 2. Results For Modular Exponentiation with about 1024 (left) and 2048 bit (right) Moduli and Elliptic Curve
Point Multiplication on NIST’s P-224 Curve, based on a Nvidia 8800 GTS Graphics Card

from the raw throughput3. Note that both applications will share the same secret key for all
digital signatures when using RSA. In case of ECC (ECDSA) however, different exponents were
taken into account.

The residue number system based approach does only feature roughly half of the throughput
but provides a more immediate data response. Thus, this method seems to be suitable even
in interactive applications. Last but not least elliptic curve cryptography clearly outperforms
modular exponentiation based techniques not only due to the much smaller parameters. With
respect to other hardware and software implementations compared against our results in the
next section, we present an ECC solution which outperforms most hardware devices and comes
close the the performance of recent dual-core microprocessors.

6.2 Comparison with Previous Implementations

Due to the novelty of general purpose computations on GPUs and since directly comparable
results are rare, we will take reference to recent hardware and software implementations in
literature as well. To give a feeling for the different GPU generations we include Table 4.

Table 4. Comparison of Nvidia GPU platforms

GPU Shader clock Shaders Fill Rate Mem Bandwidth CUDA
[MHz] [GPixels/s] [GB/s]

7800GTX 13.2 54.4 no

8800GTS 1200 92 24.0 64.0 yes
8800GTX 1350 128 36.8 86.4 yes

9800GX2 1500 2 · 128 76.8 128.0 future

Moss et al. implemented modular exponentiation for 1024 bit moduli on Nvidia’s 7800GTX
GPU [24], using the same RNS approach but picking different base extension mechanisms.
The authors present the maximum throughput only that has been achieved at the cost of an
unspecified but high latency. Fleissner’s recent analysis on modular exponentiation for GPUs is
based on 192 bit moduli but relates the GPU performance solely to the CPU of his host system.

3 Also consider the top model of Nvidia’s next series of GPUs, the GeForce 9800GX2, that can be used in a
four-card setup.
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Costigan and Scott implemented modular exponentiation on IBM’s Cell platform, i.e., a Sony
Playstation 3 and an IBM MPM blade server, both running at 3.2GHz [10]. We only quote the
best figures for the Playstation 3 as they call the results for the MPM blade preliminary. The
Playstation features one PowerPC core (PPU) and 6 Synergistic Processing Elements (SPUs).
Software results have been attained from ECRYPT’s eBATS project [11]. Here, we picked a
recent Intel Core2 Duo with 2.13 GHz clock frequency. Since mostly all figures for software relate
to cycles, we assumed that repeated computations can be performed without interruption on all

available cores so that no further cycles are spent, e.g., on scheduling or other administrative
tasks. Note that this is a very optimistic assumption possibly overrating the performance of
microprocessors with respect to actual applications. We also compare our work to the very fast
software implementation by [15] on an Intel Core2 system at 2.66 GHz but which uses the special
Montgomery and non-standard curve over F2255−19.

To the best of our knowledge, Mentens published the best results for public key cryptogra-
phy on reconfigurable hardware so far [22]. She used a Field Programmable Gate Array (FPGA)
of Xilinx’ Virtex-II Pro family, namely the xc2vp30-7FF1152. Schinianakis et al. implemented
elliptic curve cryptography on the same family of FPGAs but using RNS arithmetic for the un-
derlying field [32]. Suzuki implemented the modular exponentiation on FPGAs taking advantage
of the included digital signal processors (DSPs) on a board from Xilinx’ Virtex 4 FX family [36].

Nozaki et al. designed an RSA circuit in 0.25µm CMOS technology, that needs 221k gate
equivalents (GE) [26] and uses RNS arithmetic with Kawamura’s base extension mechanism.

Table 5. Comparison of our designs to results from literature. The higher throughput values the better. ModExp-i
denotes modular exponentiation using an i-bit modulus. PointMul-i denotes point multiplication on elliptic curves
over Fp, where p is a i-bit prime. Results that used the Chinese remainder theorem are marked with “CRT”.

Reference Platform & Technique Throughput [ModExps/s] and [PointMuls/s]
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Our Design Nvidia 8800GTS GPU, CIOS algorithm 813.0 104.3
Nvidia 8800GTS GPU, RNS arithmetic 439.8 57.9
Nvidia 8800GTS GPU, ECC NIST-224 1412.6

[24] Moss Nvidia 7800GTX GPU, RNS arithmetic 175.4
[10] Costigan Sony Playstation 3, 1 PPU, 6 SPUs 909.2 401.4

[22] Mentens Xilinx xc2vp30 FPGA 471.7 1724.1 235.8 1000.0 440.5
[32] Schinianakis Xilinx xc2vp125 FPGA, RNS arithmetic 413.9
[36] Suzuki Xilinx xc4fx12 FPGA, using DSPs 584.8 79.4
[26] Nozaki 0.25µm CMOS, 80 MHz, 221k GE 238.1 34.2

[11] eBATS Intel Core2 2.13 GHz 1447.5 300.4 2623.4 a 1868.5a 1494.8a

[15] Gaudry Intel Core2 2.66 GHz 6900b

a Performance for ECDSA operation including additional modular inversion and multiplication operation.
b Special elliptic curve in Montgomery form, non-compliant to ECC standardised by NIST.
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6.3 Further work

Elliptic curves in Hessian form feature highly homogeneous formulae to compute all three pro-
jective coordinates in point additions [19, 34]. However, the curves standardised by ANSI and
NIST cannot be transformed to Hessian form. Furthermore, point doublings can be converted to
point additions by simple coordinate rotations. Thus, it is possible to compute point doublings
and additions for all three coordinates in parallel. A future study will show the applicability to
graphics hardware.
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A Appendix

Table 6. Modulus Sizes for Modular Multiplication Using RNS

1st Base Ext. 2nd Base Ext. 1024 bit range 2048 bit range

Bajard et al. Shenoy et al. 981 2003
Others 1013 2035

Others Shenoy et al. 990 2014
Others 1022 2046


