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Abstract. Elliptic Curve Cryptosystems (ECC) have gained increasing
acceptance in practice due to their significantly smaller bit size of the
operands compared to other public-key cryptosystems. Since their com-
putational complexity is often lower than in the case of RSA or discrete
logarithm schemes, ECC are often chosen for high performance public-
key applications. However, despite a wealth of research regarding high-
speed software and high-speed FPGA implementation of ECC since the
mid 1990s, providing truly high-performance ECC on readily available
(i.e., non-ASIC) platforms remains an open challenge. This holds espe-
cially for ECC over prime fields, which are often preferred over binary
fields due to standards in Europe and the US.
This work presents a new architecture for an FPGA-based ultra high
performance ECC implementation over prime fields. Our architecture
makes intensive use of the DSP blocks in modern FPGAs, which are
embedded arithmetic units actually intended to accelerate digitial signal
processing algorithms. We describe a novel architecture and algorithms
for performing ECC arithmetic and describe the actual implementation
of standard compliant ECC based on the NIST primes P-224 and P-256.
We show that ECC on Xilinx’s Virtex-4 SX55 FPGA can be performed
at a rate of more than 37,000 point multiplications per second. Our
architecture outperforms all single-chip hardware implementations over
prime fields in the open literature by a wide margin.
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1 Introduction

With the explosive growth of Internet-based applications like ecommerce, peer-
to-peer networks and distributed gaming as well as embedded ones — ranging
from mobile over set-top boxes to automotive — the demand for security in such
systems has also grown dramatically. In these applications, asymmetric cryptog-
raphy is used to achieve a large variety of security goals. However, asymmetric
cryptographic algorithms are extremely arithmetic intensive since their security
assumptions rely on computational problems which are considered to be hard in
combination with parameters of significant bit sizes.

Neal Koblitz and Victor Miller proposed independently in 1985 [20, 17] the
use of Elliptic Curve Cryptography providing similar security compared to clas-
sical cryptosystems but using smaller keys. This benefit allows for greater effi-
ciency when using ECC (160–256 bit) compared to RSA or discrete logarithm



schemes over finite fields (1024–4096 bit) while providing an equivalent level
of security [18]. Due to this, ECC has become the most promising candidate
for many new applications, especially in the embedded domain, which is also
reflected by several standards by IEEE, ANSI and SECG [15, 1, 5, 6].

In addition to many new “lightweight” applications (e.g., digital signature
on RFID-like devices), there are also many new applications which call for high-
performance asymmetric primitives. Even though very fast public-key algorithms
can be provided for PC and server applications by accelerator cards equipped
with ASICs, providing very high speed solutions in embedded devices is still a
major challenge. Somewhat surprisingly, there appears to be extremely few, if
any, commercially available ASICs or chip sets that provide high speed ECC
and which are readily available for integration in general embedded systems. A
potential alternative is provided by Field Programmable Gate Arrays (FPGA).
FPGAs have evolved over the last decade to a powerful alternative for classical
ASIC circuits. In addition, FPGAs provide the advantage of dynamic and flexi-
ble circuit reconfigurability allowing for rapid prototyping at little development
costs. However, despite a wealth of research regarding high-speed FPGA (and
high-speed software) implementation of ECC since the mid 1990s, providing truly
high-performance ECC (i.e., to reach less than 100µs per point multiplication)
on readily available platforms remains an open challenge. This holds especially
for ECC over prime fields, which are often preferred over binary fields due to
standards in Europe and the US, and a somewhat clearer patent situation.

In this work, we propose a novel hardware architecture based on reconfig-
urable FPGAs supporting ECC cryptography over prime fields GF (p) offering
the highest single-chip performance reported in literature up to now. Usually,
known ECC implementations for reconfigurable logic implement the computa-
tionally expensive low-level arithmetic in configurable logic elements, allowing
for greatest flexibility but offering only moderate performance. Some implemen-
tations have attempted to address this problem by using dedicated arithmetic
hardware in the reconfigurable device for specific parts of the computations, like
built-in 18x18 multipliers. But other components of the circuitry for field addi-
tion, subtraction and inversion have been still implemented in the FPGA’s fabric
which usually leads to a significant decrease in performance.
The central idea of this contribution is to relocate the arithmetic intensive opera-
tions of ECC over prime fields entirely in dedicated hardcore units on the FPGA
actually reserved for use in Digital Signal Processing (DSP) filter applications.
These DSP accelerating functions are built-in components in the static logic of
modern FPGA devices capable to perform integer multiplication, addition and
subtraction as well as a multiply-accumulate operation.

2 Previous Work

We briefly summarize previously published results of relevance to this contribu-
tion. There is a wealth of publication addressing ECC hardware architectures,
and a good overview can be found in [8]. In the case of high speed architectures



for ECC, most implementation primarily address elliptic curves over binary fields
GF (2m) since the arithmetic is more hardware-friendly [22, 10]. Our work, how-
ever, focuses on the prime field GF (p). First implementations for ECC over
prime fields GF (p) have been proposed by [23, 24] demonstrating ECC proces-
sors built completely in reconfigurable logic. The contribution by [19] proposes
a high-speed ECC crypto core for arbitrary moduli with up to 256 bit length
designed on a large number of built-in multiplier blocks of FPGA devices pro-
viding a significant speedup for modular multiplications. However, other field
operations have been implemented in the FPGA fabric, resulting in a very large
design (15,755 slices and 256 multiplier blocks) on a large Xilinx XC2VP125 de-
vice. The architecture presented in [7] was designed to achieve a better trade-off
between performance and resource consumption. According to the contribution,
an area consumption of only 1,854 slices and a maximum clock speed of 40 MHz
can be achieved on a Xilinx Virtex-2 XC2V2000 FPGA for a parameter bit
length of 160 bit.

Our approach to implementing an FPGA-based ECC engines was to shift
all field operations into the integrated DSP building blocks available on modern
FPGAs. We show that this approach leads to an extremely high throughput.
Furthermore, our strategy frees most configurable logic elements on the FPGA
for other applications and requires less power compared to a conventional design.
To the best of our knowledge, this architecture offers the fastest performance for
ECC computations over prime fields with up to 256 bit security in reconfigurable
logic.

3 Mathematical Background

In the following, we will briefly introduce to the mathematical background rel-
evant for this work. We will start with a short review of the Elliptic Curve
Cryptosystems (ECC). Please note that only ECC over prime fields GF (p) will
be subject of this work since binary extensions fields GF (2m) require binary
arithmetic which is not (yet) natively supported by DSP blocks.

3.1 Elliptic Curve Cryptography

Let p be a prime with p > 3 and Fp = GF (p) the Galois Field over p. Given the
Weierstrass equation of an elliptic curve

E : y2 = x3 + ax + b,

with a, b ∈ GF (p) and 4a3 + 27b2 6= 0, points Pi ∈ E , we can compute tuples
(x, y) also considered as points on this elliptic curve E . Based on a group of
points defined over this curve, ECC arithmetic defines the addition R = P + Q
of two points P,Q using the tangent-and-chord rule as the primary group op-
eration. This group operation distinguishes the case for P = Q (point doubling)
and P 6= Q (point addition). Furthermore, formulas for these operations vary



for affine and projective coordinate representations. Since affine coordinates re-
quire the availability of fast modular inversion, we will focus on projective point
representation to avoid the implementation of a costly inversion circuit. Given
two points P1,P2 with Pi = (Xi, Yi, Zi) and P1 6= P2, the sum P3 = P1 + P2 is
defined by

A = Y2Z1 − Y1Z2 B = A2Z1Z2 − B3 − 2B2X1Z2 C = X2Z1 − X1Z2

X3 = BC Y3 = A(C2X1Z2 − B) − C3Y1Z2 Z3 = C3Z1Z2, (1)

where A,B,C are auxiliary variables and P3 = (X3, Y3, Z3) is the resulting point
in projective coordinates. Similarly, for P1 = P2 the point doubling P3 = 2P1 is
defined by

A = aZ2 + 3X2 B = Y Z C = XY B D = A2 − 8C

X3 = 2BD Y3 = A(4C − D) − 8B2Y 2 Z3 = 8B3. (2)

Most ECC-based cryptosystems rely on the Elliptic Curve Discrete Loga-
rithm Problem (ECDLP) and thus employ the technique of point multiplication
k · P as cryptographic primitive, i.e., a k times repeated point addition of a
base point P. Precisely, the ECDLP is the fundamental cryptographic problem
used in protocols and crypto schemes like the Elliptic Curve Diffie-Hellman key
exchange [9], the ElGamal encryption scheme [12] and the Elliptic Curve Digital
Signature Algorithm (ECDSA) [1].

3.2 Standardized General Mersenne Primes

The arithmetic for ECC point multiplication is based on modular computa-
tions over a prime field GF (p). These computations always include a subse-
quent step to reduce the result to the domain of the underlying field. Since
the reduction is very costly for general primes due to the demand for a multi-
precision division, special primes have been proposed by Solinas [26] which have
been finally standardized in [21]. These primes provide efficient reduction algo-
rithms based on a sequence of multi-precision addition and subtractions only
and eliminate the need for the costly division. Special primes P-l with bitlengths
l = {192, 224, 256, 384, 521} are part of the standard. But we believe that the
primes P-224 and P-256 are the most relevant bit sizes for future implementa-
tions of the next decades.

According to Algorithm 1 the modular reduction for P-224 can be per-
formed with two 224-bit subtractions and additions. However, these four con-
secutive operations can lead to a potential over- and underflow in step 2. With
Z = z1 + z2 + z3 − z4 − z5, we can determine the bounds −2p < Z < 3p reducing
the number of final correction steps to two additions or subtractions to compute
the correctly bounded c mod p224.



Algorithm 1 NIST Reduction with P-224 = 2224 − 296 + 1

Input: Double-sized integer c = (c13, . . . , c2, c1, c0) in base 232 and 0 ≥ c ≥ P-2242

Output: Single-sized integer c mod P-224.
1: Concatenate ci to following 224-bit integers zj :

z1 = (c6, c5, c4, c3, c2, c1, c0), z2 = (c10, c9, c8, c7, 0, 0, 0),

z3 = (0, c13, c12, c11, 0, 0, 0), z4 = (0, 0, 0, 0, c13, c12, c11),

z5 = (c13, c12, c11, c10, c9, c8, c7)

2: Compute c = (z1 + z2 + z3 − z4 − z5 mod P-224)

Algorithm 2 NIST Reduction with P-256 = 2256 − 2224 + 2192 + 296 − 1

Input: Double-sized integer c = (c15, . . . , c2, c1, c0) in base 232 and 0 ≥ c ≥ P-2562

Output: Single-sized integer c mod P-256.
1: Concatenate ci to following 256-bit integers zj :

z1 = (c7, c6, c5, c4, c3, c2, c1, c0), z2 = (c15, c14, c13, c12, c11, 0, 0, 0),

z3 = (0, c15, c14, c13, c12, 0, 0, 0), z4 = (c15, c14, 0, 0, 0, c10, c9, c8),

z5 = (c8, c13, c15, c14, c13, c11, c10, c9), z6 = (c10, c8, 0, 0, 0, c13, c12, c11),

z7 = (c11, c9, 0, 0, c15, c14, c13, c12), z8 = (c12, 0, c10, c9, c8, c15, c14, c13),

z9 = (c13, 0, c11, c10, c9, 0, c15, c14)

2: Compute c = (z1 + 2z2 + 2z3 + z4 + z5 − z6 − z7 − z8 − z9 mod P-256)

Algorithm 2 presents the modular reduction for P-256 requiring two dou-
blings, four 256-bit subtractions and four 256-bit additions. Based on the com-
putation Z = z1 + 2z2 + 2z3 + z4 + z5 − z6 − z7 − z8 − z9, the range of the result
to be corrected is −4p < Z < 5p.

4 An Efficient ECC Architecture Using DSP Cores

In this section we demonstrate how to implement ECC over NIST primes P-224
and P-256 using available DSP blocks of Xilinx Virtex-4 FPGAs.

4.1 DSP-Accelerator Blocks in FPGAs

Modern FPGA devices like Xilinx Virtex-4 and Virtex-5 as well as Altera Stratix
FPGAs have been equipped with dedicated arithmetic hardcore extensions to
accelerate, in particular, digital signal processing applications. These function
blocks (DSP blocks) can be used to build a more efficient implementation in
terms of performance and reduce at the same time the demand for logical el-
ements. In general, DSP blocks of FPGAs can be programmed to perform ba-
sic arithmetic functions, especially, multiplication, addition and subtraction of



(un)signed integers. A common DSP component comprises an lM -bit signed inte-
ger multiplier coupled with an lA-bit signed adder, where lA > lM holds. For en-
abling maximum performance, the multiplier and adder block can be augmented
with pipeline registers to reduce signal propagation delays between components.
Using different data paths, DSP blocks can operate on external inputs A,B,C
as well as on feedback values from accumulation or even results Pj±1 from a
neighboring DSP block. Figure 1 shows the generic DSP-block used in recent
Xilinx FPGA devices [29].
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Fig. 1. Generic and simplified structure of DSP-blocks of advanced FPGA devices

4.2 ECC Engine Design Criteria

When using DSP blocks to develop a high-speed ECC design, there are several
criteria which should be met to exploit their full performance. Note that the
following aspects have been designed to target the requirements of Xilinx Virtex-
4 FPGAs:

1. Build DSP cascades: Neighboring DSP blocks can be cascaded to widen or
extent their atomic operand width (e.g., from 18 bit to 256 bit).

2. Use DSP routing paths: DSPs have been provided with inner routing paths
connecting two adjacent blocks. It is advantageous in terms of performance
to use these paths as frequently as possible instead of using FPGA’s general
switching matrix for connecting logic blocks.

3. Consider DSP columns: Within a Xilinx FPGA, DSPs are aligned in columns,
i.e., routing paths between DSPs within the same column are efficient while
a switch in columns can lead to degraded performance. Hence, DSP cascades
should not exceed the column width (typically 32/48/64 DSPs per column).

4. Use DSP pipeline registers: DSP blocks feature pipeline stages which should
be used to achieve the maximum clock frequency supported by the device
(up to 500 MHz).



5. Use different clock domains: Optimally, DSP blocks can be operated at max-
imum device frequency. This is not necessarily true for the remainder of the
design so that separate clock domains should be introduced (e.g. by halving
the clock frequency for control signals) to address the critical paths in each
domain individually.

4.3 Arithmetic Units

According to the EC arithmetic introduced in Section 3.1, an ECC engine over
GF (p) based on projective coordinates requires functionality for modular ad-
dition, subtraction and multiplication. Since modular addition and subtraction
is very similar, both operation are combined. In the following description we
will assume a Virtex-4 FPGA as reference device and corresponding DSP block
arithmetic with word sizes lA = 32 and lM = 16 for unsigned addition and
multiplication, respectively. Note that native support by the DSP blocks on a
Virtex-4 device is available for up to 48-bit signed addition and 18-bit signed
multiplication.

Modular Addition/Subtraction Let A,B ∈ GF (P ) be two multi-precision
operands with lengths |A|, |B| ≤ l and l = ⌊log2 P ⌋ + 1. Modular addition
C = A+B mod P and subtraction C = A−B mod P can be efficiently computed
according to Algorithm 3:

Algorithm 3 Modular addition and subtraction

Input: A, B, P with 0 ≤ A, B < P ;
Operation flag f ∈ {0, 1} denotes a subtraction when f = 1 and addition otherwise

Output: C = A ± B mod P

1: (CIN0, S0) = A + (−1)fB;
2: (CIN1, S1) = S0 + (−1)1−fP ;
3: Return S|f−Cf |;

For using DSP blocks, we need to divide the l-bits operands into multiple
words each having a maximum size of lA bit due to the limited width of the DSP
input port. Thus, all inputs A,B and P to the DSP blocks can be represented
in the form X =

∑nA−1
i=0 xi · 2

i·lA , where nA = ⌈l/lA⌉ denotes the number of
words of an operand. According to Algorithm 3, we employ two cascaded DSP
blocks, one for computing s(0,i) = ai ± (bi + CIN0) and a second for s(1,i) =
s(0,i)∓(pi+CIN1). The resulting values s(0,i) and s(1,i) each of size |s(j,i)| ≤ lA+1
are temporarily stored and recombined to S0 and S1 using shift registers (SR).
Finally, a 2-to-1 l-bit output multiplexer selects the appropriate value C = Si.
Figure 2 presents a schematic overview of a combined modular addition and
subtraction based on two DSP blocks. Note that DSP blocks on Virtex-4 FPGAs
provide a dedicated carry input cIN but no carry output cOUT. Particularly, this
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Fig. 2. Modular addition/subtraction based on DSP-blocks

fact requires extra logic to compensate for duplicate carry propagation to the
second DSP which is due to the fixed cascaded routing path between the DSP
blocks. In this architecture, each carry is considered twice, namely in s0,i+1 and
s1,i what needs to be corrected. This special carry treatment requires a wait
cycle to be introduced so that one lA-bit word can be processed each two clock
cycles. However, this is no restriction for our architecture since we design for
parallel addition and multiplication so that the (shorter) runtime of an addition
is completely hidden in the duration of a concurrent multiplication operation.

Modular Multiplication The most straightforward multiplication algorithm
to implement the multiplication with subsequent NIST prime reduction (cf. Sec-
tion 3.2) is the schoolbook multiplication method with a time complexity of
O(n2) for n-bit inputs. Other methods, like the Karatsuba algorithm [16], trade
multiplications for additions using a divide-and-conquer approach. Due to the
higher number of additions, this latter strategy is only preferable in case that
the complexity costs of an an addition is significantly below that of a multipli-
cation [28]. But even when neglecting any further control overhead introduced
by the Karatsuba method, this does not hold for Virtex-4 devices since mul-
tiplication is comparably cheap within the DSP blocks. Let A,B ∈ GF (P )
be two multi-precision integers with bit length l ≤ ⌊log2 P ⌋ + 1. According
to the limited input size lM of DSP blocks, we split now the values A,B in
nM = ⌈l/lM⌉ words represented as X =

∑nM−1
i=0 xi · 2

ilM . Schoolbook mul-
tiplication computes C = A · B based on accumulation of (nM )2 products

C =
∑2nM

i=0 2i·nM
∑i

j=0 ajbi−j providing a result C of size |C| ≤ 2nM . For par-
allel execution on nM DSP units, we compacted the order of inner product
computations as shown in Figure 3. All nM DSP blocks operate in a loadable
Multiply-and-Accumulate mode (MACC) so that intermediate results remain in

the corresponding DSP block until an inner product si =
∑i

j=0 ajbi−j is fully
computed. Note that si returned from the nM DSP blocks are not aligned and
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can vary in size up to |si| ≤ 2lM + log2(nM ) = lACC = 36 bits. Thus, all si

need to be converted to non-redundant representation to finally form the final
product of words ci with maximum size 2lM each. Hence, we feed all values
into a subsequent accumulator to combine each si with the corresponding bits
of si−1 and si+1. Considering the special input constraints, timing conventions
and carry transitions of DSP blocks, we developed Algorithm 4 to address the
accumulation of inner products based on two DSP blocks performing lACC -bit
additions.

Algorithm 4 Accumulation of partial product ci

Input: Partial products si with bitsize |si| ≤ lACC for i = 0 . . . 2nM − 1 and lACC =
2lM + log2(nM )

Output: Product C = (c2nM
, . . . , c0) with bitsize |C| ≤ 2l

1: s(−1) → 0; c(−1) → 0
2: for i = 0 to 2nM − 2 by 2 do

3: di → ADD(si−1[lACC − 1 . . . lM ], si[lACC . . . 0])
4: ci → ADD(di[lACC . . . lM ], (si+1[lM . . . 0]|ci−1[3lM . . . 2lM ]))
5: end for

6: return c = (c2nM−1, . . . , c0)

Figure 4 gives a schematic overview of the multiplication circuit returning
the full-size product C. This result has to be reduced using the fast NIST prime
reduction scheme discussed in the next section.

Modular Reduction At this point we will discuss the subsequent modular re-
duction of the 2nM -bit multiplication result C using the NIST reduction scheme.
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All fast NIST reduction algorithms rely on a reduction step (1) defined as a se-
ries multi-precision additions and subtractions followed by a correction step (2)
to achieve a final value in the interval [0, . . . , P − 1] (cf. Algorithms 1 and 2). To
implement (1), we decided to use one DSP-block for each individual addition or
subtraction, e.g., for the P-256 reduction we reserved a cascade of 8 DSP blocks.
Each DSP performs one addition or subtraction and stores the result in a register
whose output is taken as input to the neighboring block (data pipeline).

For the correction step (2), we need to determine in advance the possible
overflow or underflow of the result returned by (1) to avoid wait or idle cycles
in the pipeline. Hence, we introduced a Look-Ahead Logic (LAL) consisting of a
separate DSP block which exclusively computes the expected overflow or under-
flow. Then, the output of the LAL is used to select a corresponding reduction
value which are stored as multiple {0, . . . , 5P} in a ROM table. The ROM values
are added or subtracted to the result of (1) by a sequence of two DSP blocks
ensuring that the final result is always in {0, . . . , P − 1}. Figure 5 depicts the
general structure of the reduction circuit which is applicable for both primes
P-224 and P-256.

4.4 ECC Core Architecture

With the basic field operations for l−bit computations at hand supporting NIST
primes P-224 and P-256, we have combined a modular multiplier and a modular
subtraction/addition component with dual-port RAM modules (BRAM) and
a state machine to build an ECC core. We have implemented an asymmetric
datapath supporting two different operand lengths: the first operand provides
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full l-bit of data whereas the second operand is limited to 32-bit words so that
several words need to be transferred serially to generate the full l-bit input. This
approach allows for direct memory accesses of our serial-to-parallel multiplier
architecture. Note further that we introduced different clock domains for the
core arithmetic based on the DSP blocks and the state machines for upper layers
(running at half clock frequency only). An overview of the entire ECC core is
shown in Figure 6. We implemented ECC group operations based on projective
Chudnowsky coordinates1 since the implementation should support to compute
a point multiplication k · P as well as a corresponding linear combination k ·
P + r · Q based on a fixed base point P ∈ E , k, r ∈ {1, . . . , ord(P)− 1} and Q ∈
〈P〉. Both operations can be considered as basic ECC primitives, e.g., used for
ECDSA signature generation and verification [1]. The computation of k ·P+r ·Q
can make use of Shamir’s trick to efficiently compute several point products
simultaneously [12]. For this first implementation of the point multiplication
and the sake of simplicity, we used a standard double-and-add (binary method)
algorithm [14], but more efficient windowing methods [2] can also be implemented
without significantly increasing the resource consumption.

4.5 ECC Core Parallism

Due the intensive use of DSP blocks to implement the core functionality of ECC,
the resulting implementation requires only few reconfigurable logic elements on
the FPGA. This allows for efficient multiple-core implementations on a single
FPGA improving the overall system throughput by a linear factor n dependent
on the number of cores. Note that most other high-performance implementations
occupy the full FPGA due to their immense resource consumption so that these
cannot easily be instantiated several times.

1 ECC operations based on mixed affine-Jacobian coordinates are more efficient but
more complex in hardware when considering precomputed points in Jacobian co-
ordinates required for computing k · P + r · Q as required for ECDSA signature
verification.
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Based on our synthesis results, the limiting factor of our architecture is the
number of available DSP blocks of a specific FPGA device (cf. Section 5).

5 Implementation

The proposed architecture has been synthesized and implemented for the small-
est available Xilinx Virtex-4 device (XC4VFX12-12SF363) and the correspond-
ing results are presented in Subsection 5.1. This FPGA type offers 5,472 slices
(12,288 4-input LUTs and flip flops) of reconfigurable logic, 32 DSP blocks
and can be operated at a maximum clock frequency of 500 MHz. Furthermore,
to demonstrate how many ECC computations can be performed using ECC
core parallelism, we take a second device, the large Xilinx Virtex-4 XC4VSX55-
12FF1148 providing the maximum number of 512 DSP blocks and 24,576 slices
(49,152 4-input LUTs and flip flops) as a reference for a multi-core architecture.

5.1 Implementation Results

Based on the Post-Place and Route (PAR) results using Xilinx ISE 9.1 we can
present the following performance and area details for ECC cores for primes
P-224 and P-256 on the small XC4VFX12 device as shown in Table 1. Note that
up to now the implementation for P-224 is not yet fully verified in functionality
or optimized. The core for P-256, however, is already available for use in real-
world products.

5.2 Throughput of a Single ECC Core

Given an ECC core with a separate adder/subtracter and multiplier unit, we can
perform a field multiplication and field addition simultaneously. By optimizing
the execution order of the basic field operations, it is possible to perform all



Table 1. Requirements and clock frequency of a single ECC core on a Virtex-4 FX 12
after PAR

Aspect ECC Core P-224 ECC Core P-256

Slices occupied 1,580 (29%) 1,715 (31%)
4-input LUTs 1,825 2,589
Flip flops 1,892 2,028
DSP blocks 26 32
BRAMs 11 11
Frequency/Max. delay 487 MHz/2.050 ns 490 MHz/2.040 ns

additions/subtraction required for the ECC group operation in parallel to a
multiplication. Based on the runtimes of a single field multiplication, we can
determine the number of required clock cycles for the operations k ·P and k ·P+
r · Q using the implemented Double-and-Add algorithm. Moreover, we also give
estimates concerning their performance when using a window-based method [2]
based on a window size w = 4.

Table 2. Performance of ECC operations based on a single ECC core using projective
Chudnowsky coordinates on a Virtex-4 XC4VFX12 (Figures denoted with an asterisk
are estimates)

Aspect ECC Core P-224 ECC Core P-256

Cycles per MUL in GF (p) 58 70
Cycles per ADD/SUB in GF (p) 16 18

Cycles per ECC Addition (Chudnovsky) 812 980
Cycles per ECC Doubling (Chudnovsky) 580 700

Cycles k · P (Double&Add) 219,878 303,450
Cycles k · P (Window) 178,000* 243,000*
Cycles k · P + r · Q (Double&Add) 265,959 366,905
Cycles k · P + r · Q (Window) 194,000* 264,000*

Time and OP/s for k · P (Double&Add) 452 µs/2214 620 µs/1614
Time and OP/s for k · P (Window) 365 µs*/2740* 495 µs*/2020*
Time and OP/s for k · P + r · Q (Double&Add) 546 µs/1831 749 µs/1335
Time and OP/s for k · P + r · Q (Window) 398 µs*/2510* 540 µs*/1850*

Note that the specified timing considers signal propagation after complete
PAR excluding the timing constraints from I/O pins since no underlying data
communication layer was implemented. Hence, when being combined with an
I/O protocol of a real-world application, the clock frequency will be slightly
lower than specified in Table 1 and 3.



5.3 Multi-Core Architecture

Since a single ECC core has obviously moderate resource requirements, it is
possible to place multiple instances of the core on a larger FPGA. On a single

XC4VSX55 device, we can implement, depending on the underlying prime field,
between 16–18 ECC cores running in parallel (cf. Table 3). Due the small amount
of LUTs and flip flops required for a single core, the number of available DSP
blocks (and routing resources) on the FPGA is here the limiting factor.

Table 3. PAR-Results for a multi-core architecture on a Virtex-4 XC4VSX55 device
for ECC over prime fields P-224 and P-256 (Figures denoted with an asterisk are
estimates)

Aspect ECC P-224 ECC P-256

Number of Cores 18 16
Slices occupied 24,452 (99%) 24,574 (99%)
4-input LUTs 32,688 34,896
Flip flops 34,166 32,430
DSP blocks 468 512
BRAMs 198 176
Frequency/Max. delay 372 MHz/2.685 ns 375 MHz/2.665 ns

OP/s k · P (Double&Add) 30,438 19,760
OP/s k · P (Window) 37,700* 24,700*
OP/s k · P + r · Q (Double&Add) 25,164 16,352
OP/s k · P + r · Q (Window) 34,500* 22,700*

5.4 Comparison

Based on our architecture, we can estimate a throughput of more than 37,000
point multiplications on the standardized elliptic curve P-224 per second which
exceeds the throughput of all single-chip hardware implementation known to the
authors by far. A detailed comparison with other implementations is presented
in Table 4.
At this point we like to point out that the field of highly efficient prime field

arithmetic is believed to be predominated by implementations on general pur-
pose microprocessors rather than on FPGAs. Hence, we will also compare our
hardware implementation against the performance of software solutions on re-
cent microprocessors. Since most performance figures for software implementa-
tions are given in cycles rather than absolute times, we assumed for comparing
throughputs that, on a modern microprocessor, repeated computations can be
performed without interruption simultaneously on all available cores with no
further cycles spent, e.g., on scheduling or other administrative tasks. Note that
this is indeed a very optimistic assumption possibly overrating the performance



Table 4. Selected high-performance implementations of public-key cryptosystems

Scheme Device Implementation Logic Clock Time

This work XC4VFX12-12 GF(p), NIST-224 1580 LS/26 DSP 487 MHz 365 µs

XC4VFX12-12 GF(p), NIST-256 1715 LS/32 DSP 490 MHz 495 µs

XC4VSX55-12 GF(p), NIST-224 24452 LS/468 DSP 372 MHz 26.5 µs

XC4VSX55-12 GF(p), NIST-256 24574 LS/512 DSP 375 MHz 40.5 µs

ECC [23] XCV1000E GF(p), NIST-192 5708 LS 40 MHz 3 ms

ECC [19] XC2VP125-7 GF(p), 256-bit 15755 LS/256 MUL 39.5 MHz 3.84 ms

ECC [24] 0.13 µm CMOS GF(p), 160-bit 117500 GE 137.7 MHz 1.21 ms

ECC [3] Intel Pentium4 GF(p), NIST-224 32 bit µP 1.4 GHz 599 µs

ECC [11] Intel Core2 Duo GF(p), NIST-256 64 bit µP 2.13 GHz 669a µs

ECC [13] Intel Core2 Duo GF(2255 − 19) 64 bit µP 2.66 GHz 145 µs

RSA[4] XC40250XV 1024-bit 6826 CLB 45.2 MHz 3.1 ms

RSA[27] XC4VFX12-10 1024-bit (DSP) 3937 LS/17 DSP 400 MHz 1.71 ms

RSA[25] 0.5 µm CMOS 1024-bit 28,000 GE 64 MHz 46 ms

a Note that this figure reflects a full ECDSA signature generation rather than a point
multiplication.

of software implementations with respect to actual applications.
For example, a point multiplication using the highly efficient software imple-
mentation by Dan Bernstein based on floating point arithmetic for ECC over
P-224 requires 839.000 cycles on an (outdated) Intel Pentium 4 [3] at 1.4GHz.
According to our assumption for cycle count interpretation, this correlates to
1670 point multiplication per second.
Despite the good performance figures on this platform, we prefer to take more
recent results, e.g., obtained from ECRYPT’s eBATS project. According to the
report from March 2007 [11], an Intel Core2 Duo running at 2.13 GHz is able
to generate 1868 and 1494 ECDSA signatures based on the OpenSSL imple-
mentation for P-224 and P-256, respectively. Taking latest Intel Core2 Quad
microprocessors into account, these performance figures might even double. We
also compare our work to the very fast software implementation by [13] using an
Intel Core2 system at 2.66 GHz. However, in this contribution the special Mont-
gomery and non-standard curve over F2255−19 is used instead of a standardized
NIST prime. Despite of that, for the design based on this curve the authors
report the impressive throughput of 6700 point multiplications per second.
For a fair comparison with software solutions it should be considered that a
single Virtex-4 SX 55 costs about US$ 1,1702. Recent microprocessors like the
Intel Core2 Duo, however, are available at only about a quarter of that price.
With this in mind, we might not be able to beat all software implementation in
terms of the cost-performance ratio, but we still like to point out that our FPGA-
based design - as the fastest reported hardware implementation so far - definitely

2 Market price for a single device in May 2008.



closes the performance gap between software and hardware implementations for
ECC over prime fields. Furthermore, we like to emphasize again that all software
related performance figures are based on very optimistic assumptions.

6 Conclusion

We presented a novel ECC implementation for fields over NIST primes P-224
and P-256. Due to the exhaustive utilization of DSP blocks, which are con-
tained as hardcores in modern FPGA devices, we are able to perform the critical
components computing low-level integer arithmetic operations nearly at maxi-
mum device frequency. Furthermore, considering a multi-core architecture on a
Virtex-4 XC4VSX55 FPGA, we can achieve a throughput of more than 24,000
and 37,000 point multiplications per second for P-256 and P-224, respectively,
what significantly exceeds the performance of all other hardware implementation
known to the authors and comes close to the cost-performance ratio provided
by the fastest available software implementations in the open literature.
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