
Time-Area Optimized

Public-Key Engines: MQ-Cryptosystems as

Replacement for Elliptic Curves?

Andrey Bogdanov, Thomas Eisenbarth, Andy Rupp, Christopher Wolf

Horst Görtz Institute for IT-Security
Ruhr-University Bochum, Germany

{abogdanov, eisenbarth, arupp}@crypto.rub.de,
chris@Christopher-Wolf.de or cbw@hgi.rub.de

Abstract. In this paper ways to efficiently implement public-key
schemes based on Multivariate Quadratic polynomials (MQ-schemes for
short) are investigated. In particular, they are claimed to resist quantum
computer attacks. It is shown that such schemes can have a much better
time-area product than elliptic curve cryptosystems. For instance, an op-
timised FPGA implementation of amended TTS is estimated to be over
50 times more efficient with respect to this parameter. Moreover, a gen-
eral framework for implementing small-field MQ-schemes in hardware
is proposed which includes a systolic architecture performing Gaussian
elimination over composite binary fields.

Key words: MQ-cryptosystems, ECC, hardware implementation, TA-
product, UOV, Rainbow, amended TTS

1 Introduction

Efficient implementations of public key schemes play a crucial role in numerous
real-world security applications: Some of them require messages to be signed in
real time (like in such safety-enhancing automotive applications as car-to-car
communication), others deal with thousands of signatures per second to be gen-
erated (e.g. high-performance security servers using so-called HSMs - Hardware
Security Modules). In this context, software implementations even on high-end
processors can often not provide the performance level needed, hardware imple-
mentations being thus the only option. In this paper we explore the approaches to
implement Multivariate Quadratic-based public-key systems in hardware meet-
ing the requirements of efficient high-performance applications. The security of
public key cryptosystems widely spread at the moment is based on the difficulty
of solving a small class of problems: the RSA scheme relies on the difficulty
of factoring large integers, while the hardness of computing discrete logarithms
provides the basis for ElGamal, Diffie-Hellmann scheme and elliptic curves cryp-
tography (ECC). Given that the security of all public key schemes used in prac-
tice relies on such a limited set of problems that are currently considered to be

hard, research on new schemes based on other classes of problems is necessary as
such work will provide greater diversity and hence forces cryptanalysts to spend
additional effort concentrating on completely new types of problems. Moreover,
we make sure that not all “crypto-eggs” are in one basket. In this context, we
want to point out that important results on the potential weaknesses of exist-
ing public key schemes are emerging. In particular techniques for factorisation
and solving discrete logarithms improve continually. For example, polynomial
time quantum algorithms can be used to solve both problems. Therefore, the
existence of quantum computers in the range of a few thousands of qbits would
be a real-world threat to systems based on factoring or the discrete logarithm
problem. This emphasises the importance of research into new algorithms for
asymmetric cryptography.

One proposal for secure public key schemes is based on the problem of solving
Multivariate Quadratic equations (MQ-problem) over finite fields F, i.e. finding
a solution vector x ∈ F

n for a given system of m polynomial equations in n
variables each

y1 = p1(x1, . . . , xn)
y2 = p2(x1, . . . , xn)

...
ym = pm(x1, . . . , xn) ,

for given y1, . . . , ym ∈ F and unknown x1, . . . , xn ∈ F is difficult, namely NP-
complete. An overview over this field can be found in [14].

Roughly speaking, most work on public-key hardware architectures tries to
optimise either the speed of a single instance of an algorithm (e.g., high-speed
ECC or RSA implementations) or to build the smallest possible realization of
a scheme (e.g., lightweight ECC engine). A major goal in high-performance ap-
plications is, however, in addition to pure time efficiency, an optimised cost-
performance ratio. In the case of hardware implementations, which are often
the only solution in such scenarios, costs (measured in chip area and power con-
sumption) is roughly proportional to the number of logic elements (gates, FPGA
slices) needed. A major finding of this paper is that MQ-schemes have the better
time-area product than established public key schemes. This holds, interestingly,
also if compared to elliptic curve schemes, which have the reputation of being
particularly efficient.

The first public hardware implementation of a cryptosystem based on mul-
tivariate polynomials we are aware of is [17], where enTTS is realized. A more
recent result on the evaluation of hardware performance for Rainbow can be
found in [2].

1.1 Our Contribution

Our contribution is many-fold. First, a clear taxonomy of secure multivariate
systems and existing attacks is given. Second, we present a systolic architecture
implementing Gauss-Jordan elimination over GF(2k) which is based on the work

in [13]. The performance of this central operation is important for the overall effi-
ciency of multivariate based signature systems. Then, a number of concrete hard-
ware architectures are presented having a low time-area product. Here we address
both rather conservative schemes such as UOV as well as more aggressively de-
signed proposals such as Rainbow or amended TTS (amTTS). For instance, an
optimised implementation of amTTS is estimated to have a TA-product over 50
times lower than some of the most efficient ECC implementations. Moreover,
we suggest a generic hardware architecture capable of computing signatures for
the wide class of multivariate polynomial systems based on small finite fields.
This generic hardware design allows us to achieve a time-area product for UOV
which is somewhat smaller than that for ECC, being considerably smaller for
the short-message variant of UOV.

2 Foundations of MQ-Systems

In this section, we introduce some properties and notations useful for the re-
mainder of this article. After briefly introducing MQ-systems, we explain our
choice of signature schemes and give a brief description of them.

2.1 Mathematical Background

signature x

x = (x1, . . . , xn)

6
private: S

x′

6
private: P′

y′

6
private: T

message y �

public:

(p1, . . . , pn)

Generation Verification

Fig. 1. Graphical Representation of the MQ-trapdoor (S,P ′, T)

Let F be a finite field with q := |F| elements and define Multivariate Qua-
dratic (MQ) polynomials pi of the form

pi(x1, . . . , xn) :=
∑

1≤j≤k≤n

γi,j,kxjxk +
n

∑

j=1

βi,jxj + αi ,

for 1 ≤ i ≤ m; 1 ≤ j ≤ k ≤ n and αi, βi,j , γi,j,k ∈ F (constant, linear, and
quadratic terms). We now define the polynomial-vector P := (p1, . . . , pm) which
yields the public key of these Multivariate Quadratic systems. This public
vector is used for signature verification. Moreover, the private key (cf Fig.1)
consists of the triple (S,P ′, T) where S ∈ Aff(Fn), T ∈ Aff(Fm) are affine trans-
formations and P ′ ∈ MQ(Fn, Fm) is a polynomial-vector P ′ := (p′1, . . . , p

′
m)

with m components; each component is in x′
1, . . . , x

′
n. Throughout this paper,

we will denote components of this private vector P ′ by a prime ′. The linear
transformations S and T can be represented in the form of invertible matri-
ces MS ∈ F

n×n, MT ∈ F
m×m, and vectors vS ∈ F

n, vT ∈ F
m i.e. we have

S(x) := MSx + vS and T (x) := MT x + vT , respectively. In contrast to the
public polynomial vector P ∈ MQ(Fn, Fm), our design goal is that the private
polynomial vector P ′ does allow an efficient computation of x′

1, . . . , x
′
n for given

y′
1, . . . , y

′
m. At least for secure MQ-schemes, this is not the case if the public

key P alone is given. The main difference between MQ-schemes lies in their
special construction of the central equations P ′ and consequently the trapdoor
they embed into a specific class of MQ-problems.

In this kind of schemes, the public key P is computed as function composition
of the affine transformations S : F

n → F
n, T : F

m → F
m and the central

equations P ′ : F
n → F

m, i.e. we have P = T ◦P ′ ◦S. To fix notation further, we
note that we have P ,P ′ ∈ MQ(Fn, Fm), i.e. both are functions from the vector
space F

n to the vector space F
m. By construction, we have ∀x ∈ F

n : P(x) =
T (P ′(S(x))).

2.2 Signing

To sign for a given y ∈ F
m, we observe that we have to invert the computation of

y = P(x). Using the trapdoor-information (S,P ′, T), cf Fig. 1, this is easy. First,
we observe that transformation T is a bijection. In particular, we can compute
y′ = M−1

T y. The same is true for given x′ ∈ F
n and S ∈ Aff(Fn). Using the

LU-decomposition of the matrices MS , MT , this computation takes time O(n2)
and O(m2), respectively. Hence, the difficulty lies in evaluating x′ = P ′−1(y′).
We will discuss strategies for different central systems P ′ in Sect. 2.4.

2.3 Verification

In contrast to signing, the verification step is the same for all MQ-schemes and
also rather cheap, computationally speaking: given a pair x ∈ F

n, y ∈ F
m, we

evaluate the polynomials

pi(x1, . . . , xn) :=
∑

1≤j≤k≤n

γi,j,kxjxk +
n

∑

j=1

βi,jxj + αi ,

for 1 ≤ i ≤ m; 1 ≤ j ≤ k ≤ n and given αi, βi,j , γi,j,k ∈ F. Then, we verify that
pi = yi holds for all i ∈ {1, . . . , m}. Obviously, all operations can be efficiently
computed. The total number of operations takes time O(mn2).

2.4 Description of the Selected Systems

Based on [14] and some newer results, we have selected the following suitable
candidates for efficient implementation of signature schemes: enhanced TTS,
amended TTS, Unbalanced Oil and Vinegar and Rainbow. Systems of the big-
field classes HFE (Hidden Field Equations), MIA (Matsumoto Imai Scheme A)
and the mixed-field class ℓIC — ℓ-Invertible Cycle [8] were excluded as results
from their software implementation show that they cannot be implemented as
efficiently as schemes from the small-field classes, i.e. enTTS, amTTS, UOV and
Rainbow. The proposed schemes and parameters are summarised in Table 1.

Table 1. Proposed Schemes and Parameters

q n m τ K Solver

Unbalanced Oil 256 30 10 0.003922 10 1 × K = 10
and Vinegar (UOV) 60 20 20 1 × K = 20

Rainbow 256 42 24 0.007828 12 2 × K = 12
enhanced TTS (v1) 256 28 20 0.000153 9 2 × K = 9

(v2) 0.007828 10 2 × K = 10
amended TTS 256 34 24 0.011718 4,10 1 × K = 4, 2 × K = 10

Unbalanced Oil and Vinegar (UOV).

p′i(x
′
1, . . . , x

′
n) :=

n−m
∑

j=1

n
∑

k=j

γ′
i,j,kx′

jx
′
k for i = 1 . . . v1

Unbalanced Oil and Vinegar Schemes were introduced in [10, 11]. Here we have
γ ∈ F, i.e. the polynomials p are over the finite field F. In this context, the
variables x′

i for 1 ≤ i ≤ n − m are called the “vinegar” variables and x′
i for

n − m < i ≤ n the “oil” variables. We also write o := m for the number of
oil variables and v := n − m = n − o for the number of vinegar variables. To
invert UOV, we need to assign random values to the vinegar variables x′

1, . . . , x
′
v

and obtain a linear system in the oil variables x′
v+1, . . . , x

′
n. All in all, we need

to solve a m × m system and have hence K = m. The probability that we do

not obtain a solution for this system is τUOV = 1 −
Qm−1

i=0 qm
−qi

qm2 as there are

qm2

matrices over the finite field F with q := |F| elements and
∏m−1

i=0 qm − qi

invertible ones [14].
Taking the currently known attacks into account, we derive the following

secure choice of parameters for a security level of 280:

– Small datagrams: m = 10, n = 30, τ ≈ 0.003922 and one K = 10 solver
– Hash values: m = 20, n = 60, τ ≈ 0.003922 and one K = 20 solver

The security has been evaluated using the formula O(qv−m−1m4) =
O(qn−2m−1m4). Note that the first version (i.e. m = 10) can only be used
with messages of less than 80 bits. However, such datagrams occur frequently
in applications with power or bandwidth restrictions, hence we have noted this
special possibility here.

Rainbow. Rainbow is the name for a generalisation of UOV [7]. In particular,
we do not have one layer, but several layers. This way, we can reduce the number
of variables and hence obtain a faster scheme when dealing with hash values.
The general form of the Rainbow central map is given below.

p′i(x
′
1, . . . , x

′
n) :=

vl
∑

j=1

vl+1
∑

k=j

γ′
i,j,kx′

jx
′
k for i = vl . . . vl+1, 1 ≤ l ≤ L

We have the coefficients γ ∈ F, the layers L ∈ N and the vinegar splits v1 <
. . . < vL+1 ∈ N with n = vL+1. To invert Rainbow, we follow the strategy for
UOV — but now layer for layer, i.e. we pick random values for x1, . . . , xv1 , solve
the first layer with an (v2 − v1) × (v2 − v1)-solver for xv1+1, . . . , xv2 , insert the
values x1, . . . , xv2 into the second layer, solve second layer with an (v3 − v2) ×
(v3 − v2)-solver for xv2+1, . . . , xv3 until the last layer L. All in all, we need to
solve sequentially L times (vl − vl−1) × (vl − vl−1) systems for l = 2 . . . L + 1.
The probability that we do not obtain a solution for this system is τrainbow =

1 −
∏L

l=1

Qvl+1−vl
i=0 q

vl+1−vl−qi

q
vl+1−v2

l
using a similar argument as in Sec. 2.4.

Taking the latest attack from [3] into account, we obtain the parameters
L = 2, v1 = 18, v2 = 30, v3 = 42 for a security level of 280, i.e. a two layer
scheme 18 initial vinegar variables and 12 equations in the first layer and 12
new vinegar variables and 12 equations in the second layer. Hence, we need two
K = 12 solvers and obtain τ ≈ 0.007828

amended TTS (amTTS). The central polynomials P ′ ∈ MQ(Fn, Fm) for
m = 24, n = 34 in amTTS [6] are defined as given below:

p′i := x′
i + α′

ix
′
σ(i) +

8
∑

j=1

γ′
i,jx

′
j+1x

′
11+(i+j mod 10) , for i = 10 . . . 19;

p′i := x′
i + α′

ix
′
σ(i) + γ′

0,ix
′
1x

′
i +

8
∑

j=1

γ′
i,jx

′
15+(i+j+4 mod 8)j+1x

′
π(i,j) , for i = 20 . . .23;

p′i := x′
i + γ′

0,ix
′
0x

′
i +

9
∑

j=1

γ′
i,jx

′
24+(i+j+6 mod 10)j+1x

′
π(i,j) , for i = 24 . . .33.

We have α, γ ∈ F and σ, π permutations, i.e. all polynomials are over the finite
field F. We see that they are similar to the equations of Rainbow (Sec. 2.4) — but
this time with sparse polynomials. Unfortunately, there are no more conditions
given on σ, π in [6] — we have hence picked one suitable permutation for our
implementation.

To invert amTTS, we follow the sames ideas as for Rainbow — except with
the difference that we have to invert twice a 10 × 10 system (i = 10 . . .19 and
24 . . . 33) and once a 4 × 4 system, i.e. we have K = 10 and K = 4. Due to the

a1,1 a2,1 am−1,1 am,1

a1,m a2,m am−1,m am,m

b1

bm

x1

xm

· · ·

· · ·

· · ·

· · ·

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 2. Signature Core Building Block: Systolic Array LSE Solver (Structure)

structure of the equations, the probability for not getting a solution here is the
same as for a 3-Layer Rainbow scheme with v1 = 10, v2 = 20, v3 = 24, v4 = 34
variables, i.e. τamTTS = τRainbow(10, 20, 24, 34) ≈ 0.011718.

enhanced TTS (enTTS). The overall idea of enTTS is similar to amTTS,
m = 20, n = 28. For a detailed description of enTTS see [16, 15]. According to
[6], enhanced TTS is broken, hence we do not advocate its use nor did we give a
detailed description in the main part of this article, However, it was implemented
in [17], so we have included it here to allow the reader a comparison between
the previous implementation and ours.

3 Building Blocks for MQ-Signature Cores

Considering Section 2 we see that in order to generate a signature using an
MQ-signature scheme we need the following common operations:

– computing affine transformations (i.e. vector addition and matrix-vector
multiplication),

– (partially) evaluating multivariate polynomials over GF(2k),

– solving linear systems of equations (LSEs) over GF(2k).

In this section we describe the main computational building blocks for realizing
these operations. Using these generic building blocks we can compose a signature
core for any of the presented MQ-schemes (cf Section 4).

3.1 A Systolic Array LSE Solver for GF(2k)

In 1989, Hochet et al. [9] proposed a systolic architecture for Gaussian elimi-
nation over GF(p). They considered an architecture of simple processors, used
as systolic cells that are connected in a triangular network. They distinguish
two different types of cells, main array cells and the boundary cells of the main
diagonal.

Wang and Lin followed this approach and proposed an architecture in 1993
[13] for computing inverses over GF(2k). They provided two methods to effi-
ciently implement the Gauss-Jordan algorithm over GF(2) in hardware. Their
first approach was the classical systolic array approach similar to the one of
Hochet et al.. It features a critical path that is independent of the size of the
array. A full solution of an m × m LSE is generated after 4m cycles and every
m cycles thereafter. The solution is computed in a serial fashion.

The other approach, which we call a systolic network, allows signals to prop-
agate through the whole architecture in a single clock cycle. This allows the
initial latency to be reduced to 2m clock cycles for the first result. Of course
the critical path now depends of the size of the whole array, slowing the design
down for huge systems of equations. Systolic arrays can be derived from systolic
networks by putting delay elements (registers) into the signal paths between the
cells.

We followed the approach presented in [13] to build an LSE solver architec-
ture over GF(2k). The biggest advantage of systolic architectures with regard
to our application is the low amount of cells compared to other architectures
like SMITH [4]. For solving a m × m LSE, a systolic array consisting of only m
boundary cells and m(m + 1)/2 main cells is required.

An overview of the architecture is given in Figure 2. The boundary cells
shown in Figure 3 mainly comprise one inverter that is needed for pivoting
the corresponding line. Furthermore, a single 1-bit register is needed to store
whether a pivot was found. The main cells shown in Figure 4 comprise of one
GF(2k) register, a multiplier and an adder over GF(2k). Furthermore, a few
multiplexers are needed. If the row is not initialised yet (Tin = 0), the entering
data is multiplied with the inverse of the pivot (Ein) and stored in the cell. If
the pivot was zero, the element is simply stored and passed to the next row in
the next clock cycle. If the row is initialised (Tin = 1) the data element ai,j+1

of the entering line is reduced with the stored data element and passed to the
following row. Hence, one can say that the k-th row of the array performs the
k-th iteration of the Gauss-Jordan algorithm.

The inverters of the boundary cells contribute most of the delay time tdelay

of the systolic network. Instead of introducing a full systolic array, it is already
almost as helpful to simply add delay elements only between the rows. This

GF(2k)-Inv

1-Bit Reg

Ein

Eout

Crin

Tout

Fig. 3. Pivot Cell of the Systolic Array LSE Solver

seems to be a good trade-off between delay time and the number of registers
used. This approach we call systolic lines.

As described earlier, the LSEs we generate are not always solvable. We can
easily detect an unsolvable LSE by checking the state of the boundary cells after
3m clock cycles (m clock cycles for a systolic network, respectively). If one of
them is not set, the system is not solvable and a new LSE needs to be generated.
However, as shown in Table 1, this happens very rarely. Hence, the impact on the
performance of the implementation is negligible. Table 2 shows implementation
results of the different types of systolic arrays for different sizes of LSEs (over
GF(28)) on different FPGAs.

Table 2. Implementation results for different types of systolic arrays and different sizes
of LSEs over GF(28) (tdelay in ns, FMax in MHz)

Size on FPGA Speed Size on ASIC
Engine Slices LUTs FFs tdelay FMax GE (estimated)

Systolic arrays on a Spartan-3 device (XC3S1500, 300 MHz)
Systolic Array (10x10) 2,533 4,477 1,305 12.5 80 38,407
Systolic Array (12x12) 3,502 6,160 1,868 12.65 79 53,254
Systolic Array (20x20) 8,811 15,127 5,101 11.983 83 133,957

Alternative systolic arrays on a Spartan-3
Systolic Network (10x10) 2,251 4,379 461 118.473 8.4 30,272
Systolic Lines (12x12) 3,205 6,171 1,279 13.153 75 42,013

Systolic arrays on a Virtex-V device (XC5VLX50-3, 550 MHz)
Systolic Array (10x10) 1314 3498 1305 4.808 207 36,136
Systolic Lines (12x12) 1,534 5,175 1,272 9.512 105 47,853
Systolic Array (20x20) 4552 12292 5110 4.783 209 129,344

GF(2k)-Add

GF(2k)-Mul k-Bit Reg

Ein Eout

Tin Tout

Din

Dout

Fig. 4. Main Cell of the Systolic Array LSE Solver

3.2 Matrix-Vector Multiplier and Polynomial Evaluator

GF(2k)-AddGF(2k)-Add

Tree

GF(2k)-Mul

GF(2k)-Mul

k-Bit Reg

RST

a1

b1

at

bt

c...

Fig. 5. Signature Core Building Block: Combined Matrix-Vector-Multiplier and
Polynomial-Evaluator

For performing matrix-vector multiplication, we use the building block depicted
in Figure 5. In the following we call this block a t-MVM. As you can see a t-MVM
consists of t multipliers, a tree of adders of depth about log2(t) to compute the
sum of all products ai · bi, and an extra adder to recursively add up previously
computed intermediate values that are stored in a register. Using the RST-signal
we can initially set the register content to zero.

To compute the matrix-vector product

A · b =

2

6

4

a1,1 . . . a1,u

...
...

av,1 . . . av,u

3

7

5
·

2

6

4

b1

...
bu

3

7

5

using a t-MVM, where t is chosen in a way that it divides1 u, we proceed row
by row as follows: We set the register content to zero by using RST. Then we
feed the first t elements of the first row of A into the t-MVM, i.e. we set a1 =
a1,1, . . . , at = a1,t, as well as the first t elements of the vector b. After the

register content is set to
∑t

i=1 a1,ibi, we feed the next t elements of the row and
the next t elements of the vector into the t-MVM. This leads to a register content
corresponding to

∑2t
i=1 a1,ibi. We go on in this way until the last t elements of

the row and the vector are processed and the register content equals
∑u

i=1 a1,ibi.
Thus, at this point the data signal c corresponds to the first component of the
matrix-vector product. Proceeding in a analogous manner yields the remaining
components of the desired vector. Note that the u

t
parts of the vector b are re-

used in a periodic manner as input to the t-MVM. In Section 3.4 we describe a
building block, called word rotator, providing these parts in the required order
to the t-MVM without re-loading them each time and hence avoid a waste of
resources.

Therefore, using a t-MVM (and an additional vector adder) it is clear how
to implement the affine transformations S : F

n → F
n and T : F

m → F
m which

are important ingredients of an MQ-scheme. Note that the parameter t has a
significant influence on the performance of an implementation of such a scheme
and is chosen differently for our implementations (as can be seen in Section 4).

Besides realizing the required affine transformations, a t-MVM can be re-
used to implement (partial) polynomial evaluation. It is quite obvious that
evaluating the polynomials p′i (belonging to the central map P ′ of a MQ-
scheme, cf Section 2) with the vinegar variables involves matrix-vector mul-
tiplications as the main operations. For instance, consider a fixed polynomial
p′i(x

′
1, . . . , x

′
n) =

∑n−m
j=1

∑n
k=j γ′

i,j,kx′
jx

′
k from the central map of UOV that

we evaluate with random values b1, . . . , bn−m ∈ F for the vinegar variables
x′

1, . . . , x
′
n−m. Here we like to compute the coefficients βi,0, βi,n−m+1, . . . , βi,n

of the linear polynomial

p′i(b1, . . . , bn−m, x′
n−m+1, . . . , x

′
n) = βi,0 +

n
∑

j=n−m+1

βi,jx
′
j .

We immediately obtain the coefficients of the non-constant part of this linear
polynomial, i.e. βi,n−m+1, . . . , βi,n, by computing the following matrix-vector
product:

2

6

4

γ′

i,1,n−m+1 . . . γ′

i,n−m,n−m+1

...
...

γ′

i,1,n . . . γ′

i,n−m,n

3

7

5
·

2

6

4

b1

...
bn−m

3

7

5
=

2

6

4

βi,n−m+1

...
βi,n

3

7

5
(1)

1 Note that in the case that t does not divide u we can nevertheless use a t-MVM to
compute the matrix-vector product by setting superfluous input signals to zero.

GF(2k)-Add

GF(2k)-Mul

k-Bit Regk-Bit Regk-Bit Regk-Bit Reg

a1 a2 aw−1 awa0

βi,jαi,jbjy′

i

· · ·

Fig. 6. Signature Core Building Block: Equation Register

Also the main step for computing βi,0 can be written as a matrix-vector product:

2

6

6

6

6

6

4

γ′

i,1,1 0 0 . . . 0
γ′

i,1,2 γ′

i,2,2 0 . . . 0
...

...
. . .

...
γ′

i,1,n−m−1 γ′

i,2,n−m−1 . . . γ′

i,n−m−1,n−m−1 0
γ′

i,1,n−m γ′

i,2,n−m . . . γ′

i,n−m,n−m

3

7

7

7

7

7

5

·

2

6

4

b1

...
bn−m

3

7

5
=

2

6

4

αi,1

...
αi,n−m

3

7

5
(2)

Of course, we can exploit the fact that the above matrix is a lower triangular
matrix and we actually do not have to perform a full matrix-vector multiplica-
tion. This must simply be taken into account when implementing the control
logic of the signature core. In order to obtain βi,0 from (αi,1 . . . αi,n−m)T we
have to perform the following additional computation:

βi,0 = αi,1b1 + . . . + αi,n−mbn−m .

This final step is performed by another unit called equation register which is
presented in the next section.

3.3 Equation Register

The Equation Register building block is shown in Figure 6. A w-ER essentially
consists of w + 1 register blocks each storing k bits as well as one adder and one
multiplier. It is used to temporarily store parts of an linear equation until this
equation has been completely generated and can be transferred to the systolic
array solver.

GF(2k) GF(2k) GF(2k)

Reg-Block Reg-Block Reg-Block

R1 R2 Rr

SELECT

x

b

bj

CTRL-1 CTRL-2 CTRL-r CTRL-SELECT

· · ·

· · ·

· · ·

Fig. 7. Signature Core Building Block: Word Rotator

For instance, in the case of UOV we consider linear equations of the form

p′i(b1, . . . , bn−m, x′
n−m+1, . . . , x

′
n) = y′

i ⇔
n−m
∑

j=1

αi,jbj − y′
i +

n
∑

j=n−m+1

βi,jx
′
j = 0

where we used the notation from Section 3.2. To compute and store the constant
part

∑n−m
j=1 αi,jbj − y′

i of this equation the left-hand part of an m-ER is used
(see Figure 6): The respective register is initially set to y′

i. Then the values αi,j

are computed one after another using a t-MVM building block and fed into
the multiplier of the ER. The corresponding values bj are provided by a t-WR
building block which is presented in the next section. Using the adder, y′

i and the
products can be added up iteratively. The coefficients βi,j of the linear equation
are also computed consecutively by the t-MVM and fed into the shift-register
that is shown on the right-hand side of Figure 6.

3.4 Word Rotator

A word cyclic shift register will in the following be referred to as word rotator
(WR). A (t, r)-WR, depicted in Figure 7, consists of r register blocks storing
the u

t
parts of the vector b involved in the matrix vector products considered in

Section 3.2. Each of these r register blocks stores t elements from GF(2k), hence
each register block consists of t k-bit registers. The main task of a (t, r)-WR is
to provide the correct parts of the vector b to the t-MVM at all times. The r
register blocks can be serially loaded using the input bus x. After loading, the r
register blocks are rotated at each clock cycle. The cycle length of the rotation
can be modified using the multiplexers by providing appropriate control signals.
This is especially helpful for the partial polynomial evaluation where due to
the triangularity of the matrix in Equation (2), numerous operations can be
saved. Here, the cycle length is

⌈

j
t

⌉

, where j is the index of the processed row.
The possibility to adjust the cycle length is also necessary in the case r > u

t

frequently appearing if we use the same (t, r)-WR, i.e., fixed parameters t and

r, to implement the affine transformation T , the polynomial evaluations, and the
affine transformation S. Additionally, the WR provides bj to the ER building
block which is needed by the ER at the end of each rotation cycle. Since this bj

value always occurs in the last register block of a cycle, the selector component
(right-hand side of Figure 7) can simply load it and provide it to the ER.

4 Performance Estimations of Small-Field MQ-Schemes

in Hardware

We implemented the most crucial building blocks of the architecture as described
in Section 3 (systolic structures, word rotators, matrix-vector multipliers of dif-
ferent sizes). In this section, the estimations of the hardware performance for
the whole architecture are performed based on those implementation results.
The power of the approach and the efficiency of MQ-schemes in hardware is
demonstrated at the example of UOV, Rainbow, enTTS and amTTS as speci-
fied in Section 2.

Side-Note: The volume of data that needs to be imported to the hardware
engine for MQ-schemes may seem too high to be realistic in some applications.
However, the contents of the matrices and the polynomial coefficients (i.e. the
private key) does not necessarily have to be imported from the outside world
or from a large on-board memory. Instead, they can be generated online in
the engine using a cryptographically strong pseudo-random number generator,
requiring only a small, cryptographically strong secret, i.e. some random bits.

4.1 UOV

We treat two parameter sets for UOV as shown in Table 3: n = 60, n = 20
(long-message UOV) as well as n = 30, m = 10 (short-message UOV). In UOV
signature generation, there are three basic operations: linearising polynomials,
solving the resulting equation system, and an affine transform to obtain the
signature. The most time-consuming operation of UOV is the partial evaluation
of the polynomials p′i, since their coefficients are nearly random. However, as
already mentioned in the previous section, for some polynomials approximately
one half of the coefficients for the polynomials are zero. This somewhat simplifies
the task of linearization.

For the linearization of polynomials in the long-message UOV, 40 random
bytes are generated to invert the central mapping first. To do this, we use a
20-MVM, a (20,3)-WR, and a 20-ER. For each polynomial one needs about 100
clock cycles (40 clocks to calculate the linear terms and another 60 ones to
compute the constants, see (1) and (2)) and obtains a linear equation with 20
variables. As there are 20 polynomials, this yields about 2000 clock cycles to
perform this step.

After this, the 20 × 20 linear system over GF(28) is solved using a 20 × 20
systolic array. The signature is then the result of this operation which is returned
after about 4×20=80 clock cycles. Then, the 20-byte solution is concatenated

with the randomly generated 40 bytes and the result is passed through the
affine transformation, whose major part is a matrix-vector multiplication with
a 60×60-byte matrix. To perform this operations, we re-use the 20-MVM and
a (20,3)-WR. This requires about 180 cycles of 20-MVM and 20 bytes of the
matrix entries to be input in each cycle.

For the short-message UOV, one has a very similar structure. More precisely,
one needs a 10-MVM, a (10,3)-WR, a 10-ER and a 10×10 systolic array. The
design requires approximately 500 cycles for the partial evaluation of the poly-
nomials, about 40 cycles to solve the resulting 10×10 LSE over GF(28) as well
as another 90 cycles for the final affine map.

Note that the critical path of the Gaussian elimination engine is much longer
than that for the remaining building blocks. So this block represents the per-
formance bottleneck in terms of frequency and hardware complexity. Thus, the
maximal frequency for both UOV variants will be bounded by about 200 MHz for
XC5VLX50-3 and about 80 MHz for XC3S1500. See Table 3 for our estimations.

4.2 Rainbow

In the version of Rainbow we consider, the message length is 24 byte. That is,
a 24-byte matrix-vector multiplication has to be performed first. One can take
a 6-MVM and a (6,7)-WR which require about 96 clock cycles to perform the
computation. Then the first 18 variables of x′

i are randomly fixed and 12 first
polynomials are partially evaluated. This requires about 864 clock cycles. The
results are stored in a 12-ER. After this, the 12×12 system of linear equations
is solved. This requires a 12×12 systolic array over GF(28) which outputs the
solution after 48 clock cycles. Then the last 12 polynomials are linearised using
the same matrix-vector multiplier and word rotator based on the 18 random
values previously chosen and the 12-byte solution. This needs about 1800 clock
cycles. This is followed by another run of the 12×12 systolic array with the same
execution time of about 48 clock cycles. At the end, roughly 294 more cycles are
spent performing the final affine transform on the 42-byte vector. See Table 3
for some concrete performance figures in this case.

4.3 enTTS and amTTS

Like in Rainbow, for enTTS two vector-matrix multiplications are needed at
the beginning and at the end of the operation with 20- and 28-byte vectors
each. We take a 10-MVM and a (10,3)-WR for this. The operations require
40 and 84 clock cycles, respectively. One 9-ER is required. Two 10×10 linear
systems over GF(28) need to be solved, requiring about 40 clock cycles each. The
operation of calculating the linearization of the polynomials can be significantly
optimised compared to the generic UOV or Rainbow (in terms of time) which
can drastically reduce the time-area product. This behaviour is due to the special
selection of polynomials, where only a small proportion of coefficients is non-zero.

After choosing 7 variables randomly, 10 linear equations have to be generated.
For each of these equations, one has to perform only a few multiplications in

GF(28) which can be done in parallel. This requires about 10 clock cycles. After
this, another variable is fixed and a further set of 10 polynomials is partially
evaluated. This requires about 10 further cycles.

In amTTS, which is quite similar to enTTS, two affine maps with 24- and
34-byte vectors are performed with a 12-MVM and a (12,3)-WR yielding 48
and 102 clock cycles, respectively. Two 10×10 and one 4×4 linear systems have
to be solved requiring for a 10×10 systolic array (twice 40 and once 16 clock
cycles). Moreover, a 10-ER is needed. The three steps of the partial evaluation
of polynomials requires roughly 25 clock cycles in this case. See Table 3 for our
estimations on enTTS and amTTS.

Table 3. Comparison of hardware implementations for ECC and our performance es-
timations for MQ-schemes based on the implementations of the major building blocks
(F=frequency, T=Time, L=luts, S=slices, FF=flip-flops, A=area)

Implementation F, MHz T, µs L/S/FF A,kGE L×T

ECC over GF(2163), [1], NIST, XC2V200 100 41 8,300/-/- - 71.3

ECC over GF(2163), [12], NIST, XCV200E-7 48 68.9 25,763/-/- - 372.3

UOV n = 60, m = 20, XC5VLX50-3 209 11 15,497/4,188/4,999 166.6 35.7
UOV n = 60, m = 20, XC3S1500 83 27.7 21,167/9,203/6,828 227.5 122.8
UOV n = 30, m = 10, XC5VLX50-3 207 3.1 5,276/1,265/1,487 56.7 3.4
UOV n = 30, m = 10, XC3S1500 80 8 8,601/4,072/2,916 92.4 14.4

Rainbow n = 42, m = 24, XC5VLX50-3 105 30.3 5,929/1,681/1,869 63.7 37.6
Rainbow n = 42, m = 24, XC3S1500 79 39.1 7,114/1,968/2,377 76.4 58.2

enTTS n = 24, m = 20, [17], CMOS 0.25 µm 80# 291 - 22 -
enTTS n = 24, m = 20, XC5VLX50-3 207 1.1 4,341/1,284/1,537 44.2 1.0
enTTS n = 24, m = 20, XC3S1500 80 2.8 5,423/1,248/1,986 55.9 3.2
amTTS n = 34, m = 24, XC5VLX50-3 207 1.5 4,471/1,412/1,678 45.7 1.4
amTTS n = 34, m = 24, XC3S1500 80 3.9 6,034/2,920/2,395 61.6 4.9

For comparison purposes we assume that the clock frequency for the design is 80 MHz.

5 Comparison and Conclusions

Our implementation results (as well as the estimations for the optimisations in
case of enTTS and amTTS) are compared to the scalar multiplication in the
group of points of elliptic curves with field bitlengths in the rage of 160 bit
(corresponding to the security level of 280) over GF(2k), see Table 3. A good
survey on hardware implementations for ECC can be found in [5].

Even the most conservative design, i.e. long-message UOV, can outperform
some of the most efficient ECC implementations in terms of TA-product on some
hardware platforms. More hardware-friendly designs such as the short-message
UOV or Rainbow provide a considerable advantage over ECC. The more aggres-
sively designed enTTS and amTTS allow for extremely efficient implementations
having a more than 70 or 50 times lower TA-product, respectively. Though the
metric we use is not optimal, the results indicate that MQ-schemes perform
better than elliptic curves in hardware with respect to the TA-product and are
hence an interesting option in cost- or size-sensitive areas.

Acknowledgements. The authors would like to thank our college Christof Paar
for fruitful discussions and helpful remarks as well as Sundar Balasubramanian,
Harold Carter (University of Cincinnati, USA) and Jintai Ding (University of
Cincinnati, USA and Technical University of Darmstadt, Germany) for exchang-
ing some ideas while working on another paper about MQ-schemes.

References

1. B. Ansari and M. Anwar Hasan. High performance architecture of elliptic curve
scalar multiplication. Technical report, CACR, January 2006.

2. S. Balasubramanian, A. Bogdanov, A. Rupp, J. Ding, and H. W. Carter. Fast
multivariate signature generation in hardware: The case of Rainbow. In ASAP

2008. to appear.
3. O. Billet and H. Gilbert. Cryptanalysis of rainbow. InSCN 2006, volume 4116 of

LNCS, pages 336–347. Springer, 2006.
4. A. Bogdanov, M. Mertens, C. Paar, J. Pelzl, and A. Rupp. A parallel hardware

architecture for fast gaussian elimination over GF(2). In FCCM 2006, 2006.
5. G. Meurice de Dormale and J.-J. Quisquater. High-speed hardware implementa-

tions of elliptic curve cryptography: A survey. Journal of Systems Architecture,
53:72–84, 2007.

6. J. Ding, L. Hu, B.-Y. Yang, and J.-M. Chen. Note on design criteria for rainbow-
type multivariates. Cryptology ePrint Archive http://eprint.iacr.org, Report
2006/307, 2006.

7. J. Ding and D. Schmidt. Rainbow, a new multivariable polynomial signature
scheme. In ACNS 2005, volume 3531 of LNCS, pages 164–175. Springer, 2005.

8. J. Ding, C. Wolf, and B.-Y. Yang. ℓ-invertible cycles for multivariate quadratic
public key cryptography. In PKC 2007, volume 4450 of LNCS, pages 266–281,
Springer, 2007.

9. B. Hochet, P. Quinton, and Y. Robert. Systolic Gaussian Elimination over GF (p)
with Partial Pivoting. IEEE Transactions on Computers, 38(9):1321–1324, 1989.

10. A. Kipnis, J. Patarin, and L. Goubin. Unbalanced Oil and Vinegar signature
schemes. In EUROCRYPT 1999, volume 1592 of LNCS. Springer, 1999.

11. A. Kipnis, J. Patarin, and L. Goubin. Unbalanced Oil and Vinegar signature
schemes — extended version, 2003. 17 pages, citeseer/231623.html, 2003-06-11.

12. C. Shu, K. Gaj, and T. El-Ghazawi. Low latency elliptic curve cryptography
accelerators for nist curves on binary fields. In IEEE FPT’05, 2005.

13. C.L. Wang and J.L. Lin. A Systolic Architecture for Computing Inverses and
Divisions in Finite Fields GF (2m). IEEE TransComp, 42(9):1141–1146, 1993.

14. C. Wolf and B. Preneel. Taxonomy of public key schemes based on the problem
of multivariate quadratic equations. Cryptology ePrint Archive http://eprint.

iacr.org, Report 2005/077, 12th of May 2005.
15. B.-Y. Yang and J.-M. Chen. Rank attacks and defence in Tame-like multivariate

PKC’s. Cryptology ePrint Archive http://eprint.iacr.org, Report 2004/061,
29rd September 2004.

16. B.-Y. Yang and J.-M. Chen. Building secure tame-like multivariate public-key
cryptosystems: The new TTS. In ACISP 2005, volume 3574 of LNCS, pages 518–
531. Springer, July 2005.

17. B.-Y. Yang, D. C.-M. Cheng, B.-R. Chen, and J.-M. Chen. Implementing mini-
mized multivariate public-key cryptosystems on low-resource embedded systems.
In SPC 2006, volume 3934 of LNCS, pages 73–88. Springer, 2006.

