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Abstract. In this paper, two efficient multiple-differential methods to
detect collisions in the presence of strong noise are proposed - binary and
ternary voting. After collisions have been detected, the cryptographic key
can be recovered from these collisions using such recent cryptanalytic
techniques as linear [1] and algebraic [2] collision attacks. We refer to
this combination of the collision detection methods and cryptanalytic
techniques as multiple-differential collision attacks (MDCA).
When applied to AES, MDCA using binary voting without profiling
requires about 2.7 to 13.2 times less traces than the Hamming-weight
based CPA for the same implementation. MDCA on AES using ternary
voting with profiling and linear key recovery clearly outperforms CPA
by requiring only about 6 online measurements for the range of noise
amplitudes where CPA requires from 163 to 6912 measurements. These
attacks do not need the S-box to be known. Moreover, neither key nor
plaintexts have to be known to the attacker in the profiling stage.

Key words: side-channel attacks, collision detection, multiple-differential
collision attacks, AES, DPA

1 Introduction

Side-channel attacks have become mainstream since their first publication in [3].
Differential power analysis (DPA) [4] and correlation power analysis (CPA) [5],
a generalization of DPA, are probably the most wide-spread practical attacks
on numerous cryptographic embedded systems such as smart-card microcon-
trollers [6] and dedicated lightweight ASICs [7].

Collision attacks represent another class of side-channel attack techniques
being essentially based on the cryptanalytic properties of attacked cryptographic
algorithms. Collision attacks on block ciphers were proposed in [8] for DES. The
idea is due to Hans Dobbertin and was also discussed in the early work [9]. Since
then there has been quite a bit of research in this area: [10] improves the collision
attack on DES, [11] applies the technique to AES, [12] suggests a collision attack
on an AES-based MAC construction, [13] combines collision attacks on AES with
differential cryptanalysis to overcome several masked rounds.

abogdanov@crypto.rub.de
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Recently such improvements as linear collision attacks [1] and algebraic col-
lision attacks [2] for AES have been proposed which require a very low number
of measurements for the key recovery procedure to succeed with a high proba-
bility and within a feasible time span. However, these attacks as well as those in
[11] and [12] are rather theoretical being substantially based on the assumption
that the implementation allows the attacker to reliably detect if two given S-box
instances process the same value.

The contribution of this paper is two-fold. On the theoretical side, two col-
lision detection techniques are proposed called binary and ternary voting. We
refer to the combination of the statistical collision detection methods and crypt-
analytic collision attacks as multiple-differential collision attacks (MDCA). On
the practical side, we apply MDCA to a hardware implementation of AES for a
wide range of noise amplitudes using advanced power consumption simulation.

MDCA works in the two scenarios: where profiling is either allowed (ternary
voting) or not allowed (ternary voting without profiling and binary voting).
Note that the notion of profiling for our collision detection techniques is different
from that for template attacks [14], [15]. While template attacks require detailed
knowledge of the implementation in the profiling stage, the only information
needed in the profiling stage of the collision detection methods is the time interval
when the S-boxes are executed.

MDCA based on the binary voting method for the given AES implemen-
tation needs about 2.7 to 13.2 times less traces than Hamming-weight based
CPA in the range of noise levels we studied. While MDCA based on ternary
voting without profiling does not exhibit any advantages over CPA, the required
number of online measurements for ternary voting with profiling is considerably
lower than that for CPA for all noise amplitudes we investigated. For instance,
if ≤ 106 profiling measurements are allowed, MDCA based on ternary voting
with profiling and linear key recovery requires only 6 online measurements in
the noise amplitude range where the standard CPA would require from 163
to 6912 measurements. A further advantage of the proposed collision detection
techniques combined with the linear collision attacks is that they work with se-
cret S-boxes. Moreover, ternary voting with profiling also requires neither keys
nor inputs/outputs to be known in the profiling stage. However, as already men-
tioned, the attacker has to know when the S-boxes are executed within the
implementation.

The remainder of the paper is organized as follows. Section 2 discusses the at-
tack scenarios, introduces some notation and briefly mentions the linear collision
attacks. Section 3 presents the multiple-differential collision detection techniques
and theoretically investigates some of their properties. Section 4 characterizes
the underlying least-square based binary comparison test for an AES implemen-
tation, applies MDCA to this implementation and compares the results to CPA.
We conclude in Section 5.
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2 Preliminaries

2.1 Attack Flows

There are two basic attack scenarios we consider: collision attacks without pro-
filing and collision attacks with profiling. A collision attack without profiling
consists of an online stage and an offline stage, while a collision attack with
profiling additionally contains a profiling stage.

In the online stage, some random known 16-byte plaintexts Pi = {pi
j}16

j=1,

pi
j ∈ GF (28), are sent to the attacked device implementing AES, where they

are added with the first 16-byte subkey K = {kj}16
j=1, kj ∈ GF (28). Then each

of the 16 values ai
j = pi

j ⊕ kj , ai
j ∈ GF (28), is processed by the AES S-box.

The online traces Ti = {τ i
j}16

j=1, τ i
j = (τ i

j,1, . . . , τ
i
j,l) ∈ R

l, corresponding to these
S-box calculations are acquired by the measurement equipment (e.g. they can
contain such side-channel parameters as power consumption or electromagnetic
radiation).

In the optional profiling stage, the device is triggered to perform a number of
cryptographic operations with some unknown profiling inputs for some unknown
keys. The profiling traces are acquired by the measurement equipment. The
profiling stage takes place before the online stage and can be reused by several
attacks on the same implementation.

The offline stage recovers the key. This occurs in two steps. First, collisions
are detected in the online traces Ti by means of signal processing. The collision
detection with profiling additionally uses the profiling traces. Second, an AES
key candidate is obtained using the detected collisions and the corresponding
inputs Pi. Note that one or several plaintext-ciphertext pairs produced with the
attacked key may be needed to identify the correct key candidate in the offline
stage.

If averaging is applied, the attacker has to be able to send several unknown
equal inputs to the device and to fix some unknown key for these measurements
in the profiling stage. Additionally, he has to be able to send several copies of
the known random plaintexts to the implementation in the online stage.

The attack complexity is defined by three parameters. Cprofiling is the number
of inputs to AES for which measurements have to be performed in the profiling
stage (number of profiling measurements). Obviously, Cprofiling = 0 for colli-
sion attacks without profiling. Conline is the number of inputs to AES for which
measurements have to be performed in the online stage (number of online mea-
surements). Coffline is the computational complexity of the key recovery, that
is, the number of operations needed to solve the resulting systems of linear or
nonlinear equations and to identify the most probable solution.

2.2 Key Recovery from S-Box Collisions

AES-128 performs 160 S-box operations in the data path for each run, which are
different for different inputs, and 40 additional S-box computations in the key
schedule, which remain the same for a given key. If two of these S-box instances
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in one or two distinct runs process the same value, there is a generalized internal
collision. The power of the improved collision attacks [1] on AES origins from
the fact that the number of generalized collisions grows quadratically with the
linear increase of the number of unique inputs considered. So, even if the key
schedule is ignored, there are about 40.9 colliding S-boxes for just one input and
already about 555.2 collisions for 5 inputs.

When collisions have been detected, the AES key has to be recovered. In this
paper we use the linear collision attacks [1] for this purpose. A linear collision
in AES is a generalized collision within the first AES round. Given such a linear
collision, the attacker obtains a binomial linear equation over GF (28) of the form
kj1 ⊕ kj2 = pi1

j1
⊕ pi2

j2
for j1 6= j2.

Let γ be the number of different random inputs Pi to the algorithm for which
collisions have to be detected in order for the key to be recovered with probability
π within Coffline operations. In this paper, we apply the variant of linear collision
attacks with γ = 6, π = 0.854 and Coffline equal to 237.15 encryptions, see [1] for
details and [2] for some more advanced techniques.

3 Multiple-Differential Collision Detection

The goal of the collision detection is to decide if two S-box instances in AES
have had equal inputs based on side-channel traces.

For the direct binary comparison of S-box instances, the least-square based
test was used in the original collision attack on AES in [11], which is essentially
a computation of the Euclidean distance between two real-valued traces. Its
resolution can be increased by suppressing noise through averaging.

However, there are other collision detection methods substantially using the
simple binary comparison, two of which - binary voting and ternary voting - we
propose in this section. Both methods can be combined with averaging. Addi-
tionally, the ternary voting test enables performance gains through profiling.

3.1 Binary Comparison

Definition. Given two traces τ i1
j1

= (τ i1
j1,1, . . . , τ

i1
j1,l) ∈ R

l and τ i2
j2

= (τ i2
j2,1, . . . , τ

i2
j2,l) ∈

R
l, respectively corresponding to S-box j1 for plaintext Pi1 and to S-box j2 for

plaintext Pi2 , the binary comparison test TBC can be defined as:

T
BC(τ i1

j1
, τ i2

j2
) =

{

0 (no collision), if SBC(τ i1
j1

, τ i2
j2

) > Y BC

1 (collision), if SBC(τ i1
j1

, τ i2
j2

) ≤ Y BC ,

where Y BC is a decision threshold and

S
BC(τ i1

j1
, τ i2

j2
) =

l
∑

r=1

(τ i1
j1,r − τ i2

j2,r)
2,
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which can be seen as a correlation characteristic of two reduced templates. Let
TBC be characterized by the following type I and II error probabilities:

α1 = Pr{TBC(τ i1
j1

, τ i2
j2

) = 0|ai1
j1

= ai2
j2
},

α2 = Pr{TBC(τ i1
j1

, τ i2
j2

) = 1|ai1
j1

6= ai2
j2
}.

Note that α1 and α2 depend on the implementation and the value of Y BC .
Of course, there is a strong dependency on the noise as well. See Section 4 for
estimations of α2 with a given α1 for one implementation example and a wide
range of noise amplitudes.

Combination with Averaging. To increase the resolution of the collision
detection one can use averaging. That is, each plaintext is sent t times to the
device. Respectively, t measurements are performed for each plaintext. Then the
obtained traces for each distinct plaintext are averaged. If the noise is due to
normal distribution with the zero mean value and a standard deviation σ, then
the noise amplitude of the trace averaged t times will be σ/

√
t.

3.2 Binary Voting Test

In this subsection we propose a more efficient method to suppress noise which
is called binary voting. Like in averaging, traces for multiple copies of the same
plaintexts are first obtained. However, instead of averaging, the attacker tries to
detect collisions using binary comparison for each pair of the traces and applies
voting to filter for correct ones.

Definition. We have to reliably detect collisions for γ different plaintexts. Then
each of these plaintexts is sent MBV times to the device. So we have a group

τ̃ i
j = {τ i,m

j }MBV

m=1 , τ i,m
j ∈ R

l, of traces for each S-box instance and each plaintext.

That is, the direct application of binary voting requires Conline = γ · MBV

measurements.
The binary voting test is based on the following statistic which uses a binary

comparison test (for instance, the least-square based one as defined above):

S
BV (τ̃ i1

j1
, τ̃ i2

j2
) =

MBV

∑

m=1

T
BC(τ i1,m

j1
, τ i2,m

j2
),

where the multiple traces for two S-box instances are pairwisely compared to
each other. The test TBV to decide if there has been a collision is then defined
as

T
BV (τ̃ i1

j1
, τ̃ i2

j2
) =

{

0 (no collision), if S
BV (τ̃ i1

j1
, τ̃ i2

j2
) < Y BV

1 (collision), if SBV (τ̃ i1
j1

, τ̃ i2
j2

) ≥ Y BV ,

where Y BV is a decision threshold. The idea is that the distribution of statistic
SBV will be different for ai1

j1
= ai2

j2
and for ai1

j1
6= ai2

j2
.
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Properties. As the individual binary comparisons are independent, the distri-
bution of SBV is due to the binomial law with MBV experiments and success
probability p. If ai1

j1
= ai2

j2
, the success probability is p = pe = 1−α1. If ai1

j1
6= ai2

j2
,

it is p = pne = α2. For sufficiently large group sizes MBV , the distribution of
SBV can be approximated by a normal distribution N (MBV p, MBV p(1 − p)).
That is, the problem of collision detection is reduced to the problem of distin-
guishing between two normal distributions in this case. Thus, the required value
of MBV can be obtained using

Proposition 1. Let α1 and α2 be type I and II error probabilities, respectively,
for TBC . Then the number of S-box traces in each group needed to distinguish
between ai1

j1
= ai2

j2
and ai1

j1
6= ai2

j2
using binary voting test TBV can be estimated

as

MBV ≈ (u1−β1

√

α1(1 − α1) + u1−β2

√

α2(1 − α2))
2

(1 − α1 − α2)2
,

where:

– β1 and β2 are the required type I and II error probabilities for TBV ,
– u1−β1

and u1−β2
are quantiles of the standard normal distribution N (0, 1).

Combination with Averaging. The required value of MBV depends on α1

and α2 which in turn can be seen as functions of the noise amplitude σ. For this
reason we will write MBV (σ) where this dependency is important.

The binary voting technique can be combined with averaging. The traces are
first averaged t times. Then the statistic SBV is computed. That is, one deals
with MBV (σ/

√
t) instead of MBV (σ).

Since each plaintext Pi is sent t · MBV (σ/
√

t) times to the device, binary
voting with averaging requires Conline = γ · t · MBV (σ/

√
t) measurements. De-

pending on the concrete implementation and on the range of σ, the measurement
complexity can be reduced, if γ · t · MBV (σ/

√
t) < γ · MBV (σ) for some t. In

the sequel, we will refer to binary voting with averaging simply as binary voting,
since binary voting with averaging for t = 1 corresponds to the basic binary
voting.

3.3 Ternary Voting Test

Ternary voting is another statistical technique we propose to reliably detect
collisions. It is based on indirect comparisons of traces, where two given S-box
traces (target traces, a subset of online traces) are compared through a pool of
other ones (reference traces, profiling traces if any and possibly a subset of online
traces).
While the ternary voting test is less efficient than the binary voting one in
terms of the overall number of traces needed, it allows for profiling. That is,
the reference traces can be acquired in the profiling stage and shared by several
attacks, which can significantly amplify the performance of the online stage.
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Definition. Let NTV be the number of S-box instances whose (reference) traces

{τm}NTV

m=1 , τm ∈ R
l, are available to the attacker for some random unknown

inputs {am}NTV

m=1 , am ∈ GF (28). Let τ i1
j1

and τ i2
j2

be the traces for two further

S-box instances for which we have to decide if ai1
j1

= ai2
j2

. Then the ternary voting
test can be defined as follows:

T
TV (τ i1

j1
, τ i2

j2
) =

{

0 (no collision), if STV (τ i1
j1

, τ i2
j2

) < Y TV

1 (collision), if STV (τ i1
j1

, τ i2
j2

) ≥ Y TV ,

where

STV (τ i1
j1

, τ i2
j2

) =
∑NTV

m=1 F (τ i1
j1

, τ i2
j2

, τm)

with

F (τ i1
j1

, τ i2
j2

, τm) = TBC(τ i1
j1

, τm) · TBC(τ i2
j2

, τm)

and Y TV is some decision threshold. The key idea of ternary voting is similar to
that of binary voting: The distributions of STV (τ i1

j1
, τ i2

j2
) for ai1

j1
= ai2

j2
and for

ai1
j1

6= ai2
j2

will be different. Typically, STV (τ i1
j1

, τ i2
j2

) will be higher for ai1
j1

= ai2
j2

than for ai1
j1

6= ai2
j2

. To decide if there has been a collision, the attacker needs to
statistically distinguish between these two cases.

Properties. To explore the behaviour of F , it is not sufficient to know the
type I and II error probabilities for the binary comparison test. Let TBC be
characterized by the simultaneous distribution of the test results depending on
the relations between ai1

j1
, ai2

j2
and am:

χ1 = Pr{TBC(τ i1
j1

, τm) = 1, TBC(τ i2
j2

, τm) = 1|ai1
j1

= ai2
j2

= am},
χ2 = Pr{TBC(τ i1

j1
, τm) = 1, TBC(τ i2

j2
, τm) = 1|ai1

j1
= ai2

j2
6= am},

χ3 = Pr{TBC(τ i1
j1

, τm) = 1, TBC(τ i2
j2

, τm) = 1|ai1
j1

6= ai2
j2

, ai1
j1

= am, ai2
j2

6= am},
χ4 = Pr{TBC(τ i1

j1
, τm) = 1, TBC(τ i2

j2
, τm) = 1|ai1

j1
6= ai2

j2
, am 6= ai1

j1
, am 6= ai2

j2
}.

Then the probabilities

pe = Pr{F (τ i1
j1

, τ i2
j2

, τm) = 1|ai1
j1

= ai2
j2
}

and

pne = Pr{F (τ i1
j1

, τ i2
j2

, τm) = 1|ai1
j1

6= ai2
j2
}

can be computed using



8 Andrey Bogdanov

Proposition 2. If ai1

j1
, ai2

j2
, am ∈ GF (2)8 are uniformly distributed and mutually

independent, then

pe = 1
28 χ1 + 28

−1
28 χ2

and

pne = 2
28 χ3 + 28

−2
28 χ4.

Proof. If ai1
j1

= ai2
j2

, two cases are possible for F (τ i1
j1

, τ i2
j2

, τm) = 1:

– ai1
j1

= ai2
j2

= am which happens with probability of 1/28, and

– ai1
j1

= ai2
j2

6= am which happens with probability 28
−1

28 .

If ai1
j1

6= ai2
j2

, there are three cases leading to F (τ i1
j1

, τ i2
j2

, τm) = 1:

– ai1
j1

= am, ai2
j2

6= am with probability 1/28,

– ai2
j2

= am, ai1
j1

6= am with probability 1/28, and

– ai1
j1

6= am, ai2
j2

6= am with probability (28 − 2)/28.

The claims of the proposition follow. �

For the sake of simplicity, we first study the properties of TTV under the
assumption that all applications of F to compute STV are mutually inde-
pendent. Under this assumption, STV (τ i1

j1
, τ i2

j2
) would have a binomial distri-

bution with NTV being the number of experiments and success probability
p = pe, if ai1

j1
= ai2

j2
, or p = pne, if ai1

j1
6= ai2

j2
. Thus, for sufficiently large

values of NTV , STV (τ i1
j1

, τ i2
j2

) could be approximated by normal distribution

N (NTV p, NTV p(1 − p)). Thus, similarly to binary voting, the number NTV of
S-box reference instances needed to distinguish between ai1

j1
= ai2

j2
and ai1

j1
6= ai2

j2
could be estimated as

NTV ≈ (u1−β1

√

pe(1 − pe) + u1−β2

√

pne(1 − pne))
2

(pe − pne)2
,

where β1 and β2 are the required type I and II error probabilities for T
TV , u1−β1

and u1−β2
are quantiles of the standard normal distribution N (0, 1).

However, the applications of F are dependent and this result can be only
used to obtain a rough estimation of NTV .

Procedure, Complexity, Averaging. Now we can describe the basic pro-
cedure of ternary voting in the case that the target key is fixed in the device
and the plaintexts are random and known. This is what we call ternary voting
without profiling.

The number NTV of S-box reference instances as well as the number MTV

of different inputs for which reference traces have to be acquired depend on
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the noise level σ. We will write NTV (σ) and MTV (σ), when this dependency is
crucial for understanding.

First, the attacker obtains traces for MTV (σ) random plaintexts. This yields
τm for NTV (σ) = 160 ·MTV (σ) different S-box instances for AES-128, if the key
schedule is not considered and all the 16·10 S-box traces within each AES run are
acquired at a time. Then, if MTV (σ) ≥ γ, no further measurements are needed.
Otherwise, the attacker acquires traces for further γ −MTV (σ) plaintexts. Note
that some of the reference traces can be interpreted as target traces (16 S-box
traces corresponding to the first round in each of some γ executions of AES).

This yields the complexity of Conline = max(γ, MTV (σ)) measurements,
where

MTV (σ) =

⌈

NTV (σ)

160

⌉

.

Like binary voting, ternary voting can be combined with averaging to achieve
better resolution. In this case each trace has to be averaged t times. Thus, the
complexity of ternary voting with averaging is Conline = t ·max(γ, MTV (σ/

√
t)).

In the sequel we refer to ternary voting both with and without averaging simply
as ternary voting.

Profiling. Now we are ready to describe what we refer to as ternary voting with
profiling. Unlike binary voting, the method of ternary voting allows for profiling.
In the profiling stage, reference traces are acquired only, for which the attacker
has to know neither the key used nor the plaintexts. Moreover, this also works if
keys are changed between blocks of t executions. The target traces are obtained
in the online phase and compared based on the pre-measured reference traces.

Thus, Cprofiling = t · MTV (σ/
√

(t)) measurements have to be performed in
the profiling stage, each measurement comprising all 10 rounds of AES-128.
Then only Conline = t · γ measurements are needed in the online stage, each
measurement comprising only the first round for the linear key recovery. For the
latter measurements we do have to know inputs. Moreover, they all have to be
performed with the key to be recovered.

3.4 Required Error Probabilities of Collision Detection

The measurement complexity of the binary and ternary voting methods depends
on the success probability to be achieved. Let us take q as a desirable success
probability of the whole attack and estimate the required type II error proba-
bilities β2 for binary and ternary voting. Recall that π is the success probability
of the cryptanalytic collision attack used to recover the key after the collisions
have been detected.

In the linear key recovery, there are 16γ S-box instances between which a

collision can occur. That is, the voting has to be performed w =

(

16γ
2

)

times.

Then β2 can computed as

β2 = 1 − (q/π)1/w.
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For instance, if γ = 6 and q = 0.5, one obtains β2 ≈ 1.174 ·10−4. Additionally, β1

has to be low enough to enable the detection of a sufficient number of collisions.

4 MDCA and AES: A Case Study

The purpose of this section is to estimate the real-world efficiency of different
MDCA variants based on an AES implementation example and to compare
the methods to the standard Hamming-weight based CPA for the same AES
implementation. In order to be able to perform this comparison for different
noise levels σ, we carefully simulated the deterministic power consumption in
Nanosim using dedicated power simulation libraries and added Gaussian noise
of different amplitudes to it. The main results of the section are summarized in
Table 1.

4.1 Implementation and Simulated Traces

The characteristics of TBC strongly depend on the signal-to-noise ratio of the
implementation. To perform the estimations for a variety of noise levels, a serial
VHDL implementation of the AES S-box has been performed (that is, only one
S-box is calculated at a time). The deterministic power consumption for all 28 in-
puts was simulated using Synopsys Nanosim with the Dolphin Integration power
consumption library SESAME-LP2 based on a 250nm technology by IHP [16].
The design was clocked at 10 MHz. The sampling rate was set to 10 Gsamples/s.

The S-box was implemented as combinatorial logic on the basis of an 8-bit
register. Each S-box calculation y = S(x) occurs in two clocks. In the first clock,
the input x is read from the register and the output y is computed. In the second
clock, the register is set to zero and the calculated output y is written to the
register.

The simulated deterministic power traces obtained are noise-free. That is,
there is neither electronic noise (power supply noise, clock generator noise, con-
ducted emissions, radiated emissions, etc.) nor algorithmic noise (since only the
relevant part of the circuit is considered) in these traces. To model noise we
added random values due to univariate normal distribution1 with the zero mean
value and a standard deviation σ whose value characterizes the noise amplitude.

Note also that the simulated signal was not subject to a low-pass filter as it
would have been the case for the real-world measurements of power consump-
tion due to the presence of capacitances within the chip as well as on the circuit
board where the power consumption measurements are performed. This would
have cut off the high-frequency contribution to the signal reducing the advan-
tage of high-resolution measurements. However, the effect of this circumstance
is rather limited for the measurements of the electromagnetic radiation. A major

1 Normal distribution is a sound noise model [17]. As a matter of fact, the noise is often
distributed due to the multivariate normal distribution [17], [18]. However, only a
few co-variances in the co-variance matrix of this multivariate normal distribution
significantly differ from zero [18] for many implementations.
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Fig. 1. Type II error probability α2 for TBC as a function σ
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limitation in this case is the bandwidth of the oscilloscope. Thus, we believe that
the simulated traces with added Gaussian noise can be used for an initial anal-
ysis of the efficiency of our collision detection techniques. The main advantage
of using the simulated power consumption is that one can add noise of different
amplitudes to model the behaviour of attack methods for different devices and
physical conditions.

To evaluate α2 for this implementation, we chose Y BC in TBC so that α1

becomes sufficiently low by shifting Y BC to the right. For this value of α1, the
type II error probability α2 was estimated experimentally by executing TBC for
random equal and unequal inputs to the S-box. We performed that for several
noise amplitudes σ. The results can be found in Figure 1. Though this cannot
be seen as a complete characterization of TBC , the figure is meant to illustrate
the intuition behind the multiple-differential collision detection methods.

4.2 Reference Figures for CPA

We compared the efficiency of MDCA with binary and ternary voting to the
Hamming-weight based CPA [5]. The Hamming-weight power consumption model
is sound for the implementation in question, since the register is first set to zero
and then re-written with the target byte value. CPA was applied to the same
simulated traces with the same noise amplitudes as MDCA. The number of
measurements needed by CPA is denoted by CCPA.

For our comparison, it was assumed that traces for all 16 S-boxes in the
first round are acquired within one measurement. This is very similar to MDCA
based on linear key recovery considered in this paper: The traces corresponding
to the 16 S-box calculations in the first round are acquired at a time in the online
stage for binary voting and ternary voting with profiling.



12 Andrey Bogdanov

The number of measurements needed for CPA can be potentially reduced
if guessing entropy is allowed in the offline stage of CPA. To treat this point,
we assumed that CPA is successful, if it returns a correct 8-bit key chunk with
probability 0.5. At the same time, it was assumed for all collision attacks that
the needed success probability of the complete attack is q = 0.5. That is, a
collision attack on AES is successful, iff it returns the correct 16-byte key with
probability 0.5.

Note that power consumption models are also important for collision attacks.
The right choice of a power consumption model allows the attacker to perform
binary comparison more efficiently. In this paper, the consideration was restricted
to the Euclidean distance of two vectors. However, other binary comparison
tests can turn out to be more consistent with the power consumption of other
implementations.

4.3 Online and Profiling Complexity of MDCA

In this subsection, Conline and Cprofiling for MDCA based on binary voting and
ternary voting both with and without profiling are experimentally derived for the
given implementation. The estimations are performed for the linear key recovery
method with γ = 6.

Table 1. Conline against different values of σ for TBV , TTV without profiling,
TTV with profiling and CCPA

103σ 0.46 0.93 2.32 3.25 4.65 6.97 9.30 11.62 13.95

Conline, T
BV 60 192 276 468 960 1290 1872 2976 4242

Conline, T
TV w/o profiling 80 390 2605 5200 10640 23840 42320 66080 95200

Conline, T
TV with profiling 6 6 6 6 6 18 30 60 120

CCPA, HW based CPA 163 349 1645 4192 6912 15676 26341 39348 56025

Binary Voting. Figure 2 and Table 1 give experimental values of Conline for
the binary voting test in a range of noise amplitudes. The values of t have been
chosen that minimize the resulting number of traces needed. If σ′ is the noise
amplitude to be attained by averaging and σ is the given noise level, then one has

to average about t = (σ/σ′)2 times. Thus, Conline ≈ γ σ2

σ′2 MBV (σ′). The results
demonstrate that binary voting is well-suited for our implementation providing
an advantage of factor 2.7 to 13.2 for a wide range of σ.

Ternary Voting without Profiling. Figure 3 and Table 1 give concrete values
of Conline in this case for a range of noise amplitudes. Values of t were chosen that
minimize Conline. The performance of the ternary voting test without profiling is
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Fig. 2. Binary voting test against CPA: Conline (black line) and CCPA (grey line)
as functions of σ
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Fig. 3. Ternary voting test without profiling against CPA: MTV (σ) (on the left,
black line) and Conline (on the right, black line) as well as CCPA (both graphics,
grey lines) as functions of σ
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Fig. 4. Ternary voting test with profiling: Conline (solid black line), Cprofiling ≤
106 (dashed black line) and CCPA (solid grey line) as functions of σ
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comparable to CPA. However, ternary voting without profiling does not exhibit
any advantages over CPA in terms of measurement complexity.

Ternary Voting with Profiling. For a given σ, the attacker can reduce t which
leads to a linear decrease of Conline and to a considerable growth of Cprofiling due
to the slope of MTV as a function of the noise amplitude (see Figure 3 for this
dependency). We assumed that ≤ 106 measurements in the profiling stage are
feasible. To obtain the lowest possible online complexity within this bound on
the profiling complexity, we chose t that minimizes Conline with Cprofiling ≤ 106

for each interesting value of σ. The resulting values of Conline and Cprofiling are
depicted in Figure 4. The values of Conline can be also found in Table 1. Note that
there is a wide spectrum of parameter choices: If there are more severe limits
on Cprofiling, then t and Conline increase. And the other way round: If the attack
scenario admits for higher values of Cprofiling, Conline can be further reduced.

The complexity estimations for ternary voting were performed under the
assumption that the attacker is able to acquire the reference traces for all S-
boxes in each of the 10 AES rounds at a time. If one deals with a short-memory
oscilloscope, Cprofiling increases in a linear way with respect to the decrease of
the available memory volume. However, only measurements for the first round
are needed for the target traces, if the linear key recovery is used.

5 Conclusions and Outlooks

In this paper two statistical techniques - binary and ternary voting - allowing to
safely detect collisions even in the presence of considerable noise have been pro-
posed. An AES hardware implementation with its accurately simulated power
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consumption has been taken as an example to demonstrate the power of the
methods. This also enables us to obtain a clear dependency of the attack effi-
ciency from the noise amplitude in a wide range of values and to soundly compare
the multiple-differential techniques with CPA for the same implementation.

The binary voting method combined with linear key recovery is well ap-
plicable to AES being 2.7 to 13.2 times more efficient than CPA in terms of
measurement complexity for our implementation in the explored range of noise
amplitudes. Ternary voting combined with linear key recovery and profiling needs
only about 6 online measurements for the range of noise amplitudes where CPA
requires from 163 to 6912 measurements for the same implementation.

Techniques similar to the ones described in this work might turn out applica-
ble to other symmetric constructions such as stream ciphers or message authen-
tication codes and asymmetric constructions such as digital signature schemes.
There can be also some potential in using MDCA-like methods to overcome
certain random masking schemes for block ciphers.
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