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Abstract. At CHES 2006, a DPA countermeasure based on the Fourier
Transform was published. This generic countermeasure aims at protect-
ing from DPA any S-box calculation used in symmetric cryptosystems
implementations. In this paper, we show that this countermeasure has a
flaw and that it can be broken by first order DPA. Moreover, we have
successfully put into practice our attack on two different S-box imple-
mentations. Finally, we propose an improvement of the original counter-
measure and we prove its security against first order DPA.

1 Introduction

The processing of a cryptographic algorithm on a physical device may
leak information about the manipulated data. To exploit this informa-
tion, Side Channel Attacks (SCA) were introduced in 1996, cf. [8]. It is
today composed of a large variety of attacks that differ in the attack
model, the nature of the side channels they target or the leakage treat-
ments they perform. The Differential Power Analysis (DPA) introduced
in [9] is probably the one which has received the most attention in the
literature. This attack has indeed been demonstrated to be very power-
ful against unprotected cryptographic implementations, where it allows
the attacker to recover the value of a secret key with only a few leak-
age measurements. Roughly speaking, a DPA is a statistical attack that
correlates a physical leakage with the values of particular intermediate
variables (called sensitive variables in this paper) that depend on both
a public value and the secret key. To avoid information leakage and its
exploitation by DPA, the manipulation of sensitive variables must be pro-
tected by adding countermeasures to the algorithm.

A very common countermeasure to protect block cipher implemen-
tations from DPA is to mask every sensitive variable with a randomly



generated variable (called mask) and then to perform the calculations by
only manipulating the masked variable and/or the mask. When such a
technique is applied, a problem occurs which is usually referred in the
literature as the mask correction Problem. It relies on the difficulty of
masking the calculation of non-linear sub-functions (e.g. the so-called S-
boxes), without ever manipulating an intermediate variable that depends
on sensitive data. Many papers have been published that aim at providing
a solution to this problem (see for instance [1, 7, 10–12]). At CHES 2006,
Prouff, Giraud and Aumônier proposed in [11] a solution that may be of
particular interest when the input/output dimensions of the function to
protect are small and when the masks values are regenerated many times
during the algorithm processing. Moreover, the solution is provided to-
gether with a proof of security that allows the reader to formally validate
its security. In this paper, we show that contrary to what is claimed in [11],
a DPA attack can be successfully mounted against this countermeasure.
We exhibit the flaw upon which our attack is based and we present how to
successfully exploit it to recover the value of a secret parameter. Finally,
we propose an improvement of the countermeasure proposed in [11] and
we prove its security versus DPA in a realistic model.

2 Preliminaries

In the rest of the paper, we say that a variable is sensitive with respect to
DPA (shortened to sensitive variable in the context of the present paper)
if it is a non-constant function of a plaintext and a secret key. A DPA (also
called first order DPA in the literature when it is compared to higher order
DPA) exploits the leakage about a single intermediate sensitive variable.
Hereafter, we recall the formal definition of the security against DPA (see
for instance [2, 4, 11]).

Definition 1. A cryptographic algorithm is said to be secure against
DPA if all its intermediate variables are independent of any sensitive
variable.

Conversely, an algorithm is said to admit a first order flaw if one of
its intermediate variables depends on a sensitive variable.

A common countermeasure against DPA is to add (by bitwise or mod-
ular addition) a random value called the mask to each sensitive variable.
Masks and masked variables propagate throughout the cipher in such a
way that every intermediate variable is independent of any sensitive vari-
able. This strategy, called first order masking, ensures that the instan-
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taneous leakage is independent of any sensitive variable, thus rendering
DPA ineffective.

As pointed out for instance in [6, 1], the tricky part when masking the
implementation of an algorithm is to deal with the following problem,
called mask correction Problem:

Problem 1. Let F be a (n,m)-function (that is a function from Fn
2 into

Fm
2 ). From a masked input Z⊕R1 ∈ Fn

2 , the mask R1 ∈ Fn
2 and an output

mask R2 ∈ Fm
2 , compute F (Z) ⊕ R2 without introducing any first order

flaw.

3 Secure S-box Calculation Based on the Fourier
Transform

In [11], an algorithm claimed to solve Problem 1 is proposed. The method
is based on the involutivity property of the Fourier Transform. Before
describing it, let us first recall some basics about the transformation itself.

For every (n,m)-function F , the Fourier transform F̂ of F is defined
for every Z = (Z0, · · · , Zn−1) ∈ Fn

2 by:

F̂ (Z) =
∑
a∈Fn

2

F (a)(−1)a·Z , (1)

where · denotes the scalar product defined by a · Z =
⊕n−1

i=0 aiZi.
It is well known that this transformation is involutive, which means

that ̂̂F = 2nF or equivalently that:

F (Z) =
1
2n

∑
a∈Fn

2

F̂ (a)(−1)a·Z , Z ∈ Fn
2 . (2)

Let R1, R2, R3 and R4 be 4 random masks belonging to Fn
2 , and let

Z denotes a sensitive variable. The algorithm proposed in [11] to pro-
cess F (Z) + R3 mod 2n securely from Z̃ = Z ⊕ R1 and R1, implements
the right-hand side calculus of the following relation (which is a slightly
modified version of Relation (2)):

(−1)(Z̃⊕R2)·R1F (Z) +R3 mod 2n

=

 1
2n

R′ + ∑
a∈Fn

2

F̂ (a)(−1)a·Z̃⊕R1·(Z̃⊕a⊕R2) mod 22n

 , (3)
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where R′ = 2nR3 +R4.
Let SSP denote the signed scalar product X,Y 7→ (−1)X·Y , let �

denote the addition modulo 22n and let × denote the multiplication of two
values belonging to {−1, 1}. We recall hereafter the algorithm proposed
in [11] to process the right-hand side of (3) securely.

Algorithm 1 Computation of an arithmetically masked S-box output from a boolean
masked input

Inputs: A masked input Z̃ = Z ⊕R1, the input mask R1 and a lookup table F̂

Output: The 3-tuple ((−1)(Z̃⊕R2)·R1F (Z) + R3 mod 2n, R3, R2) where R2 and R3 are
random values.

1. Pick up three n-bit randoms R2, R3 and R4

2. result← 2nR3 +R4

3. for a from 0 to 2n − 1 do

4. T1 ← SSP(a, Z̃) [T1 = (−1)a·Z̃ ]

5. T2 ← Z̃ ⊕ a [T2 = Z̃ ⊕ a]

6. T2 ← T2 ⊕R2 [T2 = Z̃ ⊕ a⊕R2]

7. T2 ← SSP(R1, T2) [T2 = (−1)R1·(Z̃⊕a⊕R2)]

8. T2 ← T1 × T2 [T2 = (−1)a·Z̃⊕R1·(Z̃⊕a⊕R2)]

9. T2 ← T2 × F̂ (a) [T2 = F̂ (a)(−1)a·Z̃⊕R1·(Z̃⊕a⊕R2)]

10. result← result� T2 [result = (2nR3 +R4) �
∑

i∈{0,a}

F̂ (i)(−1)i·Z̃⊕R1·(Z̃⊕i⊕R2)]

11. end

12. result← result� n [result = (−1)(Z̃⊕R2)·R1F (Z) +R3 mod 2n]

13. return (result, R3, R2)

Finally, it is proposed in [11] to use the method described in [5] in
order to transform the arithmetic masking of the output of Algorithm 1
into a boolean masking.

The authors of [11] had proposed a proof of security versus DPA for
the countermeasure defined by Algorithm 1, but as we will see in the next
section, the proof is flawed and the countermeasure is not secure against
DPA.

4 DPA against the Fourier Transform Based S-box
Calculation

4.1 First Order Flaw

Unlike what is claimed in [11], the implementation of Algorithm 1 is not
immune against DPA. Indeed, the variable V = a · Z̃ ⊕R1 · (Z̃ ⊕ a⊕R2)
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processed at Step 8 brings information about the sensitive variable Z
(recalling Z̃ = Z ⊕R1). To exhibit the dependency between V and Z, let
us first rewrite V as follows:

V = a · Z̃ ⊕R1 · (Z̃ ⊕ a⊕R2)
= a · (Z ⊕R1)⊕R1 · (Z̃ ⊕ a⊕R2)
= a · Z ⊕R1 · (Z̃ ⊕R2) .

The relation above shows that the intermediate variable V equals the
sensitive variable a · Z (a being a loop index) masked with the scalar
product R1 · (Z̃ ⊕R2). Since R2 is uniformly distributed and is indepen-
dent of both Z and R1, then so does the variable Z̃ ⊕ R2. The flaw of
the method proposed in [11] comes from the fact that the scalar product
of two uniformly distributed random variables does not output an uni-
formly distributed random variable. For example, the product b1 · b2 of
two random bits b1 and b2 equals 0 with probability 3/4, and equals 1
with probability 1/4. More generally, for n-bit random variables we have
the following lemma.

Lemma 1. Let X and Y be two random variables uniformly distributed
over Fn

2 and mutually independent. Then the scalar product X ·Y satisfies

Pr[X · Y = 0] =
1
2

+
1

2n+1
. (4)

Proof. We have:

P [X·Y = 0] = P [X 6= 0]·P [X·Y = 0|X 6= 0]+P [X = 0]·P [X·Y = 0|X = 0] .

Since the Boolean function y ∈ Fn
2 7→ x · y is linear and not null for every

x 6= 0, we have #{x · y = 1} = #{x · y = 0} = 2n−1. This, together with
the fact that X and Y are independent, implies P [X ·Y = 0|X 6= 0] = 1

2 .
Since P [X · Y = 0|X = 0] = 1 and P [X 6= 0] = 2n−1

2n , we deduce (4). �

Remark 1. In the security proof conducted in [11], it is stated that the
uniform distribution of X and Y implies the one of X · Y . We show in
Lemma 1 that this assertion is actually wrong.

Lemma 1 implies that the distribution of R1 · (Z̃ ⊕ R2) has a bias
1

2n+1 with respect to the uniform distribution. Since the sensitive variable
a · Z is masked with a biased mask, the variable V defined in (4) leaks
information on a ·Z. This information can be used to recover Z by DPA.
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4.2 DPA Attack

A DPA attack [9] targets the leakage L(b) generated by the processing
of a sensitive bit b in order to recover information about a secret which
we denote here by k?. It can be performed with only a few information
about the leakage and it actually only assumes that the expectation of
L(b) depends on the value of b. Let us first recall the outlines of the attack
in the general case where b can be expressed as:

b = f(X, k?) , (5)

where f is a Boolean function and X is a public variable.

Description. To perform a DPA, the target algorithm is executed sev-
eral times, say N , for a sequence of values (xi)i≤N taken by X. For each
execution, the attacker measures the leakage li generated by the pro-
cessing of b. Then, the resulting leakage measurement sequence (li)i≤N is
involved to (in)validate a key hypothesis k on k?. For such a purpose, the
attacker first computes the sequence of guesses (bi)i≤N which are the pre-
dicted values of the bit b processed in the successive executions: namely,
for every i ≤ N we have bi = f(xi, k). Then, the leakage measurements
are separated in two categories: the ones for which the predicted bit bi is
equal to 1, and the ones for which it is equal to 0. Finally, the so-called
differential ∆k corresponding to the difference between the mean values
of the two sets is computed:

∆k =
∑N

i=1 bi × li∑N
i=1 bi

−
∑N

i=1(1− bi)× li∑N
i=1(1− bi)

. (6)

If the key hypothesis is correct then the expectation satisfies:

E[∆k? ] = E[L(1)]− E[L(0)] . (7)

If the key hypothesis is incorrect then a ratio α ∈ [0, 1] of the bi’s is
wrongly predicted and the expectation of the differential satisfies:

E[∆k] = (1− 2α)
(
E[L(1)]− E[L(0)]

)
. (8)

Since α is usually around 1
2 , we have E[∆k 6=k? ] ' 0. This implies that,

for a sufficiently large N , the correct key hypothesis is such that ∆k is of
maximum amplitude.
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Remark 2. Depending on the function f , it may happen that the cor-
rect key hypothesis is not the single one for which ∆k is of maximum
amplitude. Indeed, a key hypothesis such that α = 1 also results in a dif-
ferential of maximal amplitude. According to (6), this differential and the
one corresponding to the correct key hypothesis have exactly the same
amplitude but have opposite signs. To differentiate them the attacker
needs to determine the polarity of E[L(1)]− E[L(0)].

DPA Attack Exploiting a Biased Mask. Let us now consider the
case where the target bit b is masked, namely:

b = f(X, k?)⊕R , (9)

where R is a random bit.
If R is uniformly distributed over F2, then no successful DPA attack

is possible. Indeed, in that case b equals 0 (resp. 1) with probability 1
2

independently of k?. Conversely, when the distribution of R is biased
compared to the uniform distribution, then the distribution of b depends
on f(X, k?), which renders DPA possible. In the following, we denote by
ε 6= 0 the bias such that P [R = 0] = 1

2 + ε.
The DPA works in the same way as in the unmasked case. The se-

quence of guesses is still defined as bi = f(xi, k) (since R is not pre-
dictable) and the differential ∆k is computed according to (6). The ran-
domization provided by R implies that the bit effectively processed equals
f(xi, k

?) with probability 1
2 +ε. One deduces that, for the correct key hy-

pothesis, a portion 1
2 + ε of the bi’s is correctly predicted while a portion

1
2 − ε is wrongly predicted in average. This implies that the expectation
of the differential for the correct key hypothesis satisfies:

E[∆k? ] =
(

1
2

+ ε

)(
E[L(1)]−E[L(0)]

)
+
(

1
2
− ε
)(

E[L(0)]−E[L(1)]
)
,

that is:
E[∆k? ] = 2ε×

(
E[L(1)]− E[L(0)]

)
.

Hence the expectation of ∆k? is divided by a factor 1
2ε compared to an un-

protected implementation (this also holds for the differentials ∆k obtained
for wrong key hypotheses – see Appendix A – ). This implies, according
to the analysis in [3], that the number of required leakage measurements
is roughly multiplied by ( 1

2ε)2. A more detailed analysis is conducted in
Appendix A where we give the exact distribution of ∆k, assuming that
the leakage noise has a Gaussian distribution.
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As a result, Lemma 1 implies that a DPA on Algorithm 1 exploiting
the flaw exhibited in Section 4.1 is expected to require about 22n times
more leakage measurements than a DPA when no masking is used. Since
Algorithm 1 is only interesting for a small value of n (e.g. n = 4), this
factor is not prohibitive.

4.3 DPA Attack on the Flaw

In this section, we apply the DPA attack described in Section 4.2 in order
to exploit the flaw exhibited in Section 4.1. More precisely, our attack
targets a bit b which is a scalar product a ·Z masked with a biased mask
R = R1 · (Z̃ ⊕R2), that is

b = a · Z ⊕R . (10)

We recall that a refers to a loop index in Algorithm 1 and that its value can
be chosen by the attacker among {0, · · · , 2n − 1}. The sensitive variable
Z is the sensitive S-box input and it can be written as a function of a
public variable X and a piece of secret data k?. The way our attack is
performed depends on this function which can take several forms. In the
sequel we consider two usual cases.

The first one is referred as the linear case and assumes:

Z = X ⊕ k? .

This occurs for instance in AES and in FOX algorithms for the first round
S-box calculation.

The second case, referred as the non-linear case, assumes the existence
of a non-linear transformation φ such that:

Z = φ(X ⊕ k?) .

This occurs for instance in the AES algorithm implemented using the
composite field method [10, 11] (see [11, §4.1] for details). In that case, φ
is the non-linear (8, 4)-function which from a ∈ F256 processes d ∈ F16

according to the notations of [10, 11].

The linear case. We consider here the case where the targeted bit can
be expressed as b = a · (X ⊕ k?)⊕R that is:

b = a ·X ⊕ a · k? ⊕R . (11)
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The bit b in (11) only depends on one secret binary value a · k?.
Therefore, a DPA on b will provide at most one bit of information on k?.
Hence, recovering the whole secret k? requires to perform a DPA attack
on b for t different loop indices a0, ..., at−1.

When mounting a DPA attack on b for a particular loop index a,
the sequence of guesses can only take one of the two following forms:
(a · xi)i or (a · xi ⊕ 1)i. According to (6), these two sequences result in
two differentials that are opposite one to each other. The attacker does
not know a priori which of these differentials correspond to the correct
key hypothesis. Indeed, depending on the device, the polarity (−1)s of
the good differential ∆a·k? may be positive or negative. In other terms,
the DPA allows the attacker to recover the value of a · k? ⊕ s, where k?

and s are unknown.

Since the polarity s is the same for all the loop indices a, then per-
forming t DPA attacks for t different loop indices a0, ..., at−1 provides the
attacker with a system of t equations and n + 1 variables (the polarity
bit s and the n bits of k?). Solving this system requires to have at least
t = n+ 1 equations. After choosing n indices ai having linearly indepen-
dent vectorial representations in Fn

2 and after defining an = a0⊕a1, it can
be checked that solving the system allows the attacker to unambiguously
determine the value of k?.

The non-linear case. We now consider the case where b satisfies:

b = a · φ(X ⊕ k?)⊕R . (12)

For a non-linear φ, the attack is analogous to a classical DPA on some
output bit of e.g. a DES or AES S-box [9]. The non-linearity of φ ensures
that for the correct key hypotheses a peak of maximal amplitude will
appear while for most other key hypothesis no peak will appear. This
enables to fully recover k?.

In this section, we have described how to exploit the leakage on a
sensitive bit which is masked with a biased random bit. In the linear case,
the attack requires to perform n+ 1 DPAs while only one DPA is needed
in the non-linear case. In the following section, we present experimental
results for these two attacks.
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5 Experimental Results

We put into practice the attacks described in Section 4.2 for two S-box
implementations on an 8-bit smart card. Both attacks exploited the power
consumption resulting from several S-box calculations.

Regarding the linear case, we performed the attack on the S-box cal-
culation of FOX algorithm during the first round protected by the method
described in [11]. In this case, the sensitive bits we targeted are of the
form a · (X ⊕ k?)⊕R, where a,X, k? ∈ F4

2. Following the outlines of the
attack described in Section 4.3 for the linear case, we have applied 4 + 1
DPAs on five different loop iterations of Algorithm 1, namely one DPA
for every a ∈ {1, 2, 4, 8, 3}.
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∆
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Fig. 1. Practical DPA attack – the linear case.
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Figure 1.a represents the value of
∑3

i=0∆ai·k, where ai = 2i, obtained
after 20 000 executions of the algorithm. The full black curve corresponds
to the correct subkey value k? and the dotted black curve corresponds
to the complementary of this value. As expected, these two candidates
are such that the highest peaks of the differential vectors ∆ai·k are either
all positive or all negative, hence leading to the highest amplitudes for∑3

i=0∆ai·k. As explained in Section 4.3, we then computed the differential
∆a·k? for a = a0 ⊕ a1 = 3. Figure 1.c illustrates this computation. The
polarity of the highest peak of ∆3·k? being negative, one deduces that the
correct subkey value k? corresponds to the full black curve in Figure 1.a.

Figures 1.b and 1.d represent respectively the convergence of the peak
of maximal amplitude for

∑3
i=0∆ai·k and for ∆3·k? according to the num-

ber of power consumption measurements. By analyzing these curves, we
deduce that the value of the 4-bit subkey k? is recovered by using about
8 000 executions of the algorithm.

Regarding the non-linear case, we attacked the AES S-box calculation
using the composite field method in order to perform the inversion in F4

2

instead of F8
2 and the method of [11] to protect this inversion (see [11,

§ 4.1] for more details). In that case, the targeted bit is of the form
a · φ(X ⊕ k?)⊕ R where X, k? ∈ F8

2, a ∈ F4
2 and φ : F8

2 → F4
2. Figure 2.a

represents the value of the differentials ∆k’s for k ∈ F8
2 and a = 1, when

200 000 executions of the algorithm are used. It can be seen that the
correct subkey k? (plotted in black) is easily distinguishable.

Figure 2.b represents the convergence of the maximum peak ampli-
tude for the differentials according to the number of power consumption
measurements. The analysis of these curves shows us that the value of
the 8-bit subkey k? is recovered after about 100 000 executions of the
algorithm.

6 An Improved Version of a Secure S-box Calculation

In the following we propose an improvement of Algorithm 1 that allows
to circumvent the flaw depicted in Section 4.1 and also leads to a more
efficient implementation.

The new algorithm is still a secure calculation of a Fourier Transform
but it is based on a slightly modified version of (3) which we rewrite in
the following form:
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Fig. 2. Practical DPA attack – the non-linear case.

(−1)R2F (Z) +R3 mod 2n

=

 1
2n

R′ + ∑
a∈Fn

2

F̂ (a)(−1)R2⊕a·Z̃⊕a·R1 mod 22n

 , (13)

where Z̃ = Z ⊕R1, R2 ∈ F2, (R1, R3, R4) ∈ (Fn
2 )3 and R′ = 2nR3 +R4.

After a brief look at (13) (and before the deeper analysis conducted
later on in this section), we can notice that the sensitive variable a · Z is
now masked with the uniformly distributed random bit R2. Furthermore,
it may be noticed that the exponent in the summation in (13) involves
less operations than in (3).

Let us denote by SP the function X,Y 7→ X · Y and by SFT the
function X,T 7→ F̂ (X)(−1)T . As we prove in this section, Algorithm 2
implements (13) securely.

Algorithm 2 First order Secure S-box calculation

Inputs: A masked value Z̃ = Z ⊕R1 and the mask R1

Output: The 3-tuple ((−1)R2F (Z) + R3 mod 2n, R3, R2), where R2 and R3 are random
values.

1. Generate a random bit R2

2. Generate two n-bit random R3 and R4

3. result← 2nR3 +R4

4. for a from 0 to 2n − 1 do

5. T1 ← SP(a, Z̃) [T1 = a · Z̃]
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6. T1 ← T1 ⊕R2 [T1 = R2 ⊕ a · Z̃]

7. T2 ← SP(a,R1) [T2 = a ·R1]

8. T1 ← T1 ⊕ T2 [T1 = R2 ⊕ a · Z]

9. T1 ← SFT(a, T1) [T1 = F̂ (a)(−1)R2⊕a·Z ]

10. result← result� T1 [result = (2nR3 +R4) �
∑

i∈{0,a} F̂ (i)(−1)R2⊕i·Z ]

11. end

12. result← result� n [result = (−1)R2F (Z) +R3 mod 2n]

13. return (result, R3, R2)

Efficiency Analysis. Although Algorithm 2 is more secure than Algo-
rithm 1, it is also faster. For each loop, Algorithm 2 requires two XORs,
two calls to the function SP and one call to the lookup table SFT. There-
fore, for each loop Algorithm 1 performs 2 extra multiplications compared
to Algorithm 2. Combining this result with the fact that function SP is
slightly faster than function SSP, we deduce that our method is faster
than the one proposed in [11].

Security Analysis. In Table 1, we list the intermediate variables of Al-
gorithm 1 that involve a sensitive variable. The values which only depend
on the loop counter or on a random value are obviously omitted.

Step Instruction Masked Value Mask(s)

5.1 register ← Z̃ Z̃ R1

5.2 T1 ← SP(a, Z̃) a · Z̃ a ·R1

6 T1 ← T1 ⊕R2 R2 ⊕ a · Z̃ R2 ⊕ a ·R1

8 T1 ← T1 ⊕ T2 R2 ⊕ a · Z R2

9 T1 ← SFT(a, T1) F̂ (a)(−1)R2⊕a·Z R2

10 result ← result� T1 (2nR3 +R4) �
∑

i F̂ (i)(−1)R2⊕i·Z (R2, R3, R4)

11 result ← result� n (−1)R2F (Z) +R3 mod 2n R3

Table 1. The different sensitive values manipulated during Algorithm 2.

As it can be checked in Table 1, the intermediate variables manip-
ulated at Steps 5.1, 6, 8, 9, 10 and 11 are additively masked with a
uniformly distributed random variable (resp. R1, R2 ⊕ a · R1, R2, R2,
R3||R4 and R3) which is independent of the sensitive variable. Those in-
termediate variables are therefore independent of the sensitive variable
Z.
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The intermediate variable at Step 5.2 can be rewritten a · Z ⊕ a ·R1.
When a equals 0, this variable equals 0 whatever Z and R1. Otherwise, for
every a 6= 0 the variable a · R1 is uniformly distributed and independent
of Z. We deduce that a ·Z ⊕ a ·R1 (and hence a · Z̃) is independent of Z
whatever a.

Therefore, we have proved that all the intermediate variables manip-
ulated during the execution of Algorithm 1 are independent of Z, which
implies that our method is secure against first order DPA.

7 Conclusion

In this paper, we have shown that a provably secure DPA countermeasure
published at CHES 2006 has a flaw. We have explained how this flaw can
be exploited to mount an efficient attack on S-box implementations pro-
tected by this countermeasure. Our attack is not only theoretical since
we have successfully put it into practice on two different S-box implemen-
tations: the AES S-box using the composite field method and the FOX
S-box.

Finally, we have proposed an improvement of the CHES 2006 coun-
termeasure for which we prove the resistance against first order DPA.
Moreover we showed that our improvement is not only more secure but
can also be implemented more efficiently than the original countermea-
sure.
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A Distribution of the Differentials

In this section, we investigate the distribution of the differential ∆k when
the attack targets a masked bit b = f(X, k?) ⊕ R where R is a random
bit satisfying P [R = 0] = 1

2 + ε. Our analysis includes the unmasked case
by setting ε to 1

2 .
We make the usual assumption that the leakage has a Gaussian dis-

tribution:

L(b) ∼ N
(
µ− δ

2
(−1)b, σ2

)
, (14)

where µ, δ and σ are constants and δ equals E[L(1)]− E[L(0)].
The leakage measurement li obtained for the ith encryption can thus

be expressed as:

li = µ− δ

2
(−1)b?

i +ri + ηi , (15)
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where, for the ith encryption, b?i is the unmasked value of b (i.e. b?i =
f(xi, k

?)), ri is the mask value and ηi is the noise in the leakage measure-
ment.

We make the additional assumption that for every key hypothesis
k, the sequence of guesses satisfies: #{i; bi = 0} = #{i; bi = 1} = N/2.
This assumption is realistic since the functions f(·, k) are usually balanced
(i.e. #{x; f(x, k) = 1} = #{x; f(x, k) = 0}) and since the xi’s are usually
uniformly distributed. It allows us to rewrite (6) as:

∆k = − 2
N

(
N∑

i=1

(−1)bi li

)
. (16)

This relation together with (15) leads to:

∆k =
δ

N

N∑
i=1

(−1)bi+b?
i +ri − 2

N

N∑
i=1

(−1)biηi

=
δ

N

 N∑
i=1

bi=b?
i

(−1)ri −
N∑

i=1
bi 6=b?

i

(−1)ri

− 2
N

N∑
i=1

(−1)biηi

Recalling that α is the ratio of the bi’s that are wrongly predicted (i.e.
α = #{i; bi 6= b?i }/N) and after rewriting (−1)ri as 1− 2ri, we get:

∆k = δ(1− 2α) +
2δ
N

 N∑
i=1

bi 6=b?
i

ri −
N∑

i=1
bi=b?

i

ri

− 2
N

N∑
i=1

(−1)biηi .

Since ri is distributed over F2 with P [ri = 1] = 1/2−ε then for every I ⊆
{1, · · · , N}, the sum

∑
i∈I ri has a binomial distribution with parameter

(#I, 1/2 − ε). Moreover, since ηi has a Gaussian distribution N (0, σ2),
then the sum

∑N
i=1(−1)biηi has a Gaussian distribution N (0, Nσ2). This

way, we obtain:

∆k ∼ N
(
δ(1− 2α),

4σ2

N

)
+

2δ
N
B
(
αN,

1
2
− ε
)
−2δ
N
B
(

(1− α)N,
1
2
− ε
)
.

After approximating B(n, p) by N (np, np(1 − p)) (which is almost exact
when n ≥ 30, np > 5 and n(1− p) > 5), we finally get:

∆k ∼ N
(

2ε× δ(1− 2α),
4σ2 + δ2(1− 4ε2)

N

)
.
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This relation shows that the biased masking results in a reduction
of the expectation of ∆k and in an increase of its variance. The expec-
tation is divided by a factor 1/2ε while its variance is multiplied by a
factor 1 + δ2(1 − 4ε2)/σ2. When the leakage signal-to-noise ratio is low,
i.e. σ � δ, then the biais has a weak influence on the variance and its
main effect is the reduction of the expectation. According to [3] this re-
sults in an increase of the number of required leakage measurements by
a factor (1/2ε)2. If the leakage signal-to-noise ratio is not that low, the
increase of the variance is significant and the number of required leakage
measurements is multiplied by (1/2ε)2

(
1 + δ2(1− 4ε2)/σ2

)
.
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