
AES Encryption Implementation and Analysis

on Commodity Graphics Processing Units

Owen Harrison and Dr. John Waldron

Computer Architecture Group, Trinity College Dublin, Dublin 2, Ireland,
harrisoo@cs.tcd.ie, john.waldron@cs.tcd.ie

Abstract. Graphics Processing Units (GPUs) present large potential
performance gains within stream processing applications over the stan-
dard CPU. These performance gains are best realised when high compu-
tational intensity is required across large amounts of mostly independent
input elements. The GPU’s success in general purpose stream processing
has been demonstrated in many diverse fields, though attempts to port
cryptographic algorithms to the GPU have thus far met little success. In
recent years, GPU architectures have continued to develop a more flex-
ible and uniform programming environment. These developments have
overcome a lot of previously encountered restrictions in cipher implemen-
tations. We present novel approaches for the implementation of the AES
block cipher encryption algorithm on these GPUs. This work also serves
as a precursor for future cipher implementations on the most advanced
GPU architecture, the recently released Nvidia G80, which now includes
integer support and a simplified programming interface.
Keywords: AES, Graphics Processor, GPU, Hardware Accelerated

1 Introduction

Graphical Processing Units are becoming increasingly important in the space
of applications which involve data parallel processing. Over the last few years
there has been an acceleration in processing power found within these commod-
ity chips which exceeds both Moore’s predictions and recent advancements in
CPU performance [1]. This increase in performance is due to the distributed
architecture within the GPU in the form of large numbers of simple processing
units. Other processor architectures are starting to follow this model, for ex-
ample the Cell processor [2]. Standard Intel and AMD chips are attempting to
follow Moore’s curve by increasing the number of processors available on a single
die rather than increasing the core clock speed. This is the fundamental design
driver behind the GPU architecture which currently boasts up to 128 parallel
processors.

A recent key development within GPU design which is pertinent to this paper
is the increase in its programmability. The ability to create and run a defined
program within these parallel processors is the key to GPUs moving into the
general purpose processing scene. Previously all control of graphics processors
was through parametrised function calls using graphics programming APIs. This



is ill suited for the level of hardware control required to implement a large array
of general applications - we will see an example of this in Section 2. The most
commonly available and existing graphics processor generation provides floating
point processing capabilities only and thus encryption is not an obvious target
application. This paper shows that it is possible to achieve respectable secret
key cryptographic performance using this generation of GPU.

Motivation: The motivation for targeting cryptographic ciphers for GPU
processing is that certain cipher uses show good characteristics for data paral-
lel processing - high computation intensity and independent work loads. Also,
as security is becoming increasingly important in the public’s eyes, there is a
continuing trend to secure data in all its uses, from communication to active
and archived storage. This trend requires increased processing power which is
being met by a combination of the standard CPU and hardware extensions in
the form of cryptographic accelerators. The GPU is now ubiquitous and for the
vast majority of its life is spent grossly underutilised. Unless playing games, up
to 165GFlops of processing power and 54GB/s local memory bandwidth [1] are
largely going to waste. There exists the potential to use this available power in
the capacity of a co-processor in a similar role that existing hardware crypto-
graphic solutions play.

This co-processing can take part or fully carry out the cryptographic needs
on consumer and server platforms ideally for communications applications such
as IPsec, SSL, though more probable, for bulk data encryption tasks such as
secure backup/restore applications. This paper does not set out to show the
GPU’s suitability for each of the various security applications, but solely to
demonstrate a viable possibility. A secondary motivation for employing the GPU
to perform cryptographic tasks is the possibility of creating a reduced trusted
computing base which is designed to hide data from the CPU. This could be
used for example in the transfer of encrypted video/remote displays which is
only decrypted once on the GPU. The potential for such a system has been
further discussed in a paper by D. Cook et al. [3].

AES: We have selected the Advanced Encryption Standard [4] symmetric
block cipher as our example cryptographic algorithm for implementation. AES
was selected due to its compact nature, well documented implementation tech-
niques and its available optimisations [5]. We have simplified our investigation to
cover AES encryption using 128 bit key size only, which provides sufficient details
to demonstrate the feasibility and performance of the proposed implementation
approaches. Another simplification is the use of the insecure ECB [6] mode of
operation. Although insecure, this mode serves as the simplest representation
of modes which are suitable for parallelisation, such as CTR [7] and CWC [8].
The ability to parallelise an application is necessary with respect to achieving
performance on the GPU architecture. All results presented within this paper
use the OpenGL [9] graphical programming API running on Linux Fedora Core
4 using both a Geforce 6600GT AGP8x and a Geforce 7900GT PCIe graphics
cards running with a 2GHz AMD CPU.



Organisation: This paper presents an overview of related work in Section 2.
Sections 3 and 4 cover the relevant GPU concepts which are sufficient for follow-
ing the graphical processing terminology presented. Within Section 5 we provide
a brief introduction to the AES algorithm, the optimisations used and present
general AES algorithm mappings to GPU hardware. Section 6 demonstrates the
fundamental operation of AES, a bitwise exclusive or (XOR), its various im-
plementation approaches and their performance results. We present the details
for three different AES implementation approaches in Section 7 including results
and analysis. Section 8 investigates the effectiveness of using a GPU as a parallel
co processors and its interference with separate CPU running processes. Finally
we present our conclusion in Section 9.

2 Related Work

Using non general purpose hardware for implementing AES or other forms of
cryptographic ciphers is not new to the field of cryptography. Specific to AES
recent implementations include ASIC [10] [11] [12] and custom FPGA [13] [14]
designs. Using a non custom hardware approach for the execution of any al-
gorithm will always under perform when compared to its custom counter part.
The possible speeds of AES processing by custom silicon designs, such as the
theoretcial 30-70Gbps proposed by A. Hodjat et al. [15], will continue to demon-
strate superior performance compared to commodity approaches. The advantage
of commodity ASIC design, such as the GPU, lies in its economies of scale, al-
lowing the possibility of cryptographic co-processing for a low price per byte and
also the fact that virtually all users have GPUs at their disposal by default thus
any extra effective processing gained being an advantage.

There has been little use of graphics processing technology in the space of
cryptography due to its previously poor suitability to the problem space. This
was due to its lack of programmability and integer processing support. One
notable attempt to use a GPU for AES implementation was made by D. Cook
et al. [16]. Here it can be seen that the imaging subset of the graphics pipeline
was used to achieve its AES lookup functionality. The imaging subset is a fixed
function part of the pipeline which allows the construction of color maps. These
color maps were used by [16] to simulate XOR instructions within the GPU. The
authors [16] present a successful implementation of AES though the reported
speeds were in the range of 184Kbps-1.53Mbps. The main obstacles encountered
were due to the poor feature set available within graphics hardware at that time.
For example, there was no ability to programme the most powerful components
within the GPU(fragment and vertex processors) and thus the reliance on the
underpowered imaging subset. The most advanced graphics processor used in this
research [16] was the Geforce3 Ti200 which is currently 4 generations behind.

The approaches we present rely heavily on the ability to program the pixel
pipeline for round encryption implementation. It was noted also within [16] that
the CPU registers at 100% utilisation when the GPU program is running, this is
still a pertinent issue with current cards and graphics drivers. We fully explore



this issue within Section 8 and present a method and results which demonstrate
how GPU programs share the CPU with other CPU bound processes. Further
work by D. Cook et al [3] has been carried out with regards to using the GPU
to encrypt video streaming showing its feasibility, however the same hardware
was used as previously described and thus the same performance issues exist.

One of the first publications [17] which shows the concept of using graphical
hardware to solve cryptographic problems was based on a study on cracking Unix
passwords using the PixelFlow [18] architecture. This paper provides the insight
that the type of hardware suitable for solving graphical problems, which requires
large arrays of simple parallel processors, is suitable to more general stream based
problems encountered within cryptography. Buck [19] and Venkatasubramanian
[20] give more contemporary insights into the use of current generation graphical
hardware for general purpose processing solving data parallel tasks. General
purpose computing on graphical hardware can now be seen across a wide array
of application areas such as database research [21], computer vision [22], audio
and signal processing and data mining [23]. For a fuller description of general
purpose processing on graphical hardware and a survey of applicable application
areas, refer to Owens et al [24] and the active GPGPU community [25] involved
in all types of general purpose computing on GPUs.

3 GPU Background

Within this section we present a brief overview of the current graphics process-
ing architecture and its graphical programming model. We also pay particular
attention to the GPU facets which are relevant to the implementation processes
presented later in the paper. The current GPU architecture designs largely fol-
low the structure of the programming pipeline as used by the graphic APIs.
This pipeline, see Figure 1, is divided into vertex processing, rasterisation, frag-
ment processing and raster operations stages of operation. The general approach
to graphics programming is to provide the graphics driver with a list of vertices
which exist within a 3 dimensional space. These vertices act as primitive descrip-
tors, such as triangles or quadrilaterals. The vertex processing stage is responsi-
ble for transforming vertex co-ordinates and vertex attributes before passing on
to the next stage. The rasterisation stage is responsible for accepting these prim-
itives and generating a pixelised view of the particular primitive. This pixelised
view comes in the form of arrays of fragments, or potential pixels, which may
or may not be rendered to the screen. The rasterisation stage hands off these
fragments to the fragment processing stage, which can manipulate the fragment
attributes such as its colour. These fragments are outputted to the final stage,
raster operation, which is ultimately responsible for writing the final pixel colour
values to the active framebuffer (usually the screen framebuffer).

The hardware designs map closely to this pipeline layout, the vertex process-
ing and fragment processing are carried out on vertex processors and fragment
processors. These processors contain the majority of the processing power found
within a GPU, concerning the GPU generation under study, both processors con-



Fig. 1. A simplified view of the graphics pipeline.

tain 4 wide 32bit vector floating point processing units. The fragment processors
traditionally have the most intensive task within the graphics pipeline and ac-
cordingly have the most processing power. For example the GeForce 7900 comes
equipped with 48 parallel floating point processing units within the fragment
processing stage compared to 8 within the vertex processing stage. The reason
for GPUs outperforming CPUs in terms of performance progress is due to the
expenditure of transistor budget on processing power (ie. fragment processors)
rather than data movement and complex memory hierarchies. The downside to
this being that the fragment processors run independently of each other, thus
with no ability for fine grained synchronisation, only naturally data parallel tasks
are suited to processing on GPUs. This is the reason for only supporting parallel
modes of operation such as CTR and CWC. Attempts can be made to sup-
port chaining modes of operations, however performance is likely to suffer unless
an efficient approach can be designed which allows a large number of multiple
independent messages to be encrypted simultaneously.

The general programming model employed for general purpose processing
on a GPU, and the method followed closely for the implementations presented
here, is based on rendering a quadrilateral to the active framebuffer. The key is
to ensure that the final rendering view port maps to the size of the rendering
quadrilateral. This allows textures to be uploaded and have a one to one map-
ping between generated fragments from the rasteriser and the texture elements.
This sets up a streaming processing model whereby all input data in the form of
texture elements are made available individually and independently to each frag-
ment processor. The fragment processor is then responsible for outputting the
generated result based on the input data to its fixed output location, described
below. The output can be written to the screen framebuffer or more usefully writ-
ten to another texture using the OpenGL Framebuffer Object extension. This
programming model can be implemented using the OpenGL or DirectX graphics
libraries or can also use the CTM or CUDA frameworks recently introduced by
the ATI and Nvidia corporations. There are also higher level languages which al-
low programmers to interact with GPUs using a more standardised programming
approach such as Brook [26], however when implementing complex applications



on the GPU performance can be gained by having more direct control of the
graphics hardware through the aforementioned libraries/framework.

4 The GPU and AES

The GPU memory model is based on access to graphical textures, which can
be viewed as 2 dimensional arrays of memory, though 1D and 3D textures also
exist. These textures are available for access from both the vertex and fragment
processors. These textures are accessed via the use of texture co-ordinates within
the corresponding dimensional space. The following are restrictions and potential
bottlenecks to memory usage in all GPU generations which are relevant to our
AES implementations.

High Data Throughput: There is a high data throughput requirement,
both to and from the graphics card. This data transfer must occur across the
system bus which in recent years has improved with the introduction of the PCIe
bus standard. We address this potential bottle neck within Section 6.

Texture Lookups: Our implementation approaches rely heavily on texture
lookups, these lookups come largely in the form of sequential and dependent
lookups. Dependent texture lookups are those which use the retrieved data from
an initial texture lookup to form the basis of new texture coordinates to execute
a further lookup. This type of lookup generally results in random gather pat-
terns from the accessed texture and results in large slowdowns to performance.
Example results from the GpuBench [27] tool shows the dramatic fall off in ac-
cess speed depending on the different types of texture access, ranging from over
60GB/s for sequential access to less than 4GB/s for random access. The reason
for this reduction in speed is due to the small cache sizes on the GPUs, which are
normally sufficient for graphical purposes which show a high degree of spacial
locality of reference. There is an emphasis on all implementation techniques to
try to reduce the memory footprint of lookup tables in Section 5 and 6 and to
increase the reuse patterns of memory access in Section 7. With these techniques
we try to minimise the last two types of cache misses as discussed in Hill et al.
[28], namely conflict and capacity misses.

Gather and Scatter: Gather is supported in terms of texture reads from
various locations, however, a notable restriction is the common lack of native
scatter support within the fragment processors. Each fragment processor can out-
put a small number of results (normally between 1 and 4), however these results
must be written to a predetermined memory location within the active output
framebuffers. This is due to traditional graphics programming where each po-
tential pixel is associated with only one pixel location on the screen/framebuffer.
This as we will see in Section 7 restricts our output format for our AES imple-
mentation strategies and also causes a further restriction on the input format
for one of them.

Another relevant area of the GPU is the availability of a logical operation
stage within the final stage of the pipeline. There is hardware support for this
type of operation and more specifically XOR within the raster operations units



(ROPs) of current designs. This allows the combination of the fragment processor
output and the existing data within the active framebuffer to be combined using
XOR. There does not exist support for XOR within current (prior to DirectX10
hardware support) designs of the fragment processors. ROPs can only be used
at the end of the rendering pipeline and exist in fewer numbers compared to the
fragment processors. We use this type of XOR functionality in both Section 6
and Section 7 and further discuss the restrictions imposed by its availability in
the ROP only.

The last GPU feature of note is the fragment processors ability to implement
swizzle operations for free. Data stored within textures can be addressed and
operated upon within the various processing stages having the option of being
represented as groups of 4 8bit components. This is due to traditional graphics
processing commonly requiring work on RGBA (red, green, blue, alpha) groups,
each of which is referred to as a component. Within the fragment processor there
is the ability to change the ordering of these RGBA vectors during operations.
This provides a useful means for cheaply executing byte rotates and ultimately
leads to an optimisation of the Rijndael cipher to further reduce active memory
footprint, which we will explore in Sections 5 and 7.

5 AES Background

The Advanced Encryption Standard (AES) [4] was introduced in 2001 by the
National Institute of Standards and Technology in response to the aging con-
cerns of DES [29]. The standard adopted a restricted version of the Rijndael [5]
symmetric block cipher which can encrypt and decrypt plaintext blocks of size
128 bits using a key size of 128-bit,192-bit or 256-bit length. The Rijndael cipher
was selected due to its compact simple structure and suitability to commonly
available 8-bit and 32-bit processing platforms. The cipher is based on executing
a number of round transformations on plaintext, each round’s output is the next
round’s input. The number of rounds is determined by the key length, 128-bit
uses 10 rounds, 192-bit uses 12 and 256-bit uses 14. We have selected to use only
128-bit and thus 10 rounds in all AES implementations within this paper.

Each round consists of largely the same steps except for an extra addition of a
round key before starting and the lack of a MixColumns step in the last iteration.
These steps operate on 128 bits of data called the State which transform the
input State into 128 bits of output State ready for the next stage. The State,
which consists of a 16 byte block, is generally viewed as a 4 x 4 table of bytes.
The round stages are Sub Bytes (non-linear byte substitution using an S-box
lookup table), Shift Rows (cyclical shifting of bytes in each row), Mix Columns
(linear transformation which mixes column State data) and Add Round Key
(XOR addition of a scheduled round key with State data).

These rounds can be reduced into a simplified equation, see Equation 1, as
presented in the original Rijndael cipher proposal [5], which we will be using with
our implementations. This equation reduces the number of operations involved
by using 4 1K table lookups whose results need to be XORed with each other and



the round key. In an attempt to reduce the active memory footprint used within
each round we also have adopted a variation of the further reduced equation
shown in Equation 2 from the same proposal. We can see that it reduces the
table lookup to a single 1K table which will reduce the caching demands of this
part of the implementation. This equation incurs a penalty of three extra rotates
per column per round on the output of each table lookup, these rotates can be
implemented using the free swizzle operations leading to an further optimisation
of this equation as covered in Section 7. As we can see from the two equations
that have been selected for implementation, which we describe as the noROT
and ROT approaches, the operations involved are byte selects (swizzle), XORs
(denoted by

⊕
) and table lookups (denoted by Ti[]). We will separately address

the issue of efficient XOR implementation on current GPU hardware in Section
6.

ej = T0[a(0,j)] ⊕ T1[a(1,j−c1)] ⊕

T2[a(2,j−c2)] ⊕ T3[a(3,j−c3)] ⊕ kj . (1)

ej = kj ⊕ T0[a(0,j)] ⊕ Rot(T0[a(1,j−c1)] ⊕

Rot(T0[a(2,j−c2)] ⊕ Rot(T0[a(3,j−c3)]))) . (2)

As part of the results presented within this paper we include a comparative
result from a CPU AES implementation. The CPU result is based on the max-
imum result of the following two approaches. We have implemented a modified
version of the standard rijndael fast implementation [30] effectively running in
ECB mode, which reduces the API overhead of operating on a single message
block at a time. Within a single function it operates directly on large message
arrays reducing function call overhead and pointer manipulation, which more
closely simulates the required input layout of AES running on the GPU as dis-
cussed later. The second approach is to use the built in OpenSSL [31] speed
test which encrypts memory located plaintext using AES. We have been careful
to only compare a single core single processor CPU with a single GPU so as
to provide some form of comparison base. Both CPUs and GPUs can be scaled
in different ways, for example multi core, multi way CPUs or SLI, multi GPU
boards. We have used a single core 2GHz processor for the CPU tests and single
GPU processor boards for GPU tests.

6 XOR Approaches

In this section we present three approaches for implementing XOR on the GPU
which will be used for the AES implementations. First we discuss the common
issues concerning all approaches, the data round trip to and from the card and
data storage formats. There are three main choices when using OpenGL con-
cerning texture (input/output data) storage format. They are external(cpu side)



data format, external data type and internal(gpu side) data format. For AES
we will use an unsigned byte format and use the swizzled(re-ordered) four com-
ponent BGRA textures and suggest to the driver that it maintain the RGBA
format and layout internally. Note that you can only ever suggest/hint to the
driver the required format for storage. The reason for using pre-swizzled compo-
nents is that internally graphics processors store 8bit components in this format,
if we use RGBA externally the driver would have to swizzle these before sending
the data across the bus and thus causing a performance slow down. Also we have
used the OpenGL Pixel Buffer Object extension to transfer the data which facil-
itates DMA data transfers directly from driver memory space. We have selected
to use texture sizes of 1024x1024 pixels for all data transfers in both the XOR
and AES implementations, these dimensions tend to show good performance in
all cases. The performance drops for transfers as the texture size is reduced and
shows little gain when increased over that size [32]. Here we present the three dif-
ferent approaches used for performing XOR on the GPU. These approaches only
concern the currently existing GPUs as the recently introduced G80 contains
integer support.

Approach 1: This approach involves the use of a lookup table to perform
the XOR operation on two 8-bit values. The table uses 65,536 (256x256) en-
tries, representing the precomputed results of the XOR operation for all 8-bit
values. The lookup table is stored as a texture which uses the single component
GL ALPHA external and internal format. This format is used to reduce the
internal memory necessary to represent the lookup table. Two four component
1024x1024 textures are used to store the input data, each texture element (texel)
holds four bytes. The bytes at corresponding locations within these textures are
XORed together, thus using a sequential data access pattern across the input
textures. For example the first component of the texel at location x,y in texture
1 is XORed with the first component of the texel at the same x,y location in
texture 2. The approach renders a quadrilateral with dimensions 1024x1024 to
match the size of the input textures. The generated fragments from the rasteriser
are sent to a loaded fragment program which is designed to load in each pair of
texels corresponding to the currently set texture coordinates. Each of the four
pairs of bytes from the pair of texels are used in turn to execute a dependent
texture lookup within the 256x256 XOR lookup texture. The result of each XOR
lookup form one of the four components of the output fragment.

Approach 2: We have noted that dependent texture lookups have a severe
performance penalty. One way to reduce this penalty is to make the dependent
texture lookups access a reduced lookup space and thus ease the caching require-
ments. This approach uses a similar method to the above 256x256 8-bit lookup
table, however to help reduce the size of the table we split each 8 bit input value
into two 4-bit values and use a smaller precomputed 256 entry table. The issue
with this approach is that there is no integer support or bitwise operators, all
values read into the fragment processor are represented as floating point num-
bers. Thus splitting the input floating point values representing the high and
low 4-bit values must be achieved using a different method.



The method requires a 16x16 entry texture with the wrap mode set to
GL REPEAT to store our precomputed XOR values. Note that all byte reads
from textures within fragment programs are clamped between 0 and 1, there
is no way to avoid this at present when dealing with byte values. Due to this
clamping, when byte values are used as the coordinates for a dependent texture
lookup into the 16x16 XOR table, they will automatically retrieve the XOR of
the 4 high bits (most significant). We then multiply the original input pair of in-
put values by 16, which when combined with the repeating nature of the lookup
texture, cancels out the effect of the high bits and will retrieve the XOR of the 4
low bits. After retrieving the two 4-bit results they are recombined by multiply-
ing the 4 high bit value by 16 and adding the low bit resultant value. It should
be noted that all retreived values required multiplication by a correction factor
of slightly less that 1 to avoid rounding error when used in depended texture
lookups.

Approach 3: We use the native XOR found in the ROP units at the end
of the rendering pipeline, i.e. the output from the fragment processors can be
XORed with the values within the framebuffer. The advantage to this is that
it will perform well, however the disadvantage is that the XOR operation can
only be applied to the final stage of the rendering process meaning that to
reuse previously XORed values a full render pass must occur. In comparison, the
previous two approaches which simulate XORs within the fragment processors
can immediately reuse the values for input into other operations within the
fragment program. The ping-pong method must be employed when requiring
the previous render pass output to be used within the next pass input. This
involves making the output textures the input textures of the next rendering
pass, and switching the current pass’s input texture to be the output textures
of the next pass.

A bi-product of the ROP stage XOR is that only a single input can be
XORed to the existing results in the framebuffer. To equalise this fundamental
difference, when benchmarking all three approaches we only transfer the data for
one input texture in approaches 1 and 2, thus only one set of data is changing,
as in approach 3. We have taken this into account when reporting the amount
of bytes XORed in the results section.

Results: Table 1 shows the results of the three approaches including CPU
results. The 8bit and 32bit CPU results portray the performance using bytes and
integers respectively as the data units for the xor operations. The GPU results
include figures for running the approaches with full data round trip and without.
As one would expect the full data round trip approaches incurs large slow downs
due to the transmission of the input and results across the system bus. The
reason for including the results for non round trip XORs is due to the reality
that when used within AES the data will not have to be transferred across the
system bus after every XOR operation. We can see that the native XOR results
far exceed those of the others, however it is worth bearing in mind the previously
mentioned restrictions to using this approach. The native speeds as expected
are close to the full rendering speeds with the additional overhead of a texture



lookup and a framebuffer read per pixel per pass. Note that the theoretical pixel
fill rate of the 7900GT is 7200Mpixels/s, that is equivalent to 28,800MB/s. We
can also see that there is a significant increase in XOR performance when using
the 4-bit lookup table over the 8-bit lookup table. This increase and the fact
that the major difference between the table lookup approaches and the native
approach is the execution of dependent texture reads, suggest that the lookup
table approaches are memory bound.

Table 1. Results of the various XOR implementation approaches quoted in MBytes/s.

GeForce 6600GT GeForce 7900GT CPU
8-bit 4-bit Native 8-bit 4-bit Native 8-bit 32-bit

W/O Round Trip 181.26 1068.0 4160 672.0 3510 12249
118.29 437.18

With Round Trip 79.61 126.7 141.0 334.83 472.7 475.4

7 AES Approaches

As previously mentioned we use the encrypt part of the AES cipher using 128-
bit key length and thus 10 rounds. We have maintained the same texture size
of 1024x1024 as used within Section 6. All approaches use Pixel Buffer Objects
for efficient data transfer both to and from the graphics card, this data round
trip is included in all implementations to show realistic performance results. As
introduced in Section 5 both forms of the optimised table lookup techniques
of AES cipher implementation, as presented in the original Rijndael proposal,
are implemented within each approach. All approaches use a technique called
multiple render target, which involves the use of 4 output textures as output
targets for the fragment programmes.

Memory Access Techniques: In general we read plaintext data from tex-
tures which have an internal format of four bytes (components) per texture
element (texel). Each texel makes up a single column within the input block
State. Each texel is written out to the destination framebuffer when the round
or stage processing, depending on the approach used, is finished and represents
the new State value of the corresponding column. Within all approaches we at-
tempt to increase the patterns of memory access by altering the layout of the
plaintext data across the input textures. We explore three different input gather
techniques which include the use of multiple tables and single tables. These tech-
niques are included in the implementation of each approach where appropriate.

- In Figure 2(a) we can see that the input data is read from four different
textures at the same texture coordinate, this provides for good predictability
though as Govindaraju et al. [33] points out texture memory is read in the
form of blocks of data. This would mean that 4 independent texture blocks



are requesting residency within the texture cache at all times. We label this
technique as Multi Input in the results.

- In Figure 2(b) we have adopted a different memory gather approach reading
all input plaintext from a single texture. The layout of the 16 byte blocks use
four component texels one after the other in a horizontal fashion which we hope
would require less active memory blocks within the texture cache at the one
time. The rasterisation pattern which is responsible for handing off fragments to
the fragment processor in a cache friendly order is proprietary so we can only
guess at the most efficient access patterns. To reduce the overhead in calculating
the 4 different gather texture coordinates within the fragment program we con-
struct the rendered quadrilateral with multiple texture coordinates per vertex.
We configure each texture coordinate set to be appropriately out of line with
the rendered quadrilateral so that the interpolated coordinates generated within
the rasterisation stage will automatically fall on the correct texel. This allows
the rasterisation stage of the pipeline to be utilised thus incurring no compu-
tational overhead within the fragment processors. This technique is labeled as
Single Input Hgather.

- The third approach shown in Figure 2(c) is similar to the previous technique,
reading from a single texture, however to cater for an access pattern which suits
2 dimensional block structures better we organise the input plaintext data into a
square. This has similar gather requirements to standard texture filter reads used
within traditional graphics programming. The same method involving multiple
texture coordinates as stated in the previous technique is also used here. This
technique is labeled as Single Input Sgather.

a) b) c)

Fig. 2. Illustrations of the different gather techniques employed across the AES ap-
proaches.

The AES implementation approaches are presented here.

Approach 1: This approach is based on the 8-bit implementation of XOR
as described in Section 6 and both forms of AES optimisation as described in
Section 5. Each execution of the fragment program reads a full 16 byte block via
4 texels using the gather techniques described above. The other input textures
used within the fragment program are the round key texture, the XOR texture
and the Te (using the terminology in reference [30]) lookup textures. The round



key texture is a 1D texture which contains a pre-generated schedule of round
keys which is provided by the CPU part of the implementation. The appropriate
texture co-ordinates for the round key are dynamically generated within the
fragment program. There are either 5 or 2 1D Te lookup textures, representing
the first form of the cipher optimisation lookup tables (noROT) or the second
form which only involves a single lookup table (ROT). The extra lookup table
is used for the last round which consists of a precomputed set of results for this
round which excludes the MixColumn step. A single execution of the fragment
program processes the 16 input bytes and produces the final round output of 16
bytes.

Approach 2: Based on the 4-bit version of XOR approach described in
Section 6 the vast majority of implementation detail is the same as the above 8-
bit AES approach. The number of XOR lookups are doubled due to both the high
and low bit values being dealt with separately. The high and low bit values are
only recombined at the end of each round when necessary for use as a single 8-bit
Te table lookup value. This recombining could be further delayed by using 2D Te
lookup tables based on 4-bit by 4-bit lookups though was deemed unnecessary
as the ALU instructions are not presenting a bottleneck. This could be shown by
the removal of all ALU instructions within the algorithm implementation which
resulted in no performance difference.

Approach 3: This approach is based on the ROP provided XOR native
implementation shown in Section 6. As scatter is not supported within fragment
programs, the output is restricted to writing to a fixed location within the four
active output framebuffers(textures). This restriction dictates that the input
format must use the Multi Input gather technique as described above. The Single
Input Gather techniques are not incorporated into the implementation of this
approach. As only one XOR operation per fragment output can be executed per
pass, we require five rendering passes per round of execution plus one initial clear
fragments command to reset all output values to zero ready for the next round
after the input and output textures have been swapped, see ping-pong above.
Each stage of the optimised AES implementation equation is implemented by a
different fragment program specifically written to execute the correct component
based lookup within the Te textures. To save having to read in all four input
textures each render pass and due to the free nature of the swizzle operation(ie.
RotByte * n) we can rearranged the ROT version of the AES implementation
technique to permit only a single active input texture per pass, thus reducing
the active cache footprint of a single pass. Equations 3 and 4 show the first
two column equations suitably rotated to facilitate a single column reference
per rendering pass, note the column references are matching vertically. This in
effect means that we are only referring to a single column at each stage and
generating full stage output for all columns, XORing it with the appropriately
rotated result. The OpenGL Vertex Buffer Object extension was employed when
implementing this approach to reduce the overhead of vertex transfer due to the
high number of render passes.



e0 = k0 ⊕ T0[a(0,0)] ⊕ Rot(T0[a(1,1)]) ⊕ Rot2(T0[a(2,2)]) ⊕ Rot3(T0[a(3,3)]) .(3)

e1 = k1 ⊕ Rot3(T0[a(3,0)]) ⊕ T0[a(0,1)] ⊕ Rot(T0[a(1,2)]) ⊕ Rot2(T0[a(2,3)]) .(4)

Results: Table 2 shows the results of the various implementation strategies
described above running on both graphics cards mentioned in Section 1. We can
see that the performance figures predictably follow the results trend presented
in the XOR Approaches in Section 6. There is a consistent slight speed up when
using the ROT version of the AES implementation over the noROT version.
There is no appreciable difference in speed when using the different gathering
techniques which suggests that the bottleneck lies with the XOR table lookups
or that the sequential nature of all gather techniques do not incur conflicts
or capacity misses in the first place. In general it is good practice to structure
reusable memory access patterns which benefit from spacial locality of reference.
These techniques can be applied when implementing future approaches using
the new DirectX10 architectures where XOR bottlenecks will not exist. It is
worth noting that the speeds of the CPU implementations under perform when
compared to 64 bit optimised versions reported on [34].

Table 2. Results of the various AES implementation approaches quoted in MBytes/s.

Gather GeForce 6600GT GeForce 7900GT
CPU

Technique 8-bit 4-bit Native 8-bit 4-bit Native

Multi Input
ROT 6.24 11.47 45.15 25.86 39.23 108.86

46.13

noROT 6.11 11.19 44.89 25.71 39.01 108.55
Single Input ROT 6.22 11.40 N/A 26.06 39.18 N/A

Sgather noROT 6.11 11.22 N/A 25.92 39.12 N/A
Single Input ROT 6.20 11.41 N/A 25.99 39.16 N/A

Hgather noROT 6.15 11.30 N/A 25.69 39.08 N/A

Figure 3 demonstrates the encryption throughput effectiveness of the GPUs
studied when using different packet sizes. A packet of data is defined as a sep-
arate block of data which is delivered to the GPU in isolation and delivered
back to the CPU after the entire data block is encrypted. In practice the data
packet size refers to the amount of data transferred as textures across the system
bus before rendering and subsequent readback happens. The figure quite clearly
shows that as the packet size reduces the throughput also reduces. The causes
of this are the inefficiencies in transferring multiple small data loads across the
system bus which leads to an increase in the number of CPU-GPU interactions.
Also in general terms, as data workloads reduce in size it becomes increasingly
difficult to ensure all processors in a highly multi processor environment are



kept busy, which in turn leads to difficulty in effectively leveraging the poten-
tial processing power. The implication of the noted behaviour in Figure 3 with
regard to cryptography is an ineffectiveness of the GPU to assist in small data
unit encryption and decryption. Applications such as IPsec rely heavily on this
type of behaviour and thus in order to assist, the small packet size throughput
bottlenecks would have to be significantly reduced. Applications which require
bulk data encryption and decryption are thus more suited to the GPU.

 0

 20

 40

 60

 80

 100

 120

16MB1MB64KB4KB256B16B

En
cry

pti
on

 R
ate

 in
 M

By
tes

/s

Packet Size

7900GT Native
7900GT 4bit

6600GT Native
6600GT 4bit

Fig. 3. Effects of packet size variation on encryption throughput.

8 GPU as an AES Co-Processor

The results shown in Section 7 are somewhat encouraging in that current GPUs
can provide assistance as a cryptographic co-processor, however it was noted
that the operating system reported CPU utilisation lies at 100% during all runs
of the above approaches. D. Cook et al. [16] also reported the same issue for
their implementations. There is little point in using the GPU as a cryptographic
co-processor if it must be run in series with CPU tasks. We present a formalised
investigation into this behaviour and corresponding results in this Section.

We define % CPU Idle Time as the amount of idle CPU time during the
execution of a GPU task as a percentage of the total runtime of the GPU task.
For example two CPU bound programs which must run in series would have a
% CPU Idle Time of 0% and conversely tasks which can run perfectly in parallel
have a % CPU Idle Time of 100%. % CPU Idle Time for GPU tasks can be
calculated as follows: create a CPU bound task which requires a known amount
of runtime, called CPU Task Time; note the length of time the GPU tasks takes
on an otherwise idle CPU, called GPU Task Time; the CPU Task Time must be



sufficiently longer than the GPU Task Time such that it starts first and always
finishes last; run both the CPU and GPU tasks together, starting the CPU task
first and note the total run time of the CPU task (which should always finish
last), called the Combined Task Time; GPU Task Used CPU Time = Combined
Task Time - CPU Task Time, this follows as the amount of CPU time demanded
by the GPU must be the extra time the CPU task takes to finish when run in
parallel with the GPU task; GPU Task Idle CPU Time = GPU Task Time -
GPU Task Used CPU Time, this also follows as the amount of time the GPU
task consumes that it is not running on the CPU must be in the form of idle
CPU cycles; % CPU Idle Time = GPU Task Idle CPU Time / GPU Task Time
* 100.

Results: In Table 3 we can see that in general the GPU performs well as a
co-processor in that most of the percentages are quite high, thus leaving a high
percentage of idle CPU time for other CPU tasks. There is a notable reduction
in % CPU Idle Time for scenarios which demonstrate a high transfer rate. This
is expected as the amount of CPU overhead will remain more or less consis-
tent across the presented GPU tasks even though the overall transfer time has
dropped: thus resulting in a high percentage of its running time occupying the
CPU. Care has to be taken when interpreting these figures given that the faster
AES approaches are not necessarily disadvantaged over the slower ones in terms
of % CPU Idle Time, but rather there is a price to pay for the increased transfer
rates. The GPU tasks which transfer at faster rates can artificially generate the
same % CPU Idle Time as the slower GPU tasks by adding sleep cycles. This
table clearly demonstrates that the high transfer rates come at a price.

Table 3. % CPU Idle Time based on 16MB packet sizes.

Gather GeForce 6600GT GeForce 7900GT
Technique 8-bit 4-bit Native 8-bit 4-bit Native

Multi Input
ROT 96.69% 94.19% 86.75% 87.42% 90.61% 74.84%

noROT 95.96% 94.10% 85.98% 88.79% 89.79% 74.57%

Single Input ROT 99.18% 96.75% N/A 88.06% 93.54% N/A
SGather noROT 98.24% 95.32% N/A 88.65% 92.34% N/A

Single Input ROT 98.76% 96.59% N/A 88.70% 93.02% N/A
HGather noROT 98.56% 96.46% N/A 88.49% 93.34% N/A

9 Conclusions

Within this paper we have presented new approaches to solving AES block ci-
pher encryption on pre G80 GPU hardware. We have compared each approach’s
resulting performance to each other and to standard CPU implementations. We
have achieved rates of up to 870.8Mbits/s using a Raster Operations Unit based



approach and 313.84Mbits/s using a fragment processor based XOR simulation
on a GeForce 7900GT. Comparing to some sources of AES performance figures
for optimised implementations on standard CPUs [34], the reported GPU ap-
proaches under perform. Given that the GPU is ubiquitous and generally avail-
able by default in a highly underutilised state, it can still act to alleviate AES or
potentially similar cryptographic loads from a CPU allowing it to spend time on
other tasks. It was demonstrated that the GPU performs best using large packet
sizes and thus suits applications which require bulk data encryption/decryption.
This paper also demonstrates that the GPU can be used effectively as a co-
processor contrary to the operating system reports of 100% CPU load during
GPU task execution.

References

1. I. Buck, A. Lefohn, P. McCormick, J. Owens, T. Purcell, R. Strzodka, General
Purpose Computation on Graphics Hardware. IEEE Visualization 05, Minneapolis,
USA, October 2005. Page 33.

2. J. Kahle, M. Day, H. Hofstee, C. Johns, T. Maeurer, D. Shippy, Introduction to the
Cell multiprocessor. IBM Journal of Research and Development, Volumn 49, Number
4/5, 2005. Pages 589-604.

3. D. Cook, R. Baratto, A. Keromytis, Remotely Keyed Cryptographics Secure Remote
Display Access Using (Mostly) Untrusted Hardware. ICICS05 Conference Proceed-
ings, December 2005.

4. National Institute of Standards and Technology (NIST). FIPS-197: Advanced En-
cryption Standard. November, 2001. http://www.itl.nist.gov/fipspubs/.

5. J. Daemen, V. Rijmen, The Rijndael Block Cipher.
http://csrc.nist.gov/CryptoToolkit/aes/rijndael/, September 1999.

6. A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography.
CRC Press, 1997.

7. M. Bellare, A. Desai, E. Jokipii, P. Rogaway. A concrete security treatment of sym-
metric encryption: Analysis of the DES modes of operation. 38th Annual Symposium
on Foundations of Computer Science (FOCS 97), 1997.

8. T. Kohno, J. Viega, D. Whiting, CWC: A high-performance conventional authen-
ticated encryption mode. The Fast Software Encryption Workshop, Dehli, India,
February 2004. Pages 408-426.

9. O. ARB, D. Shreiner, M. Woo, J. Neider, T. Davis. OpenGL Programming Guide:
The Official Guide to Learning OpenGL. Version 2. 2005.

10. A. Satoh et al, ”A Compact Rijndael Hardware Architecture with S-Box Opti-
mization”. ASIACRYPT 2001, LNCS 2248, pp. 239-254, 2001.

11. J. Wolkerstorfer, E. Oswald, M. Lamberger, ”An ASIC Implementation of the AES
Sboxes”. RSA Conference 02, San Jose, CA, February 2002.

12. A.Hodjat, D. Hwang, B. Lai, K. Tiri, and I. Verbauwhede, A 3.84 Gbits/s AES
crypto coprocessor with modes of operation in a 0.18-um CMOS Technology. Pro-
ceedings of the 15th ACM Great Lakes Symposium on VLSI 2005, pages 60–63. April,
2005.

13. M. McLoone, J. McCanny, ”High Performance Single Chip FPGA Rijndael Al-
gorithm Implementations”. Workshop on Cryptographic Hardware and Embedded
Systems, Paris, 2001.



14. A. Elbirt, W. Yip, B. Chetwynd, C. Paar, ”An FPGA-based performance evalu-
ation of the AES block cipher candidate algorithm finalists”. IEEE Trans. of VLSI
Systems, 9.4, pages.545-557, August 2001.

15. A. Hodjat and I. Verbauwhede, Minimum Area Cost for a 30 to 70 Gbits/s AES
Processor, 2004 IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2004),
Emerging Trends in VLSI Systems Design, pages 83–88, IEEE Computer Society,
2004

16. D. Cook and J. Ioannidis and A. Keromytis and J. Luck, ”CryptoGraphics: Se-
cret Key Cryptography Using Graphics Cards”. In RSA Conference, Cryptographer’s
Track (CT-RSA), February 2005.

17. G. Kedem and Y. Ishihara, Brute Force Attack On Unix Passwords With SIMD
Computer, Proceedings of the 8th USENIX Security Symposium, Washington, D.C.,
USA, August 23-26, 1999.

18. M. Olano and A.Lastra, A Shading Language on Graphics Hardware: The Pix-
elFlow Shading System, Journal of Computer Graphics 1998, Pages 159-168.

19. I. Buck, Data parallel computing on graphics hardware. Siggraph 03: Graphics
Hardware Panel, San Diego, USA, 2003.

20. S. Venkatasubramanian, The graphics card as a stream computer. DIMACS Work-
shop on Management and Processing of Data Streams, San Diego, USA, 2003.

21. N. Govindaraju, J. Gray, R. Kumar, and D. Manocha, Gputerasort: High per-
formance graphics coprocessor sorting for large database management. ACM SIG-
MOD/PODS, Chicago, USA, 2006.

22. J. Fung, S. Mann, and C. Aimone, Openvidia: Parallel gpu computer vision, ACM
Multimedia, Singapore, 2005.

23. N. K. Govindaraju, N. Raghuvanshi, and D. Manocha, Fast and approximate
stream mining of quantiles and frequencies using graphics processors. ACM SIG-
MOD/PODS Baltimore, Maryland, USA, 2005.

24. J. D. Owens, A survey of general-purpose computation on graphics hardware.
Eurographics, Dublin, Ireland, 2005.

25. The GPGPU Resources and Forums, available online at http://www.gpgpu.org/.
26. I. Buck, Ti. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P.

Hanrahan, Brook for GPUs: Stream Computing on Graphics Hardware, SIGGRAPH
Las Angeles, USA, 2004.

27. I. Buck, K. Fatahalian, and P. Hanrahan, Gpubench: Evaluating gpu performance
for numerical and scientifc applications. ACM Workshop on General Purpose Com-
puting on Graphics Processors, LA, USA, 2004.

28. M. Hill and A. Smith, Evaluating associativity in cpu caches. IEEE Transactions
on Computers 38, 12, Pages 1612-1630.

29. National Institute of Standards and Technology (NIST). FIPS-46-3: Data Encryp-
tion Standard, 1976. http://www.itl.nist.gov/fipspubs/.

30. V. Rijmen, A. Bosselaers, P. Barreto. Optimised ANSI C code for the Rijndael ci-
pher, Version 3.0. December 2000. http://homes.esat.kuleuven.be/∼rijmen/rijndael/

31. OpenSSL Open Source Project, can be accessed online at http://www.openssl.org/
32. O. Harrison, J. Waldron, ”Optimising Data Movement Rates for Parallel Process-

ing Applications on Graphics Processors”, 25th International Conference on Parallel
and Distributed Computing and Networks, February 13-15 2007, Innsbruck, Austria.

33. N. Govindaraju, S. Larsen, J. Gray, D. Manocha, A Memory Model for Scientific
Algorithms on Graphics Processors, SC06, Florida, USA, 2006.

34. H. Lipmaa, ”AES/Rijndael: speed”, http://www.adastral.ucl.ac.uk/
∼helger/research/aes/rijndael.html


