
Secret External Encodings Do not Prevent
Transient Fault Analysis

Christophe Clavier

Gemalto, Security Labs,
La Vigie, Avenue du Jujubier, ZI Athélia IV,

F-13705 La Ciotat Cedex, France

christophe.clavier@gemalto.com

Abstract. Contrarily to Kerckhoffs’ principle, many applications of to-
day’s cryptography still adopt the security by obscurity paradigm. Fur-
thermore, in order to rely on its proven or empirical security, some real-
izations are based on a given well known and widely used cryptographic
algorithm. In particular, a possible design would obfuscate a standard
block cipher E by surrounding it with two secret external encodings
P1 and P2 (one-to-one mappings), leading to the proprietary algorithm
E’ = P2 ◦ E ◦ P1.
A claimed advantage of this approach is that, since inputs and outputs
of the underlying function E are not known by a potential attacker, such
a construction is usually believed to inherently prevent any kind of tran-
sient fault analysis that may apply on the core function E. In this paper,
we show that this latter argument is not true, by exhibiting a key recov-
ery attack which applies to the whole class of externally encoded DES or
Triple-DES. Moreover, our attack remains applicable even in the pres-
ence of the classical counter-measure against fault attacks which consists
in executing the algorithm twice and returning an output only if both
results are identical.

Keywords: Smart Cards, Physical Attacks, Fault Analysis, Secret
Algorithm, Cryptographic Design, External Encoding, DES

1 Introduction

Contrarily to Kerckhoffs’ principle, many applications of today’s cryptog-
raphy still adopt the security by obscurity paradigm. For public and civil
applications, this is especially true in GSM and pay-TV domains where
the specifications of the cryptographic function are often kept secret. A
usually claimed advantage of concealing the cryptographic function’s de-
tails is to protect against known physical attacks such as side-channel
analysis (SPA, DPA, CPA,. . .) [2, 10] or fault analysis (DFA, CFA,. . .) [1,
4, 5, 7], which would otherwise be used to reveal the user’s secret key.

The main result of this paper is to partially invalidate this belief. More
precisely, we focus on a particular way of designing such a proprietary
algorithm which consists in surrounding a well known and widely used
block cipher E with two secret external encodings P1 and P2 (one-to-one
mappings over the input and output spaces), leading to the new secret
obfuscated block cipher E’ = P2 ◦ E ◦ P1. The motivation for such a design
strategy is twofold. First, it seems reasonable to base the construction on
a well known block cipher E in order to inherit its proven or empirical
cryptographic strength. Second, the two secret encodings P1 and P2 ensure
that inputs to and outputs from E can not be known by an attacker, so
that physical attacks requiring this knowledge should not be feasible.

In this paper, we present a fault-based key recovery attack which
applies to this design when the core block cipher E is the DES or the
Triple-DES. Our attack works for any P1 and P2, so that the whole class
of externally encoded (Triple-)DES (c.f. Figure 1) is potentially endan-
gered1.

Fig. 1. A DES obfuscated by secret layers P1 and P2.

In Section 2 we present the previous work related to fault analysis of
secret cryptographic functions, as well as our threat model and the con-
ditions needed for the attack. Section 3 gives two variants of our attack:
first, a basic version that illustrates the main principles is explained; then,
an improved attack is described and simulation results are presented. Pos-
sible counter-measures are discussed in the next section. Finally, Section 5
concludes this work and proposes some possible directions for further re-
search.

1 As a particular case where P1 and P2 are XOR-maskings with external keys, our
attack notably applies to the DESX construction [9] and allows to recover its internal
secret key.

2 Preliminaries

Boneh et al. first introduced in [5] the use of transient computational er-
rors as a means to extract secret keys of cryptographic algorithms. Their
attack applies to RSA in CRT mode and has been shortly followed by
similar results applicable to the DES algorithm [4] and other functions.
These methods all rely on the fact that the cryptographic algorithm is
public. In [3], Biham and Shamir tackled the unknown cryptosystem case
and proposed an attack based on the assumption that it is possible to per-
manently and progressively reset bits of the key stored in a non-volatile
memory. This technique has been later improved and extended by Paillier
in [12]. Since it requires permanent faults, this model is quite demanding.
Moreover, definitively damaging the device under attack may be unde-
sirable. Nevertheless, as far as we know, no transient fault attack on
unknown cryptosystems has ever been published. Our proposed attack
precisely attains this goal under the following assumptions:

The target is a classical software implementation of the DES on an
8-bit architecture. We assume that the attacker is able to precisely control
which instruction is executed when he injects a fault.

Concerning the fault model, we assume that a fault injected during
the execution of a XOR between two 8-bit operands results in a zero2

output whatever the input operand values were. Let us mention that this
fault model is realistic as we identified some chips vulnerable to this kind
of faults on which we practically performed attacks relying on it.

Finally, the attacker is supposed to have control over the input given
to the encryption function E’ as well as knowledge of its output3.

Compared to fault analysis on public cryptosystems, our attack needs
a large number (many thousands) of fault injections. We see this drawback
as the fair price to pay for the ‘magic’ property of being able to retrieve
the key regardless of the two secret external encodings P1 and P2.

3 Ineffective Fault Analysis

3.1 Fault Injection as a Probing Tool

Our attack, described in Sections 3.2 and 3.3, is based on the main ob-
servation that a fault injection capability may be used as a probing tool.
2 Note that our attack works equally well if the faulted XOR output is supposed to

be any arbitrary known constant instead of zero.
3 These assumptions may be relaxed. It is only required to be able to replay many

times different arbitrary inputs, and to detect whether two outputs are equal.

More precisely, if an attacker targets a particular XOR instruction in the
algorithm, then he is able to detect whether the output of this instruc-
tion is equal to zero or not. For some arbitrary input, if the output of the
algorithm when a fault is injected during the targeted XOR is the same
as that of a normal execution, this indicates that the natural value of
the XOR result is zero4. Some information about an intermediate value
is thus obtained by observing two equal outputs of the algorithm. Equiv-
alence between outputs happens when the injected fault has no effect on
the targeted instruction and its intermediate result. This event being the
most informative one exploited in our attack, we call such kind of attack
an Ineffective Fault Analysis (IFA). Though it is rather similar to safe-
error analysis ([8, 13, 14]), IFA is slightly different since the fault targets a
true instruction, whose output is possibly not modified, rather than a fake
instruction. In the case of IFA, the event of an unchanged algorithm out-
put results from a data related condition, whereas it is algorithm specific
in safe-error analysis.

In the context of this paper, for any given plaintext, IFA allows an
attacker to detect whether the output of any arbitrary XOR of the em-
bedded DES is zero.

3.2 The Basic Attack

We refer to [11] for a complete description of the DES algorithm. Never-
theless, and before describing the attack in detail, we remind the reader
that the DES key schedule is structured in such a way that the key may
be considered as partitioned into two 28-bit half-keys, which we respec-
tively denote KA and KB. During any round, the 24 key bits involved
in S-boxes 1 to 4 are a subset of KA, while the 24 key bits involved in
S-boxes 5 to 8 belong to KB. Even though our attack does not rely on
this property, we will take advantage of it to computationally simplify
the faults exploitation by considering the two half-key spaces separately.

We assume a straightforward implementation of the DES on an 8-bit
architecture. In this typical implementation, there are 12 XOR operations
per round. As shown in Figure 2, for each round h = 2, . . . , 16, we are
concerned with two groups of XOR instructions. The first group, made
up of four so-called xor left instructions executed at the end of round
(h− 1), computes the four bytes (r1, . . . , r4) of the 32-bit value Rh which
enters the round h. Then (r1, . . . , r4) is expanded into eight 6-bit values

4 Or at least that this value is equivalent to zero through the remainder of the algo-
rithm. This comment will become clearer in the example given in Section 3.2.

(s1, . . . , s8) which are XOR-ed with the round key Kh = (k1, . . . , k8),
through the eight so-called xor key instructions, to provide the S-box
inputs (x1, . . . , x8). Each 4-bit S-box output is computed as yj = Sj(xj).

Fig. 2. The 12 XOR instructions per round targeted by the attack.

The central idea in this basic attack is to infer information about the
key from couples of two ineffective faults on two different executions with
the same input. While information about two intermediate values of some
computation is so obtained, we stress that our attack does not require the
ability to inject multiple faults on the same execution.

First, suppose that for some plaintext M , a fault injected during
xor left[i] (for i ∈ {1, . . . , 4}) at round (h− 1) turns out to be ineffec-

Fig. 3. A zero byte through the expansive permutation.

tive. This implies that the corresponding output byte ri is zero. Thus, 8 of
the 32 bits of Rh are known to be 0. The following permutation expands
them to 12 bits which are involved in four adjacent5 S-boxes at round h.
Now, suppose that for another execution with the same plaintext M , a
fault on xor key[j] (for j ∈ {2i − 1, 2i}) at round h turns out also to
be ineffective. In this setting, we show that some valuable information
about the 6-bit kj may be inferred. This is the basic principle behind our
attack. We now give an example of this reasoning:

Example: For some M , an ineffective fault on xor left[3] at round
(h − 1) gives r3 = 0. Figure 3 shows that when r3 = 0, the 6-bit in-
puts s4 to s7 of xor key[4] to xor key[7] of the next round belong
to (∗, ∗, ∗, ∗, ∗, 0), (∗, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, ∗) and (0, ∗, ∗, ∗, ∗, ∗) respec-
tively. Suppose that, for the same M , a fault on xor key[5] at round h ap-
pears also to be ineffective. One could first conclude that the xor key[5]
output x5 is equal to 0. But actually this rather means that x5 belongs to
the setA5 = {(0, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 1), (1, 0, 0, 0, 1, 0), (1, 0, 1, 1, 0, 1)}
of the four pre-images of S5(0) by S5. This is due to the non-injective prop-
erty, for each S-box, that any 4-bit output has exactly four pre-images.
We can now derive that k5 = x5 ⊕ s5 ∈ A5 ⊕ (∗, 0, 0, 0, 0, 0), which leads
to 8 possible values for k5 corresponding to 3 bits of information retrieved
about the key K.

With the same reasoning, an output identity when faulting xor key[6]
would imply that k6 ∈ A6⊕ (0, 0, 0, 0, 0, ∗), revealing 3 other bits of infor-
mation about the key. Note that for the other two S-boxes (S4 and S7),

5 One consider the eight S-boxes form a ring. For example, S-boxes 8, 1, 2 and 3 are
adjacent.

it is not possible to determine the value of neither the right-most bit of
k4 nor the left-most bit of k7

6.

Definition 1 (Winning event). We call winning event at locus (h, i, j)
a pair of observations, for the same plaintext, of two ineffective faults:
one on xor left[i] at round (h− 1), and another one on xor key[j] at
round h, where j ∈ {2i− 1, 2i}.

Winning events such as the one at locus (h, 3, 5) described in the
previous example are the core events exploited in this attack.

Obtaining a winning event at some locus obviously depends on the
plaintext. Indeed, the values of Lh−1[i] and Rh−1[i] which govern the (in-
)effectiveness of a fault on xor left[i], as well as the value of the ‘∗’
bit of sj which influences the (in-)effectiveness of a fault on xor key[j],
all depend on the plaintext. So if a winning event at some locus is not
obtained for a given plaintext, it may well be obtained for another one.
Nevertheless, for a winning event at some locus to be obtained, the key
bits corresponding to the five ‘0’ bits of sj must be equal to their corre-
sponding values in one representative of Aj . Consequently, given a key K,
there are some locus at which no winning event may occur whatever the
plaintext, and others at which winning events occur for some plaintexts.

Definition 2 (Winnable locus). Given some key K, we say that (h, i, j)
is a winnable locus if the five bits of kj at ‘0’ positions (those where an
ineffective fault on xor left[i] at round (h − 1) implies a bit value of
sj equal to 0), are equal to their counterpart values in one of the four
representatives of Aj.

Example: For K = CD3ABC5876AC062B, locus (7, 3, 5) is winnable be-
cause the subkey k5 entering S-box 5 at round 7 is equal to (1, 0, 0, 1, 0, 1)
whose five rightmost bits are equal to those of A5’s element (0, 0, 0, 1, 0, 1).

The probability (over all keys) for any given locus to be winnable is
4 · 2−5 = 0.125. Furthermore, there are 8 ∗ (16− 1) = 120 interesting loci
along the DES (the first round is not exploitable), so that, in the simpli-
fied model where all Kh are viewed as almost independent, 15 winnable
loci per key are expected on average. A counting simulation on 27 000
randomly generated keys gives a number of winnable loci distributed as
shown in Figure 4, with an average of 14.986.
6 This is due to the fact that, by design of any S-box Sj , each lateral bit is always

represented with both 0 and 1 values amongst Aj .

For each winnable locus, and whenever a winning event is obtained,
the key space may be reduced according to the previously explained con-
straint. The optimal residual entropy, obtained after having exploited all
winnable loci, is distributed as shown in Figure 5. The percentiles of this
distribution for the frequency levels (0.10, 0.50, 0.90) are (14.17, 21.32,
29.98), meaning that for one key out of two, the full exploitation of
winnable loci reduces the key space from 256 to less than 221.32 keys.

10 20 30 40
Number of winnable loci

0

500

1000

1500

2000

2500

F
r
e
q
u
e
n
c
y

Fig. 4. Number of winnable loci per key.

10 20 30 40 50
Optimal residual entropy HbitsL

0

100

200

300

400

500

F
r
e
q
u
e
n
c
y

Fig. 5. Optimal residual entropy per key
after exploitation of all winnable loci.

In Appendix A we summarize the procedure of the attack as described
in this section. The stopping condition is left to the attacker: it may
involve the number of faults injected so far, the current residual entropy
of the key space, or other considerations.

A simulation of this attack according to this procedure allowed us to
quantify the number of fault injections required. Out of 27 000 experi-
ments, the number of faults needed for winning all possible winnable loci
is distributed as shown in Figure 6. With 100 000 faults, all winnable loci
are won in 54.5 % of cases, and all but at most 1 are won in 87.3 % of
cases. As the number of already won loci increases, the probability to
win another one strongly decreases. This suggests that there is no point
in continuing faulting for a long time. The median residual entropy after
50 000 and 100 000 faults is respectively 26.49 and 22.32 bits.

3.3 An Improved Version of the Attack

The attack described in Section 3.2 essentially eliminates keys which
are not compatible with any observed winning event. In this section we
present a modified version which improves on it in two directions.

First, we extend the kind of events which are exploited. For example,
when a winning event at locus (h, 3, 5) is observed, and for the same M

100 200 300 400
Number of faults Hx 1000L

0

200

400

600

800

F
r
e
q
u
e
n
c
y

0 50 100 150 200 250
Number of faults Hx 1000L

20

40

60

80

100

%
o
f

s
i
m
u
l
a
t
i
o
n
s

Fig. 6. Number of faults needed for winning all winnable loci.

the attacker knows that r2 = 0 (this is the case if a fault on xor left[2]
at round (h − 1) is ineffective), then all 6 bits of k5 are constrained in-
stead of 5. This results in an extra information about the key which was
not exploited by the basic attack. As another example, suppose that an
ineffective fault is observed on xor left[3] at round (h − 1), but not
on xor key[5] at round h. Even if this is not a winning event at locus
(h, 3, 5), we may infer information about k5, namely that k5 does not
belong to A5 ⊕ (∗, 0, 0, 0, 0, 0). Here also, this informative event was not
considered in the basic attack.

The second improvement consists in assigning an a posteriori proba-
bility to each key, conditioned by the observations.

The result of these two improvements is that, not only the space
of compatible keys is further reduced, but also its exhaustive search is
shortened by trying keys in their decreasing order of probability.

Definition 3 (Ineffectiveness Vector). We call ineffectiveness vector
at round h, denoted e = (eleft, ekey), the boolean vector eleft of the ob-
served ineffectiveness of faults injected on xor left[1] to xor left[4]

at round (h− 1), together with the boolean vector ekey of the observed in-
effectiveness of faults injected on xor key[1] to xor key[8] at round h.

For example, the winning event at locus (h, 3, 5) described in Sec-
tion 3.2 may have been produced by the ineffectiveness vector (eleft, ekey),
where eleft = (0, 0, 1, 0), and ekey = (0, 0, 0, 0, 1, 0, 0, 0).

For each σ ∈ {A,B}, let eσ
key denote that part of ekey related to the

four S-boxes involving Kσ (so that ekey = (eA
key, e

B
key)), and eσ denote

(eleft, eσ
key).

Any observed ineffectiveness vector may be used to assign an a pos-
teriori probability to each half-key Kσ by means of Bayes’ formula:

p(Kσ|eσ) = p(eσ|Kσ) · p(Kσ)
p(eσ)

(1)

From Eq. (1), we derive a recursive form which allows to update the
a posteriori probability of a key, based on a newly observed ineffectiveness
vector:

p
(
Kσ|(eσ

1 , . . . , eσ
n)

)
=

p(eσ
n|Kσ)

p(eσ
n)

· p
(
Kσ|(eσ

1 , . . . , eσ
n−1)

)
. (2)

Note that evaluating the denominator p(eσ
n) is not necessary as it

is independent from the key. With the aim of comparing key probabil-
ities together, omitting it will only affect all probabilities by the same
multiplicative factor. Thus, while considering a new observation eσ, the
process of updating key probabilities just comes down to multiplying the
(not normalized) probability of each key Kσ by p(eσ|Kσ).

Assuming a random behavior for Rh, evaluating p(eσ|Kσ) is done by
counting the number of round inputs compatible with the observation.
Indeed, we have:

p(eσ|Kσ) =
#{Rh : eleft and eσ

key are satisfied when Kσ is used}
232

(3)

Note that this counting operation may be optimized as eσ
key depends

on only 18 bits of Rh.

The procedure given in Appendix B describes a way to implement
this improved attack. We decided to exploit an ineffectiveness vector
eσ = (eleft, eσ

key) only when at least one of its two most influential
xor left instructions shows to be ineffective under fault. Four xor key
fault injections are thus saved in cases where a negligible amount of in-
formation would have been gathered.

We performed extensive simulations of this attack with different num-
bers of faults ranging from 15 000 to 100 000. In each case, 10 000 simula-
tions were done. The residual entropy with respect to different percentile
levels and for each considered number of faults is given in Table 1. The
median residual entropy for 50 000 and 100 000 faults are 13.95 and 6.68
bits. Compared to corresponding figures of Section 3.2, this demonstrates
a considerable gain for this method over the basic attack. Figure 7 pro-
vides a graphical view of the decreasing entropy of the resulting key space.

Table 1. Percentiles of the residual entropy (in bits) as a function of the number of
injected faults

Number Percentile level
of faults 5 % 10 % 25 % 50 % 75 % 90 % 95 %

15 000 23.59 26.33 30.98 36.10 40.46 43.92 46.37
25 000 14.35 16.92 21.51 26.62 31.63 35.86 38.31
35 000 9.17 11.27 15.38 20.23 25.2 29.60 32.31
50 000 5.13 6.80 9.85 13.95 18.65 22.96 25.64
70 000 2.81 3.93 6.23 9.57 13.57 17.44 19.95

100 000 1.40 2.26 4.03 6.68 10.07 13.59 15.87

20 40 60 80 100
Number of faults Hx 1000L

10

20

30

40

50

R
e
s
i
d
u
a
l

e
n
t
r
o
p
y
H
b
i
t
s
L

10%

50%

90%

Fig. 7. Percentiles of the residual entropy as a function of the number of faults.

4 Countermeasures

Having explained our attack in Sections 3.2 and 3.3, we now analyze the
conditions for this attack to be feasible, and the countermeasures which
may prevent it.

As we already mentioned, the embedded DES we attack must be im-
plemented in software. We think that the proposed attack is not applicable
when using a DES co-processor. We also relied on an 8-bit architecture.
This condition is not strictly required but it greatly impacts the com-
plexity of the attack. For example, if we have a 16-bit architecture, the
expected number of faults needed before obtaining an ineffective one when
targeting a xor left instruction would be 216 instead of 28. The complex-
ity figures we mentioned for the 8-bit case would thus become prohibitive
for a practical realization on architectures with wider data paths.

Because the attacker needs to know which instruction is corrupted
when a fault is injected, we think that the classical random delays coun-

termeasure (either software or hardware) should prevent the attack, or at
least make its realization very difficult. Indeed, an important condition
is to be able to interpret an identity of outputs as being the consequence
of a natural zero output of the targeted XOR. If random delays exist,
this rare particular event may well be lost in many false positive neutral
faults. The problem of false-negatives also exists when random delays are
implemented.

For similar reasons, the random order countermeasure will also per-
turb the attacker. Nevertheless, and while we have not further investigated
this idea, we foresee a way to adapt the attack to this case. When this
countermeasure is implemented alone, and by repeatedly injecting faults
on the same xor left (resp. xor key) instruction for the same input, the
attacker is able to infer the number of xor left[i] (resp. xor key[j])
for which a fault is ineffective. The observation obtained by the attacker
is not the complete ineffectiveness vector (eleft, ekey) anymore, but rather
the Hamming weights of eleft and ekey. Probably at the cost of a larger
number of needed faults, we think that it should still be possible to as-
sign probabilities to keys based upon this partial information about the
ineffectiveness vector.

A classical counter-measure against side-channel attacks such as SPA,
DPA, CPA, . . . is the data masking (also called blinding) [6] which results,
when correctly implemented, in a perfect first-order unpredictability of in-
termediate values. A direct consequence of this property is that the attack
we described is not possible anymore: any ineffective fault, consequence
of a physical zero value of the XOR output on the faulted execution, is
compatible with any logical masked value and gives no useful information
to the attacker. Note that this first-order anti side-channel countermea-
sure is not effective against a variant of our attack if it is possible to inject
multiple faults at chosen timings on the same execution.

Finally, we consider the classical countermeasure against DFA and
CFA which consists in computing the cryptographic function twice and
comparing both results: if both results are the same, the value is output
by the command; if they differ, a fault is detected and no ciphertext
is returned. As already noticed in [13] for general safe-error attacks, we
emphasize that this countermeasure does not impede our attack. A valid
output indicates that the fault was ineffective, while no output means that
it was not. The attack is even slightly simplified as the attacker does not
need to ask for computations without fault. The counter-measure would
remain efficient if a limit is imposed on the number of allowed detected
faults.

5 Conclusion

We have presented a fault-based key recovery attack on a software im-
plemented DES. This attack relies on the following fault model: when
a fault is injected during a XOR instruction, the output of this XOR is
forced to zero whatever the input operand values were. A large amount of
information about the secret key K is retrieved without knowing the DES
input, nor its output. Only the ability to detect that two DES outputs are
equal is required. An important consequence is that our attack applies
to the whole class of externally encoded DES or Triple-DES7, defined as
secret block ciphers built by embedding a DES or a Triple-DES between
two arbitrary secret permutations. This is particularly meaningful as it
potentially endangers proprietary cryptographic algorithms based on this
obfuscating design and invalidates the supposed immunity of these se-
cret functions against fault analysis. As far as we know, our attack is the
first published example of transient fault analysis against a class of secret
cryptographic functions.

Finally, we suggest some possible directions to extend our result. Fur-
ther investigations could aim at designing a variant of this attack that
would rely on other realistic fault models, or that would apply to other
externally encoded block ciphers. For example, a similar result applicable
to an externally encoded AES would threaten the most common usage
of the MILENAGE [15] scheme for authentification and key generation
functions.

Acknowledgements

The author would like to thank Eric Brier and Benôıt Chevallier-Mames
for fruitful discussions related to the ideas presented in this paper.

The work described in this document has been financially supported
by the European Commission through the IST Program under Contract
IST-2002-507932 ECRYPT.

References

1. F. Amiel, C. Clavier and M. Tunstall. Fault Analysis of DPA-Resistant Algorithms.
In Fault Diagnosis and Tolerance in Cryptography, FDTC 2006, volume 4236 of
Lecture Notes in Computer Science, pages 223–236. Springer-Verlag, 2006.

7 The Triple-DES case is treated by applying the attack on K1 and K2 separately.

2. E. Brier, C. Clavier and F. Olivier. Correlation Power Analysis with a Leakage
Model. In Cryptographic Hardware and Embedded Systems - CHES 2004, volume
3156 of Lecture Notes in Computer Science, pages 16–29. Springer-Verlag, 2004.

3. E. Biham and A. Shamir. The Next Stage of Differential Fault Analysis: How to
break completely unknown cryptosystems. 30 October 1996 (draft). Available at
www.fit.vutbr.cz/∼cvrcek/cards/nextstage.ps

4. E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosystems.
In Advances in Cryptology – CRYPTO 1997, volume 1294 of Lecture Notes in
Computer Science, pages 513–525. Springer-Verlag, 1997.

5. D. Boneh, R.A. DeMillo and R.J. Lipton. On the Importance of Checking Cryp-
tographic Protocols for Faults. In Advances in Cryptology – EUROCRYPT 1997,
volume 1233 of Lecture Notes in Computer Science, pages 37–51. Springer-Verlag,
1997.

6. L. Goubin and J. Patarin. DES and Differential Power Analysis (The ‘Duplication’
Method). In Cryptographic Hardware and Embedded Systems - CHES 1999, volume
1717 of Lecture Notes in Computer Science, pages 158–172. Springer-Verlag, 1999.

7. L. Hemme. A Differential Fault Attack Against Early Rounds of (Triple-)DES.
In Cryptographic Hardware and Embedded Systems - CHES 2004, volume 3156 of
Lecture Notes in Computer Science, pages 254–267. Springer-Verlag, 2004.

8. M. Joye, J.-J. Quisquater, S.-M. Yen and M. Yung. Observability Analysis: De-
tecting When Improved Cryptosystems Fail. In Topics in Cryptology – CT-RSA
2002, volume 2271 of Lecture Notes in Computer Science, pages 263–276. Springer-
Verlag, 2002.

9. J. Kilian and P. Rogaway. How to protect DES against exhaustive key search.
In Advances in Cryptology – CRYPTO 1996, volume 1109 of Lecture Notes in
Computer Science, pages 252–267. Springer-Verlag, 1996.

10. P. Kocher, J. Jaffe and B. Jun. Differential Power Analysis. In Advances in Cryp-
tology – CRYPTO 1999, volume 1666 of Lecture Notes in Computer Science, pages
388–397. Springer-Verlag, 1999.

11. National Bureau of Standards. Data Encryption Standard. Federal Information
Processing Standard 46, 1977.

12. P. Paillier. Evaluating Differential Fault Analysis of Unknown Cryptosystems. In
Public Key Cryptography 1999, volume 1560 of Lecture Notes in Computer Science,
pages 235–244. Springer-Verlag, 1999.

13. S.-M. Yen and M. Joye. Checking Before Output May Not Be Enough Against
Fault-Based Cryptanalysis. IEEE Trans. Computers, 49(9):967-970, 2000.

14. S.-M. Yen, S.-J. Kim, S.-G. Lim and S.-J. Moon. A Countermeasure Against One
Physical Cryptanalysis May Benefit Another Attack. In Information Security and
Cryptology, ICISC 2001, volume 2288 of Lecture Notes in Computer Science, pages
414–427. Springer-Verlag, 2002.

15. 3GPP TS 35.206. Specification of the MILENAGE algorithm set: An example
algorithm Set for the 3GPP Authentication and Key Generation functions f1,
f1*, f2, f3, f4, f5 and f5*; Document 2: Algorithm specification. Available at
http://www.3gpp.org/ftp/Specs/html-info/35206.htm

A Basic Algorithm

Algorithm 1 The Basic Attack

1: while stopping condition is not satisfied do

2: Pick a plaintext M at random
3: C ← E(M, K)

4: for h from 2 to 16 do

5: for i from 1 to 4 do
6: C∗ ← E(M, K) with fault on xor left[i] at round h− 1

7: if C∗ = C then
8: for j from 2i− 1 to 2i do
9: C∗ ← E(M, K) with fault on xor key[j] at round h

10: if C∗ = C then
11: Reduce the relevant half-key space (KA or KB)

according to the winning event (h, i, j)
12: end if
13: end for
14: end if
15: end for
16: end for
17: end while

B Improved Algorithm

Algorithm 2 The Improved Attack

1: For each 228 possible KA, set proba(KA)← 1
2: For each 228 possible KB , set proba(KB)← 1

3: while stopping condition is not satisfied do
4: Pick a plaintext M at random
5: C ← E(M, K)
6: for h from 2 to 16 do
7: for i from 1 to 4 do
8: C∗ ← E(M, K) with fault on xor left[i] at round h− 1

9: eleft[i]← (C∗ ?
= C)

10: end for

11: if (eleft[1] = True) or (eleft[2] = True) then
12: for j from 1 to 4 do
13: C∗ ← E(M, K) with fault on xor key[j] at round h

14: eA
key[j]← (C∗ ?

= C)
15: end for
16: for all KA such that proba(KA) > 0 do
17: proba(KA)← proba(KA) · p((eleft, e

A
key)|KA)

18: end for
19: end if

20: if (eleft[3] = True) or (eleft[4] = True) then
21: for j from 1 to 4 do
22: C∗ ← E(M, K) with fault on xor key[j + 4] at round h

23: eB
key[j]← (C∗ ?

= C)
24: end for
25: for all KB such that proba(KB) > 0 do
26: proba(KB)← proba(KB) · p((eleft, e

B
key)|KB)

27: end for
28: end if
29: end for
30: end while

