
MAME: A Compression Function with Reduced

Hardware Requirements ?

Hirotaka Yoshida1, Dai Watanabe1, Katsuyuki Okeya1, Jun Kitahara1,
Hongjun Wu2, Özgül Küçük2, and Bart Preneel2

1 Systems Development Laboratory, Hitachi, Ltd.,
1099 Ohzenji, Asao-ku, Kawasaki-shi, Kanagawa-ken, 215-0013 Japan

2 Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC,
Kasteelpark Arenberg 10, B–3001 Heverlee, Belgium

Abstract. This paper describes a new compression function, MAME
designed for hardware-oriented hash functions which can be used in ap-
plications with reduced hardware requirements. MAME takes a 256-bit
message block and a 256-bit chaining variable as input and produces a
256-bit output. In the light of recent attacks on MD5 and SHA-1, our
design strategy is very conservative, and we show that our compression
function is secure against various kinds of widely known attacks with
very large security margins. The simple logical operations and the hard-
ware efficient S-boxes are used to achieve a hardware implementation of
MAME requiring only 8.1 Kgates on 0.18 µm technology.
Keywords: hash functions, compression functions, low-resource imple-
mentation

1 Introduction

Ubiquitous systems are becoming popular in a wide variety of applications such
as secure supply-chain automation, proving genuineness of goods, etc. These
applications have to deal with security problems such as confidentiality, more
importantly, authentication and privacy. Thus, the importance of secure cryp-
tographic techniques in ubiquitous systems has increased significantly. However,
in order to develop secure ubiquitous systems, cryptographic algorithms must
be implemented under restricted source environments, such as low-cost or low-
power environments. As for authentication, what has been commonly used is
cryptographic hash functions and their applications.

A cryptographic hash function is an algorithm that takes input strings of ar-
bitrary (typically very large) length and maps these to short fixed length output
strings. Most hash functions proposed so far are called iterated hash functions,
which are constructed from a compression function. They work as follows. Let h

? This work was supported in part by a consignment research from the National In-
stitute on Information and Communications Technology (NiCT), Japan. This work
was supported in part by the Concerted Research Action (GOA) Ambiorics 2005/11
of the Flemish Government.

be a compression function. The message m is padded to a multiple of the block
length and subsequently divided into t blocks M1, . . . , Mt. Then the hash value
is taken as Ht, where Hi = h(Hi−1, Mi) and H0 = IV is called an initial value.
The values {Hi} are called the chaining variable.

A secure cryptographic hash function has to satisfy the following require-
ments:

– preimage resistance: it is computationally infeasible to find any input
which hashes to any pre-specified output.

– second preimage resistance: it is computationally infeasible to find any
second input which has the same output as any specified input.

– collision resistance: it is computationally infeasible to find a collision, i.e.
two distinct inputs that hash to the same result.

For an ideal hash function with an m-bit output, finding a preimage or a
second preimage requires about 2m operations and the fastest way to find a
collision is the birthday attack which needs approximately 2m/2 operations.

In order to satisfy those security requirements, most iterated hash functions
use the Merkle-Damg̊ard (MD) strengthening, which fixes IV and appends the
message length to the message (to prevent extension attacks).

For the last years, there has been much progress in cryptanalysis of iter-
ated hash functions. Attacks regarding collision resistance have been reported
on most widely used iterated hash functions such as MD5 [26] and SHA-1 [22].
Meanwhile, iterated hash functions with the MD strengthening were revealed
susceptible to several generic kinds of attacks (independent of the specific com-
pression functions), such as the long second preimage attack [14, 15, 11] and the
attack for finding multi-collisions [13].

We argue that the design strategy of hash functions and security evaluation
methods must be revisited. As for security, we limit ourselves to collision resis-
tance because the above second preimage attack still requires more complexities
than the birthday attack does. One way of viewing the collision attacks men-
tioned the above is that these attacks essentially apply differential cryptanalysis
[5] to find collisions. One could claim that a new hash function is only taken
seriously if it is accompanied with evidence that it resists differential cryptanal-
ysis.

In order to have a secure implementation, it is highly recommended to have
a chaining value of 256 bits. Thus, an implementor could use SHA-256 [22].
However, SHA-256 has a large footprint, as it was designed for 32-bit processors
using XORs, shifts, and modular addition.

This motivates us to develop a new compression function MAME to be used
with any domain extension algorithm in order to build a light weight hash func-
tion. MAME accepts a chaining value of 256 bits and message blocks of 256 bits.
The output size is 256 bits as well.

The outline of this paper is as follows. In Sect. 2, we give the specification
of the MAME compression function. In Sect. 3, we explain our design strategy.
In Sect. 4, we evaluate the security of MAME. We then discuss the performance
issues in Sect. 5. Our conclusions are given in Sect. 6.

2 Specification

2.1 Notation

The specification uses the following notations:

⊕ bit-wise exclusive-or ≫ n n-bit rotation to the right (32 bit register length)

|| concatenation ≪ n n-bit rotation to the left (32 bit register length)

In the remainder of this paper, we denote the message block by M and
chaining variable by H respectively for simplicity.

2.2 The Algorithm of MAME

The MAME compression function denoted by h is constructed from the block
cipher fE defined below in the following manner known as the Matyas-Meyer-
Oseas (MMO) mode ([19], pp 340), h(H, M) = fE(H, M) ⊕ M .

Overview of the Block Cipher The structure of the block cipher fE(·, ·) is
shown in Figure 1. The block size and the key size of the block cipher fE are both

constant
generator

key scheduling
function

message mixing
function

key input message input

output

fC

fC

fC

fK

fK

fK

fR

fR

fR

c (0)

Fig. 1. The structure of the encryption function

256 bits. The cipher is a type 1 4-branch generalized Feistel network (GFN) [29]
with 96 rounds. For implementation reasons, each of the branches is stored in
two 32-bit words.

The cipher is broken down into three parts: the constant generation function,
the key schedule function, the mixing function, each of which uses a sub-function
iteratively. We denote the corresponding sub-functions by fC , fK , and fR re-
spectively.

The constant generator is initialized with the initial constant value c(0) and
generates a round constant C(r) by iteratively applying the round constant gen-
eration function fC . Together with the key, these round constants are used as
input parameters to the key schedule function.

The round keys K(r) are calculated from the key by iteratively applying the
round key generation function fK . Each round of the key schedule function gen-
erates the round key K(r), which becomes the sub-key to the round function fR.
Finally, the mixing function uses the round function fR iteratively to transform
a message block into a ciphertext.

The Mixing Function The mixing function is defined by iterating the round
function fR. The input variables of fR are x0, x1, . . . , x7, each a 32-bit word. The
256-bit plaintext is denoted by P = (p0, p1, . . . , p7) and the 256-bit ciphertext
by E = (e0, e1, . . . , e7), the mixing function is defined in the following:

(x
(0)
0 , x

(0)
1 , . . . , x

(0)
7) = (p0, p1, . . . , p7),

(x
(r)
0 , x

(r)
1 , . . . , x

(r)
7) = fR(x

(r−1)
0 , x

(r−1)
1 , . . . , x

(r−1)
7), 1 ≤ r ≤ 96,

(e0, e1, . . . , e7) = (x
(96)
0 , x

(96)
1 , . . . , x

(96)
7).

The round function fR consists of a key addition, a non-linear function F ,
and a word-wise permutation.

In the key addition operation, the round subkey K(r) from the key schedule
is XORed with x4. The F function is a non-linear transformation with 2-word
input and 2-word output. The inputs of the F function are x4⊕K(r) and x5. The
output of the F function is XORed with x6, x7. We denote the most significant
word of the output of the F function by FH , and the least significant word by
FL. Figure 2 describes the round function fR which is defined as follows:

x
(r)
0 = x

(r−1)
6 ⊕ F (x

(r−1)
4 ⊕ K(r), x

(r−1)
5)H ,

x
(r)
1 = x

(r)
7 ⊕ F (x

(r−1)
4 ⊕ K(r), x

(r−1)
5)L,

x
(r)
2 = x

(r−1)
0 , x

(r)
3 = x

(r−1)
1 , x

(r)
4 = x

(r−1)
2 ,

x
(r)
5 = x

(r−1)
3 , x

(r)
6 = x

(r−1)
4 , x

(r)
7 = x

(r−1)
5 .

We now describe how the F function works. We denote the input words to
the F function by aH , aL. The F function consists of two layers, the S-box layer
S, and the linear diffusion layer L. Each of the two layers is a transformation
with a 64-bit input and a 64-bit output. The F function is the composition of
these two transformations: F = L ◦ S.

The S-box layer was designed for bit slice implementations. It uses a sub-
stitution table S with a 4-bit input and a 4-bit output, which is defined in the
following:

F

x (r)
0 x (r)

1 x (r)
2 x (r)

3 x (r)
4 x (r)

5 x (r)
6 x (r)

7

K (r)

x (r - 1)
0 x (r - 1)

1 x (r - 1)
2 x (r - 1)

3 x (r - 1)
4 x (r - 1)

5 x (r - 1)
6 x (r - 1)

7

Fig. 2. The round function fR

S[16] = {4, 14, 15, 1, 13, 9, 10, 0, 11, 2, 7, 12, 3, 6, 8, 5}.

Denoting the output words by bH , bL, the S-box layer S is defined as follows:

bH,i+16||bH,i||bL,i+16||bL,i = S[aH,i+16||aH,i||aL,i+16||aL,i], 0 ≤ i < 16.

The linear diffusion layer L consists of cyclic rotations and XOR operations
and is defined in the following:

bL = bL ⊕ (bH ≪ 1), bH = bH ⊕ (bL ≪ 3), bL = bL ⊕ (bH ≪ 4),

bH = bH ⊕ (bL ≪ 7), bL = bL ⊕ (bH ≪ 8), bH = bH ⊕ (bL ≪ 14).

The Key Schedule Function The round-key generation function fK has the
same structure as the fR does. The difference is that fK takes as an input
the key instead of the plaintext and the subkeys are generated by the constant
generation function (rather than the key schedule function).

k
(r)
0 = k

(r−1)
6 ⊕ F (k

(r−1)
4 ⊕ C(r), k

(r−1)
5)H ,

k
(r)
1 = k

(r−1)
7 ⊕ F (k

(r−1)
4 ⊕ C(r), k

(r−1)
5)L,

k
(r)
2 = k

(r−1)
0 , k

(r)
3 = k

(r−1)
1 , k

(r)
4 = k

(r−1)
2 ,

k
(r)
5 = k

(r−1)
3 , k

(r)
6 = k

(r−1)
4 , k

(r)
7 = k

(r−1)
5 .

The r-th round-key K(r) is defined by K(r) = k
(r)
3 .

The Round Constants Generation The input C(r) to the round-key gen-
eration function fK is generated sequentially from a fixed initial value c(0) by
means of a simple linear transformation fC . Starting from a fixed initial value
c(0) = 0xcae1ac3f55054a96, The round-constant generation function fC gener-
ates 64-bit variables c(r)’s in the following manner:

tH ||tL = fL(c(r−1)),

c(r) = tL||tH ,

where fL is a Linear feedback shift register (LFSR) defined by the polynomial
g(x) over GF(2) described in the Annex. The r-th round constantC (r) uses the
32 least significant bits of c(r).

3 Design Rationale

In our design of MAME, we aim to satisfy the following requirements:

– The security analysis should be simple in order to have confidence in the
design.

– The security margins should be large enough to ensure long term security as
a 256-bit hash function.

– It should be possible to achieve compact implementations in hardware.

– The software performance on general purpose machines should be good.

To meet these goals, we use the following design principles:

– Minimize the input/output length while achieving the required security.

– Use only known and understood building blocks such as XORs, which makes
security assessment less complicated than with most previous hash functions,
which use building blocks like arithmetic operations for which the full anal-
ysis is hard.

– Use a conservative estimation for the number of rounds, the choice of which
considers attacks applying the input/output whitening techniques.

Parameter (input/output) Since the output length of the MAME is 256
bits, the message block length has to be at least the same size. From hardware
implementation point of view, shorter input length implies that the number of
required registers is smaller. Therefore we determined that the length of message
block is 256 bits.

Structure We note that the SP structure is considered to be more hardware
consuming than the Feistel structure. Thus, we have chosen to use Feistel over
SP network. We have decided to use the unbalanced Feistel construction which
allows for a more compact implementation without losing security (given suffi-
ciently many rounds).

The Mode to Construct the Compression Function The use of the MMO
mode allows the usage of the block cipher theory in understanding the security
of MAME. The MMO mode is also more likely to withstand side channel attacks
(e.g., when the hash function is used for key derivation) than the common Davies-
Meyer [23].

The F Function The function F is the most significant component in the
MAME. To reduce the area requirements, 16 small 4-bit-to-4-bit S-boxes are
used in parallel. To increase the software performance, those 16 small S-boxes are
identical to enable bit slice implementation. The linear diffusion layer uses simple
rotations and XORs to reduce hardware and software complexity. Security-wise,
we have picked the diffusion layer to have a branch number of 8.

As for the S-box, we adopted a function which is affine equivalent to the
inversion function in GF(24) for security reasons. We imposed the restriction
that S has no fixed points. The S-box has the properties:

– Maximum differential and linear probabilities are 2−2.
– The degree of the Boolean polynomial of every output bit is 3.
– The number of monomials of polynomial expression over GF(24) is 14.

The Key Schedule Function and the Round Constants We use the en-
cryption for function to derive the subkeys from the key, thus allowing for a
large diffusion in the key schedule algorithm. We re-use the F function for the
key schedule such that there is no extra hardware/memory requirements. The
round constants introduce randomness, non-regularity, and asymmetry into the
key schedule function. Thus, attacks which are based on the similarity of the
rounds are easily prevented.

4 Security Analysis

Despite the fact that the most threatening attacks on hash functions at this
moment are differential attacks, we evaluate the security of MAME with respect
to various kinds of widely known attacks on block ciphers. These include not
only differential attacks, but also linear attacks, higher order differential attacks,
interpolation attacks, Square attacks.

The methods used to evaluate the compression function’s resistance against
these attacks are described below. In general, our analysis indicates that MAME
has a large security margin against all of these attacks.

The motivation to analyze the MAME compression function with respect to
attacks which do not immediately apply to hash functions as such, is that we
want to ensure its security against future attacks which might borrow techniques
from the field of block cipher cryptanalysis. Another motivation is that a number
of block cipher based constructions, including the MMO mode, can be proved to
be collision resistant if the underlying block cipher behaves as a pseudo-random
function (see [25, 3]). The best way to verify this pseudo-randomness, is to apply
block cipher analysis techniques to the core function fE, and to see if this reveals
any weakness or non-random behavior.

4.1 Differential and Linear Attacks

Considering the fact that the most successful attacks on hash functions are of
differential nature, and that differential [5] and linear cryptanalysis [20] are two

of the most powerful tools in block cipher cryptanalysis, we start our evaluation
with an analysis of the resistance of fE against differential and linear attacks.

In order to estimate the strength of fE with respect to differential and linear
attacks, we will try to compute upper bounds on the probabilities of differential
and linear characteristics. As is commonly done in block cipher cryptanalysis,
we will make abstraction of the exact differences or masks used in these charac-
teristics, and just consider patterns of active S-boxes. More precisely, instead of
analyzing how a full 256-bit difference (or mask) at the input of fE propagates
over different rounds, we only consider a 4 × 16-bit pattern whose bits indicate
which of the 64 S-boxes in the first four rounds are active, and analyze to which
patterns it can possibly propagate in all subsequent sequences of four consecu-
tive rounds. In order to simplify notations in the remainder of this section, we
will denote by x̃ the 16-bit pattern of active S-boxes that correspond with a
64-bit difference or mask x at the input of the function F . Once we have found
a bound on the total number of active S-boxes in a characteristic, we can apply
the following theorem:

Theorem 1. Let Dmin and Lmin be lower bounds on the total number of active
S-boxes in a differential/linear characteristic. Then, the maximum probabilities
of the differential/linear characteristics are upper bounded by pDmin

s and qLmin
s ,

respectively, where ps and qs denote the maximum differential/linear probabilities
of the S-box, and are defined as follows:

ps = max
∆x 6=0,∆y

Pr[S(x) ⊕ S(x ⊕ ∆x) = ∆y]

qs = max
Γy 6=0,Γx

(2 Pr[x · Γx = S(x) · Γy] − 1)2

Hereafter, we only explain our method of evaluating the security against dif-
ferential cryptanalysis as we can apply a similar method regarding linear crypt-
analysis because of its duality to differential cryptanalysis [6].

In the case of MAME, we estimate the lower bounds of the number of active
S-boxes by applying the Viterbi algorithm often used in the error correction
codes. This algorithm considers a set of states where each of two states has
distance and then, it exhaustively searches for paths with minimum distance.
In our case, each state is defined as the intermediate state of fE after certain
round, the distance between a state at round r and a state at round r + 1 is
measured by the number of active S-box which has been increased through an
application of r-th round.

However, we had a problem of too large memory requirement of 264 in the
the Viterbi algorithm.

To solve this, we consider the Hamming weight of a 64-bit difference rather
than 64-bit difference itself. For such a 16-bit word x̃i, Ham(x̃) ranges from 0
to 16 and it can be represented as a 5-bit string. In the end, we manage to
truncate the 64-bit space into the 20-bit space, which results in a practical usage
of memory 220 in carrying out the Viterbi algorithm.

Carrying out the Viterbi algorithm requires us to construct some table rep-
resenting the propagation of the weight of the differences through F which is
shown in Table 1 where 0 indicates the corresponding transition of Hamming
weight of a difference is not possible, otherwise we put 1. For the row i, the
column j, the element ai,j in Table 1 is determined in the following way:

– Case 1(i ≤ 6): For any 64-bit x such that Ham(x) = i, compute Ham(L̃(x)).

If there exists x such that Ham(L̃(x)) = j, then let ai,j be 1. Otherwise let
ai,j be 0.

– Case 2(j ≤ 6): For any 64-bit y such that Ham(y) = j, compute Ham(L̃−1(y)).

If there exists y such that Ham(L̃−1(y)) = i, then let ai,j be 1. Otherwise
let ai,j be 0.

– Case 3(Otherwise): Let ai,j be 1.

It took us several hours on a PC to perform experiments for each case. Table 1
tells us that the branch number of L is equal to 8, which is defined as follows:

Definition 1. The branch number BL of linear transformation L is defined by

BL = min
x6=0

(Ham(x̃) + Ham(L̃(x)),

where we denote the Hamming weight of y by Ham(y).

In the Viterbi algorithm, for an input difference, one standard way of com-
puting the Hamming weight of the output difference is to use the branch number.
In this way, we estimate that the value Dmin is more than the required number
131 for MAME reduced to 80 rounds.

In order to improve the precision of estimation, we next used the Table 1
instead of the branch number when we performed the Viterbi algorithm. In
addition, we captured information on how the weights of the differences change
through two applications of F . We experimentally obtained information on how

Ham(˜F ◦ F (x)) behaves. This limits the possibilities for the output difference
of the second application of F , compared to what we expect from the case of
single application of F , the Table 1 3. During performing the Viterbi algorithm
if an output difference of the first application is not influenced at XOR which
is processed just after F , we can use the above information. In this way, the
Viterbi algorithm found us some better result that the value Dmin is 130 for
MAME reduced to 58 rounds.

As for the linear attack, we obtain the same value for the branch number,
8. We perform similar approach to the case of differential cryptanalysis and we
estimate that the value Lmin is 129 for MAME reduced to 53 rounds.

From the above theorem, we estimate that the maximum differential/linear
characteristic probabilities are upper bounded by 2−260 and 2−258, respectively.
It follows that there is no effective differential/linear characteristic for MAME
reduced to 58 rounds.

3 e.g.if Ham(x̃) = 3 and Ham(F̃ (x))=5), then Ham(˜F ◦ F (x))=3 is not possible)

Table 1. Branch table for differential attacks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 = Ham(L(x̃))

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1

2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

3 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

4 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

5 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

7 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

11 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

12 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

13 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

14 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

15 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16=Ham(x̃) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4.2 A Dedicated Differential Attack

We give an alternative description of the Feistel structure for ease of analysis.
Denote the four 64-bit words of the internal state at round r as yr

0 , yr
1, yr

2 and
yr
3, then the round function is given as follows:

yr
0 = yr−1

3 ⊕ F (yr−1
2 ⊕ Kr);

yr
1 = yr−1

0 ;
yr
2 = yr−1

1 ;
yr
3 = yr−1

2 ;

Suppose that F (∆0) = ∆1, F (∆1) = ∆2, F (∆2) = ∆3 and F (∆3) = ∆0 with
probability p0, p1, p2 and p3, respectively. We obtain the 15-round difference
propagation as shown in Table 2.

The probability for the 15-round differential path is p3
0 × p2

1 × p2
2 × p3. The

probability for the next 15-round differential is p3
1 × p2

2 × p2
3 × p0. For 60 rounds,

the differential probability is p8
0 × p8

1 × p8
2 × p8

3.
We search for the differences with at most 7 active S-boxes for each difference.

There are 241.5 such differences. Searching through all these differences, but
there is no differential relations F (∆0) = ∆1, F (∆1) = ∆2, F (∆2) = ∆3 and
F (∆3) = ∆0. It shows clearly that there is no differential path with small number
of active S-boxes.

Then we increase the number of active S-boxes to search for the differential
paths. Let the number of active Sboxes in ∆0 and ∆2 be both 3. We allow the
number of active S-boxes in ∆1 and ∆3 to be as large as 15. We searched all

Table 2. Difference propagation for 15 rounds

round y0 y1 y2 y3

r + 0 0 0 0 40

r + 1 40 0 0 0

r + 2 0 40 0 0

r + 3 0 0 40 0

r + 4 41 0 0 40

r + 5 40 41 0 0

r + 6 0 40 41 0

r + 7 42 0 40 41

r + 8 0 42 0 40

r + 9 40 0 42 0

r + 10 43 40 0 42

r + 11 42 43 40 0

r + 12 41 42 43 40

r + 13 0 41 42 43

r + 14 0 0 41 42

r + 15 0 0 0 41

these differences, and found that there are 14,045 differential paths. And the
maximum number of the differential paths that starts from the same difference
is only 6. Each set of (∆0, ∆1, ∆2, ∆3) involves at least 34 active S-boxes. The
probability of a 60-round differential path is less than 2−700, which shows MAME
has a large security margin against this kind of attacks.

4.3 Higher Order Differential Attack

In the higher order differential attacks [16], the attacker constructs Boolean
polynomial expression for the cipher to be attacked. In the encryption process,
each bit of each intermediate state can be expressed as a Boolean polynomial in
terms of bits of the plaintext.

The idea of the attack is that if the intermediate bits are expressed by Boolean
polynomials of degree at least d, the (d+1)-th order differential in polynomial
sense of the Boolean polynomial would be 0. Therefore if the value d is small
enough, the attack would be feasible.

In the case of MAME, we found that every output bit of the S-box S can
be expressed as a Boolean polynomial of degree 3 in terms of input bits. One
naive approach for a higher order differential attack is to construct a Boolean
polynomial of degree 256 for the 256-bit block cipher in MAME by assigning one
variable for 1 bit. However, the attacker could construct a more simple expression
of smaller degree by substituting 0 into certain variables, which makes various
possibilities for the variables in the polynomial expression.

We performed experiments dealing with all of these possibilities in order to
observe how the S-box applications increase the degree of Boolean functions

as the number of rounds are increased. We confirmed that the degree of such
polynomials for MAME with 21 rounds reaches to the required degree, which
depends on how many variables the polynomial has. This prohibits higher order
differential attacks on the full rounds of MAME.

4.4 Interpolation Attack

In the interpolation attacks [12], the attacker constructs polynomials (typically
over some finite field) expressing the cipher to be attacked by using pairs of
plaintext and ciphertext. The idea of the attack is that if the degree of con-
structed polynomial is small, required plaintexts and ciphertexts are a few in
order to solve for the coefficient depending on the key in the polynomial.

In the case of MAME, the S-box S can be expressed for as a polynomial
over GF(24). By applying the Lagrange interpolation technique, we found such
a polynomial expression of degree 14 for S.

If we assign one variable for each 4 bits for MAME, we could construct a poly-
nomial expression with 64 variables over GF(24). The attacker could construct
a more simple expression by substituting 0 into certain variables.

We performed experiments dealing with such attacking scenario and we con-
firmed that the degree of such polynomials increases to more than 255. This
prohibits interpolation attacks on more than 18 rounds of MAME.

4.5 Square Attack

The Square attack has been developed to evaluate the security of the byte-
oriented ciphers such as Square and AES [7]. Here we analyse the block cipher
in MAME by applying this technique. The attack introduces the following terms.
The ith byte is passive if and only if values of all ith byte in the collection of
texts are equal. The ith byte is active if and only if values of all ith byte in
the collection of texts are different. The ith byte is balanced if and only if the
sum of all ith byte is 0. The byte which is not categorized to be any of these
bytes is called unbalanced. In the attack on reduced-round AES, staring from
a collection of texts with one active byte, the attacker obtains balance bytes
after several rounds, which result in constructing an distinguisher leading to a
successful attack.

In the case of MAME, we make 64-bit words play the same role as bytes
do in the Square attacks on reduced AES. In this way, we have 4 different
word positions in each intermediate states hence we have 24 states for plaintext,
depending on the positions where words are active or passive. We confirmed that
starting from any of those states, any word becomes unbalanced after 17 rounds
of MAME. Therefore we consider that the square attack is very unlikely to be
feasible to the full round MAME.

4.6 Analysis of the Iterated Hash Function Based on MAME with
the MD strengthening

In order to use MAME in practice, we specify certain iterated hash function
based on MAME with the MD strengthening with the 256-bit initial vector
H0 = (H0,0, H0,1, . . . , H0,7) which is given in the following:

H0,0 = 0xbc18bf6d, H0,1 = 0x369c955b, H0,2 = 0xbb271cbc, H0,3 = 0xdd66c368,

H0,4 = 0x356dba5b, H0,5 = 0x33c00055, H0,6 = 0x50d2320b, H0,7 = 0x1c617e21.

We investigate the security of the hash function against the collision attacks
by Wang et al. In the collision attacks on MAME, choosing the message input
to MAME corresponds to choosing the plaintext to the underlying block cipher.
For any differential characteristic the attacker finds, its differential probability
is upper bounded by 2−256. The attacker next tries to build a system of equa-
tions for this characteristic which is called sufficient conditions and then tries to
satisfy them by controlling the chaining variable input and the message block
input. However, direct control over the chaining variable input should be very
difficult because the key schedule input is the output of the previous application
of MAME. Therefore, all the attacker can control should be 256 bits of plain-
text with which we consider it is very difficult in order to fulfill the conditions.
Therefore, we consider the attacks by Wang et al is very unlikely to be feasible
to the MAME based hash function specified here.

4.7 Regularity Analysis of Reduced MAME

The simple design of MAME enables us to develop reduced versions keeping al-
most the whole design principles and primitives unchanged. We used this prop-
erty to launch some experiments which are not possible to do on the real size.
We believe that those analysis could help us to have a better understanding of
hash functions based on this kind of construction.

There are two aims in this approach. The first one is to detect possible
irregularities or differential anomalies in the reduced version which may indicate
a security flaw in the design approach. The second one is to parameterize the
security (against differential kind of attacks for example) to some properties of
the primitives and to some parameters such as number of rounds.

MAME has a 4x4 bit S-box and uses an unbalanced Feistel network. We can
form 32, 64 and 128 bits block size versions without changing those structures
but reducing the word size and replacing the linear transformation. Our prelim-
inary analysis focuses on 32 bits block size but it would also be interesting to
analyze other sizes and correlations among them. From now on we will call the
reduced version of MAME which uses a 32 bits block size MAME-32. A detailed
specification of MAME-32 is given in appendix A.

The most basic collision-finding attack we might mount on a hash function is
the so-called birthday attack. In a birthday attack we choose inputs to the hash
function until we find two inputs that produce the same output. If the points

are chosen independently at random, birthday attack on a hash function h with
range size r requires about r1/2 trials to find a collision. But as it is pointed out
in [2] the range points computed in the attack are uniformly distributed over R
if and only if h is regular, meaning every range point has the same number of
pre-images under h. We will use the balance measure for a hash function intro-
duced in [2] for our regularity analysis of MAME-32:
Let h : D → R be a hash function where the range R contains r ≥ 2 points
R1, ..., Rr. For i = 1, ..., r let h−1(Ri) = {x ∈ D|h(x) = Ri} be the pre-image of
Ri under h. Let di = |h−1(Ri)| and d = |D| be the cardinality of this pre-image

set and the domain respectively. Balance of h is defined as µ(h) = logr[
d2

d2
1+...+d2

r
].

where logr() denotes the logarithm in base r. This is a real number between 0
and 1. Balance 1 indicates that the hash function is regular and balance 0 that
it is a constant function, meaning as irregular as it can be. Let Ch(q) be the
probability that the birthday attack on hash function h succeeds in finding a

collision in q trials. Then by [2]:Ch(q) =

(
q
r

)
1

rµ(h) , i.e., a collision is expected

in about rµ(h)/2 trials. With this equation, performance of the birthday attack
can be characterized in terms of the balance of the hash function h.
As we have pointed out before, the main difference between MAME and re-
duced versions is the word size and the diffusion layer. Therefore we calculated
µ values for three different reduced versions such as with a linear transformation
consisting of shifts and XOR (as in MAME), without a linear transformation,
and finally with an MDS matrix.

Table 3. µ values for MAME-32 with different diffusion layers

Rounds with no diffusion similar diffusion with mds matrix

8 0.962917 0.972480 0.972037
16 0.937925 0.968750 0.968750
32 0.937983 0.968750 0.968751
64 0.937815 0.968750 0.968750
96 0.938165 0.968750 0.968751

MAME-32 without a diffusion layer has lower balance. Note that for the 32
bits block size word size is 4 bits and F function inputs and outputs 8 bits. Half
of the bits input to the S-boxes. Unlike the real size any weak diffusion would
have greater impact on the following rounds. As we can observe from Table 3,
regularity with a diffusion layer consisting of shifts and XORs does not differ
from the one with an MDS matrix and it is reasonably high. MAME-32 has a
block cipher structure for the first layer and uses Matyas-Meyer-Oseas mode for
the second layer. Underlying block cipher as should be is 1-1 and onto, one might
think that balancedness is mainly due to the second layer, however as can be
seen from Table 3, it is effected from the diffusion layer.

5 Performance

5.1 Hardware Performance

The use of logical operations in the most part of the design allows us to achieve a
hardware implementation of MAME requiring 8.1 Kgates on 0.18 µm technology.
In our implementation, fK and fR share the same circuit and processing one
round takes one cycle. We also implemented SHA-256 in the same environment
as we did in the case of MAME. We here present our hardware implementation
comparison of MAME with SHA-256 [22]. as shown in Table 4.

Table 4. Comparison of hardware implementation of MAME with SHA-256

Algorithm Area (KGates) throughput (Mbps) Max Frequency (MHz)

MAME 8.1 440 333

SHA-256 18.0 2600 333

SHA-256 [10] 10.9 22.5 50

We note that the relatively slower throughput is not a real barrier in the case
of a hash function aimed at low-end devices, as they are not expected to handle
large amounts of data in any case.

5.2 Software Performance

We present our software implementations of MAME and SHA-256 on some mi-
crocomputer made by Renesas for smart cards. In software implementation, we
partially unroll the round functions code to increase the speed and we take the
approach described in [24] to achieve a bit slice implantation where S-box is
transformed into 20 logical operations. We also implemented SHA-256 in the
same environment as we did in the case of MAME. We present our software
implementation comparison of MAME with SHA-256 as shown in Table 5.

Table 5. Comparison of software implementation of MAME with SHA-256

Algorithm Time (ms) RAM (Bytes)

MAME 49.4 96

SHA-256 31.4 128

Acknowledgements

The authors would like to thank Christophe De Cannière, Orr Dunkelman, Se-
bastiaan Indesteege, Joseph Lano, and Souradyuti Paul for useful discussions on

this work and improving the editorial quality of this paper. We are also grateful
to the anonymous referees for their valuable remarks.

6 Conclusion

We presented a new compression function, MAME designed for a hardware-
oriented hash function. We make it clear what the design rational we adopt and
evaluate its security applying techniques from block cipher analysis and confirm
that there is no weakness in MAME. Our implementation shows some sort of
compactness of MAME but this leaves room for further optimizations.

References

1. M.Bellare, R.Canetti, H.Krawczyk, “Keying Hash Functions for Message Authen-
tication,” Advances in Cryptology - CRYPTO 96, LNCS1109, (1996),1-15.

2. M.Bellare, T.Kohno, “Hash Function Balance and Its Impact on Birthday At-
tacks,” Advances in Cryptology- Eurocrypt 2004, Springer-Verlag, LNCS 3027,
(2004).

3. J. Black, P. Rogaway, and T. Shrimpton, “Black-box analysis of the block cipher-
based hash-function constructions from PGV,” Advances in Cryptology - CRYPTO
2002, Springer-Verlag, LNCS 2442, (2002), 320-335.

4. A. Biryukov, D. Wagner, “Advanced slide attacks,” in Proceedings of Eurocrypt

2000, LNCS 1807, B. Preneel, Ed., Springer-Verlag, pp. 589–606, 2000.

5. E. Biham, A. Shamir, Differential Cryptanalysis of the Data Encryption Standard,
Springer-Verlag, 1993.

6. F. Chabaud and S. Vaudenay, “Links between Differential and Linear Cryptanal-
ysis,” in Proceedings of Eurocrypt ’94, LNCS 950, Springer-Verlag, pp. 356–365,
1995.

7. J. Daemen, L.R. Knudsen and V. Rijmen, “The block cipher Square,” Fast Software
Encryption, LNCS 1267, E. Biham, Ed., Springer-Verlag, 1997, pp. 149-165. Also
available as http://www.esat.kuleuven.ac.be/rijmen/square/fse.ps.gz.

8. I. Damg̊ard, “A design principle for hash functions,” in Proceedings of Crypto’89,
LNCS 435, G. Brassard, Ed., Springer-Verlag, pp. 416–427, 1990.

9. B. R. Gladman,
http://fp.gladman.plus.com/cryptography_technology/

10. M. Feldhofer, C. Rechberger, “A Case Against Currently Used Hash Functions in
RFID Protocols”, proceedings of On the Move to Meaningful Internet Systems
2006: OTM 2006 Workshops, LNCS 4227, pp. 372–381, Springer-Verlag, 2006.

11. J. J. Hoch, A. Shamir, “Breaking the ICE – Finding Multicollisions in Iterated
Concatenated and Expanded (ICE) Hash Functions”, Proceedings of Fast Software
Encryption 2006, , LNCS 4047, pp. 179–194, 2006.

12. T. Jakobsen, L. R. Knudsen, “The interpolation attack on block ciphers,” In Fast
Software Encryption, Israel, LNCS 1267, pp. 28–40, Springer-Verlag, 1997

13. Antoine Joux, “Multicollisions in Iterated Hash Functions, Advances in Cryptol-
ogy,” Proceedings of CRYPTO 2004, LNCS 3152, pp. 306–316, Springer-Verlag,
2004.

14. J. Kelsey, B. Schneier, “Second Preimages on n-Bit Hash Functions for Much Less
than 2n Work,” In Advances in Cryptology-Eurocrypt’2005, volume 3494 of Lec-
ture Notes in Computer Science, pages 474–490, Springer-Verlag, 2005.

15. J. Kelsey and T. Kohno, “Herding hash functions and the Nostradamus attack,”.
In Advances in Cryptology- EUROCRYPT 2006, volume 4004 of LNCS, pages
183–200, S. Vaudenay, Ed., Springer-Verlag, 2006.

16. L.R. Knudsen, “Truncated and Higher Order Differentials,” Proceedings of the
Second Internation al Workshop on Fast Software Encryption, Leuven, Belgium,
1995, LNCS 1008, Springer, pp.196-211.

17. C.Kocher, J.Jaffe, B.Jun, “Differential Power Analysis,” Advances in Cryptology-
CRYPTO 99, LNCS1666, (1999), 388-397.

18. K.Lemke, K.Schramm, C.Paar, “DPA on n-Bit Sized Boolean and Arithmetic Op-
erations and Its Application to IDEA, RC6, and the HMAC Construction,” Cryp-
tographic Hardware and Embedded Systems (CHES 2004), LNCS3156, (2004),
205-219.

19. A. J. Menezes, P. C. van Oorshot, and S. A. Vanstone, Handbook of Applied Cryp-

tography, CRC Press, 1997.
20. M. Matsui, “Linear Cryptanalysis Method for DES cipher,” in Proceedings of EU-

ROCRYPT’93, LNCS 765, pp.386-397, 1994.
21. T.S.Messerges, E.A.Dabbish, R.H.Sloan, “Investigations of Power Analysis Attacks

on Smartcards,” USENIX Workshop on Smartcard Technology (1999).
22. National Institute of Standards and Technology, FIPS-180-2: “Secure Hash Stan-

dard (SHS),” August 2002.
23. K. Okeya, “Side Channel Attacks against HMACs based on Block-Cipher based

Hash Functions,” ACISP 2006 Conference, Proceedings, pp. 317–329, 2006.
24. D. A. Osvik, “Speeding up Serpent,” The 3rd AES Conference, Proceedings,

pp. 317–329, 2000.
25. B. Preneel, R. Govaerts, and J. Vandewalle, “Hash functions based on block ci-

phers: A synthetic approach,” Advanced in Cryptology, CRYPTO 93, Springer-
Verlag, LNCS 773, (1994), 368-378.

26. R. Rivest, “The MD5 message-digest algorithm,” Request for Comments (RFC)
1321, Internet Activities Board, Internet Privacy Task Force,April 1992.

27. X. Wang, Y. L. Yin, H. Yu, “Finding collisions in the full SHA1,” in Proceedings

of CRYPTO 2005, LNCS 3621, V. Shoup, Ed., Springer-Verlag, pp. 17–36, 2005.
28. X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu, “Cryptanalysis of the Hash

Functions MD4 and RIPEMD, in Proceedings of Eurocrypt 2005, LNCS 3494,
R. Cramer, Ed., Springer-Verlag, pp. 1?18, 2005.

29. Y. Zheng, T. Matsumoto, H. Imai, “On the Construction of Block Ciphers Provably
Secure and Not Relying on Any Unproved Hypotheses”, Advances in Cryptology,
proceedings of CRYPTO 1989, LNCS 435, pp. 461–480, Springer-Verlag, 1989.

A Specifications for MAME-32

A detailed specification of MAME-32 is given as follows:

1. MDS matrix over GF (2)[x]/x4 + x + 1:

(
x + 1 x2

x2 + x x2 + x + 1

)

2. Initial value = 0x1b5b8cbd.
3. The constants are the same as 4 LSBs of the MAME-32.
4. The linear transformation layer:

bL = bL ⊕ (bH <<< 3); bH = bH ⊕ (bL <<< 2)

B Round constants

For the constant generation function, the following polynomial g(x) over GF(2)
defining the Linear feedback shift register (LFSR) fL is given:

g(x) = x63 + x62 + x58 + x55 + x54 + x52 + x50 + x49 + x46 + x43

+x40 + x38 + x37 + x35 + x34 + x30 + x28 + x26 + x24

+x23 + x22 + x18 + x17 + x12 + x11 + x10 + x7 + x3 + x2 + 1

Round constants C(0), . . . , C(95), are shown as follows:

Table 6. Round constants

C(0) = 0x51151113, C(1) = 0x3b4f5a2f, C(2) = 0x2b0e343a, C(3) = 0x46b151a6,

C(4) = 0xac38d0e9, C(5) = 0xde130ff4, C(6) = 0x1b6f7abf, C(7) = 0xbc9a76bc,

C(8) = 0xc631d3e6, C(9) = 0xf269daf1, C(10) = 0xdc1106f5, C(11) = 0xa6fd1bb3,

C(12) = 0x1f1e6ba2, C(13) = 0x307857d6, C(14) = 0x7c79ae88, C(15) = 0xc1e15f59,

C(16) = 0x3530f34d, C(17) = 0x68df0d12, C(18) = 0x7f4ff42f, C(19) = 0x67aa7d25,

C(20) = 0x9265a0cb, C(21) = 0xf1f384e2, C(22) = 0xe21aba37, C(23) = 0x03185ae5,

C(24) = 0xe73098aa, C(25) = 0xa7ed528f, C(26) = 0x58142bc4, C(27) = 0x34397327,

C(28) = 0xa486e67c, C(29) = 0x7b69f586, C(30) = 0x921b99f1, C(31) = 0x29719f74,

C(32) = 0xe3e25ede, C(33) = 0xa5c67dd1, C(34) = 0x4b5f3214, C(35) = 0x3c95ce5f,

C(36) = 0xe9aa813c, C(37) = 0x59db0067, C(38) = 0x627c4d9d, C(39) = 0x083671eb,

C(40) = 0xe6ab4602, C(41) = 0x8b55feb7, C(42) = 0x5e7b5164, C(43) = 0x86dbc3c7,

C(44) = 0xbd3b0cfc, C(45) = 0xb0e33606, C(46) = 0xf4ec33f0, C(47) = 0xc38cd819,

C(48) = 0x176686ad, C(49) = 0x61691012, C(50) = 0xf61623af, C(51) = 0x41720925,

C(52) = 0xb702fecb, C(53) = 0x6a9254e2, C(54) = 0x7787c237, C(55) = 0x6e9f1ae5,

C(56) = 0xb14578ab, C(57) = 0xd5261be2, C(58) = 0x6e99dbb7, C(59) = 0x904e26e5,

C(60) = 0xd53d1eaa, C(61) = 0xeab4a28f, C(62) = 0x902233c5, C(63) = 0xc588fa4a,

C(64) = 0xeb04f60f, C(65) = 0xd2f5a045, C(66) = 0xc349a84b, C(67) = 0x248cf163,

C(68) = 0x627cd15a, C(69) = 0x39bffc97, C(70) = 0x4d250c04, C(71) = 0x4d73cb47,

C(72) = 0xf042797d, C(73) = 0x5a955d6b, C(74) = 0xae539583, C(75) = 0x050f05da,

C(76) = 0x12c26f16, C(77) = 0x143c1768, C(78) = 0x4b09bc58, C(79) = 0x50f05da1,

C(80) = 0xe8f0b80d, C(81) = 0x2c9b06f3, C(82) = 0xcc989042, C(83) = 0x19e022d7,

C(84) = 0xf6b40864, C(85) = 0xcc0cb247, C(86) = 0x1e0668fd, C(87) = 0x5f68b96a,

C(88) = 0xd3959aef, C(89) = 0xb974acc5, C(90) = 0x210c1bca, C(91) = 0x4e5e8a0e,

C(92) = 0x84306f29, C(93) = 0xfdac6154, C(94) = 0xbb4d85bf, C(95) = 0x3267cc3c.

