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Abstract. We demonstrate that masking a block cipher implementation
does not sufficiently improve its security against side-channel attacks.
Under exactly the same hypotheses as in a Differential Power Analysis
(DPA), we describe an improvement of the previously introduced higher-
order techniques allowing us to defeat masked implementations in a low
(i.e. practically tractable) number of measurements. The proposed tech-
nique is based on the efficient use of the statistical distributions of the
power consumption in an actual design. It is confirmed both by theoret-
ical predictions and practical experiments against FPGA devices.
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1 Introduction

Since their publication in 1998 [9], power analysis attacks have attracted signifi-
cant attention within the cryptographic community. Although less general than
classical cryptanalysis, because they usually target one specific implementation,
they have been particularly efficient to break a wide variety of devices, including
smart cards, ASICs and FPGAs [12, 16, 20]. As a straightforward consequence,
countermeasures against these attacks are of great practical interest.

In the open literature, the masking technique is among the most popular sug-
gested ways to protect an implementation against Differential Power Analysis
[1, 6, 7, 18]. However, several works have shown that such protected devices are
still sensitive to higher-order attacks, originally described in [13]. In particular, a
recent advance [24] suggested that higher-order power analysis is possible, with-
out any additional hypothesis than usually assumed for first-order attacks. They
proposed a way to combine the leakages corresponding to the masked data and
its mask even if their respective position within the sampled data is unknown.
[21] proposed an extension of these attacks by considering a more general power
consumption model. Although these papers provide indications for the practical
implementation of the attack, the number of observations required to retrieve
the secret key is generally large (at least significantly larger than in a first-order
power analysis attack). As a consequence, masking is usually believed to improve
the actual security of an implementation.



In this paper, we demonstrate that masking a block cipher implementation does
not sufficiently improve its security against a side-channel opponent. Under ex-
actly the same hypotheses as in a Differential Power Analysis, we provide strong
evidence that a masked block cipher implementation can be defeated by an im-
proved higher-order attack, using a low (i.e. practically tractable) number of
measurements. The proposed technique is based on the efficient use of the sta-
tistical distributions of the power consumption in an actual design. Based on
these distributions, we describe how to recover the secret key of a masked block
cipher implementation, applying a maximum likelihood approach, as suggested
in [2]. We confirm our assertions both by theoretical predictions, using the for-
malism of attacks introduced in [16, 20], and practical experiments against real
world Field Programmable Gate Array (FPGA) designs. Remark that our re-
sults focus on the extraction of information from the available power traces. For
simplicity purposes, we assumed the mask and masked data to be computed in
parallel and did not discuss possible synchronization issues. However, the exten-
sion to other contexts is straightforward using the techniques introduced in [24].

The rest of the paper is structured as follows. Sections 2 and 3 respectively
describe the masking countermeasure and our power consumption model. The
description of the improved higher-order attack is in Section 4. Simulated at-
tacks are in Section 5 and Section 6 provides the experimental results against a
masked block cipher FPGA implementation. Conclusions are in Section 7.

2 The masking countermeasure

The idea of masking the intermediate values inside a cryptographic algorithm
is suggested in several papers as a possible countermeasure to power analysis.
The technique is generally applicable if all the fundamental operations used in
a given algorithm can be rewritten in the masked domain. This is easily seen to
be the case in classical algorithms such as the DES [14] or AES [15]. Although
these methods have been originally applied at the algorithmic level as well as at
the gate level, it has been shown recently that masking at the gate level involves
critical security concerns. Reference [10] notably demonstrates that the glitching
activity of masked logic gates offers a previously neglected leakage source that
seriously affects the security of the countermeasure. For this reason, this paper
will mainly discuss the algorithmic level protection, using precomputed tables.

In the following sections, we question the security of the masking countermea-
sure with respect to higher-order power analysis attacks. For this purpose, we
start by giving a simple description of our target implementations. An unmasked
block cipher design is represented in Figure 1, where the bis represent known
input values, the kis are the secret encryption key bits and the S blocks are non-
linear substitution boxes (let Ns be the number of such S-boxes). In accordance
with the structure of most present block ciphers [3, 4, 14, 15], we do not loose
in generality by focusing our attention to this combination of key additions and
non-linear S-boxes. Remark that the bit-widths are not specified on the scheme.



S

[k0...ki]

b0 S(k0     b0)

Sb1 S(k1     b1)

Sb2 S(k2     b2)

Sbi S(ki     bi)

Fig. 1. Unprotected scheme.

Our protected implementation is represented in Figure 2. The masking principle
is as follows. After having XORed the random mask to the initial data, both the
mask and the masked data are sent through a non-linear S-box. S is the original
S-box from the algorithm and S ′ is a precomputed table such that we have:

S(b⊕ k ⊕ r) = S(b⊕ k)⊕ S′(r, b⊕ k ⊕ r) = S(b⊕ k)⊕ q

As a consequence, the output values are still masked with a random mask q.
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Fig. 2. Masked scheme.

3 Power consumption model

Power analysis attacks generally target CMOS devices for which it is reasonable
to assume that the main component of the power consumption is the dynamic
power consumption. For a single CMOS gate, we can express it as follows [19]:

PD = CLV
2
DDP0→1f (1)

where CL is the gate load capacitance, VDD the supply voltage, P0→1 the prob-
ability of a 0 → 1 output transition and f the clock frequency. Equation (1)
specifies that the power consumption of CMOS circuits is data-dependent. As
a consequence, a reasonable hypothesis for the power consumption model is:
let x and x′ be two consecutive intermediate values of the running algorithm in

the target device, let t be the time at which x switches into x′, then the power

consumption of the device at this time is proportional to the Hamming weight

WH(x⊕ x′).



This hypothesis, usually denoted as the Hamming distance power consumption
model, is generally true for any CMOS circuit and is specifically applicable to
FPGAs. However, in certain particular contexts, more specific hypotheses hold.
For example, in processors with precharged buses, the power consumption may
depend on the Hamming weight of the data on the bus [5]. We note that most
of our conclusions remain applicable, independently of the power consumption
model and target device selected.

4 Attack description

Let us describe the proposed technique with the single S-box scheme of Figure
3, where the inputs b, r and k are Nb-bit wide. First, we express the power
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Fig. 3. Illustrative 4-bit scheme.

consumption of one pair of S and S’ boxes in case of a pipeline block cipher im-
plementation and denote it as a random variable O, standing for observations.
That is, we assume that the structure displayed in Figure 3 is fed with a new
input at each clock cycle. As explained in the previous section, the power con-
sumption is a function of any two consecutive values. If b⊕k switches into b′⊕k
and q switches into q′, we have:

O = WH
[

(

S(b⊕ k)⊕ q
)

⊕
(

S(b′ ⊕ k)⊕ q′
)

]

+WH
[

q ⊕ q′
]

Defining the random variable Σ = S(b⊕k)⊕S(b′⊕k), where Σ stands for secret
state and the random variable R = q ⊕ q′, where R stands for random state, it
is therefore possible to rewrite the observations as:

O(Σ,R) = WH
[

Σ ⊕R
]

+WH
[

R
]

We note again that the observations could be expressed in exactly the same
way in the Hamming weight power consumption model1. We note also that the
operator used to combine the two leakage contributions is a ‘+’ because in our
analysis, the masked data and its mask are loaded on the register at the same
time. But in other contexts, we may choose a ‘−’ as in [13], or a ‘×’ as in [21, 24].
Actually, no matter what operator we use, the main point is to gather the two
(or more in case of higher-order masking) statistical distributions of the power
consumption so that the combined statistical distribution is key-dependent.

1 We would find O = WH
[

S(b⊕ k)⊕ q
]

+WH
[

q
]

, which yields Σ = S(b⊕ k), R = q.



Indeed, while it is not possible to predict the observations, because they de-
pend on unknown mask and key values, we can still analyze their statistical
behavior. For a fixed value of the secret state Σ = σi, we can determine all the
possible observations, for all the different possible random states R = rj . From
this analysis, it is therefore possible to derive the probability density functions
P [O = oi|Σ = σi], for all the possible secret states.

In practice, because the observations are a sum of two Hamming weight values,
they are distributed as binomials and the number of possible distributions for
P [O|Σ = σi] equals Nb + 1. As a simple illustration, if Nb = 4, the five possible
distributions of the observations are given in Figure 4.
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Fig. 4. Probability density functions P [O|Σ = σi] with Nb = 4 .

The important consequence is that, knowing a secret state σi, we know the prob-
ability of making an observation oi. This provides us with the tool to mount a
new attack, based on a maximum likelihood approach.

Remark: The distributions P [O|Σ = σi] all have the same mean value, E(O|Σ =
σi) = Nb and only differ in their variances. This fact allows to understand the
origin of previous attacks, as the one in [24], where it is proposed to square the
power consumption traces in order to obtain key-dependent measurements. The
reason is that the mean of the squared power trace is a function of the mean
and the variance of the initial power trace:

E
(

(O|Σ = σi)
2

)

= E
(

(O|Σ = σi)
)2

+ V (O|Σ = σi)

It is also clear that the information contained in the expectation of the squared
power trace is poor compared to what can be obtained using the complete sta-
tistical distribution of the observations.

Now, using the usual framework of side-channel attacks, we would like to find the
secret key k, using a serial of observations o1, o2, ..., on, obtained by feeding the
encryption device with a serial of input texts b0, b1, ..., bn (the input transition
b0 → b1 gives rise to the observation o1).

For this purpose, we first remark that, knowing the sequence of input texts
b0, b1, ..., bn, each key candidate ki ∈ [0, 2Nb − 1] specifies one sequence of secret
states. Therefore, we have 2Nb possible chains of states denoted as:



Σ∗(k0) := {σ1(k0), σ2(k0), ..., σn(k0)};

Σ∗(k1) := {σ1(k1), σ2(k1), ..., σn(k1)};

Σ∗(k2) := {σ1(k2), σ2(k2), ..., σn(k2)};

...

In practice, these state sequences cannot be observed directly, but only through
the power consumption of the device, i.e. the sequence of observations O∗ :=
{o1, o2, ..., on}. Then, for each possible secret state chain, we compute the prob-
abilities P [O∗|Σ∗(kj)]. Assuming that the observations are independent (which
is reasonable since the attacker feeds the devices with random input texts), it
yields:

P [O∗|Σ∗(k0)] = P [O = o1|Σ = σ1(k0)]× P [O = o2|Σ = σ2(k0)]× ...

P [O∗|Σ∗(k1)] = P [O = o1|Σ = σ1(k1)]× P [O = o2|Σ = σ2(k1)]× ...

P [O∗|Σ∗(k2)] = P [O = o1|Σ = σ1(k2)]× P [O = o2|Σ = σ2(k2)]× ...

...

The chain with the highest probability gives us the most likely key. That is, if
the attack is successful, the correct key corresponds to:

argmax
∀ kj

P [O∗|Σ∗(kj)]

We note that the proposed approach is similar to the one in [8], where it is
demonstrated that Hidden Markov Models may be of great help to describe
discrete time processes where a state sequence is hidden. Remark finally that,
in order to keep the probabilities P [O∗|Σ∗(kj)] within practical boundaries (for
large n’s, these probabilities are smaller than the machine-ε), we use a step by
step normalization.

5 Simulated attacks

The previous section described a higher-order power analysis attack against a
single S-box scheme, without considering any kind of noise in the measurements.
However, in practice, side-channel attacks are usually affected by different kinds
of noises. First, block ciphers are made of the application of several S-boxes in
parallel, combined with other components such as a diffusion layer (this is typi-
cally the case of the AES Rijndael [15]). These “other components” that are not
directly targeted by our attack may therefore cause additional power consump-
tion that we denote as the “algorithmic noise”. Algorithmic noise exists if these
components use different resources in the circuit, which is typically the case of
parallel implementations in FPGAs. Second, real life observations are usually
affected by different types of “physical noises”. It includes all the possible im-
perfections of our model appearing during the measurement process.



In order to evaluate the efficiency of the proposed attack, this section considers
attacks using “perfect measurements”, without any kind of physical noise. This
formalism has been introduced in [16, 20] and was denoted as “attacks using sim-
ulated data”. Such attacks basically use simulated measurements generated by
computing the number of transitions in the targeted design. The measurements
are perfect in the sense that they perfectly fit to the power consumption model.
As a matter of fact, the number of measurements required to have a successful
attack using simulated data lower bounds this number when real measurements
are considered. Still, these simulated experiments allow us to clearly evaluate the
effect of algorithmic noise and to compare our attack to a classical Correlation
Power Analysis against an unprotected block cipher implementation.

Remark that, as far as noise is concerned, the probability distributions P [O|Σ =
σj ] are not discrete anymore. However, the previous techniques still hold assum-
ing that the probability density functions (or pdf’s) become weighted sums of
Gaussians. For example, let us assume that we target a single 4-bit S-box as in the
previous section and that for a particular secret state σj , the pdf is represented
in the left part of Figure 5. If we now consider that the target implementation
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Fig. 5. Probability density functions P [O|Σ = σj ] with Nb = 4, without or with noise.

contains another masked 4-bit S-box (i.e. Ns = 2), producing algorithmic noise
of mean Nb and variance Nb/2, we obtain the right part of the figure2. In gen-
eral, finding the noise pdf’s can simply be achieved by computing the mean and
variance of the observations, as we know the signal pdf’s. We now present a
number of attacks using simulated data.

We define the parameters of our simulated attacks as follows. First, we use the
4-bit S-boxes of the Serpent algorithm [3] and a secret key k = 5. In our target
implementations, we consider Ns S-boxes implemented in parallel. The number
of plaintexts generated in the attacks is n and for each number of plaintexts, we
observe the probabilities P [O∗|Σ∗(ki)], for ki ∈ [0, 15]. The attack is considered
successful when

∏n

i=1
P [O = oi|Σ = σi(kj)] is maximum for k = 5.

As a matter of fact, an attack against a single S-box scheme is nearly immediate:
due to the discrete probabilities, a secret state such that P [O = oi|Σ = σj ] = 0
happens fast and only the correct key will remain with a non-zero probability

2 Note that modelling the algorithmic noise as Gaussians is reasonable since they
approximate the binomial behavior of the Hamming distance values.



after a few (in practice, less than 10) generated plaintexts. Much more relevant
is the investigation of a simulated attack with different amounts of algorithmic
noise in the design, i.e. different Ns values. A simulated attack with Ns = 8
is represented in Figure 6 and is successful after roughly 4000 generated texts.
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Fig. 6. A simulated higher-order attack with Ns = 8.

Other simulated attacks are in Appendix, Figures 8, 9, 10. From these figures,
it is clear that the masked designs can be targeted by our attack with reason-
able resources (e.g. less than 25 000 measurements), even if algorithmic noise is
inserted. For comparison purposes, we also simulated first-order correlation at-
tacks (like the ones in [16, 20]) against the unprotected design of Figure 1, with
the same parameters, i.e. same size and number of S-boxes. They are represented
in Appendix, Figures 11, 12, 13, 14 and allow to measure the additional security
provided by the masking. Comparisons will be discussed in the conclusions.

6 FPGA results

We confirmed these simulated experiments with a real attack, against an FPGA
implementation of the scheme in Figure 2, with Ns = 8 S-boxes3. Our target
device was a Xilinx Spartan II FPGA [25] and the random mask values ri’s were
generated with an on-chip LFSR.

Compared to simulated attacks, the main additional constraint was to correctly
estimate the statistical characteristics (mean, variance) of the experimental sig-
nals. Indeed, in a real-world context, those values do not correspond to number
of bit switches anymore, but to actual power consumption ones. That is, for

3 Due to area constraints, we did not target a standard algorithm such as the AES
Rijndael. Indeed, as already mentioned, e.g. in [17, 18], the hardware cost of masking
a block cipher is a real concern for efficient hardware implementations.



example, the distance between the different gaussians in Figure 5 do not corre-
spond to 2 bit switches anymore but to the power consumption of 2 bit switches.
As a consequence, building the real pdf’s P [O|Σ = σj ] from their discrete coun-
terpart can be done with some steps and assumptions more than in Section 5.

First, we considered the measured observations to be a mixture of gaussians,
as the one in the right part of Figure 5. We then assumed that the mean value of
the observations Emeas corresponded to the mean value of the gaussian mixture.

Second, we had to determine the distance between the different gaussians, i.e.

we had to evaluate the mean power consumption of one single bit switch in
the design, denoted as m. For this purpose, we implemented a wide register
inside our target FPGA and we measured the power consumption for different
numbers of switching bits. Then, we derived the mean value of each gaussian in
the mixture, denoted as Ei, i ∈ [1, 2Nb+1]. It yields Ei+1−Ei = m, ∀i ∈ [1, 2Nb].

Finally, we had to evaluate the variance of the gaussians. We assumed that
all of them have the same value v, as in Section 5. Then we measured the vari-
ance of the measured observations Vmeas, corresponding to the variance of the
gaussian mixture. Knowing the different gaussian means Ei’s from the previous
experiments, we extracted v from [23]:

Vmeas =

x
∑

i=1

wi ∗ (v + E2
i )− E2

meas

where x is the total number of gaussians in the mixture (i.e. 2Nb + 1), and the
wi’s are weights depending on the probability of apparition of each gaussian.

We built the real pdf’s for P [O|Σ = σj ] from these values and mounted a
practical attack. It is represented in Figure 7, where we observe that the correct
key is distinguishable after roughly 12 000 generated texts. As usually observed
in side-channel attacks, practical experiments require significantly more samples
than predicted because of noise and model imperfections. Still, the masked coun-
termeasure was defeated in a remarkably low number of measurements.

In practice, we note that the attack is very sensitive to the correct evaluation
of the signal mean values, for which imprecisions may lead to the selection of
a wrong key candidate. The signal variance in itself does not affect the attack
result, but its good evaluation allows the correct key candidate to be faster dis-
tinguished. For this purpose, we generally used a slightly larger value than the
estimated v, e.g. 2v or 4v.

Remark that the parameters m and v where naively estimated using a sec-
ond programmable device. However, we also evaluated them successfully using
an approach based on machine learning methods [11]. In practice, the presented
attack is possible even if a second device is not available.
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Fig. 7. A real attack against a masked FPGA design with Ns = 8.

7 Conclusions

We proposed an improved higher-order technique to bypass the masking coun-
termeasure. As a main result, it is demonstrated that such a countermeasure is
not sufficient to protect an implementation from knowledgeable side-channel at-
tackers. In practice, we recovered the secret key of a masked block cipher FPGA
implementation in a low (i.e. practically tractable) number of measurements.
We point out the following concluding remarks:

1. The attack was successfully applied to a parallel FPGA implementation
which usually appears to be a challenging target for side-channel attacks. How-
ever, it could be straightforwardly applied to other devices, e.g. microprocessors.
In such contexts, the algorithmic noise is usually reduced (due to the size of the
buses, limited to 8 or 32 bits). For example, we estimated that an attack against
an 8-bit processor would be successful after roughly 50 simulated measurements.

2. The presented attack is most fairly compared to the ones in [21, 24]. For
example, [21] considers a similar FPGA implementation to ours and targets a
single S-box scheme (i.e. Ns = 1) in approximately 130 000 measurements. We
target a Ns = 8 scheme in 12 000 traces.

3. Reference [13] presents experiments allowing a secret key to be recovered
from a smart card implementation of the scheme in Figure 2, in about 2500
measurements. However, this attack is based on a Hamming weight power con-
sumption model. It also requires access to the power consumption of the random
mask and masked data separately, which involves these values to be computed
sequentially. As the target is an 8-bit processor, it should be compared to an at-
tack against a single S-box scheme, for which we would be successful in roughly
50 simulated measurements.



4. Compared to unprotected designs targeted by, e.g. a Correlation Power
Analysis, a higher-order attack against a masked design still requires more traces.
However, the gap between both attacks has been significantly reduced. In prac-
tice, the required number of measurements for a successful attack is not unre-
alistic anymore, even if large hardware implementations are considered. Note
that the implementation cost of such large masked designs is another serious
drawback, as mentioned in [17, 18].

5. An open question is to know how much does the addition of noise affect a
higher-order attack and how does it exactly compare to a first-order attack.

6. As a possible improvement, we finally suggest that a better estimation
of the statistical distributions of the power consumption in the design is worth
investigating. For example, the use of machine learning methods could be con-
sidered in this respect, as suggested in the previous section.

Acknowledgements: The authors would like to thank Cédric Archambeau
for useful comments on previous versions of this paper.
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A Other simulated attacks
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Fig. 8. A simulated higher-order attack with Ns = 2.
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Fig. 9. A simulated higher-order attack with Ns = 4.
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Fig. 10. A simulated higher-order attack with Ns = 16.
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Fig. 11. A simulated correlation attack with Ns = 2.
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Fig. 12. A simulated correlation attack with Ns = 4.
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Fig. 13. A simulated correlation attack with Ns = 8.
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Fig. 14. A simulated correlation attack with Ns = 16.


