
Using an RSA Accelerator for Modular Inversion

Martin Seysen

Giesecke & Devrient GmbH, Prinzregentenstraÿe 159,
D-81677 Munich, Germany

Martin.Seysen@de.gi-de.com

Abstract. We present a very simple new algorithm for modular inver-
sion. Modular inversion can be done by the extended Euclidean algo-
rithm. We substitute the extended Euclidean algorithm by a standard
(non-extended) Euclidean algorithm that works on integers of approxi-
mately double the length of the modulus. This substitution can be very
useful on smart card coprocessors, since in some cases computations with
longer numbers than necessary can be done at no extra cost. Many smart
card coprocessors have been designed for the RSA algorithm of, say, 1024
bits length. On the other hand, elliptic curve algorithms work with much
smaller numbers, and modular inversion is a much more important prim-
itive in elliptic curve cryptography than in RSA cryptography. On one
smart card coprocessor the new algorithm is more than twice as fast as
the classical algorithm.

Key Words:
smart card coprocessor, modular inversion, Euclidean algorithm.

1 Introduction

When public key cryptography was �rst used in low-cost devices such as smart
cards, it turned out that the standard CPU of such a device is too slow to per-
form the necessary cryptographic operations. At that time algorithms that work
in the multiplicative group modulo a long integer such as RSA or Di�e-Hellman
were the most popular public key algorithms. Several coprocessors for perform-
ing operations on long integers have been designed. Most of them have been
optimised for modular multiplications of 512, . . . , 1024 bit length, as required
for public key algorithms in the early nineties of the last century. A variety of
di�erent modular multiplication techniques has been used in such coprocessors,
see [12, 14, 15, 19]. For an overview of modular multiplication techniques see [8].

Depending on the architecture, such a coprocessor performs either operations
modulo numbers of a �xed (maximum) bit length, or the bit length is limited
only by memory resources. Since the required key size for public key systems
increases during the years (see e.g. [10]), coprocessors must deal with larger

numbers than they have been designed for. Solutions for this problem have been
given in [4, 13, 2].

When elliptic curve cryptography became more popular on smart cards in the
late nineties, implementers had to deal with the opposite problem. Here the key
size is typically in the range of 160, . . . , 256 bits, which is much smaller than the
key size in the RSA algorithm. This means that coprocessors have to deal with
much smaller numbers than they have been designed for. Another problem is
that some coprocessors are optimised for modular multiplication, as required for
the RSA algorithm. But other operations such as modular addition, subtraction
and inversion are more important in EC operations than in the RSA algorithm.
Here we mainly consider elliptic curves over GF(p).

This paper deals with the modular inversion on smart card coprocessors. The
oldest algorithm for computing the modular inverse is the extended Euclidean
algorithm for computing the greatest common divisor (gcd), see e.g. [8]. A binary
algorithm for computing the gcd has been proposed in [18]. Modular inversion
techniques have been investigated under a variety of aspects. The classical gcd
algorithms have been improved and optimised for large numbers on a CPU with a
�xed word length, see e.g. [6, 9, 16, 17]. A hardware-optimised modular inversion
algorithm has been proposed in [11]. Modular inversion algorithms that avoid
the computation of the greatest common divisor have been proposed in [7].

While modular multiplication is hardware supported by a coprocessor on
many smart cards, modular inversion usually has to be coded in software. On
some CPUs a modular inversion may be about 100 times slower than a modular
multiplication.

Therefore it is crucial to use as little modular inversions as possible in EC
operations on smart cards. Techniques for reducing the number of modular inver-
sions in EC operations are well-known, see e.g. [1] or [5] for an overview. Here the
basic idea is to avoid modular inversions by representing the points on a curve in
projective or Jacobian projective co-ordinates instead of a�ne co-ordinates. We
can also used mixed co-ordinate systems to reduce the number of arithmetic op-
erations. These techniques can be combined with windowing methods to reduce
the number of EC operations. Depending on the details of the implementation,
more inversions may be necessary in this case, see [3].

One of the most well-known EC algorithms is the ECDSA algorithm. Note
that apart from the elliptic curve operations, the ECDSA signing algorithm
requires another modular inversion operation modulo the group order.

When running the ECDSA signing algorithm with 160, . . . , 192 bit length on
a smart card coprocessor, then up to about 20 percent of the run time may be
spent for modular inversions.

Therefore any signi�cant speedup of the modular inversion algorithm on a
smart card coprocessor has a non-negligible e�ect on the run time of the ECDSA
signing algorithm.

We propose a very simple new modular inversion algorithm that is special-
ly suited for a coprocessor optimised for RSA cryptography. The new algorithm
performs about half the number of operations compared to the classical extended

Euclidean algorithm, but it works with double-length numbers. As we shall see,
the speed of the new algorithm is more than doubled compared to the standard
implementation of the modular inversion on the In�neon SLE66CX322P CPU.
The main reason for this speedup is the fact that basic double-length integer op-
erations such as addition, subtraction and shifting, are not much more expensive
than single-length operations on this CPU for key sizes of 160, . . . , 256 bits.

The new algorithm may also be useful on other smart card CPUs, since many
of these CPUs combine a highly optimised coprocessor for long-integer arithmetic
with a main processor of much less performance. Therefore instructions such as
register switches, loop control, pointer management or data transfer between
main processor and coprocessor, (called glue instructions in [7],) may take up a
considerable part of the run time of a modular inversion algorithm. Obviously,
less glue instructions are necessary, when fewer operations are performed on
longer integers.

2 Modular Inversion with a Non-extended Euclidean

Algorithm

In this paper we will show the correctness of the following modular inversion
algorithm:

Algorithm NINV
(Modular inversion with a non-extended Euclidean algorithm)

Input Integers u ≥ 0, v > 1, and an arbitrary extension factor f
with f > 2v.

Output Modular inverse x = u−1 (mod v) with −v < x < v ,
or an error if u is not invertible modulo v.

[1] Put U = fu + 1, V = fv.
[2] While V ≥ f + v do

{T = V, V = U mod V,U = T} .
[3] If V > f − v then return V − f and stop ,

else return "error" and stop .

Throughout the paper we write u mod v for the integer x satisfying x = u
(mod v), 0 ≤ x < v.

For the analysis of Algorithm NINV we may rephrase Step 2 as follows:

U0 = U = fu + 1 , V0 = V = fv ;
Ui+1 = Vi , Vi+1 = Ui mod Vi ; for i ≥ 0 , Vi > 0 . (1)

Note that this is exactly the process of the Euclidean algorithm applied to U
and V . The number of Euclidean steps in Algorithm NINV is the about the same
as the number of Euclidean steps in the standard Euclidean algorithms applied
to u and v. See [8] for an analysis of the number of Euclidean steps required in

the Euclidean algorithm. The extension factor f can be chosen as a power of two
such that the bit length of the numbers U and V is about twice the bit length of
max(u, v). So Algorithm NINV requires roughly the same number of operations
as the standard (non-extended) Euclidean algorithm, but it has to work with
integers of double length. On the other hand the overhead for the `extended'
part of the Euclidean algorithm is saved. Depending on the details of the smart
card CPU, this may lead to considerable saving of glue instructions.

Before showing the correctness of the algorithm, we �rst give some motivation
why the algorithm is expected to work. The Euclidean algorithm, when applied
to u and v returns a number d = gcd(u, v). It is well known that the algorithm
can be extended to compute integers λ, µ, |λ| < v, with d = λu − µv. In case
d = 1 the number λ is just the modular inverse we are looking for. When we
apply the Euclidean process to Ũ = fu and V = fv instead of u and v, we obtain
exactly the same sequences of quotients in the modular reduction operations in
both cases, and we also obtain a linear combination gcd(Ũ , V) = fd = λŨ −µV
with the same values λ, µ as above. Now we introduce a small perturbation by
replacing Ũ by U = Ũ + 1. Assume for a moment that this perturbation does
not change the sequence of quotients in the Euclidean process. Then a remainder
λU−µV = fd+λ would occur in the sequence (Vi) of remainders in the Euclidean
process, and in case d = 1 we could simply read the modular inverse λ from a
remainder of size ≈ f . Although the above assumption is in general not true,
the construction of Algorithm NINV is based on this idea. More speci�cally, the
following theorem proves the correctness of Algorithm NINV.

Theorem 1 In case gcd(u, v) = 1 there is an integer i such that Vi−1 > 2f − v,
f + v > Vi > f − v and (Vi − f) · u = 1 (mod v) hold. Otherwise every Vi

satis�es either Vi > 2f − v or Vi ≤ v
2 .

The proof of the theorem uses continued fractions. Some basic facts about
continued fractions are stated in the next section. Theorem 1 is proved in sec-
tion 4.

The relation between the standard extended Euclidean algorithm and Algo-
rithm NINV can be stated as follows. The standard algorithm computes integers
ui, vi, λi, λ

′
i with λiu ≡ ui, λ′

iu ≡ vi (mod v), starting with u0 = u, v0 = v,
λ0 = 1, λ′

0 = 0 ; and it stops when arriving at some vi with vi = gcd(u, v).
Algorithm NINV stores the numbers Ui = fui + λi and Vi = fvi + λ′

i in two
double-length variables instead. Note that some of the perturbations λi, λ

′
i can

be negative and may spoil the Euclidean quotients. This means that we may
have bUi/Vic 6= bui/vic in some cases, regardless of the size of f . Therefore we
have to modify the analysis of the standard extended Euclidean algorithm to
obtain a proof of Theorem 1.

3 Continued Fractions

Algorithm NINV can most easily be analysed in terms of continued fractions.
We take notation for and standard facts about continued fractions from [8]. A

continued fraction //x1, x2, . . . , xn−1, xn// is de�ned by:

//x1, x2, . . . , xn−1, xn// = 1/(x1 + 1/(x2 + 1/(. . . (xn−1 + 1/xn) . . .))).

Continued fractions are closely related to the so-called continuant polynomials
Kn(x1, . . . , xn) de�ned by:

Kn(x1, . . . , xn) =

1 If n = 0;
x1 If n = 1;
x1Kn−1(x2, . . . , xn) + Kn−2(x3, . . . , xn) If n > 1.

Then the following explicit formulas hold for continued fractions:

//x1, x2, . . . , xn// =
Kn−1(x2, . . . , xn)
Kn(x1, x2, . . . , xn)

(2)

x0 + //x1, x2, . . . , xn// =
Kn+1(x0, x1, . . . , xn)
Kn(x1, x2, . . . , xn)

(3)

Every real number X has a (regular) continued fraction expansion de�ned as
follows: Let A0 = bXc, X0 = X −A0, and for all n ≥ 0 such that Xn 6= 0 de�ne:

An+1 = b1/Xnc, Xn+1 = 1/Xn −An+1. (4)

For a rational number X there is an integer n such that An+1 is not de�ned;
and the continued fraction expansion of X is:

X = A0 + //A1, . . . , An//. (5)

For an irrational number X, an in�nite continued fraction expansion can be
de�ned.

For a given X, we de�ne quantities pi, qi by:

p−1 = 1, q−1 = 0, p0 = A0, q0 = 1,
pi+1 = Aipi + pi−1, qi+1 = Aiqi + qi−1 ; i = 0, . . . , n− 1 . (6)

By induction over i we easily obtain:

pi = Ki+1(A0, . . . , Ai) ; i = 0, . . . , n ; (7)

qi = Ki(A1, . . . , Ai) ; i = 0, . . . , n ; (8)
pi

qi
= A0 + //A1, . . . , Ai// ; i = 1, . . . , n . (9)

For a number X, assume that in its continued fraction expansion A0 +
//A1, A2, . . . // the term Ai+1 exists. Then the following facts are well-known,
see e.g. [8].

The number X lies between pi/qi and pi+1/qi+1, and we have:

qi+1 > qi ; |piqi+1 − pi+1qi| = 1 ; (10)∣∣∣∣X − pi

qi

∣∣∣∣ ≤ 1
qiqi+1

<
1
q2
i

. (11)

The last fact means that the rational numbers pi/qi are very close rational
approximations for the number X. They are called the convergents of (the regular
continued fraction expansion for) X.

The following classical result is due to A. M. Legendre:

Theorem 2 If a rational number p/q with p ∈ Z, q ∈ N, satis�es∣∣∣∣X − p

q

∣∣∣∣ ≤ 1
2q2

,

then p/q is a convergent of the regular continued fraction expansion for X.

We still need another fact about continued fractions:

Proposition 3 Assume that µ1/λ1 and µ2/λ2 are two convergents of the regular
continued fraction expansion for X satisfying |µ1λ2−µ2/λ1| = 1. Then these two
convergents are either adjacent in the sequence of convergents for X, or there is
exactly one more convergent (µ2 − µ1)/(λ2 − λ1) between them.

Sketch Proof
W.l.o.g. we assume λ1 < λ2. The Diophantine equation |µ2x− λ2y| = 1 has

exactly two solutions (x, y) satisfying 0 ≤ x < λ2, and we easily identify these
two solutions as (λ1, µ1) and (λ3, µ3), with λ3 = λ2 − λ1, µ3 = µ2 − µ1. Assume
that µ1/λ1 and µ2/λ2 are not adjacent. Then by (10), µ3/λ3 is the convergent
preceding µ2/λ2. Now let µ4/λ4 be the convergent preceding µ3/λ3. By (6) there
is an integer A ≥ 1 with λ2 = Aλ3 + λ4. Hence

λ4 ≤ λ2 − λ3 = λ1 .

But since by assumption µ4/λ4 does not precede µ1/λ1 in the series of conver-
gents, these two quantities are equal.
�

4 Proof of Theorem 1

Applying the Euclidean Algorithm to U and V as stated in (1) corresponds in a
natural way to the regular continued fraction expansion of the rational number
X = U/V .

De�ne:

Āi = bUi/Vic ,

X̄i = Ui/Vi − Āi = (Ui mod Vi)/Vi = Vi+1/Ui+1 ; i ≥ 0, Vi > 0 . (12)

Comparing (4) with (1) and (12) we see that the quantities Āi, X̄i de�ned
in (12) are exactly the numbers Ai, Xi that appear in the continued fraction
expansion of X = U/V .

Regarding the quantities pi and qi de�ned by (6), and using induction over
i, we obtain from (1) and (12):

qiU − piV = (−1)iVi+1 ; i ≥ −1 . (13)

De�ne d = gcd(u, v). There are coprime integers λ, µ with

λu− µv = d . (14)

We now assume that u 6= 0 (mod v) holds in Algorithm NINV. Otherwise
we have U mod V = 1 and the algorithm terminates with an error as expected.

Since v 6= 0, u 6= 0 (mod v), we have 0 < d < v. Hence λ 6= 0 mod v holds
and λ and µ cannot have opposite signs. So we have µ/λ ≥ 0 in all cases. From
(1) we obtain:∣∣∣∣ |µ||λ| − U

V

∣∣∣∣ =
∣∣∣∣µλ − U

V

∣∣∣∣ =
∣∣∣∣fd + λ

fλv

∣∣∣∣ ; λ 6= 0 (mod v) ;
µ

λ
≥ 0 . (15)

In (14) we may replace λ and µ by λ + kv/d and µ + ku/d for any integer k.
Our goal is now to �nd values λ and µ with |µ/λ− U/V | < 1/(2λ2) so that

we may apply Theorem 2. A su�cient condition for this is:

−1
2
df +

1
2

√
(df)2 − 2fv < λ < −1

2
df +

1
2

√
(df)2 + 2fv ; f ≥ 2v . (16)

We easily check that length of the feasible interval for λ given by (16) is always
greater than v/d. So we can always �nd integers λ, µ, µ/λ ≥ 0 satisfying (14)
and |µ/λ− U/V | < 1/(2λ2). Thus by Theorem 2 we obtain:

Lemma 4 There exist coprime integers λ, µ satisfying λu−µv = gcd(u, v) such
that |µ/λ| is a convergent of the regular continued fraction expansion of U/V .

Let λmax be the highest possible value for λ that satis�es Lemma 4. We want
to calculate an upper and a lower bound for λmax. By (11) and (15), λmax must
satisfy: ∣∣∣∣fd + λmax

fλmaxv

∣∣∣∣ <
1

λ2
max

.

This implies:

λmax < v/d . (17)

On the other hand, every interval of length at least v/d must contain an integer
solution λ to the Dipohantine equation λu − µv = d. Since the feasible interval
for λ given in (16) is su�ciently long, we conclude:

λmax >

(
−1

2
df +

1
2

√
(df)2 + 2fv

)
− v

d
> − v

2d
− v2

4d3f
> −5v

8d
. (18)

Now we choose once and for all the convergent µ/λ satisfying Lemma 4 such
that λ is maximal, i.e. λ = λmax.

We have |u/v − U/V | = 1/V < 1/(2v2), so that by Theorem 2 the rational
number (u/d)/(v/d) is a convergent for U/V too. Furthermore, we have λu/d−
µv/d = 1. Thus Proposition 3 implies:

Lemma 5 Either |µ|
|λ| ,

u/d
v/d or |µ|

|λ| ,
u/d−|µ|
v/d−|λ| ,

u/d
v/d are adjacent convergents of the

regular continued fraction expansion of U/V .

For the subsequent convergents pi/qi given by Lemma 5, we can now use
(13) to calculate the corresponding values Vi+1; and we will use (17) and (18) to
obtain upper and lower bounds for the values Vi+1. These values are part of the
sequence Vi de�ned by (1). The result is given in Table 1. Note that the second
entry in Table 1 corresponding to the convergent u/d−|µ|

v/d−|λ| may or may not be
present in the sequence of convergents.

Table 1. Bounds for the intermediate results Vi+1 = (−1)i(qiU − piV) depending on
the convergents pi/qi

numerator denominator Vi+1 lower bound upper bound
pi qi for Vi+1 for Vi+1

|µ| |λ| fd + λ fd − 5
8
v/d fd + v/d

u/d − |µ| v/d − |λ| fd + λ − v/d fd − 13
8

v/d fd

u/d v/d v/d v/d v/d

Proof of Theorem 1
Case 1: d = gcd(u, v) > 1
In this case Table 1 shows that no Vi with v

2 ≤ Vi ≤ 2f − 13
16v exists.

Case 2: d = 1
The �rst entry of Table 1 shows that a Vi+1 with f − 5

8v < Vi+1 < f + v and
Vi+1 = f + λ exists. From (14) we conclude that λ is a modular inverse of u
modulo v. Let Vj be the entry of the sequence Vi+1, i = 0, 1, . . . corresponding to
the �rst entry of the table. We still have to show that the entry Vj−1 preceding
Vj is su�ciently large. By (1) there is an integer A ≥ 1 such that we have:

Vj−1 = AVj + Vj+1 . (19)

Here Vj+1 corresponds either to entry two or three of Table 1.
Case 2a: Vj+1 corresponds to entry two of Table 1.

Then there is exactly one more convergent between the convergents |µ/λ| and
u/v of U/V . So we conclude from (13) that |λ|U − |µ|V and vU − uV = v > 0
have the same sign. By (1) and (14) we have λU −µV = f +λ > 0. Thus λ must
be positive in this case. Then by (19) we have:

Vj−1 ≥ Vj + Vj+1 = 2f + 2λ− v > 2f − v.

Case 2b: Vj+1 corresponds to entry three of Table 1 and A > 1 holds in (19).
Then we have:

Vj−1 ≥ 2Vj + Vj+1 ≥ 2f + 2λ + v > 2f − v .

Case 2c: Vj+1 corresponds to entry three of Table 1 and A = 1 holds in (19).
In this case we will show that the algorithm outputs Vj−1 and that Vj−2

is su�ciently large. Since |µ/λ| and u/v are adjacent convergents of U/V , we
conclude from (13) that |λ|U − |µ|V and vU − uV = v > 0 have opposite sign.
By (1) and (14) we have λU −µV = f + λ > 0. Thus λ must be negative in this
case. Now we compute:

Vj−1 = Vj + Vj+1 = f + λ + v < f + v ;
Vj−2 ≥ Vj−1 + Vj = 2f + 2λ + v > 2f − v .

From this we see that Vj−1 − f = λ + v is a modular inverse of u modulo v of
appropriate size, and that the predecessor Vj−2 of Vj−1 is su�ciently large.
�

5 Implementation Results

Algorithm NINV has been implemented on the In�neon SLE66CX322P CPU.
There the Advanced Crypto Engine (ACE), an arithmetic coprocessor for long
integer arithmetic, is used for elliptic curve operations. The coprocessor provides
an arithmetic unit that operates with numbers of up to 1120 bit length in long
mode and 560 bit in short mode. In principle, the coprocessor always performs
elementary operations such as additions, subtractions or shifts on full-length
registers. In elliptic curve cryptography, we hardly ever use numbers of more than
512 bit length, so that the overhead for operating with double-length numbers
is marginal.

In the Table 2 we compare the run time of Algorithm NINV with the run time
of the standard extended Euclidean algorithm for modular inversion as provided
by the manufacturer. In both cases the PLL of the CPU runs in an asynchronous
mode with maximum possible frequency.

Table 2. Run time of the standard extended Euclidean algorithm and of Algo-
rithm NINV in milliseconds for various bit lengths

Modular inversion algorithm 160 bit 192 bit 256 bit 320 bit
Extended Euclidean 4.80 ms 5.73 ms 7.46 ms 9.16 ms
Algorithm NINV 2.09 ms 2.43 ms 3.16 ms 4.45 ms

The table shows that Algorithm NINV is more than twice as fast as the
standard modular inversion algorithm on the SLE66CX322P CPU.

Our implementation of Algorithm NINV chooses an extension factor f =
3 · 2k, for some integer k with 2k > v. Then we have 2f − v > 2k+2 > f + v and
f − v > 2k+1, so that it su�ces to check the bit length of V in steps 2 and 3 of
the algorithm. This trick saves some overhead on the coprocessor.

Algorithm NINV does not specify a modular reduction method. Both im-
plementations listed above perform an integer division by using a simple binary
subtract-and-correct method. They discard the quotient and keep the remainder.
This is adequate here, since the ACE coprocessor can do long integer additions,
subtractions and shifts very fast, and the Euclidean quotients are usually quite
small, see [8].

We have not implemented any of the optimised gcd algorithms [6, 9, 16] on
the SLE66CX322P CPU, since they have been designed for long integers that
do not �t into a single CPU register.

In principle, Lehmer's variant [9] of the Euclidean algorithm for long integers
can be used to compute the modular inverse in the same way as in Algorithm
NINV, since it produces the same quotients as the original Euclidean algorithm,
see [8].

6 Conclusion

In practice, many elliptic curve implementations are running on smart card co-
processors that have been designed for RSA cryptography. Taking into account
this special design of the In�neon Advanced Crypto Engine (ACE), we have
more than doubled the speed of modular inversions used in EC cryptography.
This speedup is so signi�cant that it has an observable e�ect on the speed of
some EC algorithms, such as the ECDSA signing procedure.

References

1. I.F. Blake, G. Seroussi, N.P. Smart, Elliptic Curves in Cryptography, vol. 265
of London Mathematical Society Lecture Note Series. Cambridge University Press,
1999.

2. B. Chevallier-Mames, N. Joye, P. Paillier, Faster Double-Size Modular
Multiplication from Euclidean Multipliers. C.D. Walter, Ç.K. Koç, and C. Paar
(Eds.): Cryptographic Hardware and Embedded Systems CHES 2003, Springer
LNCS vol. 2779, (2003), pp. 214-227.

3. H. Cohen, A. Miyaji, T. Ono, E�cient Elliptic Curve Exponentiation us-
ing Mixed Coordinates. K. Ohta and D. Pei (Eds.): Advances in Cryptology -
ASIACRYPT '98, Springer LNCS vol. 1514 (1998), pp. 51-65.

4. W. Fischer, J.-P. Seifert, Increasing the Bitlength of a Crypto-coprocessor.
B.S. Kaliski Jr, Ç.K. Koç, and C. Paar (Eds.): Cryptographic Hardware and Em-
bedded Systems CHES 2002, Springer LNCS vol. 2523 (2002), pp. 71-81.

5. D. Hankerson, A. Menezes, S. Vanstone, Guide to Elliptic Curve Cryptogra-
phy, Springer Verlag, 2004.

6. T. Jebelean, A Generalization of the Binary GCD Algorithm. M. Bronstein
(Ed.), 1993 ACM International Symposium on Symbolic and Algebraic Compu-
tation, Kiev, Ukraine, ACM Press (1993), pp. 111-116.

7. M. Joye, P. Paillier, GCD-Free Algorithms for Computing Modular Inverses.
C.D. Walter, Ç.K. Koç, and C. Paar (Eds.): Cryptographic Hardware and Embed-
ded Systems CHES 2003, Springer LNCS vol. 2779, (2003), pp. 243-253.

8. D.E. Knuth, The Art of Computer Programming, Vol. 2, Seminumerical Algo-
rithms, 3rd ed., Addison-Wesley, 1997.

9. D.H. Lehmer, Euclid's Algorithm for Large Numbers. American Mathematical
Monthly 45, (1938) pp. 227-233.

10. A.K. Lenstra, E.R. Verheul, Selecting Cryptographic Key Sizes. J. Cryptolo-
gy 14 No 4, (2001) pp. 255-293.

11. R. Lórencz, New Algorithm for Classical Modular Inverse. In B.S. Kaliski Jr,
Ç.K. Koç, and C. Paar (Eds.): Cryptographic Hardware and Embedded Systems
CHES 2002 Springer LNCS vol. 2523, (2003), pp. 57-70.

12. K. Nakada, Data Processor and Microcomputer, US Patent No. 5,961,578, Oct. 5,
1999.

13. P. Paillier, Low-Cost Double-Size Modular Exponentiation or How to Stretch
Your Cryptoprocessor. H. Imai, Y. Zheng (Eds.): Public-Key Cryptography,
Springer LNCS vol. 1560 (1999), pp. 223-234.

14. J.-J. Quisquater, Encoding System according to the so-called RSA Method, by
means of a Microcontroller and Arrangement Implementing this System. US Patent
No. 5,166,978, Nov 24,1992.

15. H. Sedlak, The RSA Cryptography Processor. Proc. of EUROCRYPT '87,
Springer LNCS vol. 293 (1987), pp. 95-105.

16. J.P. Sorenson, Two Fast GCD Algorithms. Journal of Algorithms, 16, (1994),
pp. 110-144.

17. J.P. Sorenson, An Analysis of the Generalized Binary GCD Algorithm.
http://euclid.butler.edu/�sorenson/papers/genbin.pdf.

18. J. Stein, Computational Problems Associated with Racah Algebra. Journal of
Computational Physics 1, (1967), pp. 397-405.

19. D. Symes, D.J. Seal, A System for Performing Modular Multiplication.
UK Patent GB 2352309 A, Jan 24, 2001.

