
Hardware/Software Co-design for Hyperelliptic
Curve Cryptography (HECC) on the 8051 µP

Lejla Batina2, David Hwang1, Alireza Hodjat1,
Bart Preneel2, and Ingrid Verbauwhede1,2

1 University of California, El. Engineering Dept., Los Angeles, CA 90095
2 Katholieke Universiteit Leuven, ESAT/COSIC, Kasteelpark Arenberg 10,

B-3001 Leuven-Heverlee, Belgium
{Lejla.Batina,Bart.Preneel,Ingrid.Verbauwhede}@esat.kuleuven.ac.be

{dhwang,ahodjat,ingrid}@ee.ucla.edu

Abstract. Implementing public-key cryptography on platforms with
limited resources, such as microprocessors, is a challenging task. Hard-
ware/software co-design is often the only answer to implement the com-
putationally intensive operations with limited memory and power at an
acceptable speed. This contribution describes such a solution for Hyper-
elliptic Curve Cryptography (HECC). The proposed hardware/software
co-design of the HECC system was implemented and co-simulated using
the GEZEL design environment [3]. As a low-cost platform, we chose an
8-bit 8051 microprocessor to which one small hardware co-processor was
added for field multiplication. We show that the Jacobian scalar multi-
plication can be computed in 2.488 sec at 12 MHz on this platform if a
minimal hardware module is added i.e. a hardware multiply-add unit.
This optimal solution provides a factor of 26 speed-up over a software-
only solution.
Keywords: HECC, GF(2m), genus 2 curves, hardware/software co-design,
embedded implementation

1 Introduction

Public-key cryptosystems are present in almost all spheres of digital
communication e.g. for financial, governmental and medical applications;
they form an essential building block for network security protocols (e.g.
SSL/TLS, IPsec, SSH). The best-known and most commonly used public-
key cryptosystems are based on factoring (RSA) and on the discrete log-
arithm problem in GF(p) (Diffie-Hellman, ElGamal, Schnorr, DSA) [18].
They allow secure communications over insecure channels without prior
exchange of a secret key and they also enable digital signatures. Elliptic
Curve Cryptography (ECC), which was proposed in the mid 1980s by
Miller [20] and Koblitz [14], is based on a different algebraic structure.
ECC offers shorter certificates, lower power consumption and better per-
formance on some platforms. Besides that, ECC offers more “security per



bit” as no sub-exponential algorithm is known that solves the discrete
logarithm problem in this group. However, only in the past few years has
ECC started replacing some of the RSA applications.

In 1988 Koblitz suggested to use the generalization of Elliptic Curves
(EC) for cryptography, the so-called Hyperelliptic Curves (HEC) [15].
While ECC applications are highly developed in practice, the use of HEC
is still of pure academic interest. However, one advantage of HECC resides
on the fact that the operand size for HECC is at least a factor of two
smaller than the one of ECC. More precisely, while typical bit-lengths for
ECC are at least 160 bits, for HECC this lower bound is around 80 bits
(in the case of genus 2 curves). This fact makes HECC a very good choice
for platforms with limited resources.

Almost all existing HECC implementations consider binary fields and
curves of genus two or three; this choice is motivated by security rea-
sons [9]. Software implementations were developed on general purpose
processors and on embedded microprocessors e.g. on an ARM [21, 26]
and some research has been performed on a hardware implementation.
However, this article describes the first HECC implementation using a
hardware/software co-design. More precisely, we have implemented the
HECC divisor multiplication on the 8051 microprocessor, which uses a
small hardware co-processor to optimize the performance. This is the first
step towards exploring all possibilities for hardware/software co-designed
HECC implementations. Such an investigation is of special interest as
embedded devices are believed to be of vital importance for a broad area
of pervasive computing such as sensor networks and wireless applications.

First we examined the pure software i.e. C/assembly implementa-
tions. Next some small extra hardware was added, which facilitates the
field operations, in particular the inversion and multiplication in the bi-
nary field. We conclude that even with very limited hardware resources
one can obtain an attractive performance. We used formulae of Byra-
mjee and Duquesne [8] to achieve optimized divisor doubling operation.
For the optimal hardware/software co-design we used GEZEL as a design
environment. GEZEL is especially suitable for the exploration of domain-
specific coprocessor and multiprocessor micro architectures as it can pro-
vide cycle-true hardware/software co-simulation with various embedded
core instruction set simulators.

The remainder of this paper is organized as follows. Section 2 lists
some relevant previous work in HECC on embedded platforms. In Sect. 3
some background information on HECC is given. Details of our imple-



mentation are specified in Sect. 4 and results are listed in Sect. 5. Some
directions for future work and conclusions are given in Sect. 6.

2 Previous Work

Algorithms for HECC and implementations have been studied intensively
in the past years. A significant amount of work has been performed on
investigating the formulae for the group operation [17, 24, 22, 8]. Explicit
formulae for genus 2 curves are given by Lange [17] for arbitrary fields
and for various types of coordinates. There exist practical results for both
software platforms (general purpose or embedded processor) [26, 21] and
hardware devices, such as FPGAs [7, 13]. The most detailed and com-
plete reference dealing with software as well as hardware implementations
is [24].

For embedded processors, a large amount of work has been performed
for the ARM platform [26, 23, 4, 21]. Pelzl et al. [21] have implemented the
group operation of genus 2 and 3 for HECC on an ARM7 processor. They
compared the results with ECC implementation (with corresponding se-
curity) and showed that HECC performance is comparable to the one
of ECC. The performance for divisor scalar multiplication on the ARM
microprocessor for genus 2 was further optimized in [23] and compared
to genuses 3 and 4. They proved that genus 3 is the fastest, requiring less
than 70 ms on an ARM7 running at 80 MHz. The work of Wollinger et
al. [26] considered not just the ARM7TDMI but also the ColdFire and
a PowerPC. In addition, they provided the first thorough comparison of
ECC and HECC on those platforms.

The first complete hardware implementation of HECC was given by
Boston et al. [7]. Wollinger et al. [25] investigated HECC implementation
on a VLSI coprocessor. They used projective coordinates and completed
their research on VLSI platforms started in [6, 5]. They compared co-
processors using affine and projective coordinates and concluded that the
latter should be preferred for hardware implementations. They used a
curve of a special form (y2 + xy = x5 + f1x + f0), which allowed for more
optimized formulae. In [13] three different architectures on a FPGA have
been examined for vast area of applications.

With respect to the platform, we mention here other relevant experi-
ences with curve-based cryptography. Woodbury et al. [27] showed that
EC point multiplication can be performed on an 8051 microcontroller in
less than 2 sec as a pure software solution. However, they used a 134-bit
OEF at lower security level. Gura et al. [10] compared ECC and RSA on



8-bit CPUs and proved that Public-key Cryptography is viable on small
devices.

For hardware/software co-design the only relevant work that we are
aware of is the one of Kumar and Paar [16]. They implemented ECC on
an 8-bit AVR microcontroller with some extra hardware for field multipli-
cations. They show that a 163-bit point multiplication can be calculated
in 0.113 sec with a microcontroller running at 4 MHz. We can compare
this to our solution as both implementations are for similar platforms and
the fields offer the same level of security.

3 Hyperelliptic Curve Cryptography (HECC)

We now present the mathematical background for hyperelliptic curves
including the algorithms for efficient arithmetic in the Jacobian group.
More details on the theory of hyperelliptic curves can be found in [19].

3.1 Hyperelliptic Curves

Let GF(2m) be an algebraic closure of the field GF(2m). Here we consider
a hyperelliptic curve C of genus g = 2 over GF(2m), which is given with
an equation of the form:

C : y2 + h(x)y = f(x) in GF(2m)[x, y], (1)

where h(x) ∈ GF(2m)[x] is polynomial of degree at most g (deg(h) ≤ g)
and f(x) is a monic polynomial of degree 2g + 1 (deg(f) = 2g + 1). Also,
there are no solutions (x, y) ∈ GF (2m) × GF (2m) which simultaneously
satisfy the equation (1) and the equations: 2v+h(u) = 0, h′(u)v−f ′(u) =
0. These points are called singular points. For the genus 2, in the general
case the following equation is used y2 +(h2x

2 +h1x+h0)y = x5 + f4x
4 +

f3x
3 +f2x

2 +f1x+f0. For our implementation we used the so-called type
II curves [8], which are defined with h2 = 0, h1 6= 1. In particular, the
authors recommended to use curves of the form: y2 + xy = x5 + f3x

3 +
x2 + f0, since they combine a simpler arithmetic with a good security
level.

A divisor D is a formal sum of points on the hyperelliptic curve C i.e.
D =

∑
mP P and its degree is degD =

∑
mP . Let Div denotes the group

of all divisors on C and Div0 the subgroup of Div of all divisors with
degree zero. The Jacobian J of the curve C is defined as quotient group
J = Div0/P . Here P is the set of all principal divisors, where a divisor
D is called principal if D = div(f), for some element f of the function



field of C (div(f) =
∑

P∈C ordP (f)P ). The discrete logarithm problem in
the Jacobian is the basis of security for HECC. In practice, the Mumford
representation according to which each divisor is represented as a pair of
polynomials [u, v] is usually used. Here, u is monic of degree 2, degv <
degu and u|f −hv− v2 (so-called reduced divisors). For implementations
of HECC, we need to implement the multiplication of elements of the
Jacobian i.e. divisors with some scalar.

3.2 Algorithms for HECC

Divisor multiplication The divisor scalar multiplication is achieved
by use of divisor addition and doubling. We used the NAF algorithm to
reduce the number of additions.

Divisor addition and doubling Let the quintuple [U1, U0, V1, V0, Z]
stand for [x2 + u1x + u0, v1x + v0] = [x2 + U1

Z x + U0
Z , V1

Z x + V0
Z ]. This form

allows us to complete both point operations without inversion. Only one
inversion and four multiplication are required at the end to convert back
from projective to affine coordinates. We used the formulae from [8] for
doubling and we used the same approach to get formulae for addition
in the case of mixed coordinates. The addition for type II curve has the
same complexity as the one of Lange [17] i.e. it takes 44M , but doubling
has been further optimized to 31M (here M denotes number of multi-
plications/squaring). The formulae for the addition are given in Table 1.
The numbers in parenthesis correspond to the case of mixed addition.

Finite field arithmetic We used the polynomial basis representation
with the irreducible polynomial being pentanomial in GF(283). Each ele-
ment of the field can be represented as an 11-byte word. The field addition
of two vectors in hardware or software in GF(2m) is simply the xoring of
the two vectors. The field multiplication is the most costly operation in
our system, since it is performed thousands of times during the course of
a single divisor multiplication. While the inversion algorithm is actually
more complex, it is only performed a single time (for the case of projective
coordinates) and hence it is not the bottleneck in our initial implemen-
tation. We discuss our choices for field multiplication in more detail in
Sect. 4.



Table 1. Formulae used for the divisor addition.

Step Calculations # mult.

1 Precomputation and resultant r: 12M(6M)

Z = Z1 · Z2, Ũ21 = Z1 · U21, Ũ20 = Z1 · U20,

Ṽ21 = Z1 · V21, Ṽ20 = Z1 · V20,

t1 = U11 · Z2 + Ũ21, t2 = U10 · Z2 + Ũ20,
t0 = U11 · t1 + t2 · Z1, r = t0 · t2 + t21 · U10

2 Compute almost inverse:
t1 = inv1, t3 = inv0

3 Compute almost s: 8M(7M)

t4 = V10 · Z2 + Ṽ20, t5 = V11 · Z2 + Ṽ21,
w2 = t0 · t4, w3 = t1 · t5;
s1 = (t0 + Z1 · t1) · (t4 + t5) + w2 + w3 · (Z1 + U11);
s0 = w2 + U10 · w3

4 Precomputations: 9M

R = Z · r, s0 = s0 · Z, s3 = s1 · Z, R̃ = R · s3;

S3 = s3
2, S = s0 · s1, S̃ = s3 · s1,

˜̃
S = s0 · s3,

˜̃
R = R̃ · S̃;

5 Compute l: 3M

l2 = S̃ · Ũ21, l0 = S · Ũ20, l1 = (S̃ + S) · (Ũ21 + Ũ20)

+l2 + l0, l2 = l2 +
˜̃
S;

6 Compute U’: 17M

U0
′ = s0

2 + s1
2 · t1 · (t1 + Ũ21) + t2 · S̃ + R · [t1 · r + s1 · Z];

U1
′ = S̃ · t1 + R2, l2 = l2 + U1

′,
t4 = U0

′ · l2 + S3 · l0, t5 = U1
′ · l2 + S3 · (U0

′ + l1);

Z′ = R̃ · S3, U1
′ = R̃ · U1

′, U0
′ = R̃ · U0

′;
7 Compute V’: 2M

V0
′ = t4 +

˜̃
R · Ṽ20;

V1
′ = t5 +

˜̃
R · (Ṽ21 + Z);

total 51M(44M)

4 Implementation

4.1 8051 Microprocessor

Here we give a brief overview of the 8051 microprocessor platform. An
8051 is an 8-bit microcontroller originally designed by Intel that consists
of several components: a controller and instruction decoder, an ALU, 128
bytes of internal memory (IRAM), up to 64K of external RAM (XRAM)
addressed by a 16-bit DPTR register, and up to 64KB of external program
memory or 4KB of internal program memory (ROM). The 8051 also has
128 bytes of special function registers (SFRs), which are used to store
system values such as timers, serial port controls, input/output registers,



etc. The architecture is shown in Figure 1, which is based on the Dalton
8051 core from UC Riverside [2].

Decoder

External
RAM

Co−Processor

P0−P3
I/O ports

RAM/SFRs

Internal

ROM

ALU

ProgramController

8051 CORE

Fig. 1. The architecture of the 8051 microprocessor.

An external RAM module (XRAM) can be attached to the 8051 core
when the 128 bytes of internal RAM are insufficient, which is often the
case in public-key cryptosystems. The 8051 interfaces to the outside world
via a serial port as well as four input/output register ports, labeled P0
through P3.

It also should be noted that the 8051 in its original form relies on
a clock division principle. That is, the external clock entering into the
device is actually divided by 12 to produce the system clock. Thus, a 12-
MHz external clock would produce an 8051 with a 1-MHz machine clock
cycle, with most instructions requiring 1 or 2 machine cycles. Newer 8051
cores attempt to reduce the clock division [1]. The clock division principle
can serve as an advantage to co-designed systems in that the coprocessor
circuitry can inherently operate at 12x the internal 8051 machine rate.

4.2 Various implementation options

The paper presents two types of HECC implementations on the 8051 pro-
cessor. The first type is a pure software implementation - either a pure C
model operating on the 8051 or a mixed C/assembly model in which most
of the functions are performed in C while the GF(283) finite field multiplier
is performed in assembly. The second type is a mixed hardware/software



model in which some of the functions are performed in C while the
GF(283) finite field operations (multiplication/addition/inversion) are per-
formed in hardware. The hardware operators and the 8051 are connected
by a memory-mapped interface, over the 8051’s P0, P1, and P2 I/O port
interfaces.

Software C/ASM Implementation The first implementation is a
pure C implementation, compiled onto the 8051 processor using the Keil
suite. This implementation uses a single function in C to combine the
multiplication and reduction functions. As a first improvement the mul-
tiplication routine is replaced by an assembly code.
Multiplication: In the software implementation, we used a modified
form of Algorithm 4 of [11] to implement fast software multiplication.
The algorithm is a fast comb-based multiplication method with windows
implemented for a 32-bit processor with window size of 4. Based upon
initial simulation results, for an 8-bit processor, we found that a window
size of 2 provides faster performance.
Reduction: To reduce the multiplication result by the irreducible poly-
nomial, a fast reduction technique was used. This technique was based on
Algorithm 6 of [11]. We have used a similar approach but modified the
algorithm to implement reduction using our GF(283) pentanomial and a
word-size of 8 bits.
Inversion: The inversion function for this case is implemented as the
Extended Euclidean Algorithm.

Hardware/Software Implementation The second type of HECC im-
plementation is a hardware/software co-design i.e. software routines were
enhanced with binary field operations in hardware. In the first attempt we
implemented a data path which includes a hardware GF(283) multiplier.
Figure 2 shows this data path. The data IO ports from the 8051 pro-
cessor are 8-bits long and the multiplication is performed on the GF(283)
operands. There is an instruction register that controls the HW data path
from the 8051 processor. The supported instructions for the data path of
Figure 2 are as shown in Table 2:

Due to the fact that the data is transferred back and forth from the
CPU to the HW multiplier there is a lot of I/O overhead. In order to
optimize the total performance we tried to reduce the I/O transfers with
minimum additional memory storage added to the data path. The key
observation is that in the schedule of divisor’s double and add operations



Table 2. Instructions for the data path.

Instruction Definition

LOADA Load 8-bits of data from the 8051 to Register A of HW data path
LOADB Load 8-bits of data from the 8051 to Register B of HW data path
DOMULT Perform GF(283) mult. on A and B and put the results in C
GETC Return 8-bits of data from Register C of HW data path to the 8051

(see Table 1) there are many expressions of the following form: k1 =
f3 · t0 + t1.

Initially for such expression, f3 and t0 were moved to the hardware
multiplier, the multiplication was performed in the hardware, then the
result was returned back to the CPU and the addition with t1 was per-
formed in the SW. In order to speed up this expression the hardware
multiplier was replaced with a GF(283) “multiply-and-add” data path.
For this purpose a hardware adder and a feedback line that can keep the
result of the multiplication in hardware was added to the original data
path and therefore, the number of I/O transfers decreased with not much
of extra hardware. For the new datapath (Figure 3), the instructions
shown in Table 3 were added.

Table 3. The new instructions for the data path.

Instruction Definition

MOVE_CTOB Move the data in Register C to Register B
DOADD Perform GF(283) addition on A and B and put the results in C

Moreover, in the software routines that implement the divisor’s dou-
ble and add operations, we moved the coprocessor’s instructions up and
down in the schedules of the divisor’s operations, so that we do not have
to repeatedly load the same values into the internal register A of the data
path. The performance gain of these optimizations will be provided in the
next section.
In addition, for the best performance in the final HW/SW implementa-
tion of HECC on the 8051 processor, the GF(283) inversion operation was
performed in HW. The same HW datapath is used to implement the in-
version algorithm which consists of repeated multiplications. The details
of the hardware GF(283) multiplication and inversion are given after in-
troducing our design environment.



Design Environment: At this stage we briefly introduce the design
environment GEZEL [3] in which we model the co-designed system. In
our application, we used the Dalton 8051 ISS to perform cycle-accurate
simulations for our software only (C and C/ASM) implementation. For
the hardware/software system, we designed our co-processor multiplier
using GEZEL’s hardware description language. The language syntax is
primarily used to describe the FSMD (finite state machine plus datap-
ath) system model. Thus, a datapath for the co-processor was designed
and its corresponding control logic was also designed in the GEZEL lan-
guage.
After the design of the hardware co-processor, we attached the co-processor
to the input/output ports of the 8051 ISS (P0-P3) using the GEZEL de-
sign environment, and then performed timing and functional verification.
GEZEL gave us the ability to co-simulate the 8051 with clock division
circuitry as it interfaced with a 12 MHz hardware module in a cycle-
exact manner. Upon verification of the functionality of the multiplier co-
processor, the GEZEL code was automatically converted to RTL VHDL
and input into Synplicity for FPGA synthesis.
Multiplier: In the first version of the multiplier, the multiplier imple-
ments a finite field multiplication and simultaneously a corresponding
reduction in a bit-serial implementation. A bit-serial implementation was
chosen for area compactness as well as to take advantage of the 12x
increase in effective clock rate of the co-processor over the 8051 core.
In the second version, the multiplier was enhanced with the additional
“multiply-and-add” instruction and datapath element, as described pre-
viously.

Mult

b

a

c

din

ins

dout

8

84

84

84 8

8

Fig. 2. Data path for the initial design.



Inversion: Inversion in binary fields can be replaced by a chain of
multiplications (and squarings). It is of interest if squarings are faster
than multiplication such as for normal bases. First by means of Fermat’s
little theorem we have: a−1 = a2m−2 = (a2m−1−1)2, for all a ∈ GF(2m).
The technique to compute this in optimal way is the basis for the idea of
Itoh and Tsujii [12]. Their method is especially suited for normal basis
but can be applied on polynomial basis as well.

Mult

b

a

c

din
dout

8

84

84

84

8

Add
84

ins
8

Fig. 3. Data path of the new co-processor.

Here we consider the case for m odd, so m − 1 is even. Then we can

write: a2m−1−1 = a(2
m−1

2 −1)(2
m−1

2 +1) = (a2
m−1

2 −1)2
m−1

2 a2
m−1

2 −1. In our
case for GF(283) we get: a−1 = a283−2 = (a282−1)2 = ((a241−1)2

41
a241−1)2,

which means that we need to use formula for a2m−1−1, but now m− 1 is
odd. In this case: a2m−1−1 = aa2m−1−2 = a(a2m−2−1)2

By repeated use of these formulae we can compute the inverse by
only 90M . The total number of multiplications (or squarings) required to
compute an inverse in GF(2m) is given with: blog2(m−1)c+w(m−1)−1.
Here w(k) denotes the Hamming weight of some positive integer k.

5 Results

Here we give detailed results on all three platforms and we discuss them
further. In Table 4 the timings for all finite field operations are given for
hardware and software. Timings for all basic operations are shown and
in the last row, the “multiply-and-add” operation is also added. One can
notice that inversion in software takes a very long time because it is im-
plemented using the Extended Euclidean Algorithm. The software imple-
mentation of inversion by means of Fermat would be already much faster,



but we decided to move this operation in hardware anyway. Namely, we
concluded that although our software implementations could possibly be
further optimized, it would still be difficult to achieve an efficient HECC
implementation.

Another observation is that the numbers for addition and multiplica-
tion in hardware are the same. The reason for that is because the majority
of the time for multiplication and addition on hardware is spent on the IO
transfers. Therefore, the time to perform single multiplication (83 cycles)
or an addition (1 cycle) is not more than even one 8-bit IO transfer from
8051 to the accelerator. Moreover, this time (2.3 ms) is also very close to
the time it takes to do ab + c (2.5 ms), and this is for the same reason as
well. However, the fact that this operation is used repeatedly allowed for
a speed-up in the new datapath. Sizes of XRAM and ROM are given in
bytes (B).

Table 4. Implementation results for operations in GF(283) for hardware and software
routines.

Operation Perf. [] Cl. Cyc.] Perf. [ms]@12MHz XRAM [B] ROM [B]

Addition (SW) 38 K 3.2 54 608
Multiplication (SW) 650 K 54.1 122 2065
Inversion (SW) 467.2 M 38.9 K 160 2383
Addition (HW) 28.2 K 2.3 53 934
Multiplication (HW) 28.2 K 2.3 53 934
Inversion (HW) 788.5 K 65.7 75 1835
ab + c (HW) 30.5 K 2.5 44 942

The results for the scalar multiplication of divisor for various imple-
mentation options are given in Table 5. FPGA area is given in number of
LUTs without XRAM and ROM which are specified separately. As can be
seen in Table 5, a significant increase in performance is provided by mov-
ing the finite-field multiplication from C to assembly, as shown in the first
two rows. An additional improvement is made when the multiplication is
moved into hardware; however at this point the timing does not improve
dramatically because at this point the inversion algorithm (rather than
the finite-field multiplication) is the critical path element of the system.
Moving the inversion into hardware rapidly reduces the timing (from 52
to 4.1518 seconds). An additional 40% timing reduction occurs after the
point operation signal flow graphs are analyzed and manipulated, and the
new “multiply-and-add” operation is created and used. From this table



it can also be seen that the number of LUTs does not change whether
inversion is performed in hardware or software. This is due to the fact
that even if inversion is done in software, the same accelerator is used for
field multiplication.

Table 5. Implementation results for divisor multiplication in GF(283) for all three
platforms.

FPGA XRAM ROM Perf.[s]
Implementation [] LUTs] [Bytes] [Bytes] @12MHz

C (Inversion in SW) 3300 820 11754 191.7

C+ASM(Inversion in SW) 3300 820 12284 64.9

C+HW multiplier 3600 820 11754 52
(Fig. 2-Inversion in SW)

C+HW multiplier 3600 927 12789 4.1518
(Fig. 2-Inversion in HW)

C+HW multiplier 3781 936 11524 2.4880
(Fig. 3-Inversion in HW)

Now we compare our performance results with other work on embed-
ded processors. Table 6 shows that our result features a practical HECC
implementation in constrained environments. First, it should be men-
tioned that it is extremely difficult to compare the performance of cryp-
tographic primitives on different embedded processors, since each proces-
sor presents a unique architecture and memory structure. The discussion
below is primarily to reference prior art.

The first two references relate to the ARM7, which is a 32-bit platform
and features completely different architecture than the 8051. Even so, the
second reference is of the same order as ours using frequency scaling for
rough normalization. The most suitable comparison to this work is [16]
and [10]. Gura et al. achieve the shown performance using a “faster”
8051, i.e. an 8051 whose clock division was much less than 12x. They also
demonstrate the well-known fact that the AVR is much faster than the
8051 (though exactly how much faster is subject to debate). This provides
perspective when comparing to the ECC implementation of Kumar and
Paar [16].

6 Conclusions and Future Work

This paper shows that even on a small 8-bit processor one can implement
hyperelliptic curve cryptography efficiently. We have designed a small



Table 6. Implementation results for divisor multiplication on various embedded plat-
forms.

Reference PKC Field Platform Frequency [MHz] Performance [ms]

[23] HECC GF(283) ARM7 80 71.56
[4] HECC GF(280) ARM7 80 374
[16] ECC GF(2163) AVR 4 113
[10] ECC GF(2160) 8051 12 4580

this work HECC GF(283) 8051 12 2488

hardware module that results in a significant speed-up compared with
a software-only solution. We believe that hardware/software co-design
offers a new alternative for low-power and low-footprint devices. We plan
to explore other trade-offs between hardware and software in order to find
the best partition. Additional options can be made available by exploiting
parallelism between HECC operations.

References

1. Dallas semiconductor ds89c420 ultra-high-speed microcontroller. http://www.

maxim-ic.com/quick_view2.cfm/qv_pk/2963.
2. Dalton 8051 processor. http://www.cs.ucr.edu/~dalton/8051/.
3. GEZEL design environment. http://www.ee.ucla.edu/~schaum/gezel.
4. S. Baktır, J. Pelzl, T. Wollinger, B. Sunar, and C. Paar. Optimal tower fields for

hyperelliptic curve cryptosystems. In Proceedings of 38th Asilomar Conference on
Signals, Systems and Computers, Pacific Grove, USA, November 7-10 2004.

5. G. Bertoni, L. Breveglieri, T. Wollinger, and C. Paar. Finding optimum parallel
coprocessor design for genus 2 hyperelliptic curve cryptosystems. In Proceedings
of ITCC, April 5-7, 2004, Las Vegas, Nevada, USA, 2004.

6. G. Bertoni, L. Breveglieri, T. Wollinger, and C. Paar. Hyperelliptic Curve Cryp-
tosystem: What is the Best Parallel Hardware Architecture?, chapter in Embedded
Cryptographic Hardware: Design and Security. Nova Science, 2004.

7. N. Boston, T. Clancy, Y. Liow, and J. Webster. Genus two hyperelliptic curve
coprocessor. In B. S. Kaliski Jr., Ç. K. Koç, and C. Paar, editors, Proceedings
of 4th International Workshop on Cryptographic Hardware and Embedded Sys-
tems (CHES), number 2523 in Lecture Notes in Computer Science, pages 400–414.
Springer-Verlag, 2002.

8. B. Byramjee and S. Duquesne. Classification of genus 2 curves over F2n and
optimization of their arithmetic. Cryptology ePrint Archive: Report 2004/107.

9. P. Gaudry. An algorithm for solving the discrete log problem on hyperelliptic
curves. In B. Preneel, editor, Advances in Cryptology: Proceedings of EURO-
CRYPT 2000, volume 1807 of LNCS, pages 19–34, 2000.

10. N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz. Comparing Elliptic
Curve Cryptography and RSA on 8-bit CPUs. In M. Joye and J. J. Quisquater,
editors, Proceedings of 6th International Workshop on Cryptographic Hardware
and Embedded Systems (CHES), Lecture Notes in Computer Science 3156, pages
119–132, 2004.



11. D. Hankerson, J. L. Hernandez, and A. Menezes. Software implementation of
elliptic curve cryptography over binary fields. In Ç. K. Koç and C. Paar, edi-
tors, Proceedings of 2nd International Workshop on Cryptographic Hardware and
Embedded Systems (CHES), number 1965 in Lecture Notes in Computer Science,
pages 1–24. Springer-Verlag, 2000.

12. T. Itoh and S. Tsujii. Effective recursive algorithm for computing multiplicative
inverses in GF(2m). Electronics Letters, 24(6):334–335, 1988.

13. H. Kim, T. Wollinger, Y. Choi, K. Chung, and C. Paar. Hyperelliptic curve copro-
cessors on a FPGA. In Workshop on Information Security Applications - WISA,
Jeju Island, Korea, August 23-25 2004.

14. N. Koblitz. Elliptic curve cryptosystem. Math. Comp., 48:203–209, 1987.
15. N. Koblitz. A family of Jacobians suitable for Discrete Log Cryptosystems. In

S. Goldwasser, editor, Advances in Cryptology: Proceedings of CRYPTO’88, num-
ber 403 in Lecture Notes in Computer Science, pages 94–99. Springer-Verlag, 1988.

16. S. Kumar and C. Paar. Reconfigurable instruction set extension for enabling
ECC on an 8-bit processor. In Proceedings of International Conference on Field-
Programmable Logic and Applications (FPL) 2004, Antwerp, Belgium, August 30-
September 1, 2004.

17. T. Lange. Formulae for arithmetic on genus 2 hyperelliptic curves. Applicable
Algebra in Engineering, Communication and Computing, 15(5):295–328, February
2005.

18. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1997.

19. A. Menezes, Y.-H. Wu, and R. Zuccherato. An elementary introduction to hyperel-
liptic curves, chapter Appendix, pages 155–178. Springer-Verlag, 1998. N. Koblitz:
Algebraic Aspects of Cryptography.

20. V. Miller. Uses of elliptic curves in cryptography. In H. C. Williams, editor,
Advances in Cryptology: Proceedings of CRYPTO’85, number 218 in Lecture Notes
in Computer Science, pages 417–426. Springer-Verlag, 1985.

21. J. Pelzl, T. Wollinger, J. Guajardo, and C. Paar. Hyperelliptic curve cryptosys-
tems: Closing the performance gap to elliptic curves. In C. Walter, Ç. K. Koç, and
C. Paar, editors, Proceedings of 5th International Workshop on Cryptograpic Hard-
ware and Embedded Systems (CHES), number 2779 in Lecture Notes in Computer
Science, pages 351–365. Springer-Verlag, 2003.

22. J. Pelzl, T. Wollinger, and C. Paar. High performance arithmetic for hyperelliptic
curve cryptosystems of genus two. In Proceedings of ITCC, April 5-7, 2004, Las
Vegas, Nevada, USA, 2004.

23. J. Pelzl, T. Wollinger, and C. Paar. Special Hyperelliptic Curve Cryptosystems of
Genus Two: Efficient Arithmetic and Fast Implementation, chapter in Embedded
Cryptographic Hardware: Design and Security. Nova Science Publishers, 2004.

24. T. Wollinger. Software and Hardware Implementation of Hyperelliptic Curve Cryp-
tosystems. PhD thesis, Ruhr-University Bochum, Germany, 2004.

25. T. Wollinger, G. Bertoni, L. Breveglieri, and Christof Paar. Performance of HECC
coprocessors using inversionfree formulae. International Workshop on Information
Security & Hiding, Singapore (ISH ’05).

26. T. Wollinger, J. Pelzl, V. Wittelsberger, C. Paar, G. Saldamli, and Ç. Koç. El-
liptic and hyperelliptic curves on embedded µP. ACM Transactions on Embedded
Computing Systems, 3(3):509–533, 2004.

27. A. D. Woodbury, D. V. Bailey, and C. Paar. Elliptic curve cryptography on smart-
cards without coprocessors. In Proceedings of Fourth Smart Card Research and
Advanced Applications (CARDIS 2000) Conference, 2000.


