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Abstract. We present a new method for computing the scalar multi-
plication on Koblitz curves. Our method is as fast as the fastest known
technique but requires much less memory. We propose two settings for
our method. In the first setting, well-suited for hardware implementa-
tions, memory requirements are reduced by 85%. In the second setting,
well-suited for software implementations, our technique reduces the mem-
ory consumption by 70%. Thus, with much smaller memory usage, the
proposed method yields the same efficiency as the fastest scalar multi-
plication schemes on Koblitz curves.
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1 Introduction

Elliptic curves cryptosystems (ECC) offer an interesting alternative to standard
prime-field based cryptosystem, because for the same security level, they are
much faster and require less memory [11, 13]. In particular, they are well-suited
for implementations on low-end processors and memory-constrained devices such
as smartcards. From the geometrical properties of elliptic curves, one can define
two operations on the points of the curve: point addition and point doubling.
Then, given a base point P and a scalar d, one can compute the scalar multi-
plication Q = dP . It is believed that the discrete logarithm problem on elliptic
curves (EC-DLP), namely finding d from P and Q, is a hard problem, and many
cryptosystems rely on the hardness of the EC-DLP. Since the scalar multiplica-
tion plays a crucial role in such cryptosystems, it is important to implement it
efficiently. In practical cases, we distinguish two types of scalar multiplications.
On the one hand, the scalar multiplication with known base point can be com-
puted very efficiently. On the other hand, when the base point is random, much
more computational effort is required.

A first approach to decrease the computational cost of the scalar multiplica-
tion with unknown base point is to deploy a new representation of the scalar in
order to minimize the number of elliptic operations. The standard technique is
to precompute some small multiples of the base point P and re-use these points



in the scalar multiplication. One of the fastest recoding technique is the width
w non-adjacent form (NAFw), which reduces the number of point additions to
m/(w + 1) on average for a m-bit scalar, provided that 2w−2 points are pre-
computed. Unfortunately, recoding techniques have no influence on the number
of point doublings, and as a consequence, the speed-up which arises from the
NAFw is limited.

A second approach is to use special curves. In particular, on some special
binary curves called Koblitz curves, all point doublings can be replaced by a
much cheaper operation: the Frobenius automorphism [12]. Thus, NAFw tech-
niques and Koblitz curves nicely combine: the NAFw reduces the number of
point additions while point doublings are eliminated thanks to special algebraic
properties of the curve [18]. Since the computational cost of precomputations
grows with 2w−2 whereas that of the scalar multiplication itself decreases with
1/(w + 1), obviously, there is an optimal value for w. In practical situations,
w = 5 is optimal for Koblitz curves.

In [1], a method for computing the scalar multiplication on Koblitz curves
without precomputations was proposed. The technique is faster than the NAF2

on Koblitz curves, but slower than the NAF3 which has one precomputed point.
Additionally, it is well-known that on binary field, with special bases called
normal bases, squares are virtually free. Techniques based on normal basis rep-
resentations have been proposed to speed-up the scalar multiplication on Koblitz
curves, with known point and large memory [4].

We propose a new method which can exploit the speed-up arisen from pre-
computations without actually storing all of the precomputed points: we keep
the full power of precomputations without sacrifice on the side of memory. In
fact, we embed the precomputation process in the scalar multiplication: the com-
putations of the scalar multiplication are re-ordered and the precomputed points
are generated sequentially. In our method, the order of computations does not
play any role in the global efficiency, and operations can be freely re-ordered.
Therefore, our scheme can be performed from right to left, or from left to right,
or even following a random sequence, generalizing the notion of right-to-left or
left-to-right computations. Our algorithm has two different settings. With the
first setting, which is well-suited for hardware implementations, our method is
as fast as the (optimal) NAF5 but requires only one auxiliary point instead of
seven, reducing the memory consumption by 85%. The second setting is well-
suited for software implementations, that is, for general-purpose processors, but
requires two auxiliary points instead of seven, reducing memory consumption by
70%.

2 Preliminaries

In this section, we discuss known facts: we describe the properties of polynomial
and normal basis implementations of binary fields, and introduce Koblitz curves.



2.1 Polynomial Bases vs. Normal Bases

In the field IF2m , elements are represented with respect to a basis (ǫ0, . . . , ǫm−1),
where ǫi ∈ IF2m . Then, the element b ∈ IF2m is represented with the vector with
binary entries (b0 . . . bm−1)2, corresponding to the polynomial

∑m−1
i=0 biǫi. For

efficient implementations, two types of bases are usually considered: polynomial
and normal bases.

In a polynomial basis, ǫi is the monomial Xi of degree i, and operations are
computed modulo an irreducible polynomial Π[X] of degree m, appropriately
chosen in order to speed-up reduction. Also, there are efficient algorithms for
multiplications and squarings in IF2m using polynomial bases [6]. A normal basis
consists of the m-tuple (β0, . . . , βm−1), where β2

i = βi+1 for i < m − 1 and
β2

m−1 = β0. In other words, powers of two are simple cyclic shifts. Unfortunately,
normal basis multiplications are slow. On the one hand, in hardware, with an
appropriate circuitry and good parameter choices, the penalty arisen from slow
multiplications can be minimized and normal bases yield an elegant and efficient
solution to implement binary fields. On the other hand, in software, polynomial
bases largely outperform normal bases [5].

Even though a full normal basis approach seems too slow to compete with
polynomial basis implementations, with a mixed normal-polynomial approach,
one can benefit from the advantages of both types of bases: fast multiplications
with polynomial bases and fast computation of powers of two with normal bases.
Indeed, there are techniques to convert elements between their normal and poly-
nomial basis representations, using change-of-basis matrices [7]. The conversion
time is roughly the same as one polynomial basis multiplication, and each ma-
trix occupies m2 bits in memory [4]. Note that change-of-basis matrices can be
precomputed off-line and stored in ROM.

2.2 Koblitz Curves

Koblitz curves belong to a special class of elliptic curves defined over binary
fields, and additionally offer a very efficient arithmetic, with no significant secu-
rity flaw compared to general binary curves [12]. They are defined over a binary
field IF2m by the equation:

Ea : y2 + xy = x3 + ax2 + 1, (1)

where a ∈ {0, 1}. We denote by Ea(IF2m) the abelian group of the points of the
Koblitz curve over IF2m , along with the point of infinity O, neutral element of
the addition law.

The main interest of Koblitz curves is that point doublings can be totally
eliminated from the scalar multiplication, and replaced by the efficiently com-
putable Frobenius automorphism Φ : (x, y) 7→ (x2, y2). Since the quadratic equa-
tion (x4, y4) + 2(x, y) = µ(x2, y2) where µ = (−1)1−a holds for every point of
Koblitz curves, the Frobenius map can be seen as the complex τ = (µ+

√
−7)/2,

solution of the equation Φ2 + 2 = µΦ. The approach for fast computations



over Koblitz curves is to convert a scalar d to a radix τ expansion such as
d =

∑j

i=0 diτ
i, di ∈ {0,±1}: in the scalar multiplication, point doublings are

replaced by the efficiently computable Frobenius map. However, in order to fully
take advantage of the Frobenius map, the τ expansion must be sparse and short.
In [18], Solinas proposed two efficient algorithms to satisfy these properties: par-
tial reduction modulo δ = (τm − 1)/(τ − 1) and radix-τ NAF recoding.

One can see radix-τ integers as elements of the quadratic field ZZ[τ ], with
norm |λ| = l20 +µl0l1+2l21. Then the division with remainder γ = κ ·δ+ρ in ZZ[τ ]
satisfies |ρ| ≤ 4/7∗|δ|. Here ζP = (ζ mod δ)P holds for δ = (τm−1)/(τ −1) and
ζ ∈ ZZ[τ ], and thus the radix τ expansion of reduced scalars becomes shorter.

To generate a width w radix τ NAF expansion (TNAFw), one can use the
map Φw : u0 + u1 · τ ∈ ZZ[τ ] 7→ u0 + u1 · tw mods 2w ∈ ZZ/2wZZ, where
tw = 2Uw−1U

−1
w mod 2w, Uw is the Lucas sequence Uw, defined by U0 = 0,

U1 = 1 and Uw+1 = µUw − 2Uw−1 for w ≥ 1, and “mods 2w” means the signed
residue modulo 2w. Interestingly, the odd representatives modulo τw correspond
exactly to the odd integers in ZZ/2wZZ by Φw [18]. Therefore, the congruence
classes modulo τw can be easily computed using Φw.

Algorithm 1: TNAFw with partial modular reduction modulo δ [18]

Input: Scalar d ;
Output: TNAFw(s);

1. c0 ← d partmod δ (partial modular reduction); c1 ← 0; i← 0;
2. while c0 6= 0 or c1 6= 0 do

(a) if c0 is odd then u← Φw(c0 + c1τ) else u← 0;

(b) d
(w)
i ← u; c0 ← c0 − u;

(c) (c0, c1)← (c1 + µc0/2,−c0/2); i← i + 1;

3. return (d
(w)
i−1 . . . d

(w)
1 d

(w)
0 );

If the scalar is first reduced modulo δ, the length of the TNAFw is at most
m+a+3, and does not exceed m+a with high probability [18]. Since the average
nonzero density of the TNAFw is 1/(w + 1), the scalar multiplication requires
(m+a)/(w +1) point additions. Additionally, the points P, 3P, . . . , (2w−1 −1)P
must be precomputed. Therefore, the total cost of the scalar multiplication using
TNAFw is on average:

CNAF = (m + a) · ECFRB +

(

m + a

w + 1
+ 2w−2 − 1

)

· ECADD + ECDBL (2)

where ECADD, ECFRB and ECDBL stand for the computational cost of point
additions, τ multiplications and point doublings, respectively.



3 Short Memory Scalar Multiplication

We present the basic idea to compute the TNAF5 with memory for only one
auxiliary point instead of the seven usual precomputed points, assuming that a
normal basis is used for representing elements of the underlying field.

3.1 Motivation

The general approach to decrease the cost of the scalar multiplication for an
unknown base point is to precompute some multiples of the base point in or-
der to minimize the number of point additions in the scalar multiplication.
This method is particularly effective on Koblitz curves where point additions
only are significant for the total computational cost. Especially, in the case of
the TNAFw method, for several binary fields of cryptographic interest (m =
163, 233, 283, 409), the width w = 5 is optimal3. Unfortunately, in practical sit-
uations, scarce memory resources might prevent us from choosing the optimal
width. For example, for IF2163 , IF2233 , IF2283 and IF2409 , the storage of 7 precom-
puted points occupies 294, 420, 504 and 728 bytes in RAM, respectively. Newer
smartcards have larger RAM space, but the current trend is to develop multi-
application cards with greedy memory requirements on the OS side. Generally,
independently from how much RAM is available, only about 500 bytes are allo-
cated for cryptography in total. Thus, having an important part, or even worse,
the totality of the allocated memory occupied by precomputed values can be a
serious drawback. Besides, in hardware and in software, it is advantageous to
decrease memory requirements, and as a consequence, decrease the cost of the
final device.

We propose a solution to drastically reduce the memory requirements of the
optimal TNAF5 scalar multiplication. Our approach is as follows: we re-group
calculations involving the same precomputed point, which can be discarded im-
mediately after such calculations are completed.

3.2 Sequential precomputations

Since we aim at discarding precomputed points when they are not needed any-
more, we need a procedure for computing them sequentially.

Definition 1. We call sequential precomputations an ordered sequence of points

where the kth point Pk can be computed from the base point P and the previous

point Pk−1, with one point addition and several τ multiplications.

In [18], the precomputed points 3P, 5P, . . . , (2w−1 − 1)P are calculated by
successively adding 2P . Since the non-trivial point 2P must be readily avail-
able, the precomputations are not sequential in the sense of Definition 1. The
computational cost of this technique is (2w−2 − 1)ECADD + ECDBL. Instead

3 On general curves, one can achieve a greater speed-up by using fractional width
techniques. However, such a method has not been proposed yet for Koblitz curves.



of u = ±1, . . . ,±(2w−1 − 1), one can take (u mod τw) as coefficients in the
TNAFw. The precomputed points (u mod τw)P can be efficiently calculated
thanks to relationships between the TNAF2 representations of (u mod τw), for
u = 1, . . . , (2w−1 − 1). Then, the computational cost of precomputations can be
reduced to only 2w−2 − 1 point additions [6]. With this technique, each point
(u mod τw)P can be computed independently for w < 5: sequential precompu-
tations are trivially possible for the TNAF2, TNAF3 and TNAF4. However, for
w = 5, it is necessary to store (5 mod τ5)P during the whole precomputation
process, which is unacceptable for our aims: we do not wish to store any non-
trivial point. This is unfortunate because w = 5 is usually the optimal width.
Thus, we have to look for new a technique which allows us to compute the points
sequentially in the TNAF5.

Unlike the standard method which utilizes the TNAF2 representations of
(u mod τ5) for the precomputations, we use the binary expansion of u mod τ5.
Then, we propose a precomputation technique which requires 2w−2 − 1 point
additions and several τ multiplications, with memory for only one non-trivial
point.

Table 1. Odd representatives modulo τ5

Case a = 0 Case a = 1
u αu = u mod τ5 binary rep. of αu αu = u mod τ5 binary rep. of αu

1 1 1 1 1
3 −τ − 3 τ2 − 1 τ − 3 τ2 − 1
5 −τ − 1 −τ − 1 τ − 1 τ − 1
7 −τ + 1 −τ + 1 τ + 1 τ + 1
9 −2τ − 3 −τ4 + τ − 1 2τ − 3 −τ4 − τ − 1
11 −2τ − 1 τ3 + τ2 − 1 2τ − 1 −τ3 + τ2 − 1
13 −2τ + 1 τ3 + τ2 + 1 2τ + 1 −τ3 + τ2 + 1
15 3τ + 1 −τ3 − τ2 + τ + 1 −3τ + 1 τ3 − τ2 − τ + 1

Table 1 shows the representatives modulo τ5 and their binary expansion, for
the cases a = 0 and a = 1. Interestingly, one can find sequential relationships be-
tween the representatives: for instance, α11 = τ3 +α3 and α15 = τ −α11. Indeed,
thanks to these relationships, it is possible to compute the points (u mod τ5)P
sequentially: Table 2 presents a practical solution for such sequential precompu-
tations, following the sequence {1, 3, 11, 15, 5, 13, 7, 9}. Then, the computational
cost of our precomputation technique using a normal and a polynomial basis is
respectively:

C(5)
0,n = 7 ·ECADDn + 7 ·ECFRBn and C(5)

0,p = 7 ·ECADDp + 14 ·ECFRBp, (3)



where the indexes n and p stand for the type of basis (normal or polynomial).
In the following, the index 0 in C0 will refer to the cost of precomputations.

Table 2. Sequential computation of (u mod τ5)P

u αuP = (u mod τ5)P, u = 0 αuP = (u mod τ5)P, u = 1

1 F (1, P,−a) = α1P = P F (1, P,−) = α1P = P
3 F (3, P,−) = α3P = τ2P − P F (3, P,−) = α3P = τ2P − P
11 F (11, P, α3P ) = α11P = τ3P + α3P F (11, P, α3P ) = α11P = −τ3P + α3P
15 F (15, P, α11P ) = α15P = τP − α11P F (15, P, α11P ) = α15P = −τP − α11P
5 F (5, P,−) = α5P = −τP − P F (5, P,−) = α5P = τP − P
13 F (13, P, α5P ) = α13P = P − τ2α5P F (13, P, α5P ) = α13P = P − τ2α5P
7 F (7, P,−) = α7P = −τP + P F (7, P,−) = α7P = τP + P
9 F (9, P, α7P ) = α9P = −τ4P − α7P F (9, P, α7P ) = α9P = −τ4P − α7P

a The symbol “−” refers to any point, as the third input parameter is not used in
this case.

3.3 Short Memory Scalar Multiplication with a Normal Basis

On standard elliptic curves, the precomputation work must be done before
the scalar multiplication itself; all precomputed points are stored in RAM. On
Koblitz curves implemented with a normal basis, we will show that this is un-
necessary. Indeed, when P is known, τ iP can be computed with i-fold cyclic
shifts of the coordinates of P . In other words, the order of the computations
of the scalar multiplication dP =

∑m+a

i=0 diτ
iP does not matter. Especially, one

can re-group calculations involving the same precomputed points, as shown in
Algorithm 2.

The average computational cost of Algorithm 2 is:

C(5)
1,n =

m + a

6
· ECADDn +

(

m + a

6
+ 4

)

· ECFRBn + C(5)
0,n. (4)

Where the index 1 in C1 stands for the total computational cost, whereas 0
in C0 stands for the cost of precomputations. It is exactly the same as that of
the standard TNAF5, with 4 additional τ -multiplications arising from step 2(c),
which re-sets the current precomputed point to its original value αuP in order
to evaluate the next precomputed point. Interestingly, Algorithm 2 computes
the scalar multiplication using the (optimal) TNAF5 with only one auxiliary
point, namely the current precomputed point R. In comparison, the standard
TNAF5 requires 7 non-trivial (that is, different from P ) precomputed points.
Thus, for a completely negligible overhead (4 ECFRB), we reduced the memory



Algorithm 2: Short memory scalar multiplication on a normal basis

Input: Base point P , scalar d;
Output: Q = dP ;

1. compute d(5) = TNAF5(d); Q← O; R← O;
2. for u following the sequence {1, 3, 11, 15, 5, 13, 7, 9} do

(a) R← F (u, P, R) with Table 2; k ← 0;
(b) for j from 0 to m + a− 1 do

i. if |d
(5)
j | = u then

A. R← τ j−kR; k ← j;
B. Q← Q + sign(d

(5)
j )R;

(c) if u ∈ {3, 11, 5, 7} then R← τm−kR;
3. return Q;

consumption4 by a factor 7. Or, putting it in a different way, for the same memory
consumption as that of the TNAF3, our method is as fast as the TNAF5. Note
that since sequential precomputations are trivially possible for w = 2, 3, 4, our
technique is also applicable to the TNAF, TNAF2, TNAF3 and TNAF4.

4 Short Memory with Change-of-Basis

In the following we show how a mixed normal-polynomial basis approach allows
us to deploy the short memory method not only on hardware implementations
but also on general-purpose processors.

4.1 General Idea

The interest of the latter idea is practically limited by the fact that a nor-
mal basis is necessary in order to efficiently compute multiplications by τ i. In
software, normal basis implementations are much slower than polynomial basis
implementations. At this point, it would be interesting to take the best from
the two approaches: fast computations of Frobenius map with a normal basis
and fast field multiplications with a polynomial basis, and convert between the
two representations when necessary. This mixed approach was already used for
implementing a fast generator of pairs (k, kP ) for signature schemes [4], and for
defeating side channel attacks [16], but never to speed-up the scalar multiplica-
tion itself.

The general idea of our technique is to perform sequential precomputations
with a polynomial basis, but then, convert the auxiliary precomputed point Rp

to its normal basis representation Rn. After that, τ iRn can be computed with

4 By memory consumption, we refer to non-trivial precomputed points: we do not
consider buffers, nor the base point or accumulators.



only two cyclic shifts, for any i. The point Rn with shifted coordinates can be
converted back to its polynomial basis representation in order to perform point
additions with the polynomial basis.

We remark an interesting property of this approach: to convert a point Rn

represented with respect to the normal basis to its polynomial basis representa-
tion, one only needs the binary expansion of the coordinates of Rn = (xn, yn).
More precisely, the conversion to the polynomial basis is as follows: if the kth
bit of xn is 1, then add (i.e. xor) the kth line of the change-of-basis matrix to
xp. Of course, the same holds for yn and yp. As a consequence, it is not needed
to explicitly compute τ iRn: the knowledge original (unshifted) binary expansion
of xn and yn is sufficient to convert τ iRn to its polynomial basis representation.
Indeed, if the kth bit of xn is 1, we simply add the (k + i mod m) line of the
change-of-basis matrix to xp, and the same holds for yn and yp.

4.2 Short Memory TNAF5 with Change-of-Basis

Unlike the normal basis short memory method, we use two auxiliary points
instead of just one, in order to avoid additional conversions to the normal basis.
More precisely, the auxiliary precomputed point is stored in its polynomial and
normal basis representations. Then, the average computational cost of the scalar
multiplication using Algorithm 3 is:

C(5)
1,cob =

m + a

6
· ECADDp +

(

m + a

6
+ 12

)

· COB + C(5)
0,p , (5)

where COB stands for the computational cost for changing the basis. Note that
the auxiliary precomputed point Rp is represented in affine coordinates, and
thus, it is possible to use mixed projective-affine additions formulas [6].

Algorithm 3: Short memory scalar multiplication with change of basis, w = 5

Input: Base point P , scalar d;
Output: Q = dP ;

1. compute d(5) = TNAF5(d); Q← O;
2. for u following the sequence {1, 3, 11, 15, 5, 13, 7, 9} do

(a) Rp ← (u mod τ5)P with affine coordinates, polynomial basis;
(b) Rn ← convert Rp to normal basis;
(c) for j from 0 to m + a− 1 do

i. if |d
(5)
j | = u mod τ5 then

A. Rp ← convert τ jRn to polynomial basis;

B. Q← Q + sign(d
(5)
j )Rp with polynomial basis, mixed coordinates;

(d) if u ∈ {3, 11, 5, 7} then Rp ← convert Rn to polynomial basis;
3. return Q;



On the one hand, in the original TNAF5 scalar multiplication computed with
a polynomial basis, the Frobenius map must be explicitly computed, requiring
3 · (m + a) squarings assuming projective coordinates. On the other hand, the
short memory method does not compute the Frobenius map explicitly, but in-
stead, several conversions to/from the polynomial basis and the normal basis are
needed: one each time the auxiliary precomputed point is updated (i.e. 8), one
before each point addition (i.e. (m + a)/6) and one when the new value of the
auxiliary point requires the previous auxiliary point (i.e. 4). Since squarings and
change-of-basis operations have a small computational cost compared to point
additions, we can expect the original TNAF5 and our method to have similar
running times. In fact, depending on the relative speed of squarings and change-
of-basis operations, the short memory method might be slightly slower or faster
than the TNAF5.

5 Comparisons and Properties

Finally, we discuss side channel attacks, generalize the computation strategy
described in Algorithms 2 and 3, consider the two cases of hardware and software
implementations, and show how the method compares with known techniques.

5.1 Discussion on Side Channel Attacks

On low-end processors running cryptography, side channel attacks are a serious
threat. By re-grouping calculations involving the same precomputed point, the
short memory method is naturally weaker than other methods, leaking even
more information.

However, there are many situations where side channel analysis is not an is-
sue. Consider EC-DSA, for instance. On the one hand, the signature generation
should be protected against side channel attacks, as it involves secret parame-
ters. Additionally, the signature generation is based on one scalar multiplication
with known base point, which can be computed very efficiently thanks to comb
methods [15]. On the other hand, the signature verification involves compu-
tations with random points, which are much less efficient, and only publicly
available parameters. This is the ideal setting for the (unprotected) short mem-
ory method. Note that the short memory method does not combine well with
interleave methods, but on Koblitz curves, the benefit obtained from interleave
methods is small anyway, because point doublings are already replaced by the
efficiently computable Frobenius automorphism.

In some situations, the base point is random and the scalar should be kept se-
cret. Then, one can still benefit from the advantages of the short memory method
and in the same, protect the scalar multiplication against side channel attacks.
There are two types of side channel attacks based on power consumption analysis:
simple power analysis (SPA) and differential power analysis (DPA). In the frame
of SPA, the attack rely on one single power trace, whereas several power traces
are analyzed with the help of a statistical tool in the case of DPA. To thwart



SPA, one can use side channel atomicity, a technique virtually applicable to any
algorithm [3]. The basic idea of side channel atomicity is to assemble atomic
blocks which are indistinguishable by SPA, and implement every operation with
atomic blocks. DPA can also be defeated with adequate countermeasures: the
random exponent recoding technique applied to Koblitz curves [9] combines well
with our method.

5.2 Recoding and Calculation Strategies

For the sake of simplicity, we introduced our technique with a repeated right-to-
left scanning of the TNAFw in Algorithms 2 and 3. However, since τ multipli-
cations are computed with respect to a normal basis, the order of computations
does not matter: one can compute τ iP or τ−iP with only two cyclic shifts, and
the cost of the latter operation is independent from the cycle length i. In other
words, instead of computing right-to-left, one can compute left-to-right, or even
following a random re-ordering of the operations! Note that such alternative
computation strategies have no influence on efficiency: the auxiliary point R in
Algorithm 2, or Rp in Algorithm 3, is always represented with affine coordinates,
whereas the accumulator Q can be represented with projective coordinates such
as LD-coordinates. Therefore, one can always use mixed affine-projective formu-
las, independently from the computation strategy. In this sense, our technique
differs from standard methods were a left-to-right computation strategy is nec-
essary when mixed addition formulas are used.

1 -3 -1 30 0 0 0 0 0 01 -3 -1 30 0 0 0 0 0 0

+ - +-

R← P

τ10P
τ3 τ7τ7 τ3P

R← 3P

τ73P 3P

Q← O

3P−τ73P + 3P−τ73P − τ3P + 3P

τ10P − τ73P − τ3P + 3P

Fig. 1. Right-to-Left Computation Strategy

On-the-Fly Right-to-Left Strategy. In the standard approach, the scalar
is converted to the TNAFw using a right-to-left strategy whereas the scalar
multiplication is computed left-to-right. Thus, the scalar must be stored in both
of its original and TNAFw representations, wasting O(m) bits. With the short
memory method, we are free from the left-to-right constraint for computations,
and as a consequence, it becomes possible to recode the scalar on-the-fly, without



1 -3 -1 30 0 0 0 0 0 01 -3 -1 30 0 0 0 0 0 0

+ - +-

R← P

τ10 τ10P
τ−7τ−7 τ3P

τ7

R← 3P

τ73P 3P

Q← O

τ10P τ10P − τ3P τ10P − τ73P − τ3P

τ10P − τ73P − τ3P + 3P

Fig. 2. Left-to-Right Computation Strategy

effectively storing the coefficients of the TNAFw. The idea is as follows: each
time the auxiliary precomputed point is updated, the recoding is performed
anew. For each individual recoding, additions (or subtractions) with the auxiliary
point (u mod τw)P are performed only when the corresponding coefficient of
the TNAFw is ±(u mod τw). Of course, one has to repeat the same recoding
several times, but the computational cost of the recoding process is generally
negligible compared to that of the scalar multiplication itself, and in the case of
the TNAF5, the recoding must be calculated only 8 times, limiting the impact
of the redundancy overhead.

Randomized Computation Sequence. For a given precomputed auxiliary
point (u mod τw)P , the order of computations can be freely chosen. In fact, it can
even be randomized. For w = 5, there are some constraints on the precomputed
auxiliary points themselves: (3 mod τ5)P must be calculated before (11 mod
τ5)P , for instance. But for w < 5, one can compute the points (u mod τw)P
following any order, and then for fixed u, randomize the computation sequence
again. Re-ordering operations can be used in order to prevent side-channel or
fault attacks. However, this idea is based on temporal obfuscation: the order
of the operations is randomized, but not the operations themselves. Therefore,
alone, this technique might be insufficient to defeat side channel attacks, but
combined with other countermeasures, it provides higher security for free.

5.3 Hardware Implementation

In hardware, the cylic shift is virtually free: for example, it can be emulated with
a pointer on the least significant bit. Additionally, there are efficient normal ba-
sis multipliers for hardware implementations [14], and even when a polynomial
basis representation is required for interoperability with other systems, the con-
version from a normal basis to a polynomial basis representation can be carried
out without storing the change-of-basis matrix [10]. Thus, the natural choice
is a normal basis, where our method offers outstanding speed-ups with very



small memory requirements. Alternatively, by combining Frobenius expansions
and the point halving method, one can obtain a non-zero density of 2/7 with
no precomputations [1]. Table 3 summarizes the computational costs and mem-
ory requirements for precomputations of our technique, which has one auxiliary
precomputed point, the TNAF2 and the τ/halve method, which have no pre-
computed tables, and with the TNAF3 and the TNAF5, which have one and
seven precomputed points, respectively. Clearly, the short memory method out-
performs the TNAF2, TNAF3 and the τ/halve techniques. The TNAF5 is as fast
as the short memory, but requires seven points whereas our method needs only
one auxiliary point for precomputations, reducing the memory consumption for
precomputations by 85%.

Table 3. Speed and Memory Comparisons for Hardware Implementations

IF2163 IF2233 IF2283 IF2409 IF2571

TNAF2 54 add. 78 add. 94 add. 136 add. 190 add.

τ/halve 47 add. 67 add. 81 add. 117 add. 163 add.

TNAF3 42 add. 59 add. 72 add. 103 add. 144 add.
326 bits 466 bits 566 bits 818 bits 1142 bits

TNAF5 34 add. 46 add. 54 add. 75 add. 102 add.
2282 bits 3262 bits 3962 bits 5726 bits 7994 bits

Short Memory 34 add. 46 add. 54 add. 75 add. 102 add.
(Algorithm 2) 326 bits 466 bits 566 bits 818 bits 1142 bits

5.4 Software Implementation

A polynomial basis implementation is usually preferred in software, because field
multiplications are much faster than when using a normal basis. However, the
two approaches can be combined by using a normal basis for computing the
Frobenius map and a polynomial basis for computing point additions.

In Table 4, we estimate the computational cost of the short memory method
with change-of-basis and compare it with standard TNAFw techniques, assuming
mixed affine-LD projective coordinates for the scalar multiplication and affine
coordinates for precomputations, and that the cost of field inversions, field squar-
ings and change-of-basis operation is equivalent to that of 10, 1/7 and 1 field
multiplications, respectively. Our estimations show that under our assumptions,
the short memory method is about as fast as the TNAF5, with a small advan-
tage for the TNAF5 for small bitlengths. For example, for the field IF2163 , the
TNAF5 is the fastest, but the difference with the short memory is only about 2%,



and the short memory method requires about 70% less memory. However, for
greater bitlengths, the short memory method is slightly faster than the TNAF5:
the overhead introduced by the change-of-basis operations is smaller than the
speed-up obtained from saving τ multiplications. Note that the situation may
be different in practical implementations, depending on the relative speed of
change-of-basis operations and polynomial basis squarings. In particular, an ef-
ficient change-of-basis method would definitely give the advantage to the short
memory method. The conventional change-of-basis techniques aim at achieving
interoperability between full normal basis implementations and full polynomial
basis implementations [7]. In the case of the short memory method, we do not
use normal bases for computing field multiplications. In other words, we do not
need to use special normal bases such as optimal or Gaussian normal bases. In-
stead, one might look for normal bases with efficient conversion to polynomial
bases.

Table 4. Speed a and Memory Comparisons for Software Implementations

IF2163 IF2233 IF2283 IF2409 IF2571

TNAF2 543 M 776 M 942 M 1362 M 1901 M

TNAF3 437 M 620 M 750 M 1079 M 1502 M
42 bytes 60 bytes 72 bytes 104 bytes 144 bytes

TNAF4 389 M 541 M 650 M 923 M 1274 M
126 bytes 180 bytes 216 bytes 312 bytes 432 bytes

TNAF5 387 M 518 M 612 M 847 M 1150 M
294 bytes 420 bytes 504 bytes 728 bytes 1008 bytes

Short Memory 395 M 520 M 609 M 834 M 1123 M
(Algorithm 3) 84 bytes 120 bytes 144 bytes 208 bytes 288 bytes

a Assumptions for relative costs with multiplication M as reference: squaring
S ≈M/7, change-of-basis COB ≈M , inversion I ≈ 10M .

6 Conclusion

We proposed a novel technique for computing the scalar multiplication on Kob-
litz curves. Our method keeps the full power of precomputations without ef-
fectively storing all of the precomputed values. In the case of hardware imple-
mentations, our method is as fast as the optimal TNAF5, but reduces memory
consumption for precomputations by 85%. In the case of software implementa-
tions, again, the running time of our method is roughly the same as the TNAF5,
but with 70% less memory for precomputations. Using our technique, one can



deploy the optimal table size of the TNAFw without sacrificing much memory
to store it. Therefore, for environments with very scarce resources, in software or
hardware, the short memory method offers significant improvements compared
to known schemes, using the available memory where it is truly needed.
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