
Further Hidden Markov Model Cryptanalysis

P.J. Green1, R. Noad2, and N.P. Smart2

1 Department of Mathematics,
University of Bristol,

University Walk,
Bristol,

BS8 1TW, United Kingdom.
P.J.Green@bristol.ac.uk

2 Department of Computer Science,
University of Bristol,

Merchant Venturers Building,
Woodland Road,

Bristol,
BS8 1UB,

United Kingdom.
{noad,nigel}@cs.bris.ac.uk

Abstract. We extend the model of Karlof and Wagner for modelling
side channel attacks via Input Driven Hidden Markov Models (IDHMM)
to the case where not every state corresponds to a single observable sym-
bol. This allows us to examine algorithms where errors in measurements
can occur between sub-operations, e.g. there may be an error probability
of distinguishing an add (A) versus a double (D) for an elliptic curve
system. The prior work of Karlof and Wagner would assume the error
was between distinguishing an add-double (AD) versus a double (D).
Our model also allows the modelling of unknown values, where one is
unable to determine whether a given observable is add or double, and is
the first model to allow one to analyse incomplete traces. Hence, our ex-
tension allows a more realistic modelling of real side channel attacks. In
addition we look at additional heuristic approaches to combine multiple
traces together so as to deduce further information.

1 Introduction

The randomization of algorithms as a technique to prevent side channel analysis
has in recent years been a topic of intense research. However, many of the ap-
proaches using randomization have been made in an ad-hoc manner with little
analysis as to whether the randomization introduced actually helps reduce the
risk of side channel attacks.

As a trivial example of such a randomization consider the following two
variants of the right-to-left binary exponentiation algorithm in an additive group.
One is the standard, non-randomized, version whilst the second is a randomized
version requiring a random coin per key symbol (usually a bit).

Non-Randomized Binary Method
Q←O
T←P
For i = 1 to N

If (ki = 1) Q←Q + T
T←2T

Return Q

Randomized Binary Method
Q←O
T←P
For i = 1 to N

If (ki = 1) Q←Q + T
Else if (coini = 0) R←Q + T
T←2T

Return Q

Various authors [4, 8, 6] have suggested the use of finite state machines or Hidden
Markov Models (HMMs) as a mechanism to analyse the benefit of randomization
techniques in side channel analysis. See [7] for an introduction and partial survey
of the application of HMMs to side channel analysis. The idea is that the hidden
states of the Markov Model represent the states of the algorithm implementing
the countermeasure, whilst the observations represent the side channel itself.

In [4] Karlof and Wagner introduce a concept called an Input Driven Hidden
Markov Model, this is a HMM which for each state of the algorithm associates
an input state which drives the state transition. This input state is used to model
the input of the fixed key to the algorithm. The internal state transitions not
only depend on the current state and the random tape given to the algorithm,
but also the key symbols. We note that this is only a notational simplification
since the inputs in the Karlof/Wagner model can be modelled in a standard
HMM by extending the state space of a standard HMM to consist of not only
the state of the algorithm but also the corresponding key symbol.

The major innovation of the Karlof and Wagner approach was to allow the
modelling of attacks involving multiple traces and the modelling of errors in the
state measurements. However, a major drawback was that each internal state
and observable had to correspond to a single key symbol. To see the advantages
and the disadvantages of this approach we now give an overview of the approach
taken by Karlof and Wagner, as applied to randomized group exponentiation
algorithms, which are after all the main application area of side channel analysis
on public key algorithms.

We shall adopt additive group notation, as is common in elliptic curve cryp-
tography. Suppose we wish to compute Q = kP for a fixed secret integer k and a
(possibly fixed) public group element P . Almost all algorithms process the bits
of k in chunks (e.g. a bit at a time, or in fixed/sliding window segments). In
almost all algorithms the processing of each bit can be reduced to the computa-
tion of either a double D, an add-double AD or a double-add DA. Whether one
has AD or DA depends on the precise group exponentiation algorithm used, for
ease of explanation we shall suppose the algorithm either performs a D or an
AD. In simple side channel analysis whether a D or an AD is performed can
be deduced from the side channel, the observed sequence of D’s and AD’s we
call a trace. Hence, the goal of the attacker is to deduce the value of k given the
sequence of D’s and AD’s observed.

In practice, however, one may not be able to determine correctly the sequence
of D’s and AD’s from the side channel, one may make errors in this observation,
or in fact be unable for certain measurements to determine whether a given

symbol is A or D. In addition since one is assuming a randomized exponentiation
algorithm the attacker could repeat the side channel experiment, assuming the
same k is used on each exponentiation (but not necessarily the same P). The
attacker then needs to combine the information obtained from multiple traces
in such a way as to obtain the secret k.

Karlof and Wagner propose a heuristic method, which they describe as a
variant of the Viterbi algorithm although it is actually a variant of the Forward-
Backward (FB) algorithm, to solve the above problem. Using a prior probability
distribution on the key symbols (say for example each bit is equally likely to
be zero or one), they use their FB algorithm and a single trace so as to deduce
an approximation to the posterior probability distribution on the key symbols.
This posterior distribution is then used as the prior distribution for the next
trace to be processed and so on. After the processing of all of the set of multiple
traces one deduces the final estimated posterior distribution on the key symbols,
which the attacker hopes reveals to him the actual key used. This form of belief
propagation reduces an exponential increase in the number of states needed to
process all traces in a parallel manner. However, it is clearly susceptible to the
order in which the traces are fed into the algorithm and it does not work for
some exponentiation algorithms.

A practical problem with the Karlof and Wagner approach is that each ob-
servable, i.e. D or AD, needs to correspond to a single key bit. This is fine when
dealing with noiseless data; however, in measuring a power trace it is unlikely
that we confuse a D with an AD since they take a significantly different period
of time. It is far more likely that we confuse a single D with a single A, and vice
versa, or be unable to distinguish a D from an A at all.

To see the problems that the model of Karlof and Wagner can produce, sup-
pose we used a non-randomized right-to-left binary exponentiation algorithm, as
above. Now if we saw the sequence DAD then the Karlof and Wagner algorithm
would interpret this as a key with two bits. Since the output D corresponds to
one bit, whilst the output AD corresponds to another. However, it could be that
the measuring equipment mistook the A for a D and that the actual sequence
executed was DDD, in other words a key with three bits. Hence, one can see
that the error model of Karlof and Wagner does not fully model the errors that
one can see in a real-life side channel measurement.

The main motivation for looking at these techniques is to handle situations
where one is unable to accurately distinguish an A from a D. This happens
when analysing exponentiation algorithms which have been implemented using
arithmetic techniques which aim to make the distinguishing of an A from a D
as difficult as possible. Such techniques have been proposed by various authors
in particular Brier, Déchéne, Joye, Liardet, Quisquater and Smart [2, 3, 5].

In this paper we extend the Karlof and Wagner approach to cope with traces
for which each key symbol potentially corresponds to multiple, or zero, observ-
able symbols and where some of the observable symbols may be unknown or
wrong. In particular we model the case where multiple runs of the exponenti-
ation algorithm, with the same secret exponent, can lead to traces of different

lengths. Hence, we need to model the case of variable length data. In Section
3 we present our FB algorithm for coping with a single trace. This approach
extends the state space of the HMM to include a variable which counts how far
one has processed along the output trace, each state transition within the HMM
corresponds to the processing of a single key symbol; however, each transition
may take up a varying number of output symbols. In Section 4 we describe some
heuristic approaches to dealing with multiple traces, we examine the pros and
cons of each approach. In Section 5 we present some experimental results for our
methods as applied to various exponentiation algorithms.

We end this introduction by thanking John Malone-Lee for various useful
discussions and insight whilst the work in this paper was carried out.

2 Notation

In this section we introduce the notation we will use throughout the paper. In
particular we highlight the difference between our approach and that of Karlof
and Wagner.

If X is a discrete random variable then we let p(X = x) denote the proba-
bility distribution function, which we shorten to p(x) for compactness when the
underlying random variable X is clear. We let p(x|y) denote the probability that
the random variable X is x, given that Y is y, a notation which is extended to
p(x1, . . . , xs|y1, . . . , yt) in the standard way.

We assume we are interested in analysing an exponentiation algorithm with
respect to a given fixed, but hidden, exponent k of at most N symbols, which we
shall call the key. The symbols (usually bits) of k we shall denote by the vector
k = (k1, . . . , kN). As the algorithm progresses the internal state of the algorithm
passes through a sequence of states q = (q0, . . . , qN). We assume there is one
internal state transition for each key symbol. When running the exponentiation
algorithm the attacker obtains a sequence of observable outputs y = (y1, . . . , yL).

In the model of Karlof and Wagner the observable outputs are in one-to-
one correspondence with the internal states, hence L = N . The values of the
observables are taken from the set {D,AD}; each internal state corresponds to
one of these symbols and errors in measurement are specified by given the error
probability p0 which is p(yn = AD|qn = D) = p0 and p(yn = D|qn = AD) = p0.
The internal sequence of states x = (x0, . . . , xN) of the HMM in Karlof and
Wagner’s approach is essentially given by xn = (kn, qn).

In our model the observable outputs are not in one-to-one correspondence
with the internal states, hence L 6= N . The observables are taken from the
language O, which is generated from the alphabet {D,A, ∅,⊥}, where ∅ is the
zero-length observable and ⊥ denotes unknown; each internal transition corre-
sponds to a number of these symbols. To keep track of the number of observ-
able symbols consumed by the state transitions we introduce another variable
m = (m1, . . . ,mN), which signals that at internal algorithm state qn the al-
gorithm has output a total of mn observable symbols. In particular we have
L = mN . The internal state of the HMM in our approach is given by the triple

xn = (kn, qn,mn). The precise number of output symbols “consumed” on enter-
ing a given state depends on the previous internal state of the HMM and the
new key bit. To simplify matters we assume that mn depends only on mn−1 and
qn, which is the case in all algorithms under consideration.

Again we assume that internal state corresponds to one of the observables
symbols inO. Errors are then modelled by defining p(observed = oj | expected =
oi) = pi,j , for oi, oj ∈ O,

3 HMMs with Variable Length Data

In this section we present how to use the FB algorithm to analyse our HMM for
a single trace, where the length of the list of output symbols may not correspond
to the length of the list of internal states. We first present the FB algorithm as
a general tool, we then recap on its application to classic HMM, and finally we
present the modifications needed to cope with our situation.

3.1 Forward-Backward Algorithm

The FB algorithm is an efficient method for computing all marginal sums

tn(xn) =
∑
x0

∑
x1

· · ·
∑
xn−1

∑
xn+1

· · ·
∑
xN

f(x0, x1, . . . , xN), (1)

for n = 0, 1, . . . , N , when the function being summed has a factorisation of the
form

f(x0, x1, . . . , xN) =
N∏

n=1

gn(xn−1, xn). (2)

By substituting (2) into (1) and rearranging the factors and summation signs,
it is easy to see that

tn(xn) = rn(xn)sn(xn)

for all n and xn, where

rn(xn) =
∑
xn−1

gn(xn−1, xn)
∑
xn−2

gn−1(xn−2, xn−1) · · ·

and
sn(xn) =

∑
xn+1

gn+1(xn, xn+1)
∑
xn+2

gn+2(xn+1, xn+2) · · ·

These summations can be computed recursively via

rn(xn) =
∑
xn−1

gn(xn−1, xn)rn−1(xn−1) for n = 1, 2, . . . , N (3)

sn(xn) =
∑
xn+1

gn+1(xn, xn+1)sn+1(xn+1) for n = N − 1, N − 2, . . . , 0 (4)

starting from r0(x0) ≡ 1 and sN (xN) ≡ 1.

3.2 Classic HMM

In the standard application of the FB algorithm to HMMs, f(x0, x1, . . . , xN)
is the joint distribution of hidden variables (x0, x1, . . . , xN) and corresponding
observed data y = (y1, y2, . . . , yN). The FB algorithm can then be applied since
the factors of f are

g1(x0, x1) = p(x0)p(x1|x0)p(y1|x1) and gn(xn−1, xn) = p(xn|xn−1)p(yn|xn)

for n = 2, 3, Hence, the FB algorithm allows us to compute marginal poste-
riors since

p(xn|y1, y2, . . . , yN) = tn(xn)/
∑
xn

tn(xn).

The application of Karlof and Wagner can be interpreted as taking the inter-
nal states xn to be (kn, qn), where kn is the n-th symbol of the key and qn is the
internal state. The values yn then correspond to the observations made during
the side channel analysis and the probability p(yn|xn) models the error prob-
ability of seeing certain outputs given the internal state of the exponentiation
algorithm. The formulae given to evaluate p(xi|y) given in [4] is then simply an
application of the standard FB algorithm to this situation.

3.3 HMM with Variable Length Data

We now turn to the situation where the indexing of the observable states yi does
not correspond in a one-to-one manner with the indexing of the internal states
xi. The FB method really pays no regard to the indexing of the data, so that,
providing the joint distribution of hidden variables and data can be factorised
in the form (2), we can apply the method.

We now use a HMM in which the state variable xn is a triple (kn, qn,mn),
and we assume a Markov structure, with transition probabilities

p(xn|xn−1) = p(kn)p(qn|qn−1, kn)p(mn|mn−1, qn).

We assume that the distribution of the data y given x0, x1, . . . , xn factorises into
a product

p(y|x0, x1, . . . , xn) =
N∏

n=1

dn(y, xn−1, xn);

the interpretation is that dn is the distribution of the nth ‘chunk’ of data, condi-
tional on xn−1 and xn, or in practice only on (mn−1,mn, qn). The FB algorithm
can then be used, with

g1(x0, x1) = p(q0)p(k1)p(q1|q0, k1)p(m1|m0, q1)d1(y, x0, xn)

(with m0 fixed at 0) and, for n = 2, 3, . . .,

gn(xn−1, xn) = p(kn)p(qn|qn−1, kn)p(mn|mn−1, qn)dn(y,mn−1,mn, qn).

Note that this allows (but does not require) that the data chunk pointers mn are
random and not determined by qn and mn−1. This is a slight extra generalisation
on the situation we are in when analysing exponentiation algorithms.

Given that the gn factors, the forwards and backwards recursions (3) and (4)
are performed and the marginal posteriors can be computed as above:

p(kn, qn,mn|y) = tn(xn)/
∑
xn

tn(xn)

from which the marginal distribution for kn alone can be found by summing out
mn and qn.

In the above we set m0 = 0, the corresponding condition at the other end of
the sequence, that restores the forwards/backwards symmetry is given as follows:
If we assume that all of the observed data sequence is generated by the N steps
of the HMM, then mN is also known, and is equal to the length of y. The
known values of m0 and mN can then be regarded as part of the observed data
sequence, and their values fixed by specification of the end conditions, so that
r0(x0) = 1 if and only if x0 = (q0,m0) has m0 = 0, and sN (xN) = 1 if and only
if xN = (kN , qN ,mN) has mN equal to the length of y.

As well as specifying the initial state, q0, as part of the HMM, we also include
a set of permissible terminating states. This allows us to more accurately model
algorithms with specific termination points and gives a corresponding increase
in the accuracy of the calculated belief values.

3.4 Useful Properties

In addition to accommodating errors at the level of individual symbols with a
given probability, our model allows the specification of an error map specifying
different probabilities for each symbol transformation, i.e. the probability of
reading an “A” as a “D” could be 0.5 but the probability of reading a “D” as
an “A” could be only 0.1. The model also allows for symbols to be marked as
unknown - so that in the case of a highly ambiguous reading it is possible to
enter nothing rather than input a potentially misleading value into the HMM.
Both of these types of error are handled in the dn function during the processing
of the FB algorithm.

Some algorithms may terminate without generating an output symbol for all
input symbols - for example, when the remaining symbols in an exponent are
all zero. We can avoid artificial pre-processing of data to fix the length of traces
for such algorithms by using the zero-length observable symbol ∅, and having
a corresponding terminating state in the algorithms HMM with this observable
that links only to itself. This technique is used when modelling the Liardet–Smart
exponentiation algorithm [5] and the Oswald–Aigner exponentiation algorithm
[8].

3.5 Implementation Notes

At each n we need to store and manipulate the tables rn and sn indexed by
xn = (kn, qn,mn). While kn and qn have small sets of possible values, the range

of values of mn for which both rn and sn are non-zero varies with n. However,
this does not cause a problem in practice; since each internal state change will
output between l = miny∈Y |y| and h = maxy∈Y |y| observable symbols, we have
ln ≤ mn ≤ hn, and also l(N − n) ≤ (mN −mn) ≤ h(N − n) by symmetry. This
is exploited to save time in the FB algorithm by providing an initial reduction
in the portion of the state space which has the potential to generate non-zero
belief values.

During the processing of the forward values, we further reduce the possible
range of values for mn+1 at step n based of the range of values for which mn

generated non-zero beliefs and the possible transitions from qn. This state space
reduction is also performed for mn−1 when calculating the backward values.

4 Modelling with Multiple Traces

Given a single trace we can use belief propagation as in Section 3 to calculate
exact beliefs for each key symbol. However, trying to deal with multiple traces
in this model increases the state space exponentially in the number of traces.
We need a heuristic to combine the results from analysing the traces separately.
This heuristic should make at most a polynomial (in number of traces and input
size) number of calls to the single trace algorithm.

In the single trace version, we calculate the belief for a symbol n from a trace
y and prior key symbol distribution D:

bn(y, D) = p(kn = 1|y, D) =
∑
q∈S

|y|∑
m=0

t
y,D
n ({q, m, 1})∑

xn
t
y,D
n (xn)

,

where t
y,D
n is the same as the tn function in Section 3 but we now make the

dependence on y and D explicit. We now present two heuristic approaches to
dealing with multiple traces, one a natural analogue of that of Karlof and Wagner
to the case of variable length observable data, the second one is based on loopy
belief propagation (see, for example, [11]).

We let Y = {y1, . . . ,y|Y|} denote the set of traces obtained from the side
channel, we let N denote the number of key symbols in k and let D denote the
prior probability distribution on these symbols. The goal of our heuristics is to
output a heuristic posterior distribution, which we also denote by D, which takes
into account the information contained within the set of traces Y.

4.1 Karlof-Wagner

The belief propagation method used by Karlof and Wagner as applied to our
situation is described below.

For all y ∈ Y
For n = 1 . . . N

D′(kn = 1)←bn(y, D)
D←D′

Return D

In other words we compute

p(kn = 1|Y, D) = bn

(
y1, b

(
y2, . . . b

(
y|Y |, D

)
. . .

))
where b(y, D) is shorthand for {bn(y, D)}Nn=0.

This method has the advantage of having a complexity which is linear in
the number of traces, however the final heuristic posterior distribution on the
key symbols depends heavily on the order in which the traces are processed.
As an example of this problem consider the (non-randomized) right-to-left bi-
nary algorithm on a two bit exponent. Processing traces y1 = ADD and y2 =
DAD should give P (kn = 1) = 1

2 ; However, this method gives the distribution
{0.9, 0.1} when processing ADD first and {0.1, 0.9} when processing DAD first.

4.2 Bitwise Average

We investigated a number of heuristic methods for combining the data from mul-
tiple traces, although some produced results better than the following method,
their complexity was too high for practical use in large examples. The following
method was the one which produced the best results with a reasonable perfor-
mance.

Our new heuristic combining method is as follows: We calculate the beliefs
for each trace, perform a bitwise average to combine them into a new key symbol
distribution and repeat until the distribution converges.

Repeat
D′←D
For all y ∈ Y

For n = 1 . . . N
Dy(kn = 1)←bn(y, D)

D←Avgy∈Y(Dy)
Until D ≈ D′

Return D

In other words we set

D =
{
Avgy∈Y (bn (y, D))

}N

n=0

and repeat until the values in the distribution D have appeared to converge.
Intuitively, this method is inspired by the following technique, one could

think of a factor graph (see, for example, [11]) which connects the corresponding
hidden states in each trace with an averaging function. As this graph contains
loops, we must perform loopy belief propagation - that is, we start with an initial
set of messages, in our case the initial key symbol distribution and the traces, and
iterate until we (hopefully) get convergence. Clearly the output of this heuristic
is independent of the input order of the traces, however it is unclear how many
iterations are necessary and whether the method converges for a given input
sequence.

The method also does not take into account information which can be ob-
tained by considering two or more traces at once, so called cross trace analysis.
As an example of this consider the randomized binary algorithm on a 3 bit expo-
nent, where no errors occur when interpreting the power trace. A trace of DDD
indicates that there are exactly three ‘0’-bits and zero ‘1’-bits. Given a set of
traces {DDD,ADADAD} the output should be 000 with probability one, as the
first trace shows that all of the As in the second trace are spurious. However, as
there is no interaction between traces the final result is not definite.

We now turn to the discussion of the averaging function Avg(·) in the above
heuristic method. If one uses the arithmetic mean then problems can arise,
as the following example demonstrates: If p(kn = 1|y1, D) = 1 and p(kn =
1|y2, D) = 0.5 averaging these values gives us p(kn = 1|y1,y2, D) = 0.75. How-
ever, p(kn = 1|y1, D) = 1 is saying that the key symbol is definitely 1 whereas
p(kn = 1|y2, D) = 0.5 says that y2 gives no information about the key symbol.
Clearly then we should combine the traces such that p(kn = 1|y1,y2, D) = 1.

Replacing the arithmetic mean with a weighted mean where the weight func-
tion is 0 at x = 0.5 and increases with |x− 0.5| solves this problem by allowing
us to calculate the combined belief as

Avg(b1, b2, . . . , bn) =

{
0.5

∑
i=0..n w(bi) = 0,P

i=0..n w(bi)biP
i=0..n w(bi)

Otherwise.

The most effective function we have found for producing the weight is w(x) =
4x2 − 4x + 1. In the above example the above weighting would give us a new
combined belief of p(kn = 1|y1,y2, D) = 1.

5 Performance of Heuristics

Our main interest was in analysing exponentiation algorithms in the situation
where defences already exist to make it hard to distinguish doubles from ad-
ditions. In such a situation one is interested in how much defence one obtains
against simple power analysis by using the naive (non-randomized) binary algo-
rithm. In addition, there are certain exponentiation algorithms which have been
proposed for precisely the situation where, hopefully, indistinguishable opera-
tions have been implemented. For example in [5] Liardet and Smart propose an
algorithm to be used in conjunction with their indistinguishable addition formu-
lae so as to help mitigate against differential power analysis. They do this by
introducing a small amount of randomization into the exponentiation algorithm
without increasing the run time considerably.

In [10] Walter analyses the Liardet–Smart exponentiation algorithm in the
situation where there are no indistinguishable operations, and from the power
trace one can work out exactly the sequence of additions and doublings which
are carried out. Walter shows that in such a situation, for a 160-bit exponent,
one can break the Liardet–Smart algorithm with ten traces and work effort
around O(264), using R = 5 in the Liardet–Smart algorithm. If one increases

the number of traces to twenty then the work effort goes down to O(240). This
result is achieved by an exact analysis of the Liardet–Smart algorithm.

With our method we were able to investigate various exponentiation algo-
rithms with various error models. To illustrate typical results we used 160-bit
exponent values and two errors models, which we now describe. Clearly other
more complicated error models are allowed in our analysis but for ease of pre-
senting our results we focus on the following two:

5.1 Error Model A:

Here we used an error model which swapped an A for a D, and vice versa, with
a given fixed probability p0,

p(observed = A| expected = D) = p(observed = D| expected = A) = p0,

p(observed = A| expected = A) = p(observed = D| expected = D) = 1− p0.

5.2 Error Model B:

This model assumes that a certain fixed proportion p0 of the symbols are unable
to be read.

p(observed = ⊥ | expected = D) = p(observed =⊥ | expected = A) = p0.

p(observed = A| expected = A) = p(observed = D| expected = D) = 1− p0.

For each algorithm we performed a number of experiments, and produced
the results in Tables 1, 2 and 3, for the standard binary algorithm, the Liardet–
Smart algorithm and the Oswald–Aigner algorithm (OA2). In these tables the
column p represents the average proportion of key bits correctly recovered. Given
this we can compute the amount of additional work needed to recover the key,
given that the HMM algorithm recovers the stated proportion of the key sym-
bols. This workfactor is derived using the low-Hamming weight variant of the
Baby-Step/Giant-Step algorithm for the discrete logarithm problem (DLP) [9].
Namely, if we can derive an approximation to a discrete logarithm such that
proportion p of the N bits are correct, then one can solve for the exact discrete
logarithm in expected time

O

(√
N · p ·

(
N/2

N · p/2

))
,

which may be more efficient than the O(2N/2) technique of using the standard
Baby-Step/Giant-Step algorithm. For 160-bit exponents we obtain an improve-
ment as soon as p > 0.8.

Table 1. Results for the Binary Exponentiation Algorithm

Number of Traces
Error 1 5 10 20 100
Model p0 p p p p p

– 0.0 1.00 1.00 1.00 1.00 1.00

A 0.1 0.66 0.75 0.77 0.79 0.82
0.2 0.59 0.67 0.68 0.69 0.70

B 0.1 0.80 0.87 0.89 0.89 0.90
0.2 0.72 0.77 0.77 0.77 0.78

Table 2. Results for the Liardet–Smart Exponentiation Algorithm (R = 5)

Number of Traces
Error 1 5 10 20 100
Model p0 p p p p p

– 0.0 0.40 0.62 0.79 0.89 0.97

A 0.1 0.43 0.50 0.55 0.59 0.62
0.2 0.39 0.44 0.47 0.49 0.52

B 0.1 0.43 0.51 0.57 0.63 0.71
0.2 0.39 0.45 0.48 0.51 0.57

To compare our heuristic trace combining method to that used by Karlof and
Wagner we present in Table 4 the average proportion of key bits recovered cor-
rectly using our error models, but using the heuristic belief propagation method
of Karlof and Wagner.

From the tables we see that our trace combining method recovers more of
the key than the trace combining method of Karlof–Wagner. Furthermore, the
results in Table 4 for both Liardet–Smart and Oswald–Aigner without errors
show a decrease in accuracy as the number of traces increases. This is due to the
way their heuristic overemphasises the belief values generated by early traces
and causes the belief values to increase very rapidly when given consistent trace
data, but not decrease as rapidly when given evidence to the contrary. With the
Liardet–Smart algorithm an A in the trace indicates that either the current or
previous key bit is 1 whereas a D indicates that the current key bit is marginally
more likely to be 0 than 1. When processing multiple traces, the Karlof-Wagner
heuristic combines these slight biases until rounding errors in the floating point
representation cause a belief of 1 in the key bit being a 0. If a future trace then
indicates that the key bit is actually 1 a contradiction occurs in the forward–
backward algorithm causing it to fail. A non-zero probability of error prevents
the belief values from getting close enough to 1 for such a rounding error to oc-
cur, which explains why the heuristic does not fail in those case. The decrease in
accuracy when processing the Oswald-Aigner algorithm is due to the same rea-
son; a slight bias for a particular key bit value is compounded until it outweighs
strong evidence to the contrary.

We also see that Error Model B allows one to recover more of the key than
Error Model A, this is because in Error Model A we feed the algorithm possibly
incorrect information, whilst in Error Model B we only tell it when we are

Table 3. Results for the OA2 Exponentiation Algorithm

Number of Traces
Error 1 5 10 20 100
Model p0 p p p p p

– 0.0 0.82 0.89 0.95 0.97 0.98

A 0.1 0.59 0.69 0.72 0.77 0.79
0.2 0.54 0.63 0.67 0.70 0.73

B 0.1 0.66 0.79 0.82 0.83 0.84
0.2 0.60 0.71 0.72 0.75 0.76

Table 4. Results for the Karlof–Wagner Heuristic

Algorithm
Error Binary L–S OA2
Model p0 1 20 100 1 20 100 1 20 100

– 0.0 1.0 1.0 1.0 0.42 0.00 0.00 0.82 0.39 0.39

A 0.1 0.66 0.72 0.72 0.29 0.48 0.53 0.64 0.76 0.77
0.2 0.61 0.68 0.68 0.21 0.42 0.48 0.58 0.69 0.73

B 0.1 0.76 0.85 0.85 0.27 0.53 0.54 0.66 0.77 0.78
0.2 0.67 0.78 0.78 0.17 0.47 0.50 0.62 0.74 0.75

unsure of certain data values; a value of ⊥ provides only correct information,
whereas an observation error provides misinformation. The ability to mark that
an observable action took place without having to commit to what the action
was would be very useful in practice, where two sub-operations may have similar
power-traces or timing characteristics.

We see that, in the case of the Liardet–Smart algorithm, our general HMM
based method is almost as effective as Walter’s method in the case of no errors
and multiple traces. However, the results for a single trace with no errors appear
to be worse than random guessing! This doesn’t quite tell the whole story, as the
40% (on average) of correct bits have a high level of confidence in correctness
whilst the remaining bits have very low level. Using this level of confidence to
perform a weighted average when combining multiple traces is key to our trace
combining heuristic.

This is the first work to look at the Liardet–Smart algorithm in the case of
noisy trace data, as would happen when the algorithm is used in the context of
indistinguishable addition/doubling formulae as proposed in [5]. In this situation
the Liardet–Smart algorithm is relatively immune to simple power analysis via
our HMM method. This contrasts with the case of the Oswald–Aigner method,
which performs only marginally better than the standard binary method if there
are multiple traces with errors.

References

1. I.F. Blake, G. Seroussi and N.P. Smart, editors. Advances in Elliptic Curve Cryp-
tography. Cambridge University Press, 2005.

2. É. Brier, I. Déchène and M. Joye. Unified addition formulæ for elliptic curve cryp-
tosystems. In Embedded Cryptographic Hardware: Methodologies and Architectures.
Nova Science Publishers, 2004.

3. M. Joye and J.-J. Quisquarter. Hessian elliptic curves and side-channel analysis.
In Cryptographic Hardware and Embedded Systems – CHES 2001, Springer-Verlag
LNCS 2162, 402–410, 2001.

4. C. Karlof and D. Wagner. Hidden Markov model cryptanalysis. In Cryptographic
Hardware and Embedded Systems – CHES 2003, Springer-Verlag LNCS 2779, 17–
34, 2003.

5. P.-Y. Liardet and N.P. Smart. Preventing SPA/DPA in ECC systems using the
Jacobi form. In Cryptographic Hardware and Embedded Systems – CHES 2001,
Springer-Verlag LNCS 2162, 391–401, 2001.

6. E. Oswald. Enhancing simple power-analysis attacks on elliptic curve cryptosys-
tems. In Cryptographic Hardware and Embedded Systems – CHES 2002, Springer-
Verlag LNCS 2523, 82–97, 2002.

7. E. Oswald. Side-Channel Analysis. In [1], 69–86, 2005.
8. E. Oswald and M. Aigner. Randomized addition-subtraction chains as a counter-

measure against power attacks. In Cryptographic Hardware and Embedded Systems
– CHES 2001, Springer-Verlag LNCS 2162, 39–50, 2001.

9. D. Stinson. Some baby-step giant-step algorithms for the low hamming weight
discrete logarithm problem. Math. Comp., 71, 379–391, 2002.

10. C. Walter. Breaking the Liardet–Smart randomized exponentiation algorithm. In
Proceedings Cardis ’02, 59–68, USENIX Assoc., 2002.

11. J.S. Yididia, W.T. Freeman and Y. Weiss. Understanding Belief Propagation and
its Generalizations. Mitsubishi Electric Research Laboratories Technical Report
TR-2001-22, January 2002.

