
XTR Implementation on Reconfigurable

Hardware

Eric Peeters1, Michael Neve1⋆ and Mathieu Ciet2

1 UCL Crypto Group
Place du Levant, 3

1348 Louvain-La-Neuve, Belgium.
{peeters, mneve}@dice.ucl.ac.be − http://www.dice.ucl.ac.be/crypto

2
InnovaCard,

Avenue Coriandre, 13 600 La Ciotat, France.
mathieu.ciet@innova-card.com

Abstract. Recently, Lenstra and Verheul proposed an efficient cryp-
tosystem called XTR. This system represents elements of F

∗

p6 with order

dividing p2−p+1 by their trace over Fp2 . Compared with the usual rep-
resentation, this one achieves a ratio of three between security size and
manipulated data. Consequently very promising performance compared
with RSA and ECC are expected.
In this paper, we are dealing with hardware implementation of XTR,
and more precisely with Field Programmable Gate Array (FPGA). The
intrinsic parallelism of such a device is combined with efficient modular
multiplication algorithms to obtain effective implementation(s) of XTR
with respect to time and area.
We also compare our implementations with hardware implementations
of RSA and ECC. This shows that XTR achieves a very high level of
speed with small area requirements: an XTR exponentiation is carried
out in less than 0.21 ms at a frequency beyond 150 MHz.

Keywords: Public key cryptosystem, XTR, reconfigurable hardware,
efficient implementation.

1 Introduction and Basics

Nowadays more and more applications need security components. However, these
requirements should not interfere with the performance, otherwise security would
be disregarded. Ideally, the best solution is when security does not penalize the
application. However, two ways are possible to achieve this characteristic: design
efficient primitive algorithms and/or try to find fast and optimized implementa-
tions of existing algorithms.

XTR, first presented in [12], has been designed as a classical discrete loga-
rithm (crypto)system, see also [11]. However, element representation is done in
a special form that allows efficient computation and small communications. This
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system also has the advantage of very efficient parameter generations. As shown
in [26], the performance of XTR is competitive with RSA in software implemen-
tations, see also [7] for a performance comparison of XTR and an alternative
compression method proposed in [22]. Mainly two kinds of implementation have
to be distinguished: software and hardware. The latter generally allows a very
high level of performance since “dedicated” circuits are developed. Moreover it
also provides designers with a large array of implementation strategies. This is
particularly true for the size of multiplier, possible parallel processing, stages of
pipelining, and algorithm strategies. In this paper, we propose an efficient hard-
ware implementation of this primitive that can be used for asymmetric digital
signature, key exchange and asymmetric encryption. To our knowledge this is
the first hardware implementation of XTR.

In 1994, Smith and Skinner introduced the LUC public key cryptosystem [24]
based on Lucas function. This is an analog to discrete logarithm over F

∗

p2 with
elements of order p + 1 represented by their trace over Fp. More recently, Gong
and Harn [6] used a similar idea with elements in F

∗

p3 of order p2 +p+1. Finally,

Lentra and Verheul proposed XTR in [12], that represents elements of F
∗

p6 with

order (dividing) p2 − p + 1 by their trace over Fp2 . These representations induce
security over the fields F

∗

pi , with i = 2, 3, 6 with respect to LUC, Gong-Harn
or XTR cryptosystems, whereas numbers manipulated are over Fp2 for XTR or
Fp for the others. XTR is the most efficient out of the three since it allows a
reduction factor of 3 between size of security and size of manipulated numbers.

Parameter p is chosen as a prime number. Another condition for security
requirements is that there exists a sufficiently large prime number q that divides
p2 − p + 1. Typically, p is chosen as a 160-bit integer whereas q is a 170-bit
integer. With these parameters, XTR security is considered as “equivalent” to
RSA security with 1024-bit modulus or an elliptic curve cryptosystem (ECC)
based on 160-bit field. The parameter p is also chosen to be equivalent to 2
modulo 3. In this case, Fp2 is isomorphic to Fp[X]/(X2 + X + 1). If α denotes
the root of (X2 + X + 1), then (α, α2) is a normal basis of Fp2 over Fp. Finally,
any element of Fp2 can be represented as (x1, x2) with x1, x2 ∈ Fp.

XTR operations are performed over Fp2 . This is achieved by representing
elements of the subgroup of F

∗

p6 of order q (dividing p2−p+1), generated by g, by
their trace over Fp2 . Trace over Fp2 of an element is just the sum of its conjugates.

Let a be an element of < g >, then Tr(a) := TrF
p6/F

p2
(a) = a + ap2

+ ap4

and

Tr(a) ∈ Fp2 .

Let x and y be two elements of Fp2 represented respectively by (x1, x2) and
(y1, y2), then it is shown in [12, Lem. 2.1.1] that

1. xp is represented by (x2, x1) and this way computing xp from x is obtained
by permuting elements representing x,

2. x2 is represented by (x2(x2 −2x1), x1(x1 −2x2)) and this way computing x2

is done with two multiplications in Fp,

3. x · y is represented by (x2y2 −x1y2 −x2y1, x1y1 −x1y2 −x2y1) or by (x1y1 +
2x2y2 − (x1 + x2)(y1 + y2), 2x1y1 + x2y2 − (x1 + x2)(y1 + y2)) and this way



the product of two Fp2 -elements is obtained through three multiplications in
Fp.

4. x ·z−y ·zp is represented by (z1(y1−x2−y2)+z2(x2−x1 +y2), z1(x1−x2−
y1) + z2(y2 − x1 + y1)) and this way this special operation on Fp2 -elements
is obtained through four multiplications in Fp.

In the remainder of this paper, we follow the notation used in [12–15, 26].
We denote Tr(g) by c and for any integer k, Tr(gk) by ck. The basic operation
with XTR is the analog to exponentiation, i.e. from an integer k and a subgroup
element g of F

∗

p6 , computing Tr(gk). This is performed in an efficient way by

using formulæ from [13, Cor. 2.3.3] quoted below:

1. c2n = c2
n − 2cp

n; it is obtained with two multiplications in Fp.
2. cn+2 = c · cn+1 − cp · cn + cn−1; it is obtained with four multiplications in Fp.
3. c2n−1 = cn−1 · cn − cp · cp

n + cp
n+1; it is obtained with four multiplications in

Fp.
4. c2n+1 = cn+1 · cn − c · cp

n + cp
n−1; it is obtained with four multiplications in

Fp.

With the previous formulæ an XTR exponentiation is carried out using Algo-
rithm 1.1 from [13].

Algorithm 1.1 Computation of Sn(c) given n and c, from [13, Algorithm 2.3.5]
Input: n =

Pr

j=0 nj2
j and c

Output: Sn(c) = (cn−1, cn, cn+1)

if n < 0 then apply this algorithm to −n and c, then use negative result.
if n = 0 then S0(c)← (cp, 3, c).
if n = 1 then S1(c)← (3, c, c2 − 2cp).
if n = 2 then use formulæ from App. A and S1(c) to compute c3.
else S0(c)← S1(c) and m← n.

if m is even then m← m− 1.

m←
m− 1

2
, k = 1,

Sk(c)← S3(c) with formulæ in App.A.
m =

Pr

j=0 mj2
j with mj ∈ {0, 1} and mr = 1.

for j from r − 1 to 0 do

if mj = 0 then compute S2k(c) from Sk(c)
(using formulæ from App. A).

if mj = 1 then compute S2k+1(c) from Sk(c)
(using formulæ from App. A).

k ← 2k + mj

if n is even then use Sm(c) to compute Sm+1(c) and m← m + 1.
return Sn(c) = Sm(c)

We can first remark that computing S2k(c) or S2k+1(c) is done exactly in
the same manner. More importantly, triplet representing S2k(c) and S2k+1(c)



can be calculated independently. This is one of the very useful characteristic of
XTR that allows us to reach a very high speed performance in our hardware
implementation.

This paper is organized as follows. Next section deals with modular product
evaluation. A new algorithm, of independent interest, using a look-up table is
presented together with an algorithm proposed by Koç and Hung [9]. Based on
these two algorithms, Section 3 presents the main results of this paper: implemen-
tation choices and performance obtained to compute an XTR exponentiation.
We also make comparison between hardware implementations of XTR and other
cryptosystems like RSA and ECC. Finally, we conclude in Section 4.

2 Algorithms: Implementation Options

As already shown in Section 1.1, XTR exponentiation is done with a very uni-
form set of operations. Contrary to classical exponentiation where a ‘square-and-
multiply’ algorithm is used, the only changes at each loop of XTR are the inputs.
According to the bit of the exponent expressed as binary expansion, S2k(c) or
S2k+1(c) are computed from Sk(c). Details of performed operations over Fp are
given in Appendix A.

Costly operations are products of elements. This can be done using the Koç
and Hung algorithm from [9]. An alternative is simply to use a look-up table.

2.1 Modular multiplication in hardware

Let A and B be two integers. The product of A and B cannot be achieved
in one single step without a big loss in timing performance and in consumed
hardware resources (area). Thus this product is usually obtained by iteratively
accumulating partial products aiB. This type of multiplier is also called scaling
accumulator or shift-and-add method. One of the advantages is that only one
single adder is reused for all the multiplication steps.

Unfortunately, when large numbers have to be manipulated, typically 1024-
bit with RSA, the important length of the carry chain may become an issue.
This is especially true when using reconfigurable hardware where the length of
fast carry chains is limited to the size of columns. An alternative is the use of
redundant representations, i.e. carry-save representations. This eliminates the
carry propagation delay. The delay of a carry-save adder (CSA) is independent
of the length of operands.

Many different algorithms to compute modular multiplication using the shift-
and-add technique exist in the literature [2, 4, 17, 21, 23]. Most of them suggest
interleaving the reduction step with the accumulating one in order to save hard-
ware resources and computation time. The usual principle is to compute or
estimate the quotient Q = ⌊U/p⌋ and then subtract the required amount from
the intermediate result.



2.2 Modular multiplication using look-up table

As aforementioned, redundant representations can lead to very good timing per-
formances. Moreover, to obtain a light hardware, we have chosen to base the
multiplication on a scaling accumulator. In order to prevent the growth in length
of the temporary value of the product, the addition steps are interleaved with
the reduction ones.

Let p be a prime of l bits, such as 2l−1 < p < 2l. Let A and B be two
integers, 0 ≤ A,B < p. Then, the modular multiplication of A and B can simply
be written as

A.B mod p =
(

∑

i

(ai.B.2i mod p)
)

mod p

= (al−1.B.2l−1 mod p + . . . ) mod p

=
(

((. . . (((al−1.B mod p).2 + al−2.B) mod p).2

+ . . . ) mod p).2 + a0.B
)

mod p

This suggests the successive reduction of the temporary value in the case
of ‘left-to-right’ multiplication. Our fairly simple idea is based on the following
observation: reduction can be carried out using a look-up table.

If S and C denote the redundant representation, the three most significant
bits (MSB) of S and C are extracted and added together. The corresponding
reduced number is then chosen among the precalculated values. All the 23+1−1 =
15 possible cases are stored in memory. The reduced number is then added
with the two MSB-free values, pre-multiplied by 2 before being re-used in the
multiplication loop. The next partial product aiB is also added providing a new
S and C pair of redundant representation.

The operation is repeated until all bits of A have been covered. Eventually
the values are processed one last time, but without new partial product input.
This extra step guarantees the sum of the redundant vectors to be lower than
2p. After the step −1, the result then requires at most one final reduction. This
can be simply proven by the observation that after step 0: S,C < 2l−2. After the
shift and the addition with the feedback of the residues: S + C < 2l + 2p. Since
2l < 2p, the following relation holds: S + C < 4p. Finally, dividing the result by
2 gives R < 2p. Algorithm 2.1 gives a detailed description.

2.3 Modular multiplication with sign estimation technique

Another type of algorithm (more advanced) was proposed by Koç and Hung
in [9]. Once again, it interleaves the reduction step with the addition of the partial
product and the intermediate result is stored in redundant representation.

This algorithm is based on the following clever idea: the sign of the number
represented by the carry-sum pair can be evaluated and used to add/subtract
a multiple of the modulus in order to keep the intermediate result within two



Algorithm 2.1 Algorithm for computing modular multiplication
Input: 0 < A, B < p and 2l−1 < p < 2l

Output: R = AB mod p

Sl := 0, Cl := 0, a−1 := 0.
for i from l − 1 to −1 do

(S′

i, C
′

i) := 2(Si+1 mod 2l−2) + 2(Ci+1 mod 2l−2) + aiB.
(Si, Ci) := S′

i + C′

i + 2
ˆ

(Si+1 div 2l−2 + Ci+1 div 2l−2).2l−2 mod p
˜

.
R = (S−1 + C−1)/2.
if R > p then R := R− p.
return R.

Algorithm 2.2 Algorithm from [9], computing modular multiplication
Input: 0 < A, B < p and 2l−1 < p < 2l

Output: R = AB mod p

p′ = 8p, S := 0, C := 0
for i from l − 1 to −3 do .

if ES(S, C) = (+) then (S, C) := 2S + 2C + aiB − p′.
else if ES(S, C) = (−) then (S, C) := 2S + 2C + aiB + p′.
else (S, C) := 2S + 2C + aiB.

loop invariant: S + C ∈
ˆ

− 3p′

4
, 7p′

8

´

.
R := S + C.
if R < 0 then R := R + p′.
return R/8.

boundaries. This is done by ES(S,C). The sign estimation requires to add the
5 MSB of the two vectors S and C.

The skeleton is given in Algorithm 2.2 and we refer the interested reader to [9]
for further details.

3 Implementation Results

3.1 Methodology

After having introduced a new algorithm for modular multiplication using look-
up table in the intermediate reductions and having recalled the Koç and Hung
algorithm, let us now consider the subject of this paper: XTR implementation.
In this section, the global approach of the design is discussed and two architec-
tures are presented. Implementation results and performances are given as well.
Particular considerations about scalability and portability conclude the section.

One of our purposes for implementing XTR architectures on reconfigurable
hardware is to achieve a well-balanced trade-off between hardware size and fre-
quency. Nevertheless, particular care has been taken to keep the architectures



open to all kinds of FPGAs. This is the reason why some available features
have not been used, e.g. internal multipliers. This way, designs can be directly
synthesized, whatever the device target.

Even if our architecture is more general than an FPGA oriented implemen-
tation, we decide to adopt the classical design methodology described in [25].
The authors introduced the concept of hardware efficiency which could be rep-
resented as the ratio Nbr. of registers / Nbr. of LUTs. To achieve a high level
of sub-pipelining, this ratio must be as close as possible to one. This was pre-
sented in the view of designing efficient implementation of symmetric ciphers
but remains partially true for general designs, at least it suggests a method.
And while implementing our design, we tried to use this concept to reach high
clock frequency. Implementation results appear in Section 3.

As aforementioned, the ‘parallel characteristic’ of XTR is obvious. Indeed,
each component of Sn(c), with n = 4k or 4k+1, can be computed independently.
As an illustration, if we consider elliptic curve cryptosystems point addition or
doubling, many dependencies exist during computation, see [1]. This issue is re-
moved using the Montgomery ladder principle, see for an overview [8]. Moreover
each element of F

∗

p2 is represented as a couple. Each component of the couple
is evaluated at the same time and independently. Then computations for the α
and α2 components are similar and can thus be executed separately. This means
that Sn(c) is represented by 6 components that can be evaluated independently.
A closer look shows that the computation of c4k+1 (and/or c4k+3) is composed
of two parts alike, with a final addition. Hence it is possible to process one step
of the encryption at once in parallel with eight independent processes.

Furthermore, operations are quite similar. A generic cell can easily be derived
to design a generic process unit able to perform the encryption in a sequential
mode, at a lighter hardware cost. This also underlined the flexibility of design
allowed by XTR.

Parallel designs are presented underneath. The general layout of both archi-
tectures is as follows. A 160-bit shift register containing n produces the MSB m
on each iteration 1.1. With respect to this bit, different multiplexors forward the
data to the inputs of the corresponding processing units. Each of them computes
its data and returns the results to the multiplexors, for the next iterations.

The core of the process unit is the modular multiplier. It is preceded by some
logic dealing with the preliminary additions and subtractions. Its result is stored
in a shift-register.

3.2 Architectures of a process unit

The internal structures of Koç and Hung algorithm and ours are displayed in
Fig. 1. Our look-up table based algorithm is centered around two CSA taking
as input the partial product aiB, the (l − 2)-bit truncated result vectors and
the reduced values based on the 3 most significant bits. The originality of this
method is due to the modular reduction technique. Just recall the Algorithm 2.1:
the most significant bits are extracted and added together in order to keep the



intermediate values in fixed boundaries. According to the initial values (Sl =
Cl = 0), the utmost limits are 0 ≤ Si, Ci < 2l+1. The 15 possible values for

(Si+1 div 2l−2 + Ci+1 div 2l−2).2l−2 mod p (1)

are precalculated according to p and stored in the memory (denoted M in the
figure). Both 3-bit MSB are added together in order to produce 4-bit address.
The memory can thus be mapped by the use of l LUT. Throughout each iteration
of the multiplication, a new partial product is inserted and the feedback values
must therefore be doubled.

PP
i

CSA

RegS RegC

ES(C+S)

l+4 l+4

l+4

l

CSA

l+4

l+4 l+4

l+4

5 msb

5 msb

Mux

8p0 -8p

l

S + C and
final addition unit

PP
i

CSA

RegS M

2   l - 2 mod p

15.2   l - 2 mod p

0

CPA
mod 2    l -2

l-1 l-1

l

l

CSA

l

l+1 l+1l-2

l-2

l+1

3 msb

3 msb

l msb l msb

l

S + C and

final subtraction unit

RegC

(a) Implementation of Koç and Hung algorithm and (b) of ours.

Fig. 1. The two modular multiplication algorithms.

As previously explained, one final iteration without inserting a new partial
product ensures the final result to be under 2p. After addition by a ripple carry
adder (RCA), there may thus be an extra p left over. It is easily handled by
the use of another RCA and a multiplexor, as suggested in [20]. The RCA uses
the fast carry chain available on every FPGA. Nevertheless the carry chain for
a 170-bit RCA would lengthen the critical path. They are then composed of
pipelined smaller RCAs.

The implementation structure of the Koç and Hung algorithm is very similar
to ours. Most of the design choices were identical for both algorithms. The main
difference lies in the number of bits taken to evaluate the estimation function
(i.e. 2 × 5 for Koç and Hung algorithm and 2 × 3 for ours). Moreover the Koç
and Hung algorithm keeps the whole value intact (no truncation is applied after
the registers S and C), this requires thus a bus length of l + 4-bit.



3.3 Discussion about algorithms performances

Efficiency of two implementations is always difficult to compare. The same algo-
rithm could lead to very different performances depending on the type of device
used (ASIC or FPGA) and on the technology (0.12µm CMOS for Virtex II),
on the cleverness of designers (smart trade-offs between area and latency) and
finally on the options chosen for place-and-route (PAR).

Algorithms described above present many similarities. They require two CSAs
of size O(l), a module of last reduction and an estimation function feeding a look-
up table. Both of them shift their feedbacked S and C pair at each iteration.
Koç-Hung algorithm requires less memory than ours. However, the estimation
function given by Koç-Hung takes 2 × 5 inputs, and our algorithm takes 2 × 3
inputs.

A Field Programmable Gate Array is a tool situated between hardware and
software. With the increase of powerful internal features it becomes very com-
petitive compared to ASIC. We used FPGA to implement our design. This gives
an advantage to our algorithm in terms of latency (critical path) with small area
increase.

Most FPGA devices use 4-input look-up tables (LUTs) to implement function
generators. Four independent inputs are provided into each of the 2 function
generators in a slice. Then, any boolean function of four inputs can be mapped
in a LUT. So the propagation delay is independent of the function implemented.
Moreover, each Virtex slice contains two multiplexers (MUXF5 and MUXF6).
This allows the combination of slices to obtain higher-level logic functions (any
function of 5 or 6 inputs)3.

From these considerations, we can consider the delay of the 2 estimation
functions. In our algorithm, the estimation function can be mapped as a 6-input
boolean function with a propagation delay of 1 LUT. In the case of Koç-Hung
algorithm a 10-input function must be implemented, so 2 stages of LUT are
needed. This implies a latency of 2 LUTs.

This endows to our algorithm an advantage for an FPGA implementation but
the two algorithms have very similar performances and it is difficult to evaluate
the performance for Koç and Hung algorithm using another technology. Table 1
gives the synthesis result of our implementation. We can see that our algorithm
can achieve a higher frequency, as expected.

Our Implem- Nbr. of Nbr. of Nbr. of Freq Hardware Efficiency AT complexity
entation LUT FF. Slices (MHz) Nbr. Reg/Nbr. LUT (slices*cycles/freq.)

of K-H 1,402 1,230 805 189.2 0.88 7.5 e-4

of LUT 1,450 1,246 857 203.3 0.86 7.6 e-4

Table 1. Evaluation of the performances between the two algorithms

3 In Virtex II family, up to 8 slices can be combined with similar multiplexers.



In [3], the complexity of the implementation of a binary multiplication is for-
mally defined. This definition includes many parameters such as the technology
used, the area and time required and the length of the operand. In this way,
we decide to adopt an Area-Time Complexity and then the product AT as an
element of comparison of the algorithms we implemented.

3.4 Performances

As far as we know, this paper is the first dealing with XTR cryptosystem im-
plementation on reconfigurable hardware. Even if it is not fully satisfactory, we
decided to compare it with the best existing implementations (as we know) of
the RSA algorithm [5, 16] and elliptic curve processors [18, 19]. Table 2 indicates
that our implementation is definitely competitive with respect to other designs
for equivalent security. Note that no assumption on the form of p has been made:
this freedom brings an enormous flexibility in the use of our designs.

Implement- Technology Nbr. of Nbr. of Nbr. of Block Freq Comput.
ation LUT FF. Slices RAM (MHz) Time (ms)

RSA 1024 Xilinx - - 27,304 0 45.6 3.1
[5] XC40250XV-9

RSA 1024 Xilinx - - 24,767 0 100.49 2.63
[16] XC2V6000

ECP [18] Xilinx 3,002 1,769 - 10 76.7 0.21
GF (2m) XCV400E-8

ECP [19] Xilinx 11,416 5,735 - 35 40 3
GF (p) XCV1000E-8

XTR Xilinx 17,903 13,509 10,607 0 150 0.21

with K-H XC2V6000-6

XTR Xilinx 18,103 13,752 10,737 0 162.4 0.21

with LUT XC2V6000-6

Table 2. Evaluation of the performances between different public-key cryptosystems.
(-) denotes unknown values.

Our designs were synthesized on a Virtex2 XC2V6000-6-FF152, which con-
tains 33,792 Slices, 144 Select RAM Blocks, 144 18-bit x 18-bit Multipliers. The
synthesis was performed with Synplify Pro 7.3 (SYNPLICITY) and automatic
place-and-route (PAR) was carried out with XILINX ISE 6.1i. Moreover, con-
cerning the timing performances, we decided to pack the input/output registers
of our implementation into the input/output blocks (IOB) in order to try and
reach the achievable performance.



4 Conclusion

In this article, the first implementation of the XTR (crypto)system on reconfig-
urable hardware (FPGA) is presented. Various implementations are discussed.
Evaluation of modular products is the costly part. This can be carried out using
the clever algorithm from Koç and Hung. We also propose a (competitive) alter-
native based on look-up table. The performances of these two algorithms seem
to be in a similar gap.

The main subject of this paper is XTR implementation. The intrinsic par-
allelism of XTR allows us to obtain a very high level of performance with very
small memory requirements. Compared with RSA exponentiation, XTR appears
as a very interesting alternative in hardware: an XTR exponentiation is carried
out in about 0.21 ms at frequency beyond 150 MHz.

Moreover, implementations are fully generic and have been designed for any
FPGA device without using any particular feature. Portability is then another
characteristic of our designs. Once again there is absolutely no constraint on p
(characteristic of the field over which XTR is defined). Designs are dedicated to
any p up to 170 bits and it would be obvious to oversize their length. Eventually,
using special forms of p (e.g. Mersenne primes as used for elliptic curves) could
lead to considerable improvements, to the detriment of the present generality.

We stress that porting our implementation on ASIC would also underline the
very good efficiency of XTR compared with RSA or elliptic curve cryptosystems.
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9. Çetin Kaya Koç and Ching Yu Hung. A Fast Algorithm for Modular Reduction.
In IEE Proceedings - Computers and Digital Techniques, 145(4), pages 265–271,
July 1998.

10. Seongan Lim, Seungjoo Kim, Ikktwon Yie, Jaemoon Kim and Hongsub Lee. XTR
Extended to GF(p6m). In S. Vaudenay and A.M. Youssef, Ed., Selected Areas in
Cryptography – SAC 2001, vol 2259 of Lecture Notes in Computer Science, pages
301–312. Springer-Verlag, 2001.

11. Arjen K. Lenstra. Using Cyclotomic Polynomials to Construct Efficient Discrete
Logarithm Cryptosystems Over Finite Fields In V. Varadharajan, J. Pieprzyk,
Y. Mu, Eds. Information Security and Privacy, Second Australasian Conference
– ACISP’97, vol. 1270 of Lecture Notes in Computer Science, pages 127–138.
Springer-Verlag, 1997.

12. Arjen K. Lenstra and Eric R. Verheul. The XTR public key system. In M. Bel-
lare, Ed., Advances in Cryptology – CRYPTO2000, vol. 1880 of Lecture Notes in
Computer Science, pages 1–19. Springer-Verlag, 2000.

13. Arjen K. Lenstra and Eric R. Verheul. An overview of the XTR public key system.
Public Key Cryptography and Computational Number Theory Conference, 2000.

14. Arjen K. Lenstra and Eric R. Verheul. Key improvements to XTR. In T. Okamoto,
Ed., Advances in Cryptology – ASIACRYPT2000, vol. 1976 of Lecture Notes in
Computer Science, pages 220–233. Springer-Verlag, 2000.

15. Arjen K. Lenstra and Eric R. Verheul. Fast irreductibility and subgroup member-
ship testing in XTR. In K. Kim, Ed., Public Key Cryptography – PKC2001, vol.
1992 of Lecture Notes in Computer Science, pages 73–86. Springer-Verlag, 2001.
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A Details of Basic XTR Operations

To compute S2k = (c4k, c4k+1, c4k+2) from Sk(c2k, c2k+1, c2k+2), the following
operations are required:

c4k = c2
2k − 2cp

2k

=
`

c2k,2(c2k,2 − 2c2k,1 − 2)
´

α +
`

c2k,1(c2k,1 − 2c2k,2 − 2)
´

α2

c4k+1 = c2(2k+1)−1 = c2kc2k+1 − cpcp

2k+1 + cp

2k+2

=
`

c2k+1,1(c1,2 − c2k,2 − c1,1) + c2k+1,2(c2k,2 − c2k,1 + c1,1) + c2k+2,2

´

α

+
`

c2k+1,1(c2k,1 − c2k,2 + c1,2) + c2k+1,2(c1,1 − c2k,1 − c1,2) + c2k+2,1

´

α2

c4k+2 = c2
2k+1 − 2cp

2k+1

=
`

c2k+1,2(c2k+1,2 − 2c2k+1,1 − 2)
´

α +
`

c2k+1,1(c2k+1,1 − 2c2k+1,2 − 2)
´

α2



Computing S2k+1 = (c4k+2, c4k+3, c4k+4) from Sk(c2k, c2k+1, c2k+2), is done
with the following operations:

c4k+2 = c2
2k+1 − 2cp

2k+1

=
`

c2k+1,2(c2k+1,2 − 2c2k+1,1 − 2)
´

α +
`

c2k+1,1(c2k+1,1 − 2c2k+1,2 − 2)
´

α2

c4k+3 = c2(2k+1)+1 = c2k+2c2k+1 − ccp

2k+1 + cp

2k

=
`

c2k+1,1(c1,1 − c2k+2,2 − c1,2) + c2k+1,2(c2k+2,2 − c2k+2,1 + c1,2) + c2k,2

´

α

+
`

c2k+1,1(c2k+2,1 − c2k+2,2 + c1,1) + c2k+1,2(c1,2 − c2k+2,1 − c1,1) + c2k,1

´

α2

c4k+4 = c2
2k+2 − 2cp

2k+2

=
`

c2k+2,2(c2k+2,2 − 2c2k+2,1 − 2)
´

α +
`

c2k+2,1(c2k+2,1 − 2c2k+2,2 − 2)
´

α2


