
Defeating Countermeasures Based on

Randomized BSD Representations

Pierre-Alain Fouque1, Frédéric Muller2, Guillaume Poupard2, and
Frédéric Valette2

1 École normale supérieure, Département d’informatique
45 rue d’Ulm 75230 Paris Cedex 05 France

Pierre-Alain.Fouque@ens.fr
2 DCSSI Crypto Lab 51, Boulevard de Latour-Maubourg

75700 Paris 07 SP France
{Frederic.Muller,Guillaume.Poupard,Frederic.Valette}@sgdn.pm.gouv.fr

Abstract. The recent development of side channel attacks has lead im-
plementers to use increasingly sophisticated countermeasures in critical
operations such as modular exponentiation, or scalar multiplication on
elliptic curves. A new class of countermeasures is based on inserting ran-
dom decisions when choosing one representation of the secret scalar out
of a large set of representations of the same value. For instance, this is
the case of countermeasures proposed by Oswald and Aigner, or Ha and
Moon, both based on randomized Binary Signed Digit (BSD) representa-
tions. Their advantage is to offer excellent speed performances. However,
the first countermeasure and a simplified version of the second one were
already broken using Markov chain analysis.
In this paper, we take a different approach to break the full version of Ha-
Moon’s countermeasure using a novel technique based on detecting local
collisions in the intermediate states of computation. We also show that
randomized BSD representations present some fundamental problems
and thus recommend not to use them as a protection against side-channel
attacks.

1 Introduction

Modular exponentiation or scalar multiplication are used by most popular public
key cryptosystems like RSA [22] or DSA [4]. However, data manipulated during
these computations should generally be kept secret, since any leakage of informa-
tion (even only a few bits of secret information) might be useful to an attacker.
For example, during the generation of an RSA signature by a cryptographic de-
vice, the secret exponent is used to transform an input related to the message
into a digital signature via modular exponentiation.

Timings and power attacks, first introduced by Kocher [11, 12] are now well
studied and various countermeasures have been proposed. These attacks rep-
resent a real threat when considering operations that involve secret data and
require a long computation time. In general, naive implementations leak infor-
mation about the secret key.

In [2], Coron has shown that several countermeasures are possible to prevent
this type of leakage. In the context of Elliptic Curve Cryptosystems (ECC),
he proposed different techniques based on blinding the critical data manipu-
lated. An alternative approach is to randomize the number and the sequence
of steps in the multiplication algorithm itself. In this type of countermeasure
the usual scalar multiplication algorithm on ECC is replaced by a randomized
addition-subtraction chain. From a general perspective, the idea is to allow ad-
ditional symbols in the secret scalar representation. When using the set of digits
{0, 1,−1}, we generally speak of Binary Signed Digit (BSD) representation. Then
the multiplication algorithm picks at random a valid representation of the secret
scalar. Actually several algorithms of this class have been proposed in the re-
cent years [7, 13, 20], many of which have been broken quickly [16, 26, 27]. In this
paper, we present a new side channel attack against randomized exponentiation
countermeasures. We believe this result enlightens fundamental defects in these
constructions.

Basically our attack scenario is that an attacker has physical access to a
cryptographic device and tries to find the private key used by the device. He first
obtains different encryptions of a fixed message. Since the scalar representation
is randomized, the cryptographic device performs a different computation each
time. However, we will show that collisions occur frequently at each step of
computation. They can be detected using power consumption curves and reveal
critical information concerning the private key. Our attack does not depend
much on which public key encryption scheme is actually used, so we focus on
the case of ECCs. Furthermore, the Ha-Moon’s countermeasure [7], proposed at
CHES’02, was designed originally for ECCs. It is straightforward to apply our
ideas to RSA-based encryption schemes and even to signature schemes based on
RSA with a deterministic padding (i.e. without randomization) such as PKCS#1
v1.5 [23]. Indeed all we need is the ability to send the same input several times
to the cryptographic device.

In this paper, we first recall the classical binary scalar multiplication on
elliptic curves. Then, we briefly describe different types of side channel attacks
such as Simple Power Analysis (SPA) and Differential Power Analysis (DPA)
but also the attack of Messerges, Dabbish and Sloan [14] in order to motivate
common countermeasures. Next, we describe the principles of countermeasures
using a randomized BSD representation through the example of [7]. In the last
two sections, we expose some major weaknesses in this family of algorithms and
describe a new collision-based attack against the full Ha-Moon’s countermeasure.

2 Binary Scalar Multiplication Algorithms

In classical cryptosystems based on the RSA or on the discrete logarithm prob-
lem, the main operation is modular exponentiation. In the elliptic curve setting,
the corresponding operation is the scalar multiplication. From an algorithmic
point of view, those two operations are very similar; the only difference is the
underlying group structure. In this paper, we consider operations over a generic
group with additive notations. We do not use additional properties of this group.

The consequence is an immediate application to the elliptic curve setting but
it should be clear that all what we state can be easily transposed to modular
exponentiation.

Scalar multiplication is usually performed using the “double-and-add” method
that computes k×P from a point P , using the binary representation of the scalar
k =

∑

n−1

i=0
ki2

i :

k × P =
n−1
∑

i=0

ki ×
(

2i × P
)

This method is obviously analog to the “square-and-multiply” method for
modular exponentiation. The resulting algorithm is described in Figure 1, where
O is the point at infinity.

Input: a point P , an n-bit integer k =
P

n−1

i=0
ki2

i

Output: k × P

Q = O
for i from n − 1 down to 0

Q = 2Q

if (ki == 1) then Q = Q + P

return Q

Fig. 1. Naive “double-and-add” scalar multiplication algorithm

3 Power Analysis Attacks

It is well known that the naive double-and-add algorithm is subject to the power
attacks introduced by Kocher et al [12]. More precisely, they introduced two
types of power attacks : Simple Power Analysis (SPA) and Differential Power
Analysis (DPA).

3.1 Simple power analysis

The first type of attack consists in observing the power consumption in order to
guess which instruction is executed. For example, in the previous algorithm, one
can easily recover the exponent k =

∑

n−1

i=0
ki2

i, provided the doubling instruction
can be distinguished from the point addition. To avoid this attack, the basic
“double-and-add always” algorithm is usually modified using so-called “dummy”
instructions (see Figure 2).

Although this new algorithm is immune to SPA, a more sophisticated treat-
ment of power consumption measures still enables the recovery of the secret
scalar k.

Input: a point P , an n-bit integer k =
P

n−1

i=0
ki2

i

Output: k × P

Q[0] = O
for i from n − 1 down to 0

Q[0] = 2Q[0]
Q[1] = Q[0] + P

Q[0] = Q[ki]
return Q[0]

Fig. 2. Double-and-add always algorithm resistant against SPA

3.2 Differential power analysis

DPA uses power consumption to retrieve information on the operand of the
instruction. More precisely, it no longer focuses on which instruction is executed
but on the Hamming weight of the operands used by the instruction. Such attacks
have been described, in the elliptic curve setting, in [2, 17].

This technique can also be used in a different way. Messerges, Dabbish and
Sloan introduced “Multiple Exponent Single Data” attack [14]. Note that, for our
purpose, a better name would be “Multiple Scalar Single Data”. We first assume
that we have two identical devices available with the same implementation of the
algorithm of Figure 2, one with an unknown scalar k and another one for which
the scalar e can be chosen and modified. In order to discover the value of k, using
correlation between power consumption and operand value, we can apply the
following algorithm. We guess the bit kn−1 of k which is first used in the double-
and-add algorithm and we set en−1 to this guessed value. Then, we compare
the power consumption of the two devices doing the scalar multiplication of the
same message. If the consumption is similar during the first two steps of the
inner loop, it means that we have guessed the correct bit kn−1. Otherwise, if the
consumption differs in the second step, it means that the values are different and
that we have guessed the wrong bit. So, after this measure, we know the most
significant bit of k. Then, we can improve our knowledge on k by iterating this
attack to find all bits as it is illustrated in the algorithm of Figure 3.

This kind of attack is well known and some classical countermeasures are
often implemented (see [2, 9]).

4 Countermeasures Using a Randomized Scalar

Representation

In the case of scalar multiplication on ECC, the most popular countermeasures
against DPA are those proposed by Coron [2]. They include randomizing the se-
cret scalar, blinding the point and using randomized projective coordinates. New
directions for attacking these countermeasures have recently been proposed [5,
6] but none of them works when all protections proposed by Coron are applied

for i from 0 to n − 1
ei = 0

for i from 0 to n − 1
en−1−i = 1
choose P randomly
double-and-add(P ,k) on device 1
double-and-add(P ,e) on device 2
if no correlation at step (i + 1) en−1−i = 0

return e

Fig. 3. MESD attack to find secret scalar k

simultaneously. It remains to be investigated if Coron’s countermeasures can be
defeated in the general case.

An alternative to Coron’s countermeasures is to randomize the multiplica-
tion algorithm itself by introducing some random decisions. Two recent propo-
sitions [7, 20] use a randomized addition-subtraction chain, which is equivalent
to represent the scalar with the alternative set of digits {0, 1,−1}. Both of them
claim excellent performances in terms of speed, so they appear to be very at-
tractive.

However, these countermeasures alone do not protect against SPA. This was
illustrated recently by several new attacks [16, 18, 19]. They result from the as-
sumption that distinguishing between the point addition (or subtraction) and
the doubling instruction is possible. At CHES’03, a unified framework for such
attacks, called the Hidden Markov Model attacks was proposed by Karlof and
Wagner [10]. Hence randomized representation techniques are useful to counter-
act DPA attack but need to be strengthened in order to resist SPA.

A possible enhancement is to use special elliptic curves where the point ad-
dition (or subtraction) and the doubling instruction require exactly the same
field operations [1, 8, 13]. Another approach is to transform these algorithms
into “double-and-add-always” algorithms. Basically, this corresponds to the SPA
countermeasure proposed by Coron [2]. The Ha and Moon’s paper [7] actually
proposes a SPA-immune algorithm using this technique. This strengthened ver-
sion still remains to be broken. In the next sections, we focus on this algorithm
and show how to break it using a completely different approach to the Markov
model. More generally we expose some important defects in this class of coun-
termeasures.

4.1 The Ha-Moon countermeasure

It is well known that any positive integer k can be represented as a finite sum
of the form k =

∑

di × 2i where di is in a suitable fixed set of digits. When
di ∈ {0, 1}, we obtain the usual binary representation of k. Another possible
choice is to use the set of digits {0, 1,−1} then we speak of Binary Signed Digit
(BSD) representation. Such a representation of k is clearly no longer unique.

However, there exists a unique representation where no two consecutive di’s are
non-zero, i.e. didi+1 = 0 for all i ≥ 0. This representation is called the “Non
Adjacent Form” (NAF).

The Ha-Moon countermeasure [7] uses concepts from the NAF recoding al-
gorithm to pick at random a representation from a scalar of initial length n bits.
Actually there exist many ways to build a representation of the form

k =
n−1
∑

i=0

di × 2i

where di ∈ {0, 1,−1}. Indeed this system includes the binary representation,
thus all positive integers k ≤ 2n −1 are included along with their opposites. But
there are 3n possible combinations, so the representation is clearly redundant.
The proposed countermeasure picks one of these representations using an auxil-
iary random source. This randomization is described in Section 4.2. During the
process, it may increase the number of digits of k from n to n + 1.

Once a new representation of k has been chosen, the new digits are used in the
multiplication algorithm. With the usual methods, only doubling and addition
are mixed. Now, subtractions are also mixed into the algorithm. This idea of
mixing addition and subtraction in elliptic curve computations has been known
since a long time [15]. The full SPA-immune countermeasure with “double-and-
add always” algorithm becomes :

Input: a point P , an integer k =
P

n

i=0
di2

i

Output: k × P

Q[0] = O
P [1] = P , P [−1] = −P and P [0] = P

for i from n down to 0
Q[0] = 2Q[0]
Q[1] = Q[0] + P [di]
Q[−1] = Q[1]
Q[0] = Q[di]

return Q[0]

Fig. 4. NAF based Multiplication Algorithm

4.2 The randomization algorithm

The technique used to generate digits di ∈ {0, 1,−1} is very efficient since it
uses a simple table and increases the length of the scalar by at most one digit. It
is very similar to the technique used to transform a binary representation into a
NAF representation, referred to as NAF recoding algorithm. An analysis of this
algorithm is given in [3]. For the purpose of our attack, we will describe it using
the following notations :

A random value called R =
∑

i=n−1

i=0
ri × 2i is generated and auxiliary carry

bits, called ci, are used (c0 is set to 0). The digits di are then computed using
the following table (taken from [7]).

Input Output

ki+1 ki ci ri ci+1 di

0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 1
0 0 1 1 1 -1
0 1 0 0 0 1
0 1 0 1 1 -1
0 1 1 0 1 0
0 1 1 1 1 0
1 0 0 0 0 0
1 0 0 1 0 0
1 0 1 0 1 -1
1 0 1 1 0 1
1 1 0 0 1 -1
1 1 0 1 0 1
1 1 1 0 1 0
1 1 1 1 1 0

For instance, for a scalar of length n = 9 bits, k = 1110111102 = 478 and
with r = 1101010012 we obtain, c = 11101111002 and d = 1001̄10001̄02 where
1̄ = −1 by definition. We call a the sum of k and k

2
⊕ r, and

∑

i=n

i=0
ai × 2i its

binary representation. Consequently,

k + (
k

2
⊕ r) = a =

n
∑

i=0

ai × 2i

The ci’s can be seen as the carry bits in this addition. Then, by definition of the
bits di’s in the previous table,

di = ai − (ki+1 ⊕ ri)

for 0 ≤ i ≤ n. Therefore, the following relation holds

n
∑

i=0

di × 2i = a − (k/2 ⊕ r) = k

which shows that we actually compute an alternative representation of k.

5 Weaknesses in Randomized Representations

In this section, we describe how to attack the Ha-Moon full countermeasure.
Our attack takes advantage of inherent weaknesses in the randomized BSD rep-
resentation. Moreover, it might also be applied to any countermeasure based on
a similar principle.

5.1 Collision Attacks

Side channel attacks based on collision detection have been recently applied
with success to block ciphers [24] and to public key cryptosystems [5]. Although
it might be difficult in practice to detect which computation is done by the
cryptographic device, it is usually much easier to detect internal data collisions.
For instance, by analyzing the power consumption of a smart card, an adversary
may be able to tell when the same sequence of instructions is executed by the
card. More precisely, if the card computes 2 × A and 2 × B, the attacker is not
able to tell the value of A nor B, but he is able to check if A = B. Such an
assumption is reasonable as long as the computation takes many clock cycles
and depends greatly on the value of the operand. A stronger variant of this
assumption has been validated by Schramm et al. in [24]. Indeed, they are able
to detect collisions during one DES round computation which is arguably more
difficult than detecting collisions during a doubling operation. If the noise is
negligible, a simple comparison of the power consumption curves is sufficient to
detect a collision.

We now focus on the randomized BSD representation and show how to obtain
internal data collisions using the randomization algorithm described previously.

5.2 Intermediate states in the multiplication algorithm

The randomization algorithm proposed in [7] apparently generates a large num-
ber of alternative representations of the number k. Since n bits of randomness
are used, we may indeed expect to obtain up to 2n different sequences of digits
di for each k. However, as we have seen before, there are only 3n+1 representa-
tions with (n + 1) digits di which must correspond to 2n possible values of k.
Consequently, there are on average ≃

(

3

2

)n
representations per value of k, and

not 2n randomized representations. Moreover, at each step of the multiplication
algorithm, the internal state may only take a reduced number of values. For sake
of simplicity, we suppose in the following that computations are made upwards,
while the algorithm initially proposed is downwards (see Figure 4). It should be
clear that both directions yield similar properties. In the upward direction, after
t steps, the value of Q[0] corresponds to

Q[0] =

(

t−1
∑

i=0

di × 2i

)

× P = Dt × P

where Dt =
∑

i=t−1

i=0
di×2i denotes the partial sum of the digits di and it is clear

that Dn+1 = k. At each step, the internal value Dt must also be compatible with
(k mod 2t). Indeed, when we reach the most significant bit, we obtain the right
value of k, except for a term of correction of the form dn × 2n. More generally,
it is easy to verify that

Dt = k mod 2t − εt × 2t

where εt = 0 or 1. This can be directly seen from the relations of Section 4.2.
Indeed, at step number t,

Dt = ((k + (k/2 ⊕ r)) mod 2t) − ((k/2 ⊕ r) mod 2t)

Therefore, after t steps of computation, although there are 2t possible sequences
of random bits, only 2 intermediate values - say Vt and V ′

t
- are possible, depend-

ing on εt. This is true independently of the direction of the computation . If we do
it upwards, these values are Vt = (k mod 2t)×P and V ′

t
= ((k mod 2t)−2t)×P

respectively. Furthermore, in Figure 5, we have represented the full computa-
tion of a NAF representation on a small integer using a customized scale. The
two curves correspond to the two sequences of possible states Vt and V ′

t
for

0 ≤ t ≤ n. At each step, the arrows represent the possible transitions. Horizon-
tal segments represent the case di = 0, while upwards and downwards segments
respectively represent the cases di = 1 and di = −1. Here, we use the value
k =100111101012. The upper and lower curve respectively correspond to the
representations 0100111101012 and 101̄1̄00001̄01̄1̄2.

0

kP

possible
transition

sequence of V’t

sequence of Vt

Fig. 5. A full NAF computation

However only a few state transitions are possible at each step. Indeed,

dt × 2t = Dt+1 − Dt

= kt × 2t + εt × 2t − εt+1 × 2t+1

Hence, dt = kt + εt − 2 × εt+1. It is easy to see that when kt is fixed, there is a
unique solution for each value of dt

kt dt εt εt+1

0 0 0 0
0 1 1 0
0 −1 1 1

1 0 1 0
1 1 0 0
1 −1 0 1

Thus, to each value of dt corresponds a unique transition from one internal
state to another at the corresponding step of computation. For instance, in the
case of the upwards algorithm, this table of transitions is given in figure 6. A
similar property holds in the downwards direction.

u u

u u

uu

u u

@
@

@
@

@
@�

�
�

�
�

�
-

�
�

�
���

-

-
@

@
@

@@R
-

dt = 1

dt = 0

dt = −1

Vt Vt+1

V
′

t
V

′

t+1

kt = 1

Vt
Vt+1

V
′

t
V

′

t+1

dt = 0

dt = 1

dt = −1

kt = 0

Fig. 6. State transitions

5.3 Fundamental Weaknesses in the BSD representation

Generally, although the number of valid randomized BSD representation for
any given scalar is huge, only 3 situations are possible locally, at each step of
the multiplication. If we analyze things more carefully, we notice that the ar-
guments given previously hold independently of the randomization algorithm
used to build an alternative representation of k. Indeed, after step t, the differ-
ence from the current intermediate value to the “real” intermediate value (the
one that should be obtained with the usual multiplication algorithm) has to be
±2t, otherwise it is impossible to correct this error at the following stages of
computation (indeed they correspond to powers of 2 greater than 2t). Thus, in-
dependently of the randomization algorithm, any given input scalar k yields a
small limited number of local behaviors of the multiplication algorithm.

As we argued previously, it is possible to detect when collisions occur in
the intermediate steps of computations by looking at the power consumption
curves. Over a set of measurements, 3 groups (dt = 0, dt = 1, dt = −1) will be
distinguished at each step t according to collisions on these power consumption
curves. Each group corresponds to a value of dt, but an attacker cannot tell
which group corresponds to which value.

6 The Attack

In the last section, weaknesses of the BSD representation have been investigated.
We suppose that no additional countermeasure is added, thus an attacker can
repeat the same computation with a different randomization each time. This
provides him with a set of measurements. Depending on local behaviors, groups
can be built at each step of computation. In fact, when considering only one
step, the transitions do not provide any useful information on the secret scalar.
However, when considering two consecutive state transitions, we show that the
case kt = kt+1 and the case kt 6= kt+1 can be distinguished.

6.1 Two cases : consecutive key bits that are equal and different

First, let us consider the case where kt = kt+1 = 0 (similar observations hold
when kt = kt+1 = 1). Let pt(x) denote the probability that dt = x for x = 0, 1,−1

pt(x) = Prob [dt = x]

The transition function is represented in Figure 6. In addition, it is easy to see
from the randomization table of Section 4.2 that when two state transitions are
possible (corresponding to dt = ±1), both occur with probability 1

2
. For example,

in the case kt = kt+1 = 0, when considering two consecutive state transitions, it
is possible to derive the following relations :

pt+1(0) = pt(0) + pt(1) , pt+1(1) =
1

2
× pt(−1) , pt+1(−1) =

1

2
× pt(−1)

Therefore, the cardinality of the group of collisions corresponding to dt = 0
will grow very quickly when consecutive key bits are equal to 0. Actually, exactly
the same property holds when they are equal to 1. More precisely, when we start
from any probabilities at step t and two consecutive bits of the secret key are
the same, we can even guarantee that

pt+1(0) ≥
1

2

Indeed, we have seen that pt(1) = pt(−1). Besides, pt(1) + pt(−1) + pt(0) = 1,
thus

pt(−1) ≤
1

2

and

pt+1(0) = 1 − pt+1(1) − pt+1(−1) = 1 − pt(−1) ≥
1

2

On the other hand, when two consecutive bits of secret key are different, the
probabilities tend to average. If we suppose kt = 0 and kt+1 = 1, then

pt+1(0) = pt(−1)

pt+1(1) =
1

2
× (pt(0) + pt(1))

pt+1(−1) =
1

2
× (pt(0) + pt(1))

Using similar arguments as in the previous case, it is straightforward to verify
that all 3 probabilities fulfill

pt+1(x) ≤
1

2

for x = 0, 1,−1. To summarize, we have two very distinct situations. When
two consecutive key bits are equal, one of the transitions will be by far over-
represented inside our group of measurements. It is guaranteed that this will
happen with probability ≥ 50%. In contrary, when two consecutive bits differ,

the probability of the 3 transitions tend to average and none can be > 50%.
Thus, we have two cases which are very easy to distinguish : kt = kt+1 and
kt 6= kt+1.

The limit case is when the distribution of dt is of the form (1

2
, 1

2
, 0). In this

particular situation, it is difficult to distinguish kt = kt+1 from kt 6= kt+1 since
both will yield distributions of the form (1

2
, 1

4
, 1

4
) at the next step.

6.2 An efficient key recovery technique

As we have seen, it is easy in the general case to determine whether kt = kt+1

or kt 6= kt+1 by observing the distributions of dt and dt+1. Roughly, using
100 measurement curves appears to be sufficient to recover this information.
However, we have a problem when the distribution at step i is close to (1

2
, 1

2
, 0).

Typically, this happens just after a long run of 0’s or 1’s. Then, the distribution
at the previous step was of the form (1, 0, 0). When the long run ends, we can
detect it easily because the distribution changes to (1

2
, 1

2
, 0). But the next step

is very tricky, since distributions will be the same whatever the next secret key
bit may be.

If the run is not too long - say t consecutive bits - there is a small bias
at the tricky step, say ε ≃ 2−t between both distributions. Thus they can be
distinguished if the number of available curves is about M ≃ 22t. In practice,
if n = 160 bits, there will be few runs of more than t = 5 consecutive equal
bits. We picked randomly 106 values of k and we obtained an average of 4.91
such long runs. Therefore, it is not a problem to guess the “tricky” bits in these
cases. For shorter runs (of length ≤ t), we can recover secret key bits after about
22t ≃ 1000 requests to the cryptographic device.

Moreover, our algorithm is quite resistant to errors of measurement. Indeed,
if this probability of error is not too high, we can basically apply the same sta-
tistical arguments, using an increased number of message. In situations were the
bias ε is smaller than the probability of error in the measurements, it may be-
come impossible to distinguish the two cases kt = kt+1 and kt 6= kt+1. However,
as we argued previously, this happens quite rarely and it is not a problem to
guess a few additional bits of secret key.

6.3 Practical Simulation

We have implemented a simulation of our attack. Using numbers of length n =
160 bits, we have fixed threshold values corresponding to the previous analysis.
For different values of the number of messages M , we have applied our technique.
Results are summarized in the following table (sequences have been truncated
to 40 bits in order to fit). The terminology of symbols is the following

– = represents the case kt = kt+1

– # represents the case kt 6= kt+1

– ! represents the case when our algorithm has made an error
– ? represents the case when our algorithm has been unable to make a decision

M n Secret key Errors Unknowns

0010100100011101011111101111010011001011 ...

10 160
=#!#?=#?==#????##=====#!===#?#=#??=###? ...

Average over 1000 keys
8

10.7
46

43.6

100 160
=#?#?=##==#?=#?#?=====#?===#?#=#?#=##?? ...

Average over 1000 keys
0

1.5
33

32.4

1000 160
=#?##=##==#==####=====#?===###=#=#=###= ...

Average over 1000 keys
0

0.5
7

8.8

Then we repeated the same experience, but we introduced errors of measure-
ment. Supposing a 10% rate of errors, we obtain the following table

M n Secret key Errors Unknowns

0110010011001110101001100111010001000001 ...

10 160
#=#=#??#??=#==##????#??=#=!#?#?=##====# ...

Average over 1000 keys
14

20.9
47

48.0

100 160
#?#?##=#?#?#?=###?#=#?#=#?=###?=#?====# ...

Average over 1000 keys
5

5.6
38

35.7

1000 160
#!#=##=#?#=#==#####=#=#=#==###==##====# ...

Average over 1000 keys
1

2.6
10

10.9

One sees that our algorithm is quite efficient. In practice, 100 queries are
sufficient to reduce the entropy of the secret key to about 40 bits. Using 1000
messages, only 10 bits remain unknown. Errors of decision are not problematic,
since we can usually detect which positions are likely to cause such errors. Re-
covering the secret bits that remain unknown can be done in different ways. The
simpler technique is an exhaustive search, which is not a problem if the entropy is
of 40 bits. An improved strategy would be the “baby step-giant step” technique,
which would lower the complexity to 220, but would also require a memory of
size 220. It is still an open problem to avoid this memory complexity, for instance
using a lambda-method [21, 25] when the missing bits are disseminated.

6.4 Link with Markov model cryptanalysis

Recently, a new framework for attacking randomized multiplication algorithm
has been proposed [10]. This technique is called Hidden Markov Model Crypt-
analysis (HMMC). The idea is that randomized computations realized by a cryp-
tographic device can be represented by a probabilistic finite state machine (which
might also support inputs), with known probabilities of transition. The attacker
has no direct access to the state of the machine, however each state corresponds
to an output to which the attacker has access. This output can be seen as the
side channel information. The cryptanalysis problem is to infer the most likely
secret key from this partial information about the sequence of state. Applica-
tions have been proposed to variants of the “double-and-add” algorithm using
randomization, like [20]. In this case, the partial information is the sequence of
doubling instructions and additions performed during the computation.

However, this technique does not work on the full randomized BSD coun-
termeasure proposed in [7], since it uses a “double-and-add-always” algorithm.

Therefore, the usual attack based on distinguishing additions from doubling in-
structions does not work here. Although there exists a clear state transition
function, no obvious state-related output can be observed through side channel.

Our contribution here is a new attack that can still be viewed in the frame-
work of HMMC. Indeed, in our case, the probabilistic finite state machine con-
tains the 3 probabilities corresponding to di = 0, 1, and −1 in an unknown
order. What we observe corresponds to an experimental distribution resulting
from multiple measurements. We have shown that it was possible to infer the
sequence of states and the bits of secret key from this observation.

7 Conclusion

A new powerful attack against algorithms using a randomized BSD representa-
tion has been presented. It is based on detecting and exploiting internal collisions.
We have taken the example of Ha-Moon countermeasure and demonstrated how
to break their full SPA-immune algorithm, by comparing power consumption
curves for the same message and different randomizations. This is the first at-
tack against the full Ha-Moon countermeasure proposed at CHES’02. However
it works only in situations where the messages are not randomized.

More generally we have pointed out the lack of entropy in these BSD repre-
sentations. Indeed, at each step of computation, only a small number of states
are possible which results in collisions on intermediate values. Any reasonable
countermeasure based on randomizing the multiplication algorithm should guar-
antee locally a large number of possible internal states and a large number of
possible transitions from each state. Randomized BSD representations do not
satisfy this constraint, which is a fundamental weakness.

References

1. E. Brier and M. Joye. Weierstrass Elliptic Curves and Side-Channel Attacks. In
Public Key Cryptography – 2002, LNCS 2274, pages 335–345. Springer, 2002.

2. J-S. Coron. Resistance Against Differential Power Analysis for Elliptic Curve Cryp-
tosystems. In Cryptographic Hardware and Embedded Systems (CHES) – 1999,
LNCS 1717, pages 292–302. Springer, 1999.

3. N. Ebeid and A. Hasan. Analysis of DPA Countermeasures Based on Randomizing
the Binary Algorithm. Technical Report CORR 2003-14, 2003.
http://www.cacr.math.uwaterloo.ca/techreports/2003/corr2003-14.ps.

4. FIPS PUB 186-2. Digital Signature Standard (DSS), 2000.
5. P-A. Fouque and F. Valette. The Doubling Attack – Why Upwards is Better than

Downwards. In Cryptographic Hardware and Embedded Systems (CHES) – 2003,
LNCS 2779, pages 269–280. Springer, 2003.

6. L. Goubin. A Refined Power-Analysis Attack on Elliptic Curve Cryptosystems. In
Public Key Cryptography – 2003, LNCS 2567, pages 199–210. Springer, 2003.

7. J. Ha and S. Moon. Randomized signed-scalar Multiplication of ECC to resist
Power Attacks. In Cryptographic Hardware and Embedded Systems (CHES) – 2002,
LNCS 2523, pages 551–563. Springer, 2002.

8. M. Joye and J.-J. Quisquater. Hessian Elliptic Curves and Side-Channel Attacks.
In Cryptographic Hardware and Embedded Systems (CHES) – 2001, LNCS 2162,
pages 402–410. Springer, 2001.

9. M. Joye and C. Tymen. Compact Encoding of Non-adjacent Forms with Appli-
cations to Elliptic Curve Cryptography. In Public Key Cryptography, LNCS 1992,
pages 353–364. Springer, 2001.

10. C. Karlof and D. Wagner. Hidden Markov Model Cryptanalysis. In Cryptographic
Hardware and Embedded Systems (CHES) – 2003, LNCS 2779, pages 17–34.
Springer, 2003.

11. P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Others Systems. In Advances in Cryptology – Crypto’96, LNCS 1109, pages 104–
113. Springer, 1996.

12. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Advances in Cryp-
tology – Crypto’99, LNCS 1666, pages 388–397. Springer, 1999.

13. P.-Y. Liardet and N. Smart. Preventing SPA/DPA in ECC Systems Using the
Jacobi Form. In Cryptographic Hardware and Embedded Systems (CHES) – 2001,
LNCS 2162, pages 391–401. Springer, 2001.

14. T. Messerges, E. Dabbish, and R. Sloan. Power Analysis Attacks of Modular Ex-
ponentiation in Smartcards. In Cryptographic Hardware and Embedded Systems
(CHES) – 1999, LNCS 1717, pages 144–157. Springer, 1999.

15. F. Morain and J. Olivos. Speeding up the Computation on an Elliptic Curve using
Addition-Substraction Chains. In Inform. Theory Appl., 24:531–543, 1990.

16. K. Okeya and D.-G. Han. Side Channel Attack on Ha-Moon’s Countermeasure
of Randomized Signed Scalar Multiplication. In Advances in Cryptology – IN-
DOCRYPT’03. To appear.

17. K. Okeya and K. Sakurai. Power Analysis Attacks and Algorithmic Approaches to
their Countermeasures for Koblitz curve Cryptosystems. In Advances in Cryptology
– INDOCRYPT’00, LNCS 1965, pages 93–108. Springer, 2000.

18. K. Okeya and K. Sakurai. On Insecurity of the Side Channel Attack Countermea-
sure using Addition-Substraction Chains under Distinguishability Between Addi-
tion and Doubling. In Australasian Conference on Information Security and Pri-
vacy - ACISP’02, LNCS 2384, pages 420–435. Springer, 2002.

19. E. Oswald. Enhancing Simple Power-Analysis Attacks on Elliptic Curves Cryp-
tosystems. In Cryptographic Hardware and Embedded Systems (CHES) – 2002,
LNCS 2523, pages 83–97. Springer, 2002.

20. E. Oswald and K. Aigner. Randomized Addition-substraction Chains as a Counter-
measure against Power Attacks. In Cryptographic Hardware and Embedded Systems
(CHES) – 2001, LNCS 2162, pages 39–50. Springer, 2001.

21. J. M. Pollard. Monte Carlo Methods for Index Computation (mod p). Mathematics
of Computation, 32(143):918–924, July 1978.

22. R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. In Communications of the ACM, 21(2):120–126,
1978.

23. RSA Laboratories. PKCS #1 v1.5 : RSA Encryption Standard, 1993. Available at
http://www.rsalabs.com/pkcs/pkcs-1.

24. K. Schramm, T. Wollinger, and C. Paar. A New Class of Collision Attacks and its
Application to DES. In Fast Software Encryption – 2003, LNCS 2887. Springer,
2003.

25. P. C. van Oorschot and M. J. Wiener. On Diffie-Hellman Key Agreement with
Short Exponents. In Eurocrypt ’96, LNCS 1070, pages 332–343. Springer, 1996.

26. C. Walter. Breaking the Liardet-Smart Randomized Exponentiation Algorithm. In
CARDIS 2002, 2002. Available at http://www.usenix.org/.

27. C. Walter. Issues of Security with the Oswald-Aigner Exponentiation Algorithm.
In CT-RSA 2004, LNCS 2964, pages 208–221. Springer, 2004.

