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Abstract. In this work, we study the fascinating notion of output-
compressing randomized encodings for Turing Machines, in a shared
randomness model. In this model, the encoder and decoder have access to
a shared random string, and the efficiency requirement is, the size of the
encoding must be independent of the running time and output length of
the Turing Machine on the given input, while the length of the shared
random string is allowed to grow with the length of the output. We show
how to construct output-compressing randomized encodings for Turing
machines in the shared randomness model, assuming iO for circuits and
any assumption in the set {LWE, DDH, Nth Residuosity}.
We then show interesting implications of the above result to basic fea-
sibility questions in the areas of secure multiparty computation (MPC)
and indistinguishability obfuscation (iO):

1. Compact MPC for Turing Machines in the Random Oracle
Model. In the context of MPC, we consider the following basic
feasibility question: does there exist a malicious-secure MPC protocol
for Turing Machines whose communication complexity is independent
of the running time and output length of the Turing Machine when
executed on the combined inputs of all parties? We call such a protocol
as a compact MPC protocol. Hubácek and Wichs [HW15] showed via
an incompressibility argument, that, even for the restricted setting
of circuits, it is impossible to construct a malicious secure two party
computation protocol in the plain model where the communication
complexity is independent of the output length. In this work, we show
how to evade this impossibility by compiling any (non-compact) MPC
protocol in the plain model to a compact MPC protocol for Turing
Machines in the Random Oracle Model, assuming output-compressing
randomized encodings in the shared randomness model.

2. Succinct iO for Turing Machines in the Shared Randomness
Model. In all existing constructions of iO for Turing Machines, the
size of the obfuscated program grows with a bound on the input
length. In this work, we show how to construct an iO scheme for
Turing Machines in the shared randomness model where the size



of the obfuscated program is independent of a bound on the input
length, assuming iO for circuits and any assumption in the set {LWE,
DDH, Nth Residuosity}.

1 Introduction

In this work, we study the fascinating notion of output-compressing randomized
encodings for Turing machines. We explore the implication of such encodings to
a natural and surprisingly unexplored form of secure multiparty computation
for Turing Machines, and also to indistinguishability obfuscation for Turing
Machines.

Output-compressing randomized encodings were introduced in the works of
Ananth and Jain[AJ15] and Lin, Pass, Seth and Telang [LPST16] as a gener-
alization of randomized encodings [IK00] and succinct randomized encodings
[KLW15,BGL+15,CHJV15]. Recall that in an output-compressing randomized
encoding scheme for Turing machines, there exists an encode algorithm that
takes as input a Turing machine M and an input x. It outputs an encoding M̃x

such that the decode algorithm, given this encoding M̃x, can compute the output
M(x). The efficiency requirement is that for any machine M and input x, the
size of the encoding is poly(|M |, |x|, λ), for some fixed polynomial poly, where
λ is the security parameter. In particular, the size of the encoding should be
independent of the output length and the running time of the machine M on
input x.4 In those papers, the authors defined both indistinguishability based
and simulation based security notions. In this work, we will focus on the stronger
notion of simulation based security. This notion requires an output-compressing
randomized encoding scheme to have a corresponding simulator Sim, that, for any
Turing machine M and input x, given just the output M(x), along with the size

of the machine |M | and the input length |x|, outputs a simulated encoding M̃x

that is indistinguishable from a real encoding of the machine M and input x.5

As stated here, this goal is impossible in the standard model due to an “incom-
pressibility” argument as shown by Lin et al.[LPST16]. Such incompressibility
arguments have been a source of impossibility proofs in many areas of cryp-
tography such as functional encryption, garbled circuits and secure multiparty
computation [BSW11,AIKW13,CIJ+13,AGVW13,HW15] and this is perhaps the
reason why simulation secure output compressing randomized encodings have
not been well-studied so far.

Our starting observation is that the above impossibility fails to hold in a
shared randomness model, where the size of the randomness can grow with the
output length. More formally, both the encoder and decoder share a random
string (whose size can grow with the output length) and we require two properties:

4 the size can depend logarithmically on the output length and running time.
5 We actually consider a stronger notion where part of the input need not be hidden,

and we require that the size of the encoding should not grow with this revealed part.
This is a generalization of the notion of partial garbling schemes introduced by Ishai
and Wee [IW14].
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(1) For any machine M and input x, the size of the encoding is poly(|M |, |x|, λ),
for some fixed polynomial poly. (2) There exists a simulator Sim, that, for any
Turing machine M and input x, given just the output M(x), along with the
length of the machine |M | and the input length |x|, outputs a pair of a simulated

encoding M̃x and a shared random string that is indistinguishable from the pair
of a real encoding and a uniformly random string.

Our first main result is that we can, in fact, construct output-compressing ran-
domized encodings for Turing machines in the shared randomness model, assum-
ing indistinguishability obfuscation (iO) for circuits along with any assumption
in {Decisional Diffie Hellman (DDH),Learning With Errors (LWE), N th Residuosity}
where the size of the shared randomness equals the output length.Recall that
iO is necessary because output-compressing randomized encodings for Turing
machines implies iO for circuits as shown by Lin et al.[LPST16] (it is easy to
see that this implication to iO remains true even in the shared randomness
model). We describe the techniques used in our construction in Section 2.1. We
then use this new tool to tackle basic feasibility questions in the context of two
fundamental areas in Cryptography: secure multiparty computation (MPC) and
indistinguishability obfuscation (iO).

Compact MPC for Turing machines with unbounded output in the
Random Oracle model. The first basic feasibility question we address is
the following: Consider a set of n mutually distrusting parties with inputs
x1, . . . , xn respectively that agree on a Turing machine M . Their goal is to securely
compute the output M(x1, . . . , xn) without leaking any information about their
respective inputs, where we stress that the output can be of any unbounded
polynomial size. Crucially, we require that the communication complexity of the
protocol (the sum of the length of the messages exchanged by all the parties) is
poly(|M |, |x1|, . . . , |xn|, λ) for some fixed polynomial poly where λ is the security
parameter. In particular, the communication complexity should be independent of
the output length and the running time of the machine M on input (x1, . . . , xn).
We call such an MPC protocol to be compact. Indeed, this communication
efficiency requirement is the most natural efficiency requirement in the context
of MPC for Turing machines.

Remarkably, this extremely basic question, in the context of Turing machines,
has never been considered before to the best of our knowledge (see related work
below for comparison with previous work). At first glance, one may think that
Fully Homomorphic Encryption (FHE), one of the most powerful primitives in
Cryptography, should help solve this problem. The reason being that, at least in
the two party setting, FHE allows one party to encrypt its input and send it to the
other party, who can then homomorphically evaluate the function to be computed
“under the hood” and compute an encryption of the final output. However, its
then not clear how this evaluator would learn the output since he does not have
the decryption key. Sending the encryption of the final output to the other party
would also blow up the communication complexity. This is related to the question
posed by Hubácek and Wichs [HW15], where they consider a circuit based model,
a special case of our notion. That is, they consider n parties who wish to securely
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evaluate a circuit on their joint inputs such that the communication complexity
of the protocol is independent of the output length of the circuit. They show
how to achieve semi-honest secure two party computation with this efficiency
requirement assuming iO for circuits and a somewhere statistically binding (SSB)
hash function. Further, they showed that in the context of malicious adversaries,6

in the standard model, it is impossible to construct a secure computation protocol
with such efficiency requirement even for just two party computation.

Our approach to this problem is motivated by an unwillingness to give up on
malicious secure compact MPC. To that end we must find a way to evade the
impossibility result, and we do so by considering the well-studied programmable
random oracle (RO) model [BR93,Nie02,DSW08,Wee09,CJS14,CDG+18]. We
stress that the RO model is typically exploited in pursuit of efficiency improve-
ments, but here we are seeking to use it to establish basic feasibility results.
Indeed, the RO model has enabled important feasibility results in the past which
were impossible in the plain model, for example unconditional non-interactive
zero-knowledge arguments for NP with sub-linear communication [IMS12] and
Universal Samplers [HJK+16]. In addition, a straightforward modification of
the impossibility argument in [HW15] shows the programmable RO model is
the weakest model in which we can hope to obtain simulation-secure compact
MPC. In the programmable RO model, the simulator is allowed to choose the
RO’s responses to the adversary adaptively, based on the adversary’s previous
messages. If we restrict the simulator to choosing the RO’s responses selectively,
before any interaction with the adversary, then this model is not sufficient to
achieve compact MPC. This also rules out the possibility of compact MPC in
the CRS model.7 Aside from its theoretical interest in terms of basic feasibility,
our work motivates the following question: is there a weaker notion of security
for MPC for which compact MPC is realizable in the plain model? A full answer
to this question is outside the scope of this paper, but we believe that this is
an excellent topic for future work. As a starting point, in the full version of our
paper we sketch a simple example where the techniques in our paper can still
yield meaningful security guarantees in the plain model.

More specifically, we show how to construct a compact constant round MPC
protocol for Turing machines in the RO model secure against malicious adversaries,
assuming iO for circuits and any assumption in {DDH, LWE, Nth Residuosity}.
Recall that by compact, we mean that the communication complexity of the
protocol is independent of the output length and running time of the Turing
machine being evaluated on the joint inputs of the parties. We obtain this result by
using output-compressing randomized encodings in the shared randomness model
to compile any non-compact malicious secure constant round MPC protocol (even
just for circuits) in the plain model into a compact constant round MPC protocol

6 their impossibility in fact even ruled out the simpler setting of honest but deterministic
adversaries - such an adversary behaves honestly in the protocol execution but fixes
its random tape to some deterministic value.

7 See the full version of the paper for a full presentation of this argument, based on
Theorem 4.3 in [HW15].
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for Turing machines in the RO model while preserving the round complexity. We
again stress that to the best of our knowledge, this is the first MPC protocol
for Turing machines where the communication complexity is bounded by a
polynomial in the description length of the machine and the input lengths of all
the parties. We also observe that as a corollary of our work, we obtain the first
malicious secure compact MPC protocol in the circuit based model of Hubácek
and Wichs [HW15], in the RO model. We describe the techniques used in our
construction in Section 2.2.

Succinct iO for Turing machines for bounded inputs in the shared
randomness model. The problem of bootstrapping from iO for circuits to iO
for Turing machines has been the subject of intense study over the last few
years. In 2015, in three concurrent works [KLW15,BGL+15,CHJV15]8 showed
how to construct iO for Turing machines where the size of the obfuscation grows
with a bound on the input length to the Turing machine. In this work, we ask
the following question: can we construct iO for Turing machines in the shared
randomness model where the obfuscator and evaluator have a shared random
string that grows with the input bound but the size of the obfuscation does not?

Lin et al. [LPST16] showed that output-compressing randomized encodings
are closely related to iO for Turing machines. That is, they showed that simulation
secure output-compressing randomized encodings in the plain model implies iO
for Turing machines with unbounded inputs.9 In particular, this implies iO for
Turing machines with bounded inputs where the size of the obfuscation does not
grow with the input bound. As we know, simulation secure output-compressing
randomized encodings are impossible in the plain model. However, in turns out
that this implication does not carry over in the shared randomness model. That
is, if we start with output-compressing randomized encodings in the shared
randomness model and apply the transformation in [LPST16], in the resulting
iO scheme, the size of the obfuscation does in fact grow with the input bound.
The key obstacle is that in the transformation, the obfuscation consists of an
output-compressing randomized encoding that is the root of a GGM-like tree
([GGM86]). This encoding, on evaluation, outputs another output-compressing
randomized encoding corresponding to its child node and the process is repeated.
In order to evaluate the obfuscated program on an input of length n, the evaluator
has to traverse the obfuscated program up to a depth of length n. As a result,
the machine being encoded in the root needs the shared randomness for each
layer, up to a depth of length n. Hence, the size of the machine encoded in the
root grows with the input bound and so does the size of the obfuscated program.

8 Recently, concurrent to our work, [AL18,AM18,GS18] also showed how to construct
iO for Turing machines where, similar to [KLW15,BGL+15,CHJV15], the size of the
obfuscation grows with a bound on the input length to the Turing machine.

9 Lin et al. [LPST16] in fact showed that a weaker notion of distributional indistin-
guishability based secure output-compressing randomized encodings suffices to imply
iO for Turing machines with unbounded inputs. However, they also supplement this
by showing that it is impossible, in general, to construct such encodings.
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Note that this approach fails even if the size of the shared randomness for the
encoding is just 1 bit (independent of the length of the output).

We show how to overcome this obstacle by taking a completely different ap-
proach. In our solution, the obfuscated program consists of an output-compressing
randomized encoding in which, crucially, neither the machine being encoded nor
the input to the machine, depends on the input bound of the obfuscation scheme.
Hence, the size of the encoding, and therefore, also the size of the obfuscation,
does not grow with the input bound. We elaborate more about the techniques
used in our construction in Section 2.3. Concretely, letting n denote the input
bound, we obtain iO for Turing machines M in the shared randomness model
where the size of the obfuscation is poly1(|M |, λ) for some fixed polynomial poly1,
and where the obfuscator and evaluator have a shared random string of length
poly(n, λ) for some fixed polynomial poly. Our assumptions are again iO for
circuits and any assumption in {DDH, LWE, Nth Residuosity}.
On Reuse of the Shared Randomness. We note that it is possible for multiple
output-compressing randomized encodings to reuse the shared randomness in a
limited way. Namely, if we have several output-compressing randomized encodings,
and we can construct hybrids such that only one randomized encoding needs to
be simulated at a time, then all of the encodings can share the same CRS. This
applies to the succinct iO construction: multiple circuits can be obfuscated using
a single shared random string. Moreover, modulo a preprocessing phase which
can be shared among all obfuscations, the time to obfuscate M is independent of
the output length or running time of M .

1.1 Our Results

In this paper, we achieve the following results.

1) Output-compressing randomized encodings.
We prove the following theorem:

Theorem 1 (Informal). There exists an output-compressing randomized en-
coding scheme for Turing machines in the shared randomness model assuming
the existence of:

– iO for circuits (AND)
– A ∈ {DDH, LWE, Nth Residuosity}.

Further, the length of the shared randomness is equal to the output length.

2) Compact MPC for Turing machines with unbounded output in the
RO model.

We prove the following theorem:

Theorem 2 (Informal). For any n, t > 0, there exists a constant round com-
pact MPC protocol amongst n parties for Turing machines in the Programmable
Random Oracle model that is malicious secure against up to t corruptions assum-
ing the existence of:
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– Output-compressing randomized encodings in the shared randomness model
(AND)

– Constant round MPC protocol amongst n parties in the plain model that is
malicious secure against up to t corruptions.

Once again, recall that by compact, we mean that the communication
complexity of the protocol is independent of the output length and running time
of the Turing machine being evaluated on the joint inputs of the parties. Here,
we note that the above compiler even works if the underlying MPC protocol is
for circuits. That is, we can convert any constant round protocol for circuits into
a constant round protocol for Turing machines (with an input bound) by first
converting the Turing machine into a (potentially large) circuit.

Also, we can instantiate the underlying MPC protocol in the following manner
to get a round optimal compact MPC: append a non-interactive zero knowledge
argument based on DLIN in the common random string model [GOS06] to either
the two round semi-malicious MPC protocol of [MW16] that is based on LWE
in the common random string model or the ones of [GS18,BL18] that are based
on DDH/N th residuosity in the plain model, to get two round malicious secure
MPC protocols in the common random string model. We can then implement
the common random string required for the underlying protocol via the RO. We
thus achieve the following corollary:

Corollary 1. Assuming the existence of:

– iO for circuits (AND)
– DDH, or LWE, or Nth Residuosity (AND)
– DLIN,

there exists a compact, round optimal (two round) MPC protocol π for Turing
machines in the Programmable Random Oracle model that is malicious secure
against a dishonest majority.

Our result also gives a malicious secure compact MPC protocol in the
circuit-based setting of [HW15] in the RO model. We also achieve other
interesting corollaries by instantiating the underlying MPC protocol in the
setting of super-polynomial simulation or in the setting of concurrent executions.
We elaborate on both the above points in Section 6.

3) Succinct iO for Turing machines for bounded inputs in the shared
randomness model.

We prove the following theorem:

Theorem 3 (Informal). There exists an iO scheme for Turing machines in the
shared randomness model where the size of the obfuscated program is independent
of the input bound assuming the existence of:

– iO for circuits,
– DDH, or LWE, or Nth Residuosity.
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1.2 Related work

Lin, Pass, Seth and Telang [LPST16] construct OCREs from compact functional
encryption (which is implied by iO), in the common reference string model. This
is different from the shared randomness model in that the CRS which is shared
among all parties must be generated in a specific fashion: in particular, [LPST16]
require that the CRS be a specific function secret key. This model requires more
trust be placed in the trusted setup phase. We note that our construction of
compact MPC requires strong OCREs in the shared randomness model; [LPST16]
does not consider strong OCREs, but even if a construction did exist in the
common reference string model, to the best of our knowledge, it would not be
sufficient to construct compact MPC.

A series of works [OS97,GHL+14,GGMP16,Mia16,HY16,LO17] consider MPC
for RAM programs. However, in all of them, the communication complexity of
the protocol grows with the running time of the RAM program. As a result, the
communication complexity of the protocol in the Turing machine model would
also grow with the output length. We stress that in our work, we require that
the communication complexity can grow with neither output length nor running
time of the Turing machine.

Ananth et al.[AJS17] construct an iO scheme for Turing machines in
which, for any machine M and input bound L, the size of the obfuscation is
|M |+poly(L, λ). However, in our setting, we require that the size be independent
of this bound L.

2 Technical Overview

2.1 Output Compressing Randomized Encodings

We will now discuss a high-level overview of our output-compressing randomized
encoding (OcRE) scheme in the shared randomness model. Let M be a family
of Turing machines with output size bounded by o-len. An OcRE scheme for
M in the shared randomness model consists of a setup algorithm, an encoding
algorithm and a decoding algorithm. The setup algorithm takes as input security
parameter λ together with a string rnd of length o-len, and outputs a succinct
encoding key ek of size poly(λ).10 This encoding key is used by the encoding
algorithm, which takes as input a machine M ∈ M, an input x ∈ {0, 1}∗, and

outputs an encoding M̃x. Finally, the decoding algorithm can use M̃x and rnd to
recover M(x). For efficiency, we require that the encoding time depends only on
|M |, |x| and security parameter λ. In particular, the size of the encoding should
not grow with the output length o-len or the running time of M on x. 11

10 We will assume o-len is at most 2λ.
11 Strictly speaking, it is allowed to depend polylogarithmically on the running time of
M on input x; for this overview, we will ignore this polylogarithmic dependence on
the running time.
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The starting point of our construction is the succinct randomized encoding
scheme of [KLW15], which is an encoding scheme for boolean Turing machines,
and the size of the encoding depends only on |M |, |x| and security parameter
λ. We want to use this tool as a building block to build an encoding scheme
for general Turing machines (i.e. with multi-bit output) where the size of the
encoding still only depends on |M |, |x| and λ. As a first step, let us consider
the following approach. The encoding algorithm outputs an obfuscated program
Prog[M,x], which has M and x hardwired, takes input j ∈ [o-len], and outputs a
KLW encoding of Mj , x (the randomness for computing the encoding is obtained
by applying a PRF on j). Here, Mj is a boolean Turing machine which, on
input x, outputs the jth bit of M(x). The decoding algorithm runs Prog for each
j ∈ [o-len], obtains o-len different encodings, and then decodes each of them
to obtain the entire output bit by bit. Clearly, this construction satisfies the
efficiency requirement. This is because the size of the program Prog depends
only on |M |, |x|, and hence the size of the encoding only depends on |M |, |x|, λ.
As far as security is concerned, it is easy to show that this scheme satisfies
indistinguishability-based security; that is, if (M0, x0) and (M1, x1) are two pairs
such that M0(x0) = M1(x1), |M0| = |M1|, |x0| = |x1|, then the obfuscation
of Prog[M0, x0] is computationally indistinguishable from the obfuscation of
Prog[M1, x1]. Unfortunately, recall that our goal is simulation security, and it is
not possible to simulate an obfuscation of Prog[M,x], given only M(x) as input.
In particular, if y = M(x) is a long pseudorandom string (whose length can be
much longer than the size of Prog[M, ]), then should be hard to compress y to a
short encoding (as shown by Lin et al. [LPST16]).

As noted in the previous section, we will evade the “incompressibility” ar-
gument by allowing the shared randomness to have size that grows with the
output length. Our goal will be to allow the simulator to embed the output of
the machine M in this randomness. Our second attempt is as follows. The setup
algorithm computes a short commitment ek to the shared randomness (say with
a Merkle tree), and outputs ek as the encoding key. The encoding algorithm
computes an obfuscation of Prog[M,x, ek], which has M , x, ek hardwired, takes
as input an index j, a bit b (which is supposed to be the jth bit of the shared
randomness), and an opening π that the bit b is indeed the jth bit of the shared
random string. The program checks the proof π, and then computes a KLW
encoding of (Mj , x).

While the bit b is essentially ignored in the real-world encoding, it is used by
the simulator in the ideal world. In the ideal world, the simulator, on receiving
M(x), masks it with a pseudorandomly generated one-time pad and outputs
the resultant string as the shared randomness, and the short commitment ek
is computed as in real world. For the encoding, it outputs an obfuscation of
Prog-sim[ek], which takes as input (j, b, π), checks the proof π, unmasks the bit
b to obtain M(x)j and simulates the KLW randomized encoding using M(x)j .
This program has behavior identical to Prog[M,x, ek] as long as the adversary
only gives openings to the original bits of the shared randomness.
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There is a simple problem with this idea: obfuscation only guarantees indis-
tinguishability of programs that are functionally equivalent, and although the
security of a Merkle tree would make it computationally infeasible for an adver-
sary to come up with an opening to a wrong value, these inputs do in fact exist.
To fix this problem, we use a special iO-compatible family of hash functions called
‘somewhere-statistically binding (SSB) hash’, introduced by [HW15]. Intuitively,
this primitive is similar to a merkle tree except for two additional features. First,
it allows a given position to be statistically “bound”, where for that index it is
only possible to give an opening for the correct bit. So there are three algorithms,
Setup,Open, and Verify, as in the case of a Merkle tree, but Setup additionally
takes as input a position to bind. If j is the bound position for H then there
is no opening π for a bit b 6= xj such that Verify(π, b, j,H(x)) accepts. Second,
this bound position is hidden, so we can change it without being detected. Using
this new hash allows us to make a series of hybrids where we change the shared
randomness one bit at a time without giving up indistinguishability.

2.2 Compact MPC for Turing Machines in the Random Oracle
Model.

We now describe the techniques used in our round preserving compiler from any
non-compact constant round malicious secure MPC protocol in the plain model
to a compact constant round malicious secure MPC protocol in the RO model,
using output-compressing randomized encodings in the shared randomness model.

To begin with, consider any constant round MPC protocol π in the plain
model. For simplicity, lets assume that every party broadcasts a message in
each round. In order to make it compact, our main idea is a very simple one:
use output-compressing randomized encodings to compress the messages sent
by every party in each round so that they are independent of the output
length and running time of the machine. That is, instead of sending the actual
message of protocol π, each party just sends an output-compressing random-
ized encoding of a machine and its private input that generates the actual message.

More precisely, consider a party P with input x that intends to send a
message msg1 in the first round as part of executing protocol π. Let’s denote
M to be the Turing machine that all the parties wish to evaluate. Let M1

denote the algorithm used by the first party to generate this message msg1 in
the first round. Now, instead of sending msg1, P sends an encoding of machine
M1 and input (x, r) where r is the randomness used by party P in protocol π.
The recipient first decodes this encoding to receive P’s first round message of
protocol π - msg1. Without loss of generality, let’s assume that the length of
randomness r is only proportional to the input length (else, internally, M1 can
apply a pseudorandom generator). In terms of efficiency, the description of the
machine M1 only depends on M , and so it is easy to see that the size of the
encoding does not depend on the non-compact message msg1. A natural initial
observation is that in order to construct a simulator for the protocol, we need
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to generate simulated encodings. However, as we know that simulation secure
output-compressing randomized encodings are impossible, we will resort to using
our new encodings constructed in the shared randomness model.

Need for Random Oracle. Recall that in the introduction we ruled out the
possibility of malicious-secure compact MPC in the CRS model. As a result, it
must be the case that our protocol is not a compact and secure MPC protocol
in the CRS model. We illustrate what goes wrong with a naive use of our
output-compressing randomized encodings. After receiving a message in the first
round from every other party, P first decodes all these messages to compute a
transcript trans for protocol π. P then computes an encoding of machine M2 and
input (x, r, trans) where M2 is the machine used to generate the next message
msg2 and sends this in round 2. Looking ahead to the security proof, the simulator
will have to generate a simulated encoding of this message and also simulate
the shared randomness. To do that, the simulated shared randomness will have
to depend on M2(x, r, trans). Notice that the simulator will have to decide the
simulated CRS before beginning the protocol execution. This is not possible,
however, because the value trans depends on the adversary’s input and ran-
domness, both of which are not even picked before the adversary receives the CRS.

We use the programmable RO model to circumvent this. Now, in each round,
along with its encoding, P also sends a short index. The recipient first queries
the RO on this index to compute the shared randomness that is then used to
decode. Looking ahead to the proof, the simulator can pick a random index
that the RO has not been queried on so far and “program” the RO’s output
to be the simulated shared randomness. This can be executed after receiving
the transcript of the previous round and before sending the pair of index and
simulated encoding in any round.

Strong Output-compressing Randomized Encodings. Next, it turns out
that, in fact, just standard output-compressing randomized encodings do not
suffice for the above transformation. To see why, consider any round j. Let
trans denote the transcript of the underlying protocol π at the end of round
(j − 1). Now, in round j, party P sends an encoding of machine Mj and input
(x, r, trans), where Mj is the machine used to generate the jth round message.
However, the size of trans could depend on the output length of the protocol
because trans denotes the transcript of the underlying non-compact protocol π.
A natural attempt to solve would be to let trans be the transcript of the new
compact protocol up to this point instead of the underlying protocol, and to
let Mj decode the transcript when forming the next message. This also turns
out to be problematic, though, since we now need a randomized encoding of a
machine Mj which accesses the RO. As a result, since the size of the encoding
in each round grows with the input to the machine being encoded, the size of
the messages in each round also does depend on the output length. Thus we are
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seemingly back to square one, since our transformation still yields a non-compact
protocol.

In order to solve this issue, we make the crucial observation that the part of
the input to the machine being encoded that actually grows with the output
length of the protocol is actually public information. That is, we do not care
about any privacy for this part of the input and only require that the size of
the encoding does not grow with this public input. Corresponding to this, we
define a new stronger version of output-compressing randomized encodings in the
shared randomness model, which we call strong output-compressing randomized
encodings. In more detail, the encoding algorithm takes as input a machine M ,
a private input x1 and a public input x2 and outputs an encoding. Informally,
the efficiency requirement is that the size of the encoding is poly(|M |, |x1|)
for a fixed polynomial poly and does not depend on x2, in addition to being
independent of the output length and running time. Further, security requires
that, in addition to the output M(x1, x2), the simulator is also given the public
input x2 and the tuple of honest encoding and honest shared randomness
should be indistinguishable from the tuple of simulated encoding and simulated
shared randomness. Thus, if we use strong output-compressing randomized
encodings, we overcome the issue. Our construction of strong output-compressing
randomized encodings is very similar to the construction in Section 2.1 except
that we replace the succinct randomized encodings with a stronger notion called
succinct partial randomized encodings. More details can be found in Section 5.

Another subtle detail is that, while proving security, in the sequence of
hybrids, it is essential that we first switch the encodings to be simulated before
switching the messages of the protocol π from real to simulated. This is because
we can not afford to send honest encodings of simulated messages of protocol π as
the description of the simulator’s machine to generate these messages could grow
with the output bound. One interesting consequence of the above point is that our
transformation is oblivious to whether the underlying simulator rewinds or runs
in super-polynomial time. As a result, our construction naturally extends even to
the setting of concurrent security if the underlying protocol is concurrently secure.

Notice that our compiler to solve this very basic feasibility question is in
fact, remarkably simple, which further highlights the power of simulation secure
output-compressing randomized encodings in the shared randomness model. We
refer the reader to Section 6 for more details about our compact MPC protocol
and proof.

Implication in the circuit model of [HW15] First, recall that in the setting
of Hubácek and Wichs [HW15], the goal is to construct an MPC protocol for
circuits where the communication complexity is independent of the output length
of the circuit. At first glance, it might seem that our construction trivially implies
a result in the circuit setting as well. However, this is not quite directly true.
Observe that in our protocol, the communication complexity grows with the
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description of the Turing machine and so, when we convert the circuit to the
Turing machine model, the communication complexity grows with the size of the
circuit. In the case of a circuit, the output length can in fact be proportional to
the size of the circuit. To circumvent this, we will consider a Turing machine
representation of a Universal circuit, that takes as input a circuit C and an input
x and evaluates C(x). Now, notice that the size of this universal circuit, and
by extension, the size of the Turing machine evaluated, is independent of the
circuit being evaluated. Further, we will set the circuit being computed - C, to
be part of the “public” input to each strong output-compressing randomized
encoding that is computed in each round of the protocol. Since all parties have
knowledge of C, we don’t need to hide this input. As a result, neither the machine
being encoded nor the private input depend on the circuit being evaluated and
this solves the problem. That is, the communication complexity of the resulting
compiled protocol is independent of the output length of the circuit.

2.3 Succinct iO for Turing Machines in the Shared Randomness
Model

We now describe the techniques used in our construction of iO for Turing
machines in the shared randomness model where the size of the obfuscated
program does not grow with a bound on the input length. We will denote such
obfuscation schemes as succinct iO schemes in this section. First, we recall from
the introduction that the transformation of Lin et al. [LPST16] to go from
output-compressing randomized encodings to succinct iO does not work in the
shared randomness model. Briefly, the reason was that if we want to support
Turing machines with input length n, then there must be n chunks of the shared
randomness, and the ‘top-level’ encoding in the LPST scheme must contain a
commitment to each of the n chunks, and as a result, the size grows with n.

Therefore, our obfuscation scheme will have a completely different structure.
Recall that [KLW15] showed an obfuscation scheme where the size of obfuscation
of M with input bound n grows with the security parameter, input bound and
machine size (but does not depend on the running time of M on any input). We
will use such weakly-succinct obfuscation scheme to obtain succinct iO.

Consider a program P that takes as input a Turing machine M , input bound
n, and outputs a weakly-succinct obfuscation of M with input bound n (the
randomness for obfuscation can be generated using a pseudorandom generator).
The size of the output grows with n, size of M and security parameter λ. But the
important thing to note here is that the size of program P does not grow with
input bound n. Therefore, we can use output-compressing randomized encodings
to construct succinct iO. The obfuscation algorithm simply outputs an encoding
of program P with inputs (M,n). Clearly, the size of this encoding does not grow
with n (using the efficiency property of ocre). The proof of security follows from
the security of the obfuscation scheme and the output-compressing randomized
encoding scheme.
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Finally, an informed reader might recall that the LPST construction required
the security parameter to grow at each level, while in our case, we can work
with a single security parameter. The reason for this is because their security
reduction loses a factor of 2 for each level, and therefore the security parameter
must grow at each level. In our case, we have a different proof structure, and
the switch from encoding of P,M0 to P,M1 in the security proof is a single-step
jump.

Organization. We first describe some preliminaries in Sections 3 and 4. In
Section 5, we describe the construction of strong output-compressing randomized
encodings for Turing machines in the shared randomness model. Then, in Section 6,
we construct compact MPC protocols in the random oracle model. Finally, we
defer to the full version of the paper our construction of succinct iO for Turing
machines and succinct partial randomized encodings.

3 Preliminaries

We will use λ to denote the security parameter throughout the rest of the paper.
For any string s of length n, let s[i] denote the ith bit of s. Without loss of
generality, we assume all Turing machines are oblivious.

We defer to the full version of our paper for some additional preliminaries,
including the definition of secure multiparty computation in the random oracle
model.

4 Randomized Encodings: Definitions

4.1 Succinct Partial Randomized Encodings

In this section, we introduce the notion of succinct partial randomized encodings
(spRE). This is similar to the notion of succinct randomized encodings, except
that the adversary is allowed to learn part of the input. For efficiency, we require
that if the machine has size m, and ` bits of input are hidden, then the size of
randomized encoding should be polynomial in the security parameter λ, ` and
m. In particular, the size of the encoding does not depend on the entire input’s
length (this is possible only because we want to hide ` bits of the input; the
adversary can learn the remaining bits of the input). This notion is the Turing
Machine analogue of partial garbling of arithmetic branching programs, studied
by Ishai and Wee [IW14].

A succinct partial randomized encoding scheme SPRE for a class of boolean
Turing machines M consists of a preprocessing algorithm Preprocess, encoding
algorithm Encode, and a decoding algorithm Decode with the following syntax.

Preprocess(1λ, x2 ∈ {0, 1}∗): The preprocessing algorithm takes as input security
parameter λ (in unary), string y ∈ {0, 1}∗ and outputs a string hk.
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Encode(M ∈ M, T ∈ N, x1 ∈ {0, 1}∗, hk ∈ {0, 1}p(λ)): The encoding algorithm
takes as input a Turing machine M ∈M, time bound T ∈ N, partial input
x1 ∈ {0, 1}∗, string hk ∈ {0, 1}p(λ), and outputs an encoding M̃ .

Decode(M̃, x2, hk): The decoding algorithm takes as input an encoding M̃ , a
string x2 ∈ {0, 1}∗, string hk and outputs y ∈ {0, 1,⊥}.

Definition 1. Let M be a family of Turing machines. A randomized encoding
scheme SPRE = (Preprocess,
Encode,Decode) is said to be a succinct partial randomized encoding scheme if it
satisfies the following correctness, efficiency and security properties.

– Correctness: For every machine M ∈ M, string x = (x1, x2) ∈ {0, 1}∗,
security parameter λ and T ∈ N, if hk ← Preprocess(1λ, x2), then
Decode(Encode(M,T, x1, hk), x2) = TM(M,x, T ).

– Efficiency: There exist polynomials pprep, penc and pdec such that for ev-
ery machine M ∈ M, x = (x1, x2) ∈ {0, 1}∗, T ∈ N and λ ∈ N, if

hk ← Preprocess(1λ, x2), then |hk| = pprep(λ), the time to encode M̃ ←
Encode(M,T, x1, hk) is bounded by penc(|M |, |x1|, log T, λ), and the time to

decode M̃ is bounded by min(Time(M,x, T ) · pdec(λ, log T ).

– Security: For every PPT adversary A = (A1,A2), there exists a PPT simu-
lator S such that for all PPT distinguishers D, there exists a negligible func-
tion negl(·) such that for all λ ∈ N, Pr[1← D(Expt-SPRE-RealSPRE,A(λ))]−
Pr[1← D(Expt-SPRE-IdealSRE,A,S(λ))] ≤ negl(λ), where Expt-SPRE-Real and
Expt-SPRE-Ideal are defined in Figure 1. Moreover, the running time of S is
bounded by some polynomial pS(|M |, |x1|, log T, λ).

Experiments Expt-SPRE-RealSPRE,A(λ) and Expt-SPRE-IdealSPRE,A,S(λ)

Expt-SPRE-RealSPRE,A(λ):

- (M,x = (x1, x2), T, σ) ←
A1(1λ).

- hk← Preprocess(x2, 1
λ).

- M̃ ←
Encode(M,T, x1, hk).

- Experiment outputs
A2(M̃, σ).

Expt-SPRE-IdealSPRE,A,S(λ):

- (M,x = (x1, x2), T, σ)← A1(1λ),
t∗ = min (T,Time (M,x)), out =
TM (M,x, T ).

- hk← Preprocess(1λ, x2).

- M̃ ← S
(

1|M|, 1|x1|, hk, 1λ, out, t∗
)

.

- Experiment outputs A2(M̃, σ).

Fig. 1: Simulation Security Experiments for partial randomized encodings

Our construction of succinct partial randomized encodings is closely related to
the succinct randomized encodings scheme by [KLW15] and we defer the details
to the full version of our paper.
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4.2 Strong output-compressing Randomized Encodings in the
shared randomess model

The notion of succinct randomized encodings (defined in the full version of our
paper) was originally defined for boolean Turing machines. We can also consider
randomized encodings for Turing machines with long outputs. Using (standard)
succinct randomized encodings, one can construct randomized encodings for
Turing machines with multi-bit outputs, where the size of encodings grows
linearly with the output size. In a recent work, Lin et al. [LPST16] introduced a
stronger notion called output-compressing randomized encodings, where the size
of the encoding only depends sublinearly on the output length. Lin et al. also
showed that simulation based security notions of output-compressing randomized
encodings are impossible to achieve. In this work, we consider a stronger notion
of output-compressing randomized encodings in the shared randomness model
where the encoder and decoder have access to a shared random string (denoted
by crs). Here, the machine also takes another public input x2 along with a private
input x1 with the requirement that the size of the encoding should only grow
polynomially in the size of the machine and the private input x1. In particular,
it does not grow with x2 or the running time of the machine or its output length.
We define it formally below.

A strong output-compressing randomized encoding scheme S.OcRE =
(Setup,Encode,Decode) in the shared randomness model consists of three
algorithms with the following syntax.

Setup(1λ, 1o-len, crs ∈ {0, 1}o-len): The setup algorithm takes as input security
parameter λ, output-bound o-len and a shared random string crs of length
o-len. It outputs an encoding key ek.

Encode((M, tmf(·)), x = (x1, x2), T, ek): The encoding algorithm takes as input
an oblivious Turing Machine M with tape movement function tmf(·), input
x consisting of a private part x1 and a public part x2, time bound T ≤ 2λ

(in binary) and an encoding key ek, and outputs an encoding M̃x.

Decode(M̃x, x2, crs): The decoding algorithm takes as input an encoding M̃x, a
public input x2, the shared random string crs and outputs y ∈ {0, 1}∗ ∪ {⊥}.

Definition 2. A strong output-compressing randomized encoding scheme
S.OcRE = (Setup,Encode,Decode) in the shared randomness model is said
to be secure if it satisfies the following correctness, efficiency and security
requirements.

– Correctness: For all security parameters λ ∈ N, output-length bound o-len ∈ N,
crs ∈ {0, 1}o-len, machine M with tape movement function tmf(·), input x =
(x1, x2), time bound T such that |M(x)| ≤ o-len, if ek← Setup(1λ, 1o-len, crs),

M̃x ← Encode((M, tmf(·)), x, T ek), then Decode(M̃x, x2, crs) = TM(M,x, T ).
– Efficiency: There exist polynomials p1, p2, p3 such that for all λ ∈ N, o-len ∈ N,

crs ∈ {0, 1}o-len:

1. If ek← Setup(1λ, 1o, crs), |ek| ≤ p1(λ, log o).
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2. For every Turing machine M , time bound T , input x =
(x1, x2) ∈ {0, 1}∗, if M̃x ← Encode(M,x, T, ek), then |M̃x| ≤
p2(|M |, |x1|, log |x2|, log T, log o, λ).

3. The running time of Decode(M̃x, x2, crs) is at most min (T,Time(M,x)) ·
p3(λ, log T ).

– Security: For every PPT adversary A = (A1,A2), there exists a simulator
S such that for all PPT distinguishers D, there exists a negligible function
negl(·) such that for all λ ∈ N,

Pr[1← D(Expt-S.OcRE-RealS.OcRE,A(λ))]

− Pr[1← D(Expt-S.OcRE-IdealS.OcRE,A,S(λ))] ≤ negl(λ),

where Expt-S.OcRE-Real and Expt-S.OcRE-Ideal are defined in Figure 2.

Experiments Expt-S.OcRE-RealS.OcRE,A(λ) and
Expt-S.OcRE-IdealS.OcRE,A,S(λ)

Expt-S.OcRE-RealS.OcRE,A(λ):

- (1o-len, (M, tmf(·)), x = (x1, x2), T, σ) ←
A1(1

λ).

- crs← {0, 1}o-len,
ek← Setup(1λ, 1o-len, crs).

- M̃ ← Encode((M, tmf(·)), x, T, ek).
- Experiment outputs A2(crs, ek, M̃, σ).

Expt-S.OcRE-IdealS.OcRE,A(λ):

- (1o-len, (M, tmf(·)), x = (x1, x2), T, σ) ←
A1(1

λ).
- Let t∗ = min(T,Time(M,x)) and b∗ =

TM(M,x, T ).

- s← S(1|M|, 1|x1|, tmf(·), x2, t
∗, b∗, 1λ).

- Let s = (crs, M̃).

- ek← Setup(1λ, 1o-len, crs).

- Experiment outputs A2(crs, ek, M̃, σ).

Fig. 2: Simulation Security Experiments for strong output-compressing random-
ized encodings in the shared randomness model

Remark: In particular, note that strong output-compressing randomized en-
codings (S.OcRE) implies output-compressing randomized encodings (OcRE) by
setting the public input x2 to be ⊥.

5 Strong Output-compressing Randomized Encodings in
the CRS Model

In this section, we show a construction of strong output-compressing randomized
encodings in the common random string (CRS) model. Formally, we show the
following theorem:

Theorem 4. Assuming the existence of iO for circuits and somewhere statisti-
cally binding (SSB) hash and Puncturable PRFs and Succinct partial randomized
encodings for single-bit output Turing machines, There exists a strong output-
compressing randomized encoding scheme for Turing machines in the shared
randomness model.
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Instantiating the SSB hash and the succinct partial randomized encodings,
we get the following corollary:

Corollary 2. Assuming the existence of iO for circuits and any A ∈ {DDH,
LWE, Nth Residuosity}, There exists a strong output-compressing randomized
encoding scheme for Turing machines in the shared randomness model.

Notation and Primitives used: We will be using the following cryptographic
primitives for our construction:

– Indistinguishability obfuscation for circuits (Ckt.Obf, Ckt.Eval).
– Succinct partial randomized encodings for single-bit output Turing machines

(SPRE.Preprocess, SPRE.Encode, SPRE.Decode). Without loss of generality,
we assume that the algorithm SPRE.Encode uses λ bits of randomness - it can
internally apply a PRG on this randomness if a larger amount is required.

– Somewhere statistically binding hash(SSB.Gen, SSB.Open, SSB.Verify).
– A Puncturable PRF (F1, PPRF.Puncture1) that takes inputs of size λ and

outputs 1 bit.
– A Puncturable PRF (F2, PPRF.Puncture2) that takes inputs of size λ and

outputs λ bits.

5.1 Construction

S.OcRE.Setup(1λ, 1o, crs ∈ {0, 1}o): The setup algorithm does the following:
1. Choose hash function H ← SSB.Gen(1λ, o, 0).12

2. Compute h = H(crs) and set ek = (h,H).
S.OcRE.Encode(M,x = (x1, x2), T, ek = (h,H)): The encoding algorithm does

the following:
1. Compute hk = SPRE.Preprocess(1λ, x2).
2. Choose a key KSPRE for the puncturable PRF F2.
3. Let Mi denote the turing machine that, on input x, runs the ma-

chine M on input x and outputs the ith bit of M(x). Let t denote
|SPRE.Encode(Mi, T, x1, hk; r)| using any random string r.

4. Compute P̃rog← Ckt.Obf(Prog, 1λ) where the program Prog is defined in
Figure 3. Note that the size of the program Prog is padded appropriately
so that it is equal to the size of the program Prog-sim defined later in
Figure 4.

5. Output M̃x = (P̃rog, t,H).

S.OcRE.Decode(M̃x = (P̃rog, t,H), x2, crs): For each i ∈ [o], the decoding algo-
rithm computes bit outi as follows:

12 We modify the syntax of the SSB hash system slightly to allow the binding index
to range from 0, . . . , o and without loss of generality, just set SSB.Gen(1λ, o, 0) =
SSB.Gen(1λ, o, 1). That is, when the binding index is set as 0, we actually don’t care
at what index the hash system is bound at and will not actually use the statistically
binding property. This is just to be consistent with the definition of the SSB hash
system.
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Prog

Inputs : Index i ∈ [o], bit str ∈ {0, 1}, proof π, index j ∈ [t].
Hardwired : Hash value h ∈ {0, 1}λ, machine M , input x1, PRF key KSPRE,
bound T , preprocessed value hk.

1. Verify proof π : Check if SSB.Verify(H,h, i, str, π) = 1. If not, output ⊥.
2. Recall that Mi denotes the turing machine that, on input x, runs the

machine M on input x and outputs the ith bit of M(x). Compute out =
SPRE.Encode(Mi, T, x1, hk;F2(KSPRE, i)) and output the jth bit of out.

Fig. 3: Circuit Prog

1. Parse crs = (crs[1], crs[2], . . . , crs[o]), where each crs[j] is a bit.
2. Compute SSB proof for each crs[j]; that is, compute π[j] =

SSB.Open(H, crs, j).
3. For j = 1 to t, do:

(a) Compute M̃i[j] = Ckt.Eval(P̃rog, (i, crs[i], π[i], j)).

4. Let M̃i = (M̃i[1] M̃i[2] . . . M̃i[t]). Compute outi = SPRE.Decode(M̃i, x2).
Finally, it outputs (out1 out2 . . . outo).

Correctness and Succinctness Correctness follows from the correctness of
(SPRE.Encode,SPRE.Decode) and (Ckt.Obf, Ckt.Eval).

Below we show the three efficiency properties required by the definition.

1. If ek ← Setup(1λ, 1o, crs), |ek| = `hash(λ) + `fn(λ), where `hash and `fn are
from SSB.

2. For every Turing machine M , time bound T , input x = (x1, x2) ∈ {0, 1}∗,
if M̃x ← Encode(M,x, T, ek), then |M̃x| = (|prog| + |t|) ≤ |Prog| + poly(λ).
Prog is padded to be the same length as the programs used in the hybrids
and Prog-sim, so |Prog| is the maximum of the length of these programs. By
inspecting the values hardwired in each of these programs we get |Prog| ≤
p(|h|, |M |, |x1|, |hk|, k, log o, t), where k is the maximum size of the keys of
F1 and F2. By the efficiency of SPRE, the definition of SSB hashes and the
definition of puncturable PRFs we get that |Prog| ≤ p2(λ, |M |, |x1|, log o)

and thus |M̃x| ≤ p2(λ, |M |, |x1|, log |x2|, log o) for some fixed polynomial p2.

3. The running time of Decode(M̃x, x2, crs) is at most O(o×t1+o×t×t2) where

t1 is the running time of SPRE.Decode(M̃i, x2) and t2 is the running time of

Ckt.Eval(P̃rog, (i, crs[i], π[i], j)). By the efficiency of the SPRE scheme and the

iO scheme we have Decode(M̃x, x2, crs) ≤ min (T,Time(M,x)) · p3(λ, log T ).

5.2 Proof of Security

Description of Simulator The simulator S.OcRE.Sim gets as input the value
M(x) (which is the output of the machine M on input x) and the public part of
the input x2, and it must simulate the shared random string crs and an encoding
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M̃x of the machine M and x. We now describe the simulator.

S.OcRE.Sim(1|M|,1|x1|,x2,1
λ,M(x),T):

The simulator does the following:

1. Compute hk = SPRE.Preprocess(1λ, x2).
2. Choose a key Kcrs for the puncturable PRF F1 and a key Ksim for the

puncturable PRF F2.
3. Then, for each i, compute crs[i] = M(x)i ⊕ wi where wi = F (Kcrs, i) and
M(x)i denotes the ith bit of M(x). The shared random string is set to be
(crs[1] crs[2] . . . crs[o]).

4. Choose a hash function H ← SSB.Gen(1λ, o, 0) and compute h = H(crs).

5. Compute ˜Prog-sim ← Ckt.Obf(Prog-sim, 1λ), where Prog-sim is defined in
Figure 4.

6. Let Mi denote the turing machine that, on input x, runs the ma-
chine M on input x and outputs the ith bit of M(x). Let t denote
|SPRE.Encode(Mi, T, z, hk; r)|) using any random string r and any input z
such that |z| = |x1|.

7. Set M̃x = ( ˜Prog-sim, t).

Prog-sim

Inputs : Index i ∈ [o], bit str ∈ {0, 1}, proof π, index j ∈ [t]
Hardwired : Hash h ∈ {0, 1}λ, machine M , PRF keys Ksim,Kcrs, preprocessed
value hk.

1. Verify proof π : Check if SSB.Verify(H,h, i, str, π) = 1. If not, output ⊥.
2. Do the following:

(a) Let w = F1(Kcrs, i) and y = w ⊕ str.
(b) Compute out = SPRE.Sim(1|Mi|, 1|x1|, hk, 1λ, y, T ; r) where r =

F2(Ksim, i).
(c) Output jth bit of out.

Fig. 4: Simulated Program Prog-sim

Hybrids We will show that the real and ideal worlds are indistinguishable
via a sequence of (o + 2) hybrid experiments Hyb0 to Hybo+1 where
Hyb0 corresponds to the real world and Hybo+1 corresponds to the
ideal world. For each i ∈ [o], in hybrid Hybi∗ , the first i∗ bits of the
CRS are computed as encryptions of output bits (with the w’s as one time
pads). The encoding of M , x does not compute the SRE for i ≤ i∗. More formally:

Hybrid Hybi∗ :
The challenger does the following:
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1. Compute hk = SPRE.Preprocess(1λ, x2).
2. Choose a key Kcrs for the puncturable PRF F1 and two keys Ksim,KSPRE for

the puncturable PRF F2.
3. Then, for each i ≤ i∗, compute crs[i] = M(x)i ⊕ wi where wi = F1(Kcrs, i)

and M(x)i denotes the ith bit of M(x).
4. For each i > i∗, pick crs[i] uniformly at random.
5. The shared random string is set to be (crs[1] crs[2] . . . crs[o]).
6. Choose a hash function H ← SSB.Gen(1λ, o, i∗) and compute h = H(crs).

Set ek = h.
7. Compute P̃rog-i∗ ← Ckt.Obf(Prog-i∗, 1λ), where Prog-i∗ is defined in Fig-

ure 5.
8. Let Mi denote the turing machine that, on input x, runs the ma-

chine M on input x and outputs the ith bit of M(x). Let t denote
|SPRE.Encode(Mi, T, x1, hk; r)| using any random string r.

9. Set M̃x = (P̃rog-i∗, t).

Prog-i∗

Inputs : Index i ∈ [o], bit str ∈ {0, 1}, proof π, index j ∈ [t]
Hardwired : Index i∗, Hash h ∈ {0, 1}λ, machine M , input x1, PRF keys
Kcrs,Ksim,KSPRE, bound T , preprocessed value hk.

1. Verify proof π : Check if SSB.Verify(H,h, i, str, π) = 1. If not, output ⊥.
2. If i ≤ i∗, do the following:

(a) Let w = F1(Kcrs, i) and y = w ⊕ str.
(b) Compute out = SPRE.Sim(1|Mi|, 1|x1|, hk, 1λ, y, T ; r) where r =

F2(Ksim, i).
(c) Output jth bit of out.

3. Else, if i > i∗: Recall that Mi denotes the turing machine that, on input x,
runs the machine M on input x and outputs the ith bit of M(x). Compute
out = SPRE.Encode(Mi, T, x1, hk;F2(KSPRE, i)) and output the jth bit of
out.

Fig. 5: Hybrid Program Prog-i∗

Hybrid Hybo+1:
Identical to Hybo except that the value x1 is not hardwired into Prog-i∗.

We include the proof of hybrid indistinguishability in the full version of the
paper.

6 Compact MPC

We consider the problem of constructing a malicious secure compact MPC protocol
for Turing machines. Consider a set of n mutually distrusting parties with inputs
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x1, . . . , xn respectively that agree on a TM M . Their goal is to securely compute
the output M(x1, . . . , xn) without leaking any information about their respective
inputs where the output can be of any unbounded polynomial size. We first define
the notion of a compact MPC protocol. Let λ denote the security parameter and
let Comm.Compl(π) denote the communication complexity (sum of the lengths of
all messages exchanged by all parties) of any protocol π. Let Time(M, x) denote
the running time of turing machine M on input x.

Definition 3. An MPC protocol π is said to be compact if there exists a
fixed polynomial poly such that for all machines M and inputs (x1, . . . , xn),
Comm.Compl(π) = poly(|M |, |x1|, . . . , |xn|, λ, log(Time(M, x))). In particular, the
communication complexity is independent of the output length and the running
time of the machine on the inputs of all the parties.

In this section, we give a round preserving compiler from any constant round
(non-compact) malicious secure MPC protocol in the plain model to a malicious
secure compact MPC protocol for Turing machines in the random oracle (RO)
model.

Formally, we prove the following theorem:

Theorem 5. For all n, t > 0, assuming the existence of:

– A (constant) k round 13 MPC protocol amongst n parties in the plain model
that is malicious secure against up to t corruptions (AND)

– Strong OCRE in the shared randomness model,

there exists a k round compact MPC protocol π amongst n parties for Turing
machines in the Programmable Random Oracle model that is malicious secure
against up to t corruptions.

Here, we note that the above compiler even works if the underlying MPC
protocol is for circuits. That is, we can convert any constant round protocol
for circuits into a constant round protocol for Turing machines (with an input
bound) by first converting the Turing machine into a (potentially large) circuit.

Corollaries:
We can instantiate the strong OCRE from our construction in Section 5. We now
discuss several corollaries on instantiating the underlying MPC protocol with
various protocols in literature based on different models.

1. Instantiating the MPC protocol with the round optimal14 plain model con-
struction of [BGJ+18] that is secure against a dishonest majority based on
DDH/Nth Residuosity, we get a four round compact MPC protocol π for
Turing machines in the RO model that is secure against a dishonest majority
assuming iO for circuits and DDH/Nth Residuosity.

13 Observe that our round preserving compiler in fact works for any MPC protocol
where the number of rounds is independent of the machine being evaluated.

14 Recall that in the plain model, the optimal round complexity is 4.

22



2. We can also instantiate the underlying MPC protocol with protocols that
are secure in the Common Random String model by using the RO’s output
on some fixed string to implement the common random string. In particular,
combining the two round semi-malicious MPC protocol of [MW16] that is
based on LWE in the common random string model or the ones of [GS18,BL18]
that are based on DDH/N th residuosity in the plain model, with a non-
interactive zero knowledge argument based on DLIN in the common random
string model [GOS06], we get two round malicious secure MPC protocols
in the common random string model. As a result, we have the following
corollary:

Corollary 3. Assuming the existence of iO for circuits and A where A
∈ {LWE,DDH,N th Residuosity} and DLIN, there exists a round opti-
mal (two round) compact MPC protocol π for Turing machines in the Pro-
grammable Random Oracle model that is malicious secure against a dishonest
majority.

3. We note that our transformation works even on instantiating the underlying
constant round MPC protocol with ones that are secure in the setting of super-
polynomial simulation[Pas03,BGI+17] or in the concurrent (self-composable)
setting [GGJS12,BGJ+17] to yield compact versions of the same in the RO
model.

Implication to [HW15] Model. Finally, we observe that our transformation
also has an implication to the circuit-based model of Hubácek and Wichs [HW15]
as elaborated in Section 2.2. Thus, we get the following corollary:

Theorem 6. For all n, t > 0, assuming the existence of a constant round MPC
protocol amongst n parties in the plain model that is malicious secure against up
to t corruptions, and strong OCRE in the shared randomness model, there exists a
constant round MPC protocol π amongst n parties for all polynomial sized circuits
in the RO model that is malicious secure against up to t corruptions where the
communication complexity of the protocol is independent of the output length of the
circuit. That is, there exists a fixed polynomial poly such that, for all circuits C and
all inputs (x1, . . . , xn) ∈ Domain(C), Comm.Compl(π) = poly(|x1|, . . . , |xn|, λ).

6.1 Construction

Notation and Primitives Used:

– Let λ denote the security parameter and RO be a random oracle that takes
as input a tuple (r, 1len) where |r| = λ and outputs a string of length len.

– Consider n parties P1, . . . ,Pn with inputs x1, . . . , xn respectively (with |xi| = λ
for each i ∈ [n]) who wish to evaluate any turing machine M on their joint
inputs.

– Let S.OcRE = (S.OcRE.Setup,S.OcRE.Encode,S.OcRE.Decode) be a strong
OCRE scheme in the shared randomness model.
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– Let πplain be a t round MPC protocol for turing machines in the plain model
that is malicious secure against a dishonest majority. For simplicity, we
assume that the protocol works using a broadcast channel - that is, in each
round, every party broadcasts a message to all other parties.

– Let NextMsgk(·) denote the algorithm used by any party to compute the
kth round of protocol πplain and let Out(·) denote the algorithm used by any
party to compute the final output. Also, without loss of generality, assume
that in protocol πplain, each party uses randomness randi of length λ. 15

Remark: To ease the exposition, we assume that the Random Oracle can output
arbitrarily long strings by also taking the desired output length as input to
the oracle. In reality, let’s say it outputs strings of length p(λ) where p is a
polynomial. Then, in the protocol below, each party can output a starting query
index ri,j and an offset oi,j to indicate that the shared random string is actually
the concatenation of RO(ri,j), . . . ,RO(ri,j + oi,j). Note that |oi,j | ≤ λ.

Protocol: The protocol is described below.

1. Round 1:
Each party Pi does the following:
– Pick a random string ri,1 ∈ {0, 1}λ. Let leni,1 = |NextMsg1(xi; randi)|.
– Compute crsi,1 = RO(ri,1, 1

leni,1).
– Compute eki,1 = S.OcRE.Setup(1λ, 1leni,1 , crsi,1).
– Compute msgi,1 = S.OcRE.Encode(NextMsg1, ((xi, randi),⊥), 2λ, eki,1).
– Output (msgi,1, ri,1, leni,1).

2. Round 2 ... t:
For each subsequent round k, each party Pi does the following:
– Let τk−2 denote the transcript of the underlying protocol πplain after

round (k − 2). τ0 = ⊥.
– Set τk−1 = τk−2.
– For each party Pj , (j 6= i) do the following:
• Parse its previous round message as (msgj,k−1, rj,k−1, lenj,k−1).

• Compute crsj,k−1 = RO(rj,k−1, 1
lenj,k−1).

• Compute msgplainj,k−1 = S.OcRE.Decode(msgj,k−1, τk−2, crsj,k−1).

• Append msgplainj,k−1 to τk−1.

– Pick a random string ri,k ∈ {0, 1}λ. Let leni,k = |NextMsgk(xi; randi, τk−1)|.
– Compute crsi,k = RO(ri,k, 1

leni,k).
– Compute eki,k = S.OcRE.Setup(1λ, 1leni,k , crsi,k).
– Compute msgi,k = S.OcRE.Encode(NextMsgk, ((xi, randi), τk−1), 2λ, eki,k).
– Output16 (msgi,k, ri,k, leni,k).

3. Output Computation:
Each party Pi does the following:

15 Internally, we can apply a PRG to expand this to any length of randomness we
require. Here, we are implicitly assuming that the protocol requires each party to use
uniformly random strings. This is true of almost every constant round MPC protocol.

16 Note that to send leni,k, the length of the message is log leni,k and so at most λ.
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– Let τt−1 denote the transcript of the underlying protocol πplain after
round (t− 1).

– Set τt = τt−1.
– For each party Pj , (j 6= i) do the following:
• Parse its previous round message as (msgj,t, rj,t, lenj,t).

• Compute crsj,t = RO(rj,t, 1
lenj,t).

• Compute msgplainj,t = S.OcRE.Decode(msgj,t, τt−1, crsj,t).

• Append msgplainj,t to τt.
– Output Out(xi, randi, τt).

Efficiency of the Protocol:
The size of the messages sent in round k by each party Pi is

3 ·max{|(msgi,k, ri,k, leni,k)|}i,k. By the definition of strong output-compressing
randomized encodings, |msgi,k| ≤ p2(|NextMsgk|, |(xi, randi)|, log T, λ) where p2
is a polynomial. |randi| = λ, |NextMsgk| = p3(|M |) where M is the original
functionality and p3 is a polynomial. Also, we know T is at most 2λ. So
|msgi,k| ≤ p3(|M |, |xi|, λ) for some polynomial p3. We know that |ri,k| = λ and
|leni,k| ≤ λ. Therefore, the size of the messages sent in round k by each party Pi
is at most p3(|M |, |xi|, λ).

Since πplain is a constant-round protocol, the total communication complexity
of our protocol π is at most p(n, |M |, |x1|, . . . , |xn|, λ) for a fixed polynomial p.

6.2 Security Proof

In this section, we formally prove Theorem 6.
Consider an adversary A who corrupts t parties where t < n. Let’s
say the simulator Simplain for protocol πplain consists of 4 algorithms
(Simplain

1 ,Simplain
2 ,Simplain

3 ,Simplain
Out ) where: Simplain

1 (j, ·) outputs the adversary’s

view for the jth of the first t1 rounds, Simplain
2 queries the ideal functionality to

receive the output, Simplain
3 (j, ·) outputs the adversary’s view for the jth round of

the last (t− t1) rounds and Simplain
Out (i, ·) computes the output of honest party Pi.

17 Also, let’s denote the size of Simplain(·) by s(λ).

Description of Simulator The strategy of the simulator Sim for our protocol
π against a malicious adversary A is described below.

1. Round 1 ...t1:
For each round k and each honest party Pi, Sim does the following:
– Let τk−2 denote the transcript of the underlying protocol πplain after

round (k − 2). τ0 = ⊥.

17 Simplain
1 also outputs some state that is fed as input to the subsequent algorithms and

similarly for Simplain
2 , Simplain

3 .
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– Set τk−1 = τk−2.
– For each party Pj , (j 6= i), if k > 1, do the following:
• Parse its previous round message as (msgj,k−1, rj,k−1, lenj,k−1).

• Compute crsj,k−1 = RO(rj,k−1, 1
lenj,k−1).

• Compute msgplainj,k−1 = S.OcRE.Decode(msgj,k−1, τk−2, crsj,k−1).

• Append msgplainj,k−1 to τk−1.

– Compute msgplaini,k = Simplain
1 (k, τk−1, st) where st denotes the state of

Simplain.
– Pick a random string ri,k ∈ {0, 1}λ.

– Compute (msgi,k, crsi,k)← S.OcRE.Sim(1|s(λ|, 1(2·λ+|τk−1|), 1λ,msgplaini,k , 1λ).

– Set RO(ri,k, 1
|crsi,k|) = crsi,k.

– Output18 (msgi,k, ri,k, |crsi,k|).
2. Query to Ideal Functionality:

Sim queries Simplain
2 (τk1 , st) and receives an output y in return.

3. Round (t1 + 1) ... t:
For each round k and each honest party Pi, Sim does the following:
– Let τk−2 denote the transcript of the underlying protocol πplain after

round (k − 2). τ0 = ⊥.
– Set τk−1 = τk−2.
– For each party Pj , (j 6= i), if k > 1, do the following:
• Parse its previous round message as (msgj,k−1, rj,k−1, lenj,k−1).

• Compute crsj,k−1 = RO(rj,k−1, 1
lenj,k−1).

• Compute msgplainj,k−1 = S.OcRE.Decode(msgj,k−1, τk−2, crsj,k−1).

• Append msgplainj,k−1 to τk−1.

– Compute msgplaini,k = Simplain
3 (k, y, τk−1, st) where st denotes the state of

Simplain.
– Pick a random string ri,k ∈ {0, 1}λ.

– Compute (msgi,k, crsi,k)← S.OcRE.Sim(1|s(λ|, 1(2·λ+|τk−1|), 1λ,msgplaini,k , 1λ).

– Set RO(ri,k, 1
|crsi,k|) = crsi,k.

– Output (msgi,k, ri,k, |crsi,k|).
4. Output Computation:

Sim does the following:
– For each honest party Pi, do:
• Let τt−1 denote the transcript of the underlying protocol πplain after

round (t− 1).
• Set τt = τt−1.
• For each party Pj , (j 6= i) do the following:
∗ Parse its previous round message as (msgj,k−1, rj,k−1, lenj,k−1).

∗ Compute crsj,k−1 = RO(rj,k−1, 1
lenj,k−1).

∗ Compute msgplainj,t = S.OcRE.Decode(msgj,t, τt−1, crsj,t).

∗ Append msgplainj,t to τt.

18 As before, note that to send the message |crsi,k|, the length of the string is log |crsi,k|.
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• If Simplain
Out (i, y, τt, st) = ⊥, send ⊥ to the ideal functionality and stop.

– Instruct the ideal functionality to deliver output to the honest parties.

Remarks: Note that if Simplain is a rewinding simulator, our simulator Sim will
also be a rewinding simulator.

We include the full proof of indistinguishability in the full version of the
paper.
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