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Abstract. The Shortest Vector Problem (SVP) is one of the mathemat-
ical foundations of lattice based cryptography. Lattice sieve algorithms
are amongst the foremost methods of solving SVP. The asymptotically
fastest known classical and quantum sieves solve SVP in a d-dimensional
lattice in 2cd+o(d) time steps with 2c′d+o(d) memory for constants c, c′. In
this work, we give various quantum sieving algorithms that trade com-
putational steps for memory.
We first give a quantum analogue of the classical k-Sieve algorithm
[Herold–Kirshanova–Laarhoven, PKC’18] in the Quantum Random Ac-
cess Memory (QRAM) model, achieving an algorithm that heuristically
solves SVP in 20.2989d+o(d) time steps using 20.1395d+o(d) memory. This
should be compared to the state-of-the-art algorithm [Laarhoven, Ph.D
Thesis, 2015] which, in the same model, solves SVP in 20.2653d+o(d) time
steps and memory. In the QRAM model these algorithms can be imple-
mented using poly(d) width quantum circuits.
Secondly, we frame the k-Sieve as the problem of k-clique listing in a
graph and apply quantum k-clique finding techniques to the k-Sieve.
Finally, we explore the large quantum memory regime by adapting par-
allel quantum search [Beals et al., Proc. Roy. Soc. A’13] to the 2-Sieve,
and give an analysis in the quantum circuit model. We show how to solve
SVP in 20.1037d+o(d) time steps using 20.2075d+o(d) quantum memory.

1 Introduction

The Shortest Vector Problem (SVP) is one of the central problems in the theory
of lattices. For a given d-dimensional Euclidean lattice, usually described by a
basis, to solve SVP one must find a shortest non zero vector in the lattice. This
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problem gives rise to a variety of efficient, versatile, and (believed to be) quantum
resistant cryptographic constructions [AD97,Reg05]. To obtain an estimate for
the security of these constructions it is important to understand the complexities
of the fastest known algorithms for SVP.

There are two main families of algorithms for SVP, (1) algorithms that require
2ω(d) time and poly(d) memory; and (2) algorithms that require 2Θ(d) time and
memory. The first family includes lattice enumeration algorithms [Kan83,GNR10].
The second contains sieving algorithms [AKS01,NV08,MV10], Voronoi cell based
approaches [MV10] and others [ADRSD15,BGJ14]. In practice, it is only enu-
meration and sieving algorithms that are currently competitive in large dimen-
sions [ADH+19,TKH18]. Practical variants of these algorithms rely on heuristic
assumptions. For example we may not have a guarantee that the returned vector
will solve SVP exactly (e.g. pruning techniques for enumeration [GNR10], lifting
techniques for sieving [Duc18]), or that our algorithm will work as expected on
arbitrary lattices (e.g. sieving algorithms may fail on orthogonal lattices). Yet
these heuristics are natural for lattices often used in cryptographic constructions,
and one does not require an exact solution to SVP to progress with cryptanaly-
sis [ADH+19]. Therefore, one usually relies on heuristic variants of SVP solvers
for security estimates.

Among the various attractive features of lattice based cryptography is its
potential resistance to attacks by quantum computers. In particular, there is no
known quantum algorithm that solves SVP on an arbitrary lattice significantly
faster than existing classical algorithms.1 However, some quantum speed-ups for
SVP algorithms are possible in general.

It was shown by Aono–Nguyen–Shen [ANS18] that enumeration algorithms
for SVP can be sped up using the quantum backtracking algorithm of Monta-
naro [Mon18]. More precisely, with quantum enumeration one solves SVP on

a d-dimensional lattice in time 2
1
4ed log d+o(d log d), a square root improvement

over classical enumeration. This algorithm requires poly(d) classical and quan-
tum memory. This bound holds for both provable and heuristic versions of enu-
meration. Quantum speed-ups for sieving algorithms have been considered by
Laarhoven–Mosca–van de Pol [LMvdP15] and later by Laarhoven [Laa15]. The
latter result presents various quantum sieving algorithms for SVP. One of them
achieves time and classical memory of order 20.2653d+o(d) and requires poly(d)
quantum memory. This is the best known quantum time complexity for heuristic
sieving algorithms. Provable single exponential SVP solvers were considered in
the quantum setting by Chen–Chang–Lai [CCL17]. Based on [ADRSD15,DRS14],
the authors describe a 21.255d+o(d) time, 20.5d+o(d) classical and poly(d) quan-
tum memory algorithm for SVP. All heuristic and provable results rely on the
classical memory being quantumly addressable.

A drawback of sieving algorithms is their large memory requirements. Ini-
tiated by Bai–Laarhoven–Stehlé, a line of work [BLS16,HK17,HKL18] gave a

1 For some families of lattices, like ideal lattices, there exist quantum algorithms that
solve a variant of SVP faster than classical algorithms, see [CDW17,PMHS19]. In
this work, we consider arbitrary lattices.
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family of heuristic sieving algorithms, called tuple lattice sieves, or k-Sieves for
some fixed constant k, that offer time-memory trade-offs. Such trade-offs have
proven important in the current fastest SVP solvers, as the ideas of tuple siev-
ing offer significant speed-ups in practice, [ADH+19]. In this work, we explore
various directions for asymptotic quantum accelerations of tuple sieves.

Our results.

1. In Section 4 we show how to use a quantum computer to speed up the k-
Sieve of Bai–Laarhoven–Stehlé [BLS16] and its improvement due to Herold–
Kirshanova–Laarhoven [HKL18] (Algorithms 4.1,4.2). One data point achieves
a time complexity of 20.2989d+o(d), while requiring 20.1395d+o(d) classical mem-
ory and poly(d) width quantum circuits. In the Area×Time model this beats
the previously best known algorithm [Laa15] of time and memory complex-
ities 20.2653d+o(d); we almost halve the constant in the exponent for memory
at the cost of a small increase in the respective constant for time.

2. Borrowing ideas from [Laa15] in the full version [KMPR19, App. B] we give
a quantum k-Sieve that exploits nearest neighbour techniques. For k = 2,
we recover Laarhoven’s 20.2653d+o(d) time and memory quantum algorithm.

3. In Section 5 the k-Sieve is reduced to listing k-cliques in a graph. By general-
ising the triangle finding algorithm of [BdWD+01] this approach leads to an
algorithm that matches the performance of Algorithm 4.1, when optimised
for memory, for all k.

4. In Section 6 we specialise to listing 3-cliques (triangles) in a graph. Using
the quantum triangle finding algorithm of [LGN17] allows us, in the query
model,2 to perform the 3-Sieve using 20.3264d+o(d) queries.

5. In Section 7 we describe a quantum circuit consisting only of gates from a uni-
versal gate set (e.g. CNOT and single qubit rotations) of depth 20.1038d+o(d)

and width 20.2075d+o(d) that implements the 2-Sieve as proposed classically
in [NV08]. In particular we consider exponential quantum memory to make
significant improvements to the number of time steps. Our construction
adapts the parallel search procedure of [BBG+13].

All the results presented in this work are asymptotic in nature: our algorithms
have time, classical memory, quantum memory complexities of orders 2cd+o(d),
2c
′d+o(d), poly(d) or 2c

′′d+o(d) respectively, for c, c′, c′′ ∈ Θ(1), which we aim to
minimise. We do not attempt to specify the o(d) or poly(d) terms.

Our techniques. We now briefly describe the main ingredients of our results.

1. A useful abstraction of the k-Sieve is the configuration problem, first de-
scribed in [HK17]. It consists of finding k elements that satisfy certain pair-
wise inner product constraints from k exponentially large lists of vectors.
Assuming (x1, . . . ,xk) is a solution tuple, the ith element xi can be ob-
tained via a brute force search either over the ith input list [BLS16], or over

2 This means that the complexity of the algorithm is measured by the number of oracle
calls to the adjacency matrix of a graph.
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a certain sublist of the ith list [HK17], see Figure 1b. We replace the brute
force searches with calls to Grover’s algorithm and reanalyse the configura-
tion problem. The search for xi within such a data structure can itself be
sped up by Grover’s algorithm.

2. The configuration problem can be reduced to the k-clique problem in a graph
with vertices representing elements from the lists given by the configuration
problem. Vertices are connected by an edge if and only if the corresponding
list elements satisfy some inner product constraint. Classically, this interpre-
tation yields no improvements to configuration problem algorithms. However
we achieve quantum speed-ups by generalising the triangle finding algorithm
of Buhrman et al. [BdWD+01] and applying it to k-cliques.

3. We apply the triangle finding algorithm of Le Gall–Nakajima [LGN17] and
exploit the structure of our graph instance. In particular we form many
graphs from unions of sublists of our lists, allowing us to alter the sparsity
of said graphs.

4. To make use of more quantum memory we run Grover searches in parallel.
The idea is to allow simultaneous queries by several processors to a large,
shared, quantum memory. Instead of looking for a “good” xi for one fixed
tuple (x1, . . . ,xi−1), one could think of parallel searches aiming to find a
“good” xi for several tuples (x1, . . . ,xi−1). The possibility of running sev-
eral Grover’s algorithms concurrently was shown in the work of Beals et
al. [BBG+13]. Based on this result we specify all the subroutines needed to
solve the shortest vector problem using large quantum memory.

2 Preliminaries

We denote by Sd ⊂ Rd+1 the d-dimensional unit sphere. We use soft-O notation
to denote running times, that is T = Õ(2cd) suppresses subexponential factors
in d. By [n] we denote the set {1, . . . , n}. The norm considered in this work is
Euclidean and is denoted by ‖ · ‖.

For any set x1, . . . ,xk of vectors in Rd, the Gram matrix C ∈ Rk×k is given
by Ci,j = 〈xi,xj〉, the set of pairwise scalar products. For I ⊂ [k], we denote
by C[I] the |I| × |I| submatrix of C obtained by restricting C to the rows and
columns indexed by I. For a vector x and i ∈ [k], x[i] denotes the ith entry. For
a function f , by Of we denote a unitary matrix that implements f .

Lattices. Given a basis B = {b1, . . . ,bm} ⊂ Rd of linearly independent vectors
bi, the lattice generated by B is defined as L(B) = {

∑m
i=1 zibi : zi ∈ Z}. For

simplicity we work with lattices of full rank (d = m). The Shortest Vector
Problem (SVP) is to find, for a given B, a shortest non zero vector of L(B).
Minkowski’s theorem for the Euclidean norm states that a shortest vector of
L(B) is bounded from above by

√
d · det(B)

1/d
.

Quantum Search. Our results rely on Grover’s quantum search algorithm [Gro96]
which finds “good” elements in a (large) list. The analysis of the success probabil-
ity of this algorithm can be found in [BBHT98]. We also rely on the generalisation
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of Grover’s algorithm, called Amplitude Amplification, due to Brassard–Høyer–
Mosca–Tapp [BHMT02] and a result on parallel quantum search [BBG+13].

Theorem 1 (Grover’s algorithm [Gro96,BBHT98]). Given quantum ac-
cess to a list L that contains t “good” elements (the value t is not necessar-
ily known) and a function f : L → {0, 1}, described by a unitary Of , which
determines whether an element is “good” or not, we wish to find a solution
i ∈ [|L|], such that for f(xi) = 1, xi ∈ L. There exists a quantum algorithm,
called Grover’s algorithm, that with probability greater than 1 − t/ |L| outputs
one “good” element using O(

√
|L| /t) calls to Of .

Theorem 2 (Amplitude Amplification [BHMT02, Theorem 2]). Let A
be any quantum algorithm that makes no measurements and let A |0〉 = |Ψ0〉 +
|Ψ1〉, where |Ψ0〉 and |Ψ1〉 are spanned by “bad” and “good” states respectively. Let
further a = 〈Ψ1|Ψ1〉 be the success probability of A. Given access to a function f
that flips the sign of the amplitudes of good states, i.e. f : |x〉 7→ − |x〉 for “good”
|x〉 and leaves the amplitudes of “bad” |x〉 unchanged, the amplitude amplification
algorithm constructs the unitary Q = −ARA−1Of , where R is the reflection
about |0〉, and applies Qm to the state A |0〉, where m = bπ4 arcsin(

√
a)c. Upon

measurement of the system, a “good” state is obtained with probability at least
max{a, 1− a}.

Theorem 3 (Quantum Parallel Search [BBG+13]). Given a list L, with
each element of bit length d, and |L| functions that take list elements as in-

put fi : L → {0, 1} for i ∈ [|L|], we wish to find solution vectors s ∈ [|L|]|L|.
A solution has fi(xs[i]) = 1 for all i ∈ [|L|]. Given unitaries Ufi : |x〉 |b〉 →
|x〉 |b⊕ fi(x)〉 there exists a quantum algorithm that, for each i ∈ [|L|], either re-
turns a solution s[i] or if there is no such solution, returns no solution. The algo-
rithm succeeds with probability Θ(1) and, given that each Ufi has depth and width

poly log(|L|, d), can be implemented using a quantum circuit of width Õ(|L|) and

depth Õ(
√
|L|).

Computational Models. Our algorithms are analysed in the quantum circuit
model [KLM07]. We set each wire to represent a qubit, i.e. a vector in a two
dimensional complex Hilbert space, and assert that we have a set of universal
gates. We work in the noiseless quantum theory, i.e. we assume there is no (or
negligible) decoherence or other sources of noise in the computational procedures.

The algorithms given in Sections 4 and 5 are in the QRAM model and as-
sume quantumly accessible classical memory [GLM08]. More concretely in this
model we store all data, e.g. the list of vectors, in classical memory and only
demand that this memory is quantumly accessible, i.e. elements in the list can
be efficiently accessed in coherent superposition. This enables us to design al-
gorithms that, in principle, do not require large quantum memories and can be
implemented with only poly(d) qubits and with the 2Θ(d) sized list stored in clas-
sical memory. Several works [BHT97,Kup13] suggest that this memory model is
potentially easier to achieve than a full quantum memory.
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In Section 6 we study the algorithms in the query model, which is the typical
model for quantum triangle or k-clique finding algorithms. Namely, the complex-
ity of our algorithm is measured in the number of oracle calls to the adjacency
matrix of a graph associated to a list of vectors.

Acknowledging the arguments against the feasibility of QRAM and whether
it can be meaningfully cheaper than quantum memory [AGJO+15] we also con-
sider, Section 7, algorithms that use exponential quantum memory in the quan-
tum circuit model without assuming QRAM.

3 Sieving as Configuration Search

In this section we describe previously known classical sieving algorithms. We will
not go into detail or give proofs, which can be found in the relevant references.

Sieving algorithms receive on input a basis B ∈ Rd×d and start by sampling
an exponentially large list L of (long) lattice vectors from L(B). There are effi-
cient algorithms for sampling lattice vectors, e.g. [Kle00]. The elements of L are
then iteratively combined to form shorter lattice vectors, xnew = x1±x2±. . .±xk
such that ‖xnew‖ ≤ maxi≤k{‖xi‖}, for some k ≥ 2. Newly obtained vectors xnew

are stored in a new list and the process is repeated with this new list of shorter
vectors. It can be shown [NV08,Reg09] that after poly(d) such iterations we
obtain a list that contains a shortest vector. Therefore, the asymptotic complex-
ity of sieving is determined by the cost of finding k-tuples whose combination
produces shorter vectors. Under certain heuristics, specified below, finding such
k-tuples can be formulated as the approximate k-List problem.

Definition 1 (Approximate k-List problem). Assume we are given k lists
L1, . . . , Lk of equal exponential (in d) size |L| and whose elements are i.i.d. uni-
formly chosen vectors from Sd−1. The approximate k-List problem is to find |L|
solutions, where a solution is a k-tuple (x1, . . . , xk) ∈ L1 × . . . × Lk satisfying
‖x1 + . . .+ xk‖ ≤ 1.

The assumption made in analyses of heuristic sieving algorithms [NV08]
is that the lattice vectors in the new list after an iteration are thought of as
i.i.d. uniform vectors on a thin spherical shell (essentially, a sphere), and, once
normalised, on Sd−1. Hence sieves do not “see” the discrete structure of the
lattice from the vectors operated on. The heuristic becomes invalid when the
vectors become short. In this case we assume we have solved SVP. Thus, we
may not find a shortest vector, but an approximation to it, which is enough for
most cryptanalytic purposes.

We consider k to be constant. The lists L1, . . . , Lk in Definition 1 may be
identical. The algorithms described below are applicable to this case as well.
Furthermore, the approximate k-List problem only looks for solutions with +
signs, i.e. ‖x1 + . . .+ xk‖ ≤ 1, while sieving looks for arbitrary signs. This is
not an issue, as we may repeat an algorithm for the approximate k-List problem
2k = O(1) times in order to obtain all solutions.
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Configuration Search. Using a concentration result on the distribution of scalar
products of x1, . . . ,xk ∈ Sd−1 shown in [HK17], the approximate k-List problem
can be reduced to the configuration problem. In order to state this problem, we
need a notion of configurations.

Definition 2 (Configuration). The configuration C = Conf(x1, . . . ,xk) of k
points x1, . . . ,xk ∈ Sd−1 is the Gram matrix of the xi, i.e. Ci,j = 〈xi , xj〉.

A configuration C ∈ Rk×k is a positive semidefinite matrix. Rewriting the
solution condition ‖x1 + . . .+ xk‖2 ≤ 1, one can check that a configuration
C for a solution tuple satisfies 1tC1 ≤ 1. We denote the set of such “good”
configurations by

C = {C ∈ Rk×k : C is positive semidefinite and 1tC1 ≤ 1}.

It has been shown [HK17] that rather than looking for k-tuples that form
a solution for the approximate k-List problem, we may look for k-tuples that
satisfy a constraint on their configuration. It gives rise to the following problem.

Definition 3 (Configuration problem). Let k ∈ N and ε > 0. Suppose we
are given a target configuration C ∈ C . Given k lists L1, . . . , Lk all of exponential
(in d) size |L|, whose elements are i.i.d. uniform from Sd−1, the configuration
problem consists of finding a 1− o(1) fraction of all solutions, where a solution
is a k-tuple (x1, . . . ,xk) with xi ∈ Li such that |〈xi , xj〉 − Ci,j | ≤ ε for all i, j.

Solving the configuration problem for a C ∈ C gives solutions to the approx-
imate k-List problem. For a given C ∈ Rk×k the number of expected solutions
to the configuration problem is given by det(C) as the following theorem shows.

Theorem 4 (Distribution of configurations [HK17, Theorem 1]). If
x1, . . . ,xk are i.i.d. from Sd−1, d > k, then their configuration C = Conf(x1, . . . ,xk)
follows a distribution with density function

µ = Wd,k · det(C)
1
2 (d−k)

dC1,2 . . . dCd−1,d, (1)

where Wd,k = Ok(d
1
4 (k2−k)) is an explicitly known normalisation constant that

only depends on d and k.

This theorem tells us that the expected number of solutions to the config-

uration problem for C is given by
∏
i |Li| · (detC)

d/2
. If we want to apply an

algorithm for the configuration problem to the approximate k-List problem (and
to sieving), we require that the expected number of output solutions to the con-
figuration problem is equal to the size of the input lists. Namely, C and the input

lists Li of size |L| should (up to polynomial factors) satisfy |L|k ·(detC)
d/2

= |L|.
This condition gives a lower bound on the size of the input lists. Using Chernoff
bounds, one can show (see [HKL18, Lemma 2]) that increasing this bound by a
poly(d) factor gives a sufficient condition for the size of input lists, namely

|L| = Õ

((
1

det(C)

) d
2(k−1)

)
. (2)
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Classical algorithms for the configuration problem. The first classical algorithm
for the configuration problem for k ≥ 2 was given by Bai–Laarhoven–Stehlé [BLS16].
It was later improved by Herold–Kirshanova [HK17] and by Herold–Kirshanova–
Laarhoven [HKL18] (Figure 1b). These results present a family of algorithms for
the configuration problem that offer time-memory trade-offs. In Section 4 we
present quantum versions of these algorithms.

Both algorithms [BLS16,HKL18] process the lists from left to right but in a
different manner. For each x1 ∈ L1 the algorithm from [BLS16] applies a filtering
procedure to L2 and creates the “filtered” list L2(x1). This filtering procedure
takes as input an element x2 ∈ L2 and adds it to L2(x1) iff |〈x1 , x2〉 − C1,2| ≤
ε. Having constructed the list L2(x1), the algorithm then iterates over it: for
each x2 ∈ L2(x1) it applies the filtering procedure to L3 with respect to C2,3

and obtains L3(x1,x2). Throughout, vectors in brackets indicate fixed elements
with respect to which the list has been filtered. Filtering of the top level lists
(L1, . . . , Lk) continues in this fashion until we have constructed Lk(x1, . . . ,xk−1)
for fixed values x1, . . . ,xk−1. The tuples of the form (x1, . . . ,xk−1,xk) for all
xk ∈ Lk(x1, . . . ,xk−1) form solutions to the configuration problem.

The algorithms from [HK17,HKL18] apply more filtering steps. For a fixed
x1 ∈ L1, they not only create L2(x1), but also L3(x1), . . . , Lk(x1). This speeds
up the next iteration over all x2 ∈ L2(x1), where now the filtering step with re-
spect to C2,3 is applied not to L3, but to L3(x1), as well as to L4(x1), . . . , Lk(x1),
each of which is smaller than Li. This speeds up the construction of L3(x1,x2).
The algorithm continues with this filtering process until the last inner product
check with respect to Ck−1,k is applied to all the elements from Lk(x1, . . . ,xk−2)
and the list Lk(x1, . . . ,xk−1) is constructed. This gives solutions of the form
(x1, . . . ,xk−1,xk) for all xk ∈ Lk(x1, . . . ,xk−1). The concentration result, The-
orem 4, implies the outputs of algorithms from [BLS16] and [HK17,HKL18] are
(up to a subexponential fraction) the same. Pseudocode for [HK17] can be found
in the full version [KMPR19, App. A].

Important for our analysis in Section 4 will be the the result of [HKL18]
that describes the sizes of all the intermediate lists that appear during the con-
figuration search algorithms via the determinants of submatrices of the target
configuration C. The next theorem gives the expected sizes of these lists and the
time complexity of the algorithm from [HKL18].

Theorem 5 (Intermediate list sizes [HKL18, Lemma 1] and time com-
plexity of configuration search algorithm). During a run of the configura-
tion search algorithms described in Figures 1a, 1b, given an input configuration
C ∈ Rk×k and lists L1, . . . , Lk ⊂ Sd−1 each of size |L|, the intermediate lists for
1 ≤ i < j ≤ k are of expected sizes

E[|Lj(x1, . . . ,xi)|] = |L| ·
(

det(C[1, . . . , i, j])

det(C[1 . . . i])

)d/2
. (3)

The expected running time of the algorithm described in Figure 1b is

T C
k-Conf

= max
1≤i≤k

[
i∏

r=1

|Lr(x1, . . . ,xr−1)| · max
i+1≤j≤k

|Lj(x1, . . . ,xi−1)|

]
. (4)
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Finding a configuration for optimal runtime. For a given i the square bracketed
term in Eq. (4) represents the expected time required to create all filtered lists
on a given “level”. Here “level” refers to all lists filtered with respect to the same
fixed x1, . . . ,xi−1, i.e. a row of lists in Figure 1b. In order to find an optimal
configuration C that minimises Eq. (4), we perform numerical optimisations
using the Maple™ package [Map].3 In particular, we search for C ∈ C that
minimises Eq. (4) under the condition that Eq. (2) is satisfied (so that we actually
obtain enough solutions for the k-List problem). Figures for the optimal runtime
and the corresponding memory are given in Table 1. The memory is determined
by the size of the input lists computed from the optimal C using Eq. (2). Since the
k-List routine determines the asymptotic cost of k-Sieve, the figures in Table 1
are also the constants in the exponents for complexities of k-Sieves.

k 2 3 4 5 6 . . . 16 17 18

Time 0.4150 0.3789 0.3702 0.3707 0.3716 0.3728 0.37281 0.37281

Space 0.2075 0.1895 0.1851 0.1853 0.1858 0.1864 0.18640 0.18640

Table 1: Asymptotic complexity exponents for the approximate k-List problem,
base 2. The table gives optimised runtime and the corresponding memory expo-
nents for the classical algorithm from [HKL18], see Figure 1b.

Interestingly, the optimal runtime constant turns out to be equal for large
enough k. This can be explained as follows. The optimal C achieves the situation
where all the expressions in the outer max in Eq. (4) are equal. This implies that
creating all the filtered lists on level i asymptotically costs the same as creating
all the filtered lists on level i+ 1 for 2 ≤ i ≤ k − 1. The cost of creating filtered
lists Li(x1) on the second level (assuming that the first level consists of the

input lists) is of order |L|2. This value, |L|2, becomes (up to poly(d) factors) the
running time of the whole algorithm (compare the Time and Space constants
for k = 16, 17, 18 in Table 1). The precise shape of C ∈ C that makes the costs
per level equal can be obtained by equating all the terms in the max of Eq. (4)

and minimising the value |L|2 under these constraints. Even for small k these
computations become rather tedious and we do not attempt to express Ci,j as
a function of k, which is, in principal, possible.

Finding a configuration for optimal memory. If we want to optimise for memory,
the optimal configuration C has all its off diagonal elements Ci,j = −1/k. We
call such a configuration balanced. It is shown in [HK17] that such C maximises
det(C) among all C ∈ C , which, in turn, minimises the sizes of the input lists
(but does not lead to optimal running time as the costs per level are not equal).

3 The code is available at https://github.com/ElenaKirshanova/QuantumSieve
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Fig. 1: Algorithms for the configuration problem. Procedures Filteri,j receive as
input a vector (e.g. x1), a list of vectors (e.g. L2), and a real number Ci,j , the
target inner product. It creates another shorter list (e.g. L2(x1)) that contains
all vectors from the input list whose inner product with the input vector is within
some small ε from the target inner product.

L1 L2 L3
. . . Lk

x1

Filter1,2

L2(x1)
. . .

x2

Filter2,3

L3(x1,x2) ...

Filterk−1,k

Lk(x1, . . . ,xk−1)

(a) The algorithm of Bai et al. [BLS16] for the configuration problem.

L1 L2 L3
. . . Lk

x1

Filter1,2 Filter1,3 Filter1,k

L2(x1) L3(x1) . . . Lk(x1)

x2

Filter2,3 Filter2,k

L3(x1,x2)
Lk(x1,x2)

(b) The algorithm of Herold et al. [HKL18] for the configuration problem.
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4 Quantum Configuration Search

In this section we present several quantum algorithms for the configuration prob-
lem (Definition 3). As explained in Section 3, this directly translates to quantum
sieving algorithms for SVP. We start with a quantum version of the BLS style
configuration search [BLS16], then we show how to improve this algorithm by
constructing intermediate lists. In the full version [KMPR19, App. B] we show
how nearest neighbour methods in the quantum setting speed up the latter al-
gorithm.

Recall the configuration problem: as input we receive k lists Li, i ∈ [k] each
of size a power of two,4 a configuration matrix C ∈ Rk×k and ε ≥ 0. To describe
our first algorithm we denote by f[i],j a function that takes as input (i+1) many
d-dimensional vectors and is defined as

f[i],j(x1, . . . ,xi,x) =

{
1, |〈x` , x〉 − C`,j | ≤ ε, ` ∈ [i]

0, else.

A reversible embedding of f[i],j is denoted by Of[i],j
. Using these functions we

perform a check for “good” elements and construct the lists Lj(x1,x2, . . . ,xi).
Furthermore, we assume that any vector encountered by the algorithm fits into
d̄ qubits. We denote by |0〉 the d̄-tensor of 0 qubits, i.e. |0〉 = |0⊗d̄〉.

The input lists, Li, i ∈ [k], are stored classically and are assumed to be
quantumly accessible. In particular, we assume that we can efficiently construct
a uniform superposition over all elements from a given list by first applying
Hadamards to |0〉 to create a superposition over all indices, and then by querying
L[i] for each i in the superposition. That is, we assume an efficient circuit for

1√
|L|

∑
i |i〉 |0〉 →

1√
|L|

∑
i |i〉 |L[i]〉. For simplicity, we ignore the first qubit that

stores indices and we denote by |ΨL〉 a uniform superposition over all the elements
in L, i.e. |ΨL〉 = 1√

|L|

∑
x∈L |x〉.

The idea of our algorithm for the configuration problem is the following. We
have a global classical loop over x1 ∈ L1 inside which we run our quantum
algorithm to find a (k − 1) tuple (x2, . . . ,xk) that together with x1 gives a
solution to the configuration problem. We expect to have O(1) such (k − 1)
tuples per x1.5 At the end of the algorithm we expect to obtain such a solution
by means of amplitude amplification (Theorem 2). In Theorem 6 we argue that
this procedure succeeds in finding a solution with probability at least 1−2−Ω(d).

Inside the classical loop over x1 we prepare (k−1)d̄ qubits, which we arrange
into k − 1 registers, so that each register will store (a superposition of) input
vectors, see Figure 2. Each such register is set in uniform superposition over
the elements of the input lists: |ΨL2

〉 ⊗ |ΨL3
〉 ⊗ · · · ⊗ |ΨLk〉. We apply Grover’s

algorithm on |ΨL2
〉. Each Grover’s iteration is defined by the unitary Q1,2 =

4 This is not necessary but it enables us to efficiently create superpositions |ΨLi〉 using
Hadamard gates. Since our lists Li are of sizes 2cd+o(d) for a large d and a constant
c < 1, this condition is easy to satisfy by rounding cd.

5 This follows by multiplying the sizes of the lists Li(x1, . . .xi−1) for all 2 ≤ i ≤ k.
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−H⊗d̄RH⊗d̄Of[1],2
. Here H is the Hadamard gate and R is the rotation around

|0〉. We have |L2(x1)| “good” states out of |L2| possible states in |ΨL2
〉, so after

O
(√

|L2|
|L2(x1)|

)
applications of Q1,2 we obtain the state

|ΨL2(x1)〉 =
1√

|L2(x1)|

∑
x2∈L2(x1)

|x2〉 . (5)

In fact, what we create is a state close to Eq. (5) as we do not perform any
measurement. For now, we drop the expression “close to” for all the states in
this description, and argue about the failure probability in Theorem 6.

A

|0〉 H⊗d̄ −H⊗d̄RH⊗d̄Of[1],2

−ARA−1Og

︸ ︷︷ ︸√
|L2|
|L2(x1)| iterations

|0〉 H⊗d̄ −H⊗d̄RH⊗d̄Of[2],3︸ ︷︷ ︸√
|L3|

|L3(x1,x2)| iterations

|0〉 H⊗d̄ −H⊗d̄RH⊗d̄Of[2],4︸ ︷︷ ︸√
|L4|

|L4(x1,x2)| iterations ︸ ︷︷ ︸
(|L2(x1)|·|L3(x1.x2)|
|L4(x1,x2)|)1/2

|ΨL2
〉⊗|ΨL3

〉⊗|ΨL4
〉 |ΨL2(x1)〉⊗|ΨL3

〉⊗|ΨL4
〉

|ΨL2(x1)〉⊗|ΨL3(x1,x2)〉⊗|ΨL4(x1,x2)〉

Fig. 2: Quantum circuit representing the quantum part of Algorithm 4.1 with
k = 4, i.e. this circuit is executed inside the loop over x1 ∈ L1. The Hadamard

gates create the superposition |ΨL2
〉⊗ |ΨL3

〉⊗ |ΨL4
〉. We apply

√
|L2|
|L2(x1)| Grover

iterations to |ΨL2
〉 to obtain the state |ΨL2(x2)(x1)〉 ⊗ |ΨL3

〉 ⊗ |ΨL4
〉. We then

apply (sequentially) O
(√

|L3|
|L3(x1,x2)|

)
resp. O

(√
|L4|

|L4(x1,x2)|

)
Grover iterations

to the second resp. third registers, where the checking function takes as input the
first and second resp. the first and third registers. This whole process is A and
is repeated O(

√
|L2(x1)| · |L3(x1,x2)| |L4(x1,x2)|) times inside the amplitude

amplification. Final measurement gives a triple (x2,x3,x4) which, together with
a fixed x1, forms a solution to the configuration problem.
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Now consider the state |ΨL2(x1)〉 ⊗ |ΨL3
〉 and the function f[2],3 that uses

the first and second registers and a fixed x1 as inputs. We apply the unitary
Q2,3 to |ΨL3〉, where Q2,3 = −H⊗d̄RH⊗d̄Of[2],3

. In other words, for all vectors
from L3, we check if they satisfy the inner product constraints with respect to
x1 and x2. In this setting there are |L3(x1,x2)| “good” states in |ΨL3

〉 whose
amplitudes we aim to amplify. Applying Grover’s iteration unitary Q2,3 the order

of O
(√

|L3|
|L3(x1,x2)|

)
times, we obtain the state

|ΨL2(x1)〉 |ΨL3(x1,x2)〉 =
1√

|L2(x1)|

∑
x2∈L2(x1)

|x2〉

 1√
|L3(x1,x2)|

∑
x3∈L3(x1,x2)

|x3〉

 .

We continue creating the lists Li+1(x1,x2, . . . ,xi) by filtering the initial list
Li+1 with respect to x1 (fixed by the outer classical loop), and with respect to
x2, . . . ,xi (given in a superposition) using the function f[i],i+1. At level k− 1 we
obtain the state |ΨL2(x1)〉 ⊗ |ΨL3(x1,x2)〉 ⊗ . . . ⊗ |ΨLk−1(x1,...,xk−2)〉. For the last
list Lk we filter with respect to x1, . . . ,xk−2 as for the list Lk−1. Finally, for a
fixed x1, the “filtered” state we obtained is of the form

|ΨF 〉 = |ΨL2(x1)〉 ⊗ |ΨL3(x1,x2)〉 ⊗ . . .⊗ |ΨLk−1(x1,...,xk−2)〉 ⊗ |ΨLk(x1,...,xk−2)〉 .
(6)

The state is expected to contain O(1) many (k − 1)-tuples (x2, . . . ,xk) which
together with x1 give a solution to the configuration problem. To prepare the
state |ΨF 〉 for a fixed x1, we need

TInGrover = O

(√(
|L2|
|L2(x1)|

)
+ . . .+

√(
|Lk|

|Lk(x1, . . . ,xk−2)|

))
(7)

unitary operations of the form (−H⊗d̄)RH⊗d̄Of[i],j
. This is what we call the

“inner” Grover procedure.
Let us denote by A an algorithm that creates |ΨF 〉 from |0〉 ⊗ . . . ⊗ |0〉 in

time TInGrover. In order to obtain a solution tuple (x2, . . . ,xk) we apply amplitude
amplification using the unitary QOuter = −ARA−1Og, where g is the function
that operates on the last two registers and is defined as

g(x,x′) =

{
1, |〈x , x′〉 − Ck−1,k| ≤ ε
0, else.

(8)

Notice that in the state |ΨF 〉 it is only the last two registers storing xk−1 and
xk that are left to be checked against the target configuration. This is precisely
what we use Og to check. Let |z〉 = |x2, . . . ,xk〉 be a solution tuple. The state
|z〉 appears in |ΨF 〉 with amplitude

〈z|ΨF 〉 = O
(

(
√
|L2(x1)| · . . . · |Lk−1(x1, . . . ,xk−2)| · |Lk(x1, . . . ,xk−2)|)

−1
)
.
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This value is the inverse of the number of iteration steps QOuter which we repeat in
order to obtain z when measuring |ΨF 〉. The overall complexity of the algorithm
for the configuration problem becomes

T Q

BLS
= O

(
|L1|

(√(
|L2|
|L2(x1)|

)
+ . . .+

√(
|Lk|

|Lk(x1, . . . ,xk−2)|

))
·
√
|L2(x1)| · |L3(x1,x2)| · . . . · |Lk(x1, . . . ,xk−2)|

)
,

(9)

where all the filtered lists in the above expression are assumed to be of expected
size greater than or equal to 1. For certain target configurations intermediate lists
are of sizes less than 1 in expectation (see Eq. (1)), which should be understood as
the expected number of times we need to construct these lists to obtain 1 element
in them. So there will exist elements in the superposition for which a solution
does not exist. Still, for the elements, for which a solution does exist (we expect
O(1) of these), we perform O(

√
|L|) Grover iterations during the “inner” Grover

procedure, and during the “outer” procedure these “good” elements contribute
a O(1) factor to the running time. Therefore formally, each |Li(x1, . . . ,xi−1)| in
Eq. (9) should be changed to max{1, |Li(x1, . . . ,xi−1)|}. Alternatively, one can
enforce that intermediate lists are of size greater than 1 by choosing the target
configuration appropriately.

Algorithm 4.1 Quantum algorithm for the Configuration Problem

Input: L1, . . . , Lk− lists of vectors from Sd−1, target configuration Ci,j = 〈xi , xj〉 ∈
Rk×k− a Gram matrix, ε > 0.
Output: Lout− list of k-tuples (x1, . . . ,xk) ∈ L1 × · · · × Lk, s.t. |〈xi , xj〉 − Cij | ≤ ε
for all i, j.

1: Lout ← ∅
2: for all x1 ∈ L1 do
3: Prepare the state |ΨL2〉 ⊗ . . .⊗ |ΨLk 〉
4: for all i = 2 . . . k − 1 do
5: Run Grover’s on the ith register with the checking function f[i−1],i to trans-

form the state |ΨLi〉 to the state |ΨLi(x1,...,xi−1)〉.
6: Run Grover’s on the kth register with the checking function f[k−2],k to transform

the state |ΨLk 〉 to the state |ΨLk(x1,...,xk−2)〉.
7: Let A be unitary that implements steps 3–6, i.e.

A |0⊗k〉 → |ΨF 〉 .

8: Run amplitude amplification using the unitary −ARA−1Og, where g is defined
in Eq. (8).

9: Measure all the registers, obtain a tuple (x2, . . . ,xk).
10: if (x1, . . . ,xk) satisfies C then
11: Lout ← Lout ∪ {(x1, . . . ,xk)}.
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The procedure we have just described is summarised in Algorithm 4.1. If
we want to use this algorithm to solve the Approximate k-List problem (Defi-
nition 1), we additionally require that the number of output solutions is equal
to the size of the input lists. Using the results of Theorem 4, we can express
the complexity of Algorithm 4.1 for the Approximate k-List problem via the
determinant of the target configuration C and its minors.

Theorem 6. Given input L1, . . . , Lk ⊂ Sd−1 and a configuration C ∈ C , such
that Eq. (2) holds, Algorithm 4.1 solves the Approximate k-List problem in time

Tk-List = Õ

(( 1

det(C)

) k+1
2(k−1)

·
√

det(C[1 . . . k − 1])

)d/2 (10)

using Mk-List = Õ
((

1
det(C)

) d
2(k−1)

)
classical memory and poly(d) quantum mem-

ory with success probability at least 1− 2−Ω(d).

Proof. From Theorem 4, the input lists L1, . . . , Lk should be of sizes |L| =

Õ
((

1
det(C)

) d
2(k−1)

)
to guarantee a sufficient number of solutions. This deter-

mines the requirement for classical memory. Furthermore, since all intermediate
lists are stored in the superposition, we require quantum registers of size poly(d).

Next, we can simplify the expression for T Q

BLS
given in Eq. (9) by noting that

|L2(x1)| ≥ |L3(x1,x2)| ≥ . . . ≥ |Lk−1(x1, . . . ,xk−2)| = |Lk(x1, . . . ,xk−2)|. The

dominant term in the sum appearing in Eq. (9) is

√(
|Lk|

|Lk(x1,...,xk−2)|

)
.

From Theorem 5, the product
√
|L2(x1)| · . . . · |Lk−1(x1, . . . ,xk−2)| in Eq. (9)

can be simplified to |L|
k−2

2 (
√

det(C[1 . . . k − 1]))
d/2

, from where we arrive at the
expression for Tk-List as in the statement.

The success probability of Algorithm 4.1 is determined by the success prob-
ability of the amplitude amplification run in Step 8. For this we consider the
precise form of the state |ΨF 〉 given in Eq. (6). This state is obtained by running
k − 1 (sequential) Grover algorithms. Each tensor |ΨLi(x1,...,xi−1)〉 in this state
is a superposition

|ΨLi(x1,...,xi−1)〉 =

√
1− εi

|Li(x1, . . . ,xi−1)|
∑

x∈Li(x1,...,xi−1)

|x〉+

√
εi

|Li \ Li(x1, . . . ,xi−1)|
∑

x∈Li\Li(x1,...,xi−1)

|x〉 ,

where εi <
|Li(x1,...,xi)|

|Li| ≤ 2−Ω(d). The first inequality comes from the success

probability of Grover’s algorithm, Theorem 1, the second inequality is due to
the fact that all lists on a “lower” level are exponentially smaller than lists
on a “higher” level, see Theorem 5. Therefore, the success probability of the
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amplitude amplification is given by
∏k−1
i=2

1−εi
|Li(x1,...,xi−1)| ·

1−εk
|Lk(x1,...,xk−2)| ≥ (1 −

2−Ω(d))
∏k−1
i=2 |Li(x1, . . . ,xi−1)|−1

. According to Theorem 2, after performing

O
(∏k

i=2 |Li(x1, . . . ,xi)| |Lk(x1, . . . ,xk−2)|
)

amplitude amplification iterations,

in Step 9 we measure a “good” (x2, . . . ,xk) with probability at least 1− 2−Ω(d).

4.1 Quantum version of the Configuration search algorithm
from [HKL18]

The main difference between the two algorithms for the configuration prob-
lem – the algorithm due to Bai–Laarhoven–Stehlé [BLS16] and due to Herold–
Kirshanova–Laarhoven [HKL18] – is that the latter constructs intermediate fil-
tered lists, Figure 1. We use quantum enumeration to construct and classically
store these lists.

For a fixed x, quantum enumeration repeatedly applies Grover’s algorithm to
an input list Li, where each application returns a random vector from the filtered
list Li(x) with probability greater than 1− 2−Ω(d). The quantum complexity of

obtaining one vector from Li(x) is O
(√

|Li|
|Li(x)|

)
. We can also check that the

returned vector belongs to Li(x) by checking its inner product with x. Repeat-

ing this process Õ(|Li(x)|) times, we obtain the list Li(x) stored classically in

time Õ(
√
|Li| · |Li(x)|). The advantage of constructing the lists Li(x) is that we

can now efficiently prepare the state |ΨL2(x)〉 ⊗ . . . ⊗ |ΨLk(x)〉 (cf. Line 3 in Al-
gorithm 4.1) and run amplitude amplification on the states |ΨLi(x)〉 rather than
on |ΨLi〉. This may give a speed up if the complexity of the Steps 3–11 of Algo-

rithm 4.1, which is of order Õ(T Q

BLS
/ |L1|), dominates the cost of quantum enumer-

ation, which is of order Õ(
√
|Li| · |Li(x)|). In general, we can continue creating

the “levels” as in [HKL18] (see Figure 1b) using quantum enumeration and at
some level switch to the quantum BLS style algorithm. For example, for some
level 1 < j ≤ k−1, we apply quantum enumeration to obtain Li(x1, . . . ,xj−1) for
all i > j. Then for all (j−1)-tuples (x1, . . . ,xj−1) ∈ L1×. . .×Lj−1(x1, . . . ,xj−2),
apply Grover’s algorithm as in steps 3–11 of Algorithm 4.1 but now to the states
|ΨLj(x1,...,xj−1)〉⊗ . . .⊗|ΨLk(x1,...,xj−1)〉. Note that since we have these lists stored
in memory, we can efficiently create this superposition. In this way we obtain a
quantum “hybrid” between the HKL and the BLS algorithms: until some level j,
we construct the intermediate lists using quantum enumeration, create superpo-
sitions over all the filtered lists at level j for some fixed values x1, . . . ,xj−1, and
apply Grover’s algorothm to find (if it exists) the (k− j + 1) tuple (xj , . . . ,xk).
Pseudocode for this approach is given in Algorithm 4.2.

Let us now analyse Algorithm 4.2. To simplify notation, we denote L
(j)
i =

Li(x1, . . . ,xj−1) for all i ≥ j, letting L
(1)
i be the input lists Li (so the upper

index denotes the level of the list).

All O notations are omitted. Each quantum enumeration of L
(j)
i from L

(j−1)
i

costs

√∣∣∣L(j−1)
i

∣∣∣ ∣∣∣L(j)
i

∣∣∣. On level 1 ≤ ` ≤ j − 1, we repeat such an enumeration
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Algorithm 4.2 Hybrid quantum algorithm for the Configuration Problem

Input: L1, . . . , Lk, lists of vectors from Sd−1, target configuration Ci,j = 〈xi , xj〉 ∈
Rk×k, ε > 0, 2 ≤ j ≤ k − 1, level we construct the intermediate filtered lists until.
Output: Lout− list of k-tuples (x1, . . . ,xk) ∈ L1 × · · · × Lk, s.t. |〈xi , xj〉 − Cij | ≤ ε
for all i, j.

1: Lout ← ∅
2: for all x1 ∈ L1 do
3: Use quantum enumeration to construct Li(x1) for ∀i ≥ 2
4: for all x2 ∈ L2(x1) do
5: Use quantum enumeration to construct Li(x1,x2), ∀i ≥ 3

6:
. . .

7: for all xj−1 ∈ Lj−1(x1, . . . ,xj−2) do
8: Use quantum enumeration to construct Li(x1, . . . ,xj−1), ∀i ≥ j
9: Prepare the state |ΨLj(x1,...,xj−1)〉 ⊗ . . .⊗ |ΨLk(x1,...,xj−1)〉

10: for all i = j + 1 . . . k − 1 do
11: Run Grover’s on the ith register with the checking function f[i−1],i

to transform the state |ΨLi(x1,...,xj−1)〉 to the state |ΨLi(x1,...,xi−1)〉.
12: Run Grover’s on the kth register with the checking function f[k−2],k to

transform the state |ΨLk(x1,...,xj−1)〉 to the state |ΨLk(x1,...,xk−2)〉.
13: Let A be unitary that implements Steps 9–12, i.e.

A |0⊗(k−j+1)〉 → |ΨLj(x1,...,xj−1)〉 ⊗ |ΨLk(x1,...,xk−2)〉

14: Run amplitude amplification using the unitary −ARA−1Og, where g is
defined in Eq. (8).

15: Measure all the registers, obtain a tuple (xj , . . . ,xk).
16: if (x1, . . . ,xk) satisfies C then
17: Lout ← Lout ∪ {(x1, . . . ,xk)}.

∏`−1
r=1

∣∣∣L(r)
r

∣∣∣ times to create the intermediate lists, once for each (x1, . . . ,x`−1).

Once the lists L
(j)
i , i ≥ j, are constructed, Grover’s algorithm gives the state

|Ψ
L

(j)
j
〉 . . . |Ψ

L
(k−1)
k−1

〉 |Ψ
L

(k−1)
k

〉 in time

(√ ∣∣∣L(j)
j+1

∣∣∣∣∣∣L(j+1)
j+1

∣∣∣ + . . .+

√ ∣∣∣L(j)
k−1

∣∣∣∣∣∣L(k−1)
k−1

∣∣∣ +

√ ∣∣∣L(j)
k

∣∣∣∣∣∣L(k−1)
k

∣∣∣
)

(Steps 11–12 in Algorithm 4.2). On Step 14 the unitary A must be executed√∣∣∣L(j)
j

∣∣∣ · . . . · ∣∣∣L(k−1)
k−1

∣∣∣ · ∣∣∣L(k−1)
k

∣∣∣ times to ensure that the measurement of the

system gives the “good” tuple (xj , . . . ,xk).

Such tuples may not exist: for j ≥ 3, i.e. for fixed x1,x2, we expect to have less
than 1 such tuples. So most of the time, the measurement will return a random
(k − j + 1)-tuple, which we classically check against the target configuration C.
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Overall, given on input a level j, the runtime of Algorithm 4.2 is

T Q

Hybrid
(j) = max

1≤`≤j−1

{
`−1∏
r=1

∣∣∣L(r)
r

∣∣∣ · max
`≤i≤k

{√∣∣∣L(`)
i

∣∣∣ ∣∣∣L(`+1)
i

∣∣∣} ,
j−1∏
r=1

∣∣∣L(r)
r

∣∣∣

√√√√√
∣∣∣L(j)
j+1

∣∣∣∣∣∣L(j+1)
j+1

∣∣∣ + . . .+

√√√√√
∣∣∣L(j)
k−1

∣∣∣∣∣∣L(k−1)
k−1

∣∣∣ +

√√√√√
∣∣∣L(j)
k

∣∣∣∣∣∣L(k−1)
k

∣∣∣


·
√∣∣∣L(j)

j

∣∣∣ · . . . ∣∣∣L(k−1)
k−1

∣∣∣ · ∣∣∣L(k−1)
k

∣∣∣} .
(11)

Similar to Eq. (9), all the list sizes in the above formula are assumed to be greater
than or equal to 1. If, for a certain configuration it happens that the expected size
of a list is less than 1, it should be replaced with 1 in this expression. The above
complexity can be expressed via the subdeterminants of the target configuration
C using Theorem 5. An optimal value of level j for a given C can be found via
numerical optimisations that searches for j that minimises Eq. (11).

Speed-ups with nearest neighbour techniques. We can further speed up the cre-
ation of filtered lists in both Algorithms 4.1 and 4.2 with a quantum version of
nearest neighbour search. In the full version [KMPR19, App. B] we describe a
locality sensitive filtering (LSF) technique (first introduced in [BDGL16]) in the
quantum setting, extending the idea of Laarhoven [Laa15] to k > 2.

Numerical optimisations. We performed numerical optimisations for the target
configuration C which minimises the runtime of the two algorithms for the con-
figuration problem given in this section. The upper part of Table 2 gives time
optimal c for Eq. (10) and the c′ of the corresponding memory requirements for
various k. These constants decrease with k and, eventually, those for time become
close to the value 0.2989. The explanation for this behaviour is the following:
looking at Eq. (9) the expression decreases when the lists Li(x1, . . . ,xi−1) under
the square root become smaller. When k is large enough, in particular, once
k ≥ 6, there is a target configuration that ensures that |Li(x1, . . . ,xi−1)| are of
expected size 1 for levels i ≥ 4. So for k ≥ 6, under the observation that the
maximal value in the sum appearing in Eq. (9) is attained by the last summand,

the runtime of Algorithm 4.1 becomes T Q

BLS
= |L1|3/2 ·

√
|L2(x1)| |L3(x1,x2)|.

The list sizes can be made explicit using Eq. (3) when a configuration C is such
that |Li(x1, . . . ,xi−1)| are of expected size 1. Namely, for k ≥ 6 and for configu-
ration C that minimises the runtime exponent, Eq. (9) with the help of Eq. (3)

simplifies to
((

1
detC

) 5
2(k−1)

√
detC[1, 2, 3]

)d/2
.

The optimal runtime exponents for the hybrid, Algorithm 4.2, with j = 2 are
given in the middle part of Table 2. Experimentally, we establish that j = 2 is
optimal for small values of k and that this algorithm has the same behaviour for
large values of k as Algorithm 4.1. The reason is the following: for the runtime
optimal configuration C the intermediate lists on the same level increase in size
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k 2 3 4 5 6 . . . 28 29 30

Quantum version of [BLS16] Algorithm 4.1

Time 0.3112 0.3306 0.3289 0.3219 0.3147 . . . 0.29893 0.29893 0.29893

Space 0.2075 0.1907 0.1796 0.1685 0.1596 . . . 0.1395 0.1395 0.1395

Quantum Hybrid version of [BLS16,HKL18] Algorithm 4.2

Time 0.3112 0.3306 0.3197 0.3088 0.3059 . . . 0.29893 0.29893 0.29893

Space 0.2075 0.1907 0.1731 0.1638 0.1595 . . . 0.1395 0.1395 0.1395

Low memory Quantum Hybrid version of [BLS16,HKL18] Algorithm 4.2

Time 0.3112 0.3349 0.3215 0.3305 0.3655 . . . 0.6352 0.6423 0.6490

Space 0.2075 0.1887 0.1724 0.1587 0.1473 . . . 0.0637 0.0623 0.0609

Table 2: Asymptotic complexity exponents for the approximate k-List problem,
base 2. The top part gives optimised runtime exponents and the corresponding
memory exponents for Algorithm 4.1. These are the results of the optimisation
(minimisation) of the runtime expression given in Eq. (10). The middle part
gives the runtime and memory exponents for Algorithm 4.2, again optimising
for time, with j = 2, i.e. when we use quantum enumeration to create the second
level lists Li(x1), i ≥ 2. The bottom part gives the exponents for Algorithm 4.2
with j = 2 in the memory optimal setting.

“from left to right”, i.e. |L2(x1)| ≤ |L3(x1)| ≤ . . . ,≤ |Lk(x1)|. It turns out that
|Lk(x1)| becomes almost |Lk| (i.e. the target inner product is very close to 0), so
quantumly enumerating this list brings no advantage over Algorithm 4.1 where
we use the initial list Lk, of essentially the same size, in Grover’s algorithm.

5 Quantum Configuration Search via k-Clique Listing

In this section we introduce a distinct approach to finding solutions of the con-
figuration problem, Definition 3, via k-clique listing in graphs. We achieve this
by repeatedly applying k-clique finding algorithms to the graphs. Throughout
this section we assume that L1 = · · · = Lk = L. We first solve the configuration
problem with k = 3, C the balanced configuration with all off diagonals equal
to −1/3 and the size of L determined by Eq. (2). We then adapt the idea to
the case for general k. In the full version [KMPR19, App. C] we give the k = 4
balanced case and consider unbalanced configurations.

Let G = (V,E) be an undirected graph with known vertices and an oracle
OG : V 2 → {True, False}. On input (x1,x2) ∈ V 2, OG returns True if (x1,x2) ∈
E and False otherwise. A k-clique is {x1, . . . ,xk} such that OG(xi,xj) = True

for i 6= j. Given k, (xi,xj) ∈ E ⇐⇒ |〈xi , xj〉 + 1/k| ≤ ε for some ε > 0. In
both cases, the oracle computes a d dimensional inner product and compares the
result against the target configuration. Throughout we let |V | = n and |E| = m.
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5.1 The Triangle Case

We start with the simple triangle finding algorithm of [BdWD+01]. A triangle
is a 3-clique. Given the balanced configuration and k = 3 on Sd−1, we have

n = |L| = Õ
(

(3
√

3/4)
d/2
)
, m = |L| |L(x1)| = Õ

(
n2(8/9)

d/2
)

(12)

by Eq. (2) and Theorem 5 respectively,6 We expectΘ(n) triangles to be found [HKL18].
The algorithm of [BdWD+01] consists of three steps:

1. Use Grover’s algorithm to find any edge (x1,x2) ∈ E among all potential
O(n2) edges.

2. Given an edge (x1,x2) from Step 1, use Grover’s algorithm to find a vertex
x3 ∈ V , such that (x1,x2,x3) is a triangle.

3. Apply amplitude amplification on Steps 1–2.

Note that the algorithm searches for any triangle in the graph, not a fixed
one. To be more explicit about the use of the oracle OG, below we describe a

circuit that returns a triangle. Step 1 takes the state 1
n

∑
(x1,x2)∈V 2

|x1〉 ⊗ |x2〉 and

applies O(
√
n2/m) times the Grover iteration given by −H⊗2d̄RH⊗2d̄OG. The

output is the state
√

ε
n2−m

∑
(x1,x2)6∈E

|x1〉 ⊗ |x2〉 +

√
1− ε
m

∑
(x1,x2)∈E

|x1〉 ⊗ |x2〉,

where ε represents the probability of failure. We disregard this as in the proof of
Theorem 6. We then join with a uniform superposition over the vertices to create

the state 1√
m

∑
(x1,x2)∈E

|x1〉 ⊗ |x2〉 ⊗
1√
n

∑
x3∈V

|x3〉 and apply −H⊗3d̄RH⊗3d̄O∆G

O(
√
n) times. This oracle O∆G outputs True on a triple from V 3 if each pair of

vertices has an edge. We call the final state |ΨF 〉. Let A |0⊗3〉 → |ΨF 〉, then we
apply amplitude amplification withA repeated some number of times determined
by the success probability of A calculated below.

Given that oracle queries OG or O∆G have some poly(d) cost, we may calculate
the time complexity of this method directly from the query complexity. The cost
of the first step is O(

√
n2/m) and the second step O(

√
n). From Eq. (12), and

that the costs of Step 1 and Step 2 are additive, we see that O(
√
n) dominates,

therefore Steps 1–2 cost O(
√
n). The probability that Step 2 finds a triangle

is the probability that Step 1 finds an edge of a triangle. Given that there are
Θ(n) triangles, this probability is Θ(n/m), therefore by applying the amplitude
amplification in Step 3, the cost of finding a triangle is O(

√
m).7

The algorithm finds one of the n triangles uniformly at random. By the
coupon collector’s problem we must repeat the algorithm Õ(n) times to find

6 As we are in the balanced configuration case, and our input lists are identical, The-
orem 5 has no dependence on j.

7 Note that this differs from [BdWD+01] as in general either of Step 1 or 2 may
dominate and we also make use of the existence of Θ(n) triangles.
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all the triangles. Therefore the total cost of finding all triangles is Õ(n
√
m) =

Õ(|L|3/2|L(x1)|1/2) ≈ 20.3349d+o(d) using 20.1887d+o(d) memory. This matches the
complexity of Algorithm 4.1 for k = 3 in the balanced case.

5.2 The General k-Clique Case

The algorithm generalises to arbitrary constant k. We have a graph with |L|
vertices, |L||L(x1)| edges, . . . , |L||L(x1)| . . . |L(x1, . . . ,xi−1)| i-cliques for i ∈
{3, . . . , k − 1}, and Θ(|L|) k-cliques. The following algorithm finds a k-clique,
with 2 ≤ i ≤ k − 1

1. Use Grover’s algorithm to find an edge (x1,x2) ∈ E among all potential
O(|L|2) edges.

...
i. Given an i-clique (x1, . . . ,xi) from step i− 1, use Grover’s algorithm to find

a vertex xi+1 ∈ V , such that (x1, . . . ,xi+1) is an (i+ 1)-clique.
...

k. Apply amplitude amplification on Steps 1–(k − 1).

The costs of Steps 1–(k − 1) are additive. The dominant term is from Step
k − 1, a Grover search over |L|, equal to O(

√
|L|). To determine the cost of

finding one k-clique, we need the probability that Steps 1–(k−1) find a k-clique.
We calculate the following probabilities, with 2 ≤ i ≤ k − 2

1. The probability that Step 1 finds a good edge, that is, an edge belonging to
a k-clique.

i. The probability that Step i finds a good (i+ 1)-clique given that Step i− 1
finds a good i-clique.

In Step 1 there areO(|L||L(x1)|) edges to choose from, Θ(|L|) of which belong
to a k-clique. Thus the success probability of this Step is Θ(1/|L(x1)|). There-
after, in Step i, given an i-clique (x1, . . . ,xi) there areO(max{|L(x1, . . . ,xi)|, 1})
(i+1)-cliques on the form (x1, . . . ,xi,xi+1), Θ(1) of which are good. The success

probability of Steps 1–(k − 1) is equal to Θ
(∏k−2

i=1 max {|L(x1, . . . ,xi)|, 1}−1
)

.

By applying amplitude amplification at Step k, we get the cost

O

√|L|
√√√√k−2∏

i=1

max {|L(x1, . . . ,xi)|, 1}

,
for finding one k-clique. Multiplying the above expression by Õ(|L|) gives the
total complexity for finding Θ(|L|) k-cliques. This matches the complexity of
Algorithm 4.1, Eq. (9), for balanced configurations for all k.

In the full version [KMPR19, App. C] we show how to adapt the above to
unbalanced configurations and achieve the same complexity as Algorithm 4.1.
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6 Quantum Configuration Search via Triangle Listing

Given the phrasing of the configuration problem as a clique listing problem in
graphs, we restrict our attention to the balanced k = 3 case and appeal to
recent work on triangle finding in graphs. Let the notation be as in Section 5,
and in particular recall Eq. (12) then a triangle represents a solution to the
configuration problem.

The operations counted in the works discussed here are queries to an or-
acle that returns whether an edge exists between two vertices in our graph.
While, in the case of [BdWD+01], it is simple to translate this cost into a time
complexity, for the algorithms which use more complex quantum data struc-
tures [Gal14,LGN17] it is not. In particular, the costs of computing various
auxiliary databases from certain sets is not captured in the total query cost.

The quantum triangle finding works we consider are [BdWD+01,Gal14,LGN17].
In [BdWD+01] a simple algorithm based on nested Grover search and amplitude
amplification is given which finds a triangle in O(n+

√
nm) queries to OG. For

sufficiently sparse graphs G, with sparsity measured as m = O(nc) and G be-
coming more sparse as c decreases, this complexity attains the optimal Ω(n).
This is the algorithm extended in Section 5. In [Gal14] an algorithm is given that

finds a triangle in Õ(n5/4) queries to OG. This complexity has no dependence
on sparsity and is the currently best known result for generic graphs. Finally
in [LGN17] an interpolation between the two previous results is given as the
sparsity of the graph increases.

Theorem 7 ([LGN17, Theorem 1]). There exists a quantum algorithm that
solves, with high probability, the triangle finding problem over graphs of n vertices
and m edges with query complexity

O(n+
√
nm) if 0 ≤ m ≤ n7/6

Õ(nm1/14) if n7/6 ≤ m ≤ n7/5

Õ(n1/6m1/3) if n7/5 ≤ m ≤ n3/2

Õ(n23/30m4/15) if n3/2 ≤ m ≤ n13/8

Õ(n59/60m2/15) if n13/8 ≤ m ≤ n2.

More specifically it is shown that for c ∈ (7/6, 2) a better complexity can be
achieved than shown in [BdWD+01,Gal14]. Moreover at the end points the two
previous algorithms are recovered; [BdWD+01] for c ≤ 7/6 and [Gal14] for c = 2.
We recall that these costs are in the query model, and that for c > 7/6, where
we do not recover [BdWD+01], we do not convert them into time complexity.

We explore two directions that follow from the above embedding of the con-
figuration problem into a graph. The first is the most näıve, we simply calculate
the sparsity regime (as per [LGN17]) that the graph, constructed as in 5.1, lies
in.

The second splits our list into triples of distinct sublists and considers graphs
formed from the union of said triples of sublists. The sublists are parameterised
such that the sparsity and the expected number of triangles in these new graphs
can be altered.
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6.1 Näıve Triangle Finding

With G = (V,E) and n,m as in (12), we expect to have

m = O
(
n2+δ

)
= O

(
n1.5500

)
, δ = log(8/9)/log(3

√
3/4).

Therefore finding a single triangle takes Õ(n23/30m4/15) = Õ
(
n1.1799

)
queries

to OG [LGN17]. If, to list the expected Θ(n) triangles, we have to repeat this

algorithm Õ(n) times this leads to a total OG query complexity of Õ(n2.1799) =
20.4114d+o(d) which is not competitive with classical algorithms [HK17] or the
approach of Section 5.

6.2 Altering the Sparsity

Let n remain as in Eq.(12) and γ ∈ (0, 1) be such that we consider Γ = n1−γ dis-
joint sublists of L, `1, . . . , `Γ , each with n′ = nγ elements. There are O(n3(1−γ))
triples of such sublists, (`i, `j , `k), with i, j, k pairwise not equal and the union
of the sublists within one triple, `ijk = `i ∪ `j ∪ `k, has size O(n′). Let Gijk =
(`ijk, Eijk) with (x1,x2) in `ijk× `ijk, (x1,x2) ∈ Eijk ⇐⇒ |〈x1,x2〉+ 1/3| ≤ ε.
Using Theorem 5, each Gijk is expected to have

m′ = O (|`ijk| |`ijk(x1)|) = O
(

(n′)
2
(8/9)

d/2
)

= O
(
n2γ(8/9)

d/2
)

edges. By listing all triangles in all Gijk we list all triangles in G, and as n is
chosen to expect Θ(n) triangles in G, we have sufficiently many solutions for the
underlying k-List problem. We expect, by Theorem 5

|`ijk||`ijk(x1)||`ijk(x1,x2)| = |`ijk|
(
|`ijk|(8/9)

d/2
)(
|`ijk|(2/3)

d/2
)

= O(n3γ)(16/27)
d/2

= O(n3γ−2)

triangles per `ijk. We must at least test each `ijk once, even if O(n3γ−2) is
subconstant. The sparsity of `ijk given γ is calculated as

m′ = O
(

(n′)
2+β(γ)

)
, β(γ) =

log(8/9)

γ log(3
√

3/4)
.

For given γ the number of `ijk to test is O(n3(1−γ)), the number of triangles
to list per `ijk is O(n3γ−2) – we always perform at least one triangle finding

attempt and assume listing them all takes Õ(n3γ−2) repeats – and we are in
the sparsity regime c(γ) = 2 +β(γ) [LGN17]. Let a, b represent the exponents of

n′,m′ respectively8 in Theorem 7 given by m′ = (n′)
c(γ)

. We therefore minimise,

for γ ∈ (0, 1), the exponent of n in O(n3(1−γ)) · Õ(n3γ−2) · Õ((n′)
a
(m′)

b
),

3(1− γ) + max{0, 3γ − 2}+ aγ +

(
2γ +

log(8/9)

log(3
√

3/4)

)
b.

8 Note that we are considering Gijk rather than G here, hence the n ↔ n′,m ↔ m′

notation change.
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The minimal query complexity of n1.7298+o(d) = 20.326d+o(d) is achieved at γ = 2
3 .

The above method leaves open the possibility of finding the same triangle
multiple times. In particular if a triangle exists in Gij = (`ij , Eij), with `ij and
Eij defined analogously to `ijk and Eijk, then it will be found in Gijk for all
k, that is O(n1−γ) many times. Worse yet is the case where a triangle exists in
Gi = (`i, Ei) where it will be found O(n2(1−γ)) times. However, in both cases the
total number of rediscoveries of the same triangle does not affect the asymptotic
complexity of this approach. Indeed in the `ij case this number is the product

O(n2(1−γ)) ·O(n3γ ·(8/9)
d/2

) ·O(n1−γ) = O(n), the product of the number of `ij ,
the number of triangles9 per `ij and the number of rediscoveries per triangle in
`ij respectively. Similarly, this value is O(n) in the `i case and as we are required
to list O(n) triangles the asymptotic complexity remains the same.

7 Parallelising Quantum Configuration Search

In this section we deviate slightly from the k-List problem and the configuration
framework and target SVP directly. On input we receive {b1, . . . ,bd} ⊂ Rd, a
basis of L(B). Our algorithm finds and outputs a short vector from L(B). As in
all the algorithms described above, we will be satisfied with an approximation
to the shortest vector and with heuristic analysis.

We describe an algorithm that can be implemented using a quantum circuit
of width Õ(N) and depth Õ(

√
N), where N = 20.2075d+o(d). We therefore require

our input and output to be less than Õ(
√
N), and if we were to phrase the 2-

Sieve algorithm as a 2-List problem we would not be able to read in and write
out the data. Our algorithm uses poly(d) classical memory. For the analysis, we
make the same heuristic assumptions as in the original 2-Sieve work of Nguyen–
Vidick [NV08].

All the vectors encountered by the algorithm (except for the final measure-
ment) are kept in quantum memory. Recall that for a pair of normalised vectors
x1,x2 to form a “good” pair, i.e. to satisfy ‖x1 ± x2‖ ≤ 1, it must hold that
|〈x1 , x2〉| ≥ 1

2 . The algorithm described below is the quantum parallel version
of 2-Sieve. Each step is analysed in the subsequent lemmas.

Several remarks about Algorithm 7.1.

1. The bound on the repetition factor on Step 6 is, as in classical 2-Sieve algo-
rithms, appropriately set to achieve the desired norm of the returned vectors.
In particular, it suffices to repeat Steps 2–5 poly(d) times [NV08].

2. In classical 2-Sieve algorithms, if xi does not have a match x′i, it is simply
discarded. Quantumly we cannot just discard an element from the system, so
we keep it as the zero vector. This is why, as opposed to the classical setting,
we keep our lists of exactly the same size throughout all the iterations.

3. The target norm λ is appropriately set to the desired length. The algorithm
can be easily adapted to output several, say T , short vectors of L(B) by
repeating Step 7 T times.

9 Given that |`i| = nγ , |`ij | = 2nγ , |`ijk| = 3nγ the expected numbers of triangles
differ only by a constant.
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Algorithm 7.1 A parallel quantum algorithm for 2-Sieve

Input: {b1, . . . ,bd} ⊂ Rd a lattice basis
Output: v ∈ L(B), a short vector from L(B)

1: Set N ← 20.2075d+o(d) and set λ = Θ(
√
d · det(B)1/d) the target length.

2: Generate a list L1 ← {x1, . . . ,xN} of normalised lattice vectors using an efficient
lattice sampling procedure, e.g. [Kle00].

3: Construct a list L2 ← {x′1, . . . ,x′N} such that |〈xi , x′i〉| ≥ 1/2 for x′i ∈ L1. If no
such x′i ∈ L1 exists, set x′i ← 0.

4: Construct a list L3 ← {yi : yi ← min{‖xi ± x′i‖} for all i ≤ N} and normalise its
elements except for the last iteration.

5: Swap the labels L1, L3. Reinitialise L2 and L3 to the zero state by transferring
their contents to auxiliary memory.

6: Repeat Steps 3–5 poly(d) times.
7: Output a vector from L1 of Euclidean norm less than λ.

Theorem 8. Given on input a lattice basis L(B) = {b1, . . . ,bd} ⊂ Rd, Algo-
rithm 7.1 heuristically solves the shortest vector problem on L(B) with constant
success probability. The algorithm can be implemented using a uniform family of
quantum circuits of width Õ(N) and depth Õ(

√
N), where N = 20.2075d+o(d).

We prove the above theorem in several lemmas. Here we only give proof
sketches and defer more detailed proofs to the full version [KMPR19, App. D].
In the first lemma we explain the process of generating a database of vectors
of size N having N processors. The main routines, Steps 3–5, are analysed in
Lemma 2. Finally, in Step 7 we use Grover’s algorithm to amplify the amplitudes
of small norm vectors.

Lemma 1. Step (2) of Algorithm 7.1 can be implemented using a uniform family

of quantum circuits of width Õ(N) and depth poly log(N).

Lemma 2. Steps (3–5) of Algorithm 7.1 can be implemented using a uniform

family of quantum circuits of width Õ(N) and depth Õ(
√
N).

Lemma 3. Step (7) of the Algorithm 7.1 can be implemented using a uniform

family of quantum circuits of width Õ(N) and depth Õ(
√
N).

Before we present our proofs for the above lemmas, we briefly explain our
computational model. We assume that each input vector bi is encoded in d̄ =
poly(d) qubits and we say that it is stored in a single register. We also consider
the circuit model and assume we have at our disposal a set of elementary gates
– Toffoli, and all 1-qubit unitary gates (including the Hadamard and Pauli X),
i.e. a universal gate set that can be implemented efficiently. We further assume
that any parallel composition of unitaries can be implemented simultaneously.
For brevity, we will often want to interpret (computations consisting of) parallel
processes to be running on parallel processors. We emphasise that this is in-
consequential to the computation and our analysis. However, thinking this way
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greatly helps to understand the physical motivation and convey the intuition
behind the computation.

Proof sketch of Lemma 1. The idea is to copy the cell of registers, |B〉, encoding
the basis B = {b1, . . . ,bd} to N processors, where each processor is equipped
with poly log(N) qubits. The state |B〉 itself is a classical (diagonal) state made
of d̄ 2 = O(log2(N)) qubits. To copy B to all N processors, it takes dlog(N)e
steps each consisting of a cascade of CNOT operations.

Each of the processors samples a single xi using a randomised sampling
algorithm, e.g. [Kle00]. This is an efficient classical procedure that can be im-
plemented by a reversible circuit of poly(d) depth and width. The exact same
circuit can be used to realise the sampling on a quantum processor.

Each processor i, having computed the xi, now keeps xi locally and also
copies it to a distinguished cell L1. The state of the system can be described as

|x1〉P1
|x2〉P2

. . . |xN 〉PN |x1,x2 . . .xN 〉L1 |ancilla〉

where Pi is the register in possession of processor i. The total depth of the circuit
is O(log(N)) to copy plus poly log(N) to sample plus O(1) to copy to the list
L1. Each operation is carried out by N processors and uses poly log(N) qubits.
Thus the total depth of a quantum circuit implementing Step (2) is poly log(N)

and its width is Õ(N).

Proof sketch of Lemma 2. The key idea to construct the list L2 is to let each
processor Pi, which already has a copy of |xi〉 ,xi ∈ L1, search through L1 (now
stored in the distinguished cell L1) to find a vector x′i such that |〈xi , x′i〉| ≥ 1/2
(if no such x′i ∈ L1, set x′i = 0). The key ingredient is to parallelise this search,
i.e. let all processors do the search at the same time. The notion of parallelisation
is however only a (correct) interpretation of the operational meaning of the
unitary transformations. It is important to stress that we make no assumptions
about how data structures are stored, accessed and processed, beyond what is
allowed by the axioms of quantum theory and the framework of the circuit model.

For each processor i, we define a function fi(y) = 1 if |〈xi , y〉| ≥ 1/2 and
0 otherwise; and let Wf and Df be the maximal width and depth of a unitary

implementing any fi. It is possible to implement a quantum circuit of Õ(N ·Wf )

width and Õ(
√
NDf ) depth that can in parallel find solutions to all fi, 1 ≤ i ≤

N [BBG+13]. This quantum circuit searches through the list in parallel, i.e. each
processor can simultaneously access the memory and search. Note, fi is really
a reduced transformation. The “purification” of fi is a two parameter function
f : L1×L1 → {0, 1}. However, in each processor i, one of the inputs is “fixed and
hardcoded” to be xi. The function f itself admits an efficient implementation
in the size of the inputs, since this is the inner product function and also has a
classical reversible circuit consisting of Toffoli and NOT gates. Once the search is
done, it is expected with probability greater than 1−2−Ω(d) that each processor
i will have found an index ji, s.t. |〈xi , xji〉| ≥ 1/2, xi,xji ∈ L1. One can always
check if the processor found a solution, otherwise the search can be repeated
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a constant number of times. If none of the searches found a “good” ji, we set
xji = 0. Else, if any of the searches succeed, we keep that index ji.

At this point we have a virtual list L2, which consists of all indices ji. We
create a list L3 in another distinguished cell, by asking each processor to compute
y+
i = xi + xji and y−i = xi − xji and copy into the ith register the shorter of

y+
i and y−i , in the Euclidean length. The state of the system now is,

|x1〉P1 . . . |xN 〉PN |y1〉P1 . . . |yL〉PN |x1 . . .xN 〉L1 |y1 . . .yN 〉L3 |ancilla〉 .

A swap between qubits say, S and R, is just CNOTSR◦CNOTRS◦CNOTSR, and
thus the Swap in Step 5 between L1 and L2 can be done with a depth 3 circuit.
Finally reinitialise the lists L2 and L3 by swapping them with two registers of
equal size that are all initialised to zero. This unloads the data from the main
memories (L2, L3) and enables processors to reuse them for the next iteration.

The total depth of the circuit is Õ(
√
N) (to perform the parallel search for

“good” indices ji), poly logN (to compute the elements of the new list L3 and
copy them), and O(1) (to swap the content in memory registers). Thus, in total

we have constructed a circuit of Õ(
√
N) depth and Õ(N) width.

Proof sketch of Lemma 3. Given a database of vectors of size N and a norm
threshold λ, finding a vector from the database of Euclidean norm less than λ
amounts to Grover’s search over the database. It can be done with a quantum
circuit of depth Õ(

√
N). It could happen that the threshold λ is set to be too

small, in which case Grover’s search returns a random element form the database.
In that case, we repeat the whole algorithm with an increased value for λ. After
Θ(1) repetitions, we heuristically obtain a short vector from L(B).

Proof sketch of Theorem 8. As established from the lemmas above, each of Step
2, Steps 3–5 and Step 7 can be realised using a family of quantum circuits of
depth and width (at most) Õ(

√
N) and Õ(N) respectively. However, Steps 3–5

run O(poly(d)) times, thus the total depth of the circuit now goes up by at most
a multiplicative factor of O(poly(d)) = O(poly log(N)). The total depth and

width of a circuit implementing Algorithm 7.1 remains as Õ(
√
N) and Õ(N)

respectively as Õ notation suppresses subexponential factors.

7.1 Distributed Configuration Search: Classical Analogue

Algorithm 7.1 should be compared with a classical model where there are N =
20.2075d+o(d) computing nodes, each equipped with poly(d) memory. It suffices for
these nodes to have a nearest neighbour architecture, where node i is connected
to nodes i − 1 and i + 1, and arranged like beads in a necklace. We cost one
time unit for poly(d) bits sent from any node to an adjacent node. A comparable
distributed classical algorithm would be where each node, i, receives the basis
B and samples a vector vi. In any given round, node i sends ṽi to node i + 1
and receives ṽi−1 from node i− 1 (in the first round ṽi := vi). Then each node
checks if the vector pair (vi, ṽi−1) gives a shorter sum or difference. If yes, it
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computes v
(2)
i = min{vi ± ṽi−1} and sets ṽi := vi−1. After N rounds every

node i has compared their vector vi with all N vectors sampled. The vectors vi
can be discarded and the new round begins with v

(2)
i being the new vector. The

process is repeated poly(d) many times leading to O(N) · poly(d) time steps.

Thus this distributed algorithm needs Õ(N) = 20.2075d+o(d) time.
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CDW17. Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short stickelberger
class relations and application to ideal-SVP. In Advances in Cryptology -
EUROCRYPT 2017, pages 324–348, 2017.

DRS14. D. Dadush, O. Regev, and N. Stephens-Davidowitz. On the closest vector
problem with a distance guarantee. In 2014 IEEE 29th Conference on
Computational Complexity (CCC), pages 98–109, June 2014.
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