
Public-Key Function-Private
Hidden Vector Encryption (and More)

James Bartusek1, Brent Carmer2, Abhishek Jain3, Zhengzhong Jin3, Tancrède
Lepoint4, Fermi Ma5, Tal Malkin6, Alex J. Malozemoff2, and Mariana

Raykova4

1 UC Berkeley??, bartusek.james@gmail.com
2 Galois, {bcarmer,amaloz}@galois.com

3 Johns Hopkins University, abhishek@cs.jhu.edu,zjin12@jhu.edu
4 Google, {tancrede,mariana}@google.com

5 Princeton University, fermima@alum.mit.edu
6 Columbia University, tal@cs.columbia.edu

Abstract. We construct public-key function-private predicate encryp-
tion for the “small superset functionality,” recently introduced by Beul-
lens and Wee (PKC 2019). This functionality captures several important
classes of predicates:
– Point functions. For point function predicates, our construction is

equivalent to public-key function-private anonymous identity-based
encryption.

– Conjunctions. If the predicate computes a conjunction, our con-
struction is a public-key function-private hidden vector encryption
scheme. This addresses an open problem posed by Boneh, Raghu-
nathan, and Segev (ASIACRYPT 2013).

– d-CNFs and read-once conjunctions of d-disjunctions for constant-
size d.

Our construction extends the group-based obfuscation schemes of Bishop
et al. (CRYPTO 2018), Beullens and Wee (PKC 2019), and Bartusek et
al. (EUROCRYPT 2019) to the setting of public-key function-private
predicate encryption. We achieve an average-case notion of function pri-
vacy, which guarantees that a decryption key skf reveals nothing about f
as long as f is drawn from a distribution with sufficient entropy. We for-
malize this security notion as a generalization of the (enhanced) real-or-
random function privacy definition of Boneh, Raghunathan, and Segev
(CRYPTO 2013). Our construction relies on bilinear groups, and we
prove security in the generic bilinear group model.

1 Introduction

Predicate encryption [BW07, KSW08] is a powerful tool which enables fine-
grained access to encrypted information. Roughly speaking, a sender can encrypt
a message m (commonly referred to as a payload) with respect to an attribute x,
?? Research conducted at Princeton University.

while each decryption key skf is tied to a specific predicate f in some function
class F ; the key skf correctly decrypts a ciphertext if and only if the associated
attribute x satisfies f(x) = 1.

Generally, predicate encryption schemes simultaneously achieve payload-
hiding and attribute-hiding security. At a high level, payload-hiding guarantees
that an encryption of m with respect to attribute x reveals nothing about m
to an adversary who does not possess a decryption key skf where f(x) = 1.
Attribute-hiding guarantees that ciphertexts hide any information about x be-
yond what is leaked from successful decryption. That is, an adversary holding
decryption keys skf1 , . . . , skfn may learn the 0/1 evaluations of f1, . . . , fn on x,
but should not be able to learn anything else about x.

For certain applications, however, these two security guarantees may not be
enough. Suppose an email user wants to set up a gateway that routes encrypted
emails differently depending on whether or not they are spam. The user would
like to avoid giving the gateway full access to the content of their emails; instead
the user may have some list of potential spam email addresses, and would prefer
the gateway only apply its spam filtering algorithm (which requires reading the
email plaintext) if the email is sent from this set of addresses.7

The predicate encryption-based solution treats the contents of the email as
the “payload,” and the sender email address as the “attribute.” The user generates
some decryption key skf for their filtering predicate f (in this scenario, the
predicate would output one if the email address belongs to a list of potential
spammers), and sends this to the gateway. It is easy to imagine that the user
may want to hide its particular choice of f from the gateway, since after all
the user views the gateway as an untrusted party. But given skf , the standard
payload-hiding and attribute-hiding definitions say nothing about whether one
can learn the description of f .

Public-Key Function Privacy. Boneh, Raghunathan, and Segev (BRS) [BRS13a]
address this problem by defining public-key function-private predicate encryp-
tion, which requires that skf leak nothing about f beyond what is leaked through
honest decryption.8 They demonstrate that this notion is achievable with a new
construction of function-private anonymous identity-based encryption (i.e., pred-
icate encryption for equality predicates). We note that here, “function private”
means that the identity embedded in the decryption key is hidden, “anonymous”
means that the intended recipient of the ciphertext (the attribute) is hidden;
and finally the message being encrypted also stays secret. In follow-up work,
BRS [BRS13b] extended public-key function privacy to a significantly larger class
of subspace-membership predicates. We stress that in both works, BRS present
function privacy as an average-case definition, which is essentially inherent in
the public-key setting (see Section 1.2 for further discussion).
7 Note that we would require a public-key predicate encryption scheme for this sce-
nario, with the assumption that an email client would encrypt any email to the user
under the user’s public key.

8 Function privacy had been studied before the work of BRS [BRS13a], albeit in the
private key setting [SWP00, OS07, BSW09, SSW09].

2

While BRS [BRS13a, BRS13b] laid the groundwork for the study of function
privacy in the public-key setting, a number of important questions remained
unanswered. In particular, BRS explicitly identified three important directions
for further exploration [BRS13b]:

1. Computational Function Privacy. In both works, BRS construct sta-
tistically function-private schemes. They conjectured, however, that it
might be possible to leverage group-based assumptions to achieve more
powerful/expressive computationally function-private predicate encryption
schemes.

2. Hidden Vector Encryption. The seminal work of Boneh and Wa-
ters [BW07] introduced hidden vector encryption (HVE) as a general ap-
proach to performing equality, comparison, and subset queries on encrypted
data. In HVE, predicates are specified by a vector v ∈ Σk, where Σ =
Zs ∪ {∗}. We refer to s as the alphabet size and ∗ as a wildcard character.
A message m encrypted under attribute x ∈ Zks can be decrypted under key
fv if xi matches vi at each i where vi 6= ∗. Follow-up work by Katz, Sahai,
and Waters [KSW13] introduced inner product encryption (i.e., predicate en-
cryption for inner product predicates) as a generalization of HVE. In turn,
inner product predicates are a subclass of more general subspace-membership
predicates. Therefore, predicate encryption for subspace-membership triv-
ially implies inner product encryption and HVE.
However, BRS [BRS13b] observe that these implications crucially do not pre-
serve function privacy. That is, their function-private subspace-membership
encryption construction is not a function-private HVE. In fact, BRS remark
that even defining function privacy for HVE is not straightforward, and they
leave defining and constructing function-private HVE as an open problem.

3. Enhanced Function Privacy. The plain definition of function privacy
given by BRS [BRS13a] comes with a serious drawback. At a high level, the
definition assumes that the adversary holding decryption key skf will never
encounter a ciphertext with a matching attribute x (i.e., where f(x) = 1).
The authors argue that such an assumption is necessary in many settings,
since if an adversary could generate such matching ciphertexts, it must know
some x where f(x) = 1. For equality predicates, this amounts to learning f
entirely.
In almost any natural application, however, we should expect that the party
in possession of skf will encounter “matching” ciphertexts; the crucial point is
that they would not be generating these ciphertexts themselves. To capture
this, BRS define a stronger notion called enhanced function privacy where
the adversary is given access to an “encryption oracle” that outputs matching
ciphertexts.
Unfortunately, the only known construction of a public-key scheme achiev-
ing enhanced function-privacy is the anonymous identity-based encryption
construction presented by BRS [BRS13a]. Therefore, constructing enhanced-
function-private predicate encryption schemes for any class of predicates be-
yond equality predicates has remained open since.

3

1.1 Our Contributions

In this work, we make substantial progress on all three fronts. Compared to
BRS [BRS13a, BRS13b], our results come from using a qualitatively different
high-level approach. In particular, BRS construct public-key function-private
predicate encryption by starting from schemes that satisfy only data privacy
(a definition combining attribute-hiding and payload-hiding), and transforming
them to achieve data privacy and function privacy simultaneously.

We take the opposite approach. We begin with constructions that satisfy
function privacy but not data privacy and transform them to achieve both data
privacy and function privacy. In more standard terminology, our high-level ap-
proach is to think of an obfuscated program [BGI+01] as a decryption key within
a “predicate encryption” scheme that has no data privacy whatsoever (since ob-
fuscated programs are run directly on non-encrypted inputs). We then show that
several obfuscation schemes from the literature can be appropriately transformed
to achieve public-key function-private predicate encryption.

Our starting point is the recent line of work [BKM+18, BW19, BLMZ19]
that constructs simple, group-based obfuscation schemes for what Beullens and
Wee refer to as the “big subset” predicate [BW19].9 For our work, we re-interpret
these predicates as “small superset” predicates, a notion we find slightly more
natural for our applications. A “small superset” predicate fn,t,X is parameterized
by a target set X ⊆ [n], an integer size bound t ≤ n, and takes as input any set
Y ⊆ [n]. fn,t,X(Y) outputs 1 if and only if X ⊆ Y and |Y | ≤ t (that is, Y is a
small superset of X). We show that “small superset” predicates capture several
natural and expressive predicate classes, including large-alphabet conjunctions,
functions in conjunctive normal form with a constant number of inputs per con-
junct (a.k.a., d-CNFs for d = O(1)), and read-once conjunctions of d-disjunctions
for d = O(1).

Our primary contributions are the following:

1. We draw upon a correspondence between program obfuscation and func-
tion privacy to formulate new and versatile simulation-based definitions of
average-case function-privacy and enhanced function-privacy.10 While our
definitions incorporate elements of the distributional virtual black box notion
from obfuscation [BGI+01, BR17], we view our (enhanced) function privacy
definition as a natural extension of the definition of BRS [BRS13a]. Unlike
these prior function-privacy notions [BRS13a, BRS13b], which are tailored
to specific classes of predicates, our definition is completely agnostic to the
predicate class.11 For the special case of HVE (i.e., large-alphabet conjunc-

9 We remark that [BKM+18, BLMZ19] framed their results as obfuscation for conjunc-
tions. Beullens and Wee [BW19] were the first to notice that these techniques are in
fact obfuscating a more general class of “big subset” predicates, which in particular
encompass conjunctions.

10 While our definitions are new, we are not the first to observe the connection between
program obfuscation and function-privacy. See also [AAB+15, ITZ16, ABF16].

11 We note that we are not the first to give a public-key function-private definition that
is agnostic to the predicate class. In particular, this is also achieved by the definition

4

tions), we demonstrate that constructions achieving our function privacy
definitions hide strictly more information about the underlying predicate
than constructions achieving other recently proposed HVE function-privacy
definitions (e.g., [PM18, PMR19]).

2. We leverage bilinear maps to construct a public-key predicate encryp-
tion scheme for small superset predicates. At a very high level, our con-
struction works by embedding the group-based constructions developed in
[BKM+18, BW19, BLMZ19] in group G1, encoding messages/attributes in
group G2, and decrypting using the bilinear map. We prove that our con-
struction achieves enhanced function privacy in the generic bilinear group
model. We note that generic analysis is somewhat unavoidable in our setting,
as the underlying obfuscation constructions we build on are not known to
be secure under any falsifiable assumption [Nao03, GW11].

3. We show that our general construction of public-key enhanced function-
private predicate encryption for “small superset” immediately yields the fol-
lowing:
– Anonymous IBE achieving enhanced function privacy as long as the un-

derlying distribution on points has super-logarithmic min-entropy.
– Public-key enhanced-function-private HVE whenever the underlying dis-

tribution meets a certain entropy threshold.
– Public-key enhanced-function-private predicate encryption for d-CNFs

and read-once conjunctions of d-disjunctions, subject to certain entropy
requirements.

1.2 Technical Overview

Our Approach: From Obfuscation to Function-Private Predicate En-
cryption We begin by recalling the notion of program obfuscation [BGI+01],
which is the starting point for all of the constructions in this work. Roughly
speaking, a program obfuscator takes in a description of some program P and
outputs an obfuscated program Obf(P) that is functionally equivalent to P , but
hides all of the implementation details. A natural approach to formalizing ob-
fuscation security is the notion of a virtual black box (VBB), which asks that
anything (precisely, any one-bit predicate) one can learn given Obf(P) can also
be learned from black-box access to an oracle for P . While VBB obfuscation for
general programs is known to be impossible [BGI+01], there have been a num-
ber of positive results that achieve (average-case or worst-case) VBB security for
limited classes of functionalities, such as point functions [Can97, LPS04, Wee05],
conjunctions [BR13, BR17, BKM+18, BLMZ19, BW19], Hamming balls [DS05],
hyperplanes [CRV10], “compute-and-compare” functions [WZ17, GKW17], etc.

As mentioned in Section 1.1, there is a strong intuitive connection between
program obfuscation and function-private predicate-encryption in the public-key

of [ITZ16]. However, their definition does not extend to enhanced function privacy,
and furthermore they do not give any constructions achieving their definition except
under a strengthening of indistinguishability obfuscation due to [BCKP14].

5

setting (this has also been observed in prior work [AAB+15, ITZ16, ABF16]). In
both settings, the goal is to allow evaluation of a specific functionality without
leaking anything else about the functionality itself. The difference is that an
obfuscated program runs on an arbitrary public input, while in function-private
predicate encryption, function evaluation occurs when applying a decryption key
for some predicate f to a ciphertext whose hidden attribute is the input to the
function.

Moreover, we can imagine defining function privacy so that a decryption key
skf for some function f leaks no more than a VBB obfuscation of f . In this case,
public-key function-private predicate encryption for some function class F is a
strictly stronger primitive than program obfuscation for F . This follows trivially
from the fact that anyone holding a decryption key skf for f ∈ F can use it as an
obfuscated program: to learn whether f(x) outputs 0 or 1, use the public key to
encrypt a message payload under attribute x and check if decryption succeeds.

In this work, we leverage this intuitive connection to build public-key
function-private predication encryption schemes by transforming simple obfus-
cators [Can97, BKM+18, BLMZ19, BW19] that have appeared in the literature.
Our core construction will be based on an obfuscator for the “small superset”
functionality, which is essentially equivalent to the “big subset” functionality in-
troduced by Beullens and Wee [BW19]. We define our “small superset” function
fn,t,X , parameterized by a target set X ⊆ [n], a positive integer n, and an integer
size bound t ≤ n, to output 1 on input Y ⊆ [n] if X ⊆ Y and |Y | ≤ t, and 0
otherwise.12

A simple group-based obfuscator for the “small superset” functionality follows
easily from prior work [BLMZ19, BW19] (which are inspired by the construction
of Bishop et al. [BKM+18]). The obfuscation achieves an average-case notion of
security (i.e., VBB holds if the set X is drawn from a distribution with appro-
priate entropy). From this, we build a public-key (enhanced) function-private
predicate encryption scheme supporting the class of small superset predicates.

In the remainder of this technical overview, we describe a slightly simpli-
fied version of our construction to highlight the main ideas. Instead of start-
ing with the “small superset” functionality, we use the simpler obfuscator of
Canetti [Can97] for point functions. This yields a public-key function-private
predicate encryption scheme for the equality predicate, or equivalently public-key
anonymous IBE. We then provide an extensive discussion on our new definitions
of function privacy and enhanced function privacy. Finally, we demonstrate how
our predicate encryption for “small supersets” naturally captures hidden vector
encryption.
Remark on Presentation. After the technical overview, we will not return
to the construction of public-key anonymous IBE based on Canetti’s obfusca-
tor [Can97]; the construction described in this technical overview follows trivially
from our full-fledged “small superset” obfuscator in Section 5. Details and defini-

12 The “big subset” function of Beullens and Wee [BW19] is also parameterized by the
same n, t,X, but it outputs 1 if and only if Y ⊆ X and |Y | ≥ t. The functionalities
are seen to be equivalent by associating each input set Y with its complement [n]\Y .

6

tions for our extensions to d-CNFs and read-once conjunctions of d-disjunctions
(for constant d) can be found in the full version; we note that these constructions
follow from a straightforward generalization of our main techniques.

Function-Private Anonymous IBE from Point Obfuscation We start
with Canetti’s point function obfuscator [Can97]. Recall that a point function
Ix is a boolean-valued function that outputs 1 on input x, and 0 elsewhere. Fix
a cryptographic group with order p and generator g. Given x, we obfuscate Ix
by drawing a uniformly random r ← Fp and outputting

Obf(Ix) = (gr, grx).

Anyone can evaluate Ix on arbitrary input y by computing (gr)y and comparing
with grx. Moreover, Canetti proves that if x is drawn from any distribution with
super-logarithmic min-entropy, the above construction hides x under a strength-
ening of the Decisional Diffie-Hellman (DDH) assumption [Can97].

Handling Encrypted Inputs: A First Attempt. A natural idea to upgrade Canet-
ti’s obfuscator to work for encrypted inputs y is to use a bilinear map, and to
“obfuscate” the input y in a similar manner. Consider groups G1,G2,GT with
associated generators g1, g2, gT equipped with a bilinear map e : G1×G2 → GT .
To generate the public key, we draw a uniformly random r ← Fp and give out
gr
−1

2 . We treat r as a secret key which is given to the obfuscator. To encrypt
a plaintext y, the user computes (gr

−1

2)y
−1

. A function decryption key for Ix is
simply Obf(Ix) = grx1 .

A user holding an encryption gr
−1y−1

2 of y and a function decryption key grx1
for Ix can easily verify whether Ix(y) = 1 (i.e. y = x) by using the bilinear map
and checking whether

e(grx1 , gr
−1y−1

2)
?
= gT .

However, this simple method of “encrypting” y fails to achieve even semantic
security for ciphertexts since the encryption algorithm is deterministic. That is,
an attacker trying to distinguish between an encryption of y0 and an encryption
of y1 can easily encrypt both and compare to the challenge ciphertext. A nat-
ural approach to randomizing the encoding procedure would be to encode y as
gr
−1y−1α

2 for a random α← Fp. However, for evaluation to work, the ciphertext
would have to include gαT , and essentially the same limitation would arise since
the attacker can request decryption keys of their choice.13

13 In more detail, an attacker trying to distinguish between an encryption of y0 and an
encryption of y1 (for y0, y1 of their choice) is free to request decryption keys corre-
sponding to any function Ix provided that Ix does not trivially allow the attacker
to distinguish between y0 and y1. The attacker can therefore request grx1 for any x

that does not equal y0 or y1. Given challenge g
αr−1y−1

b
2 , gαT and decryption key grx1 ,

7

Handling Encrypted Inputs Securely. Our goal now is to modify the scheme
so that we can introduce randomness into the encryption procedure without
disturbing correctness. The idea is to generalize the above procedure to first
encode x as a 2-dimensional vector [x x2], and to replace the role of y−1 with a
uniformly random vector orthogonal to [y y2]. Now if we compute the dot product
of these vectors, we get 0 if y = x and a non-zero value otherwise. Note that a
random vector orthogonal to [y y2] can be written as [−βy β]> where β ← Fp is
uniformly random. The role of the random scalar r in the previous scheme can
be replaced by a uniformly random invertible 2 × 2 matrix R ← F2×2

p . We are
also free to introduce independent randomness α during obfuscation/secret key
generation. The resulting scheme is as follows.

– Setup. Draw random invertible R← F2×2
p , and output pk = gR

−1

2 , sk = R.14

– KeyGen(sk, x). Parse sk as R. Draw random α ← Fp and output skx =

g
[αx αx2]R
1 .

– Enc(pk, y). Parse pk as gR
−1

2 . Draw random β ← Fp and output gR
−1[−βy β]>

2 .

– Dec(skx, c). Parse skx as g[v1 v2]1 and c as g[u1 u2]
>

2 . Use the bilinear map e

to compute g
[v1 v2]·

[
u1
u2

]
T and output 1 if this equals g0T .

Adding Payloads for Function-Private Anonymous IBE. At the moment, the
above scheme corresponds to an IBE scheme without message payloads; if we
interpret x and y as user identities, currently a user only learns whether or not
they were the correct recipient of a ciphertext. To obtain full IBE, we need to
modify the encryption algorithm to incorporate a message payload µ. To enable
this, we extend R to a 3 × 3 matrix, and extend the obfuscated row vector to
[1 x x2]. During encryption we choose more randomness γ, extend the encrypted
column vector to [γ k1 k2]

>, and additionally release µ · gγT . An accepting input
will now decrypt to gγT rather than the identity, which can be divided out from
µ · gγT to recover µ.

On Function-Private Identity Based Encryption. A construction of function-
private anonymous IBE appears in Boneh, Raghunathan, and Segev [BRS13a].
Their approach starts with an existing (anonymous) IBE scheme and “upgrades”
it to statistically hide the function using a randomness extractor. As outlined ear-
lier, our approach and construction differ in several important dimensions. First,
our approach starts with an existing point obfuscation scheme, “upgrades” it to
encrypt the inputs, and then subsequently introduces the ability to encrypt a

the attacker can use the fact that they know x, y0, y1 in the clear to determine b

as follows. The attacker raise gαT to the exponent xy−1
0 to obtain gαxy

−1
0

T , and then

computes e(grx1 , g
αr−1y−1

b
2). If b = 0, these quantities match, and otherwise they do

not.
14 We use the shorthand gV where V = (vi,j)i∈[k],j∈[`] to denote the matrix of group

elements (gvi,j)i∈[k],j∈[`].

8

message payload. Second, our construction achieves computational function pri-
vacy for any distribution with super-logarithmic min-entropy, rather than λ min-
entropy as required in [BRS13a] (this requirement was also relaxed in [PMR19]).
However, the drawback of our approach is that we can only prove security in
the generic (bilinear) group model [Nec94, Sho97, Mau05], whereas [BRS13a] is
proven secure in the standard model.

Building Public-Key Function-Private Predicate Encryption for
“Small Supersets” We now briefly describe how to extend the above function-
private anonymous IBE to handle the significantly more expressive “small super-
set” functionality, described earlier. First, we describe how to generate a function
decryption key for fn,t,X , where X ⊆ [n]. Now, R is a uniformly random width
t+1 matrix (instead of width 2). We now follow essentially the same procedure
as before for each x ∈ X. That is, for each x ∈ X we form the row vector
[x x2 . . . xt+1] and compute the row vector [x x2 . . . xt+1] ·R. We collect the
row vectors resulting from this process into a matrix MX where the rows are
indexed by elements x ∈ X.

A set Y ⊆ [n] (corresponding to a set that will be given as input to the “small
superset” functionality) can be encrypted as follows. We assemble a matrix WY

whose rows are indexed by elements y ∈ Y . The row corresponding to y is simply
[y y2 . . . yt+1]. Draw a uniformly random vector v in the right kernel of WY ,
and output vY = R−1 · v. Note that this is only possible if |Y | ≤ t.

To decrypt, compute the matrix-vector product MX · vY in the exponent,
which will be the all-zeros vector if and only ifX ⊆ Y . To minimize the size of the
obfuscation, we can collapse the matrix MX to a vector u>X , by left multiplying
by a uniformly random vector of the appropriate dimension. Then decryption
simply computes the (dot) product u>X · vY in the exponent. In the body, we
describe these obfuscation and encryption procedures in the language of linear
codes, which results in a cleaner presentation.

Note that our construction is efficient as long as t is polynomial in the security
parameter, since the vector and matrix dimensions are all determined by t. In
particular, the universe size n could be exponential. On the other hand, the
obfuscation construction given by Beullens and Wee [BW19] for large subset is
only efficient for polynomial sized universe.

Finally, we remark that it is also easy to extend this to function-private
predicate encryption for small superset by adding a payload in the same manner
as for identity based encryption.

Function-Private Hidden Vector Encryption. We now describe how function-
private predicate encryption for small superset gives rise to function-private hid-
den vector encryption [BW07]. Consider a vector v = (vi)i∈[k] ∈ (Zs ∪ {∗})k.
Hidden vector encryption corresponds to predicate encryption for the predicate

Pv(u) =

{
1 if for all i ∈ [k]: (vi = ui or vi = ∗),
0 otherwise.

9

Let the universe size of the small superset instance be n = ks and the threshold
value be k. Let the setX corresponding to v be defined asX := {(i−1)s+vi}i∈B ,
where B denotes the non-wildcard positions of v. Then an input vector u =
(ui)i∈[k] ∈ Zks corresponds to the set Yu := {(i − 1)s + ui}i∈[k], which has size
exactly k. Finally, we have Pv(u) = 1 ⇐⇒ X ⊆ Yu. Since hidden vector
encryption is most generally defined over exponentially sized alphabets, we would
like to take s and thus n to be exponential. Thus, we crucially rely on the fact
that the universe size of our small superset instance is allowed to be exponential.

Function-Privacy Definitions. When considering public-key function-private
predicate encryption, the appropriate notion of function privacy is somewhat
tricky to define. We choose to generalize the original notion of “real-or-random”
function privacy of Boneh et al. [BRS13a]. This definition was originally stated
just for point functions and was later extended to inner products [BRS13b].
Roughly, the definition considers an oracle which is set to be in either “real”
or “random” mode, and which accepts a distribution over points. If it is in real
mode, it produces a key for a point drawn from the queried distribution, and if
it is in random mode, it produces a key for a uniformly random point. Security
is parameterized by a class of allowed distributions for which the adversary can
query its oracle, and requires that an adversary cannot determine which mode
its oracle is in.

Extending this definition to a larger class C of functions would require a
natural notion of a uniformly random function from C. We choose to instead
view the random mode as a “simulated” mode, where the behavior of the oracle is
independent of the queried distribution, but otherwise arbitrary. This definition
now naturally extends to any class of functions, and captures the same intuition
that an adversary learns nothing about the function that it has a key for, as long
as it is drawn from a particular class of distributions. We refer to this oracle now
as the Real-or-Sim oracle.

We note here that although our predicate encryption constructions are in-
spired by and built from existing obfuscation constructions (in particular, those
that already satisfy distributional virtual black box security), this notion of func-
tion privacy is incomparable to distributional VBB. In particular, distributional
VBB is defined relative to a distribution D over functions in C, and essentially
requires that no adversary, given the obfuscation of a function f drawn from
D, can guess the value of any predicate P applied to f . On the other hand, our
definition of function privacy is defined relative to an entire class of distributions
D, and does not consider predicates on functions drawn from individual distri-
butions D. Instead, we require that the class of distributions D is simulatable
in the sense described above. Note that our constructions also satisfy distribu-
tional VBB, but we focus on this function-private predicate encryption style of
definition, as it aligns more closely with previous work.

Enhanced Function Privacy. As in prior work [BRS13a], we will be concerned
with evasive distributions over functions, where it is difficult to find an accepting
input given oracle access to a function drawn from the distribution. However, it

10

is crucial for applications that given a decryption key for an unknown function,
the key can be used to successfully decrypt payloads without sacrificing function
privacy. This means in particular that an adversary should not be able to pro-
duce accepting inputs to its decryption key, even given encryptions of arbitrary
accepting inputs.

This is captured by Boneh et al. [BRS13a] by the notion of enhanced func-
tion privacy, where in the real-or-random game, the adversary is additionally
given an encryption oracle. The adversary can query this oracle to obtain en-
cryptions of arbitrary accepting inputs to the unknown functions corresponding
to the decryption keys in its possession. Enhanced function privacy requires that
the adversary still cannot determine what mode its Real-or-Sim oracle is in. We
prove that our predicate encryption scheme for small superset satisfies this en-
hanced function privacy notion, which implies that our hidden vector encryption
construction does as well.

Secure Distributions for Function-Private HVE (and More). We determine
which distributions over HVE instances induce an evasive distribution over small
superset instances, under the mapping defined above. We parameterize HVE dis-
tributions by an alphabet size s, and an input length k. For a particular distri-
bution Dk,s, let H∞(Dk,s) be the min-entropy of the vector v← Dk,s. Following
the proof strategy from [BW19, Lemma 2], we show enhanced function-private
hidden vector encryption for the set of distributions containing any Dk,s such
that H∞(Dk,s) ≥ k + ω(log k).

Note that the min-entropy requirement scales with the input length, but not
with the alphabet size. Thus as the alphabet size increases, we obtain security for
a larger and larger class of distributions. If we instead had a polynomial limit on
the universe size of our small superset instances (like in [BW19]), then to support
exponentially large alphabets Zs, we would be forced to first write each element
as a bitstring (or more generally a string over a polynomially sized alphabet),
increasing the input length. This would cause the min-entropy requirement to
scale with the size of the alphabet.

On the other hand, this result severely restricts the possible distributions
when s is a small constant. Thus we give an additional set of secure distributions
(that also appear in [BW19] in the context of conjunction obfuscation) over
vectors with a fixed number of wildcards w. We obtain enhanced function-private
hidden vector encryption for the set of distributions containing any

Dk,s such that H∞(Dk,s) = log

(
k

w

)
+ ω(log(k)),

and where Dk,s is supported on vectors with exactly w wildcards. Note that for
some values of w, this min-entropy bound is much less than the input length k,
and thus supports a large and interesting class of distributions even for small
alphabet size s.

11

Extentions to d-CNF and Read-once Conjunction of d-disjunctions. We also
extend the enhanced-function-private predicate encryption of “small supersets”
to d-CNF and conjunction of d-disjunctions for d = O(1).

d-CNFs for d = O(1). The underlying technique in the BKMPRS construction
is to translate the evaluation of the conjunction functionality into a polynomial
interpolation, which is successful if and only if all input values (one per compar-
ison clause) are valid points on the underling polynomial. This is achieved by
evaluating the comparison functionality as a lookup table which contains either
valid shares for matching input, or random values, otherwise (all encoded in
the exponent for security). Our observation is that we can use a similar lookup
table approach to implement any circuit functionality besides comparisons, and
this technique is polynomially efficient as long as the underlying circuits have
constant input length.

A d-CNF for k-bit input is a circuit C = C1 ∧ C2 ∧ · · · ∧ Cm where for each
i ∈ [m], Ci is a boolean circuit which depends only on the inputs bits with
indices in a subset, denoted as Ii ⊆ [k]. We now show how to reduce the d-CNF
to the “small superset” functionality.

Given a d-CNF C = C1 ∧ C2 ∧ · · · ∧ Cm, denote K =
(
k
d

)
and D = 2d.

We create a universe of n = KD elements. Then we reform the set [KD] into
a K × D matrix. The rows of the matrix corresponds to subsets of size d in
[k]. The columns of the matrix corresponds to the input strings of k-bits. Now
we specify a subset X of [KD]. For I ∈

(
[k]
d

)
and v ∈ {0, 1}k, X contains the

elements in I-th row and v-th column, if there exists a Ci, i ∈ [m] such that Ci
only depends on I and Ci(v) = 0. On input x ∈ {0, 1}k, we specify a subset
Y ∈ [KD]. For every I ∈

(
[n]
d

)
, Y contains all elements in I-th row, except the

one in xI -th colum. Since Y contains K(D − 1) elements, we simply set the
threshold t = K(D − 1). Then, C(x) = 1 if and only if X ⊆ Y . This is because,
C(x) = 1 if and only if the following condition holds: for every I ∈

(
[k]
d

)
, either

there exists a Ci such that Ci only depends on I and Ci(xI) = 1, or such Ci
doesn’t appear in C. The above condition is equivalent to X ⊆ Y . We prove
security for some special distributions over d-CNF.

Function Distribution. We prove the security for two distributions. The first dis-
tribution essentially corresponds to the “uniform” case. Here, we achieve the best
possible parameter, namely, m = ω(log k).15 Our proof in this case is a natural
extension of the BKMPRS proof. The second distribution is useful for obtaining
obfuscation of conjunctions of d-disjunctions via the mapping discussed earlier.
Crucially, in this distribution, we do not require the distribution over Ci to be
independent. Consequently, the proof of security for this distribution is more
involved. Specifically, since Ci’s may be dependent, in order to use a combina-
torial argument similar to BKMPRS, we first need to “break” the dependence.
We address this by choosing a subset of sets, say I, such that the sets in I are
disjoint. Clearly, I has the necessary independence. To choose such a subset,
we build a graph, where each vertex of the graph represents a set, and draw an

15 Indeed, m must be ω(log k) in order to make the function family evasive.

12

edge between the two vertices if and only if the intersection of two vertex is non-
empty. We then bound the degree of this graph and argue that the number of
color used for coloring the graph is also bounded. Finally, we use the pigeonhole
principle to pick such a subset I. Due to lack of space, we refer the reader to
the full version for details.
Read Once Conjunctions of d-Disjunctions. We also consider a class of function-
alities that directly generalizes the conjunctions functionality but in a different
way from d-CNFs. While the conjunctions functionality constrains the value of
each input bit independently, in our generalization we constrain the values of sev-
eral consecutive input bits together. More precisely, our functionality is defined
as (

p
(1)
1 ∨ · · · ∨ p

(1)
d

)
∧ · · · ∧

(
p
(`)
1 ∨ · · · ∨ p

(`)
d

)
,

where p(i)j is a length ki string over alphabet {0, 1, ?}, and
∑
i ki = k. It evaluates

to one on input string x = x(1)‖ · · · ‖x(`) ∈ {0, 1}n if and only if for every i ∈ [`],
it holds that |x(i)| = ki and x(i) matches one of {p(i)j }j∈[d].

One direct way to achieve the above functionality using the d-CNF construc-
tion is by considering each

(
p
(i)
1 ∨ · · · ∨p

(i)
d

)
as the functionality of the clause Ci.

However, this will impose a restriction that each ki = O(1). Instead, We provide
a different mapping to the d-CNF class with the only restriction that

∑
i ki = k

when k = O(1). This mapping transforms the conjunction of disjunction over
strings into a conjunctions of disjunctions over bits by representing the matching
y =? x of a longer string x = x1 . . . xt as the conjunction over bit comparisons
y1 =? x1 ∧ · · · ∧ yt =? xt.

1.3 Outline

The rest of the paper is structure as follows. In Section 2 we define notation
and provide background definitions. In Section 3 we present our construction for
obfuscating small supersets. In Section 4 we formally define our security notions
of data privacy and (enhanced) function privacy, and in Section 5 we present
our construction for function-private predicate encryption for small supersets.
In the full version we present applications of our construction to hidden vector
encryption, d-CNFs for d = O(1), and read-once conjunctions of d-disjunctions
for d = O(1).

2 Preliminaries

We use the standard Landau notations. A function ε(λ) is written as negl(λ) if for
all positive integers c, ε(λ) = o(1

λc). For a positive integer n, we let [n] denote the
set {1, 2, . . . , n}. For a finite set S, x← S denotes a uniformly random sample.

We write scalars as lowercase unbolded letters (e.g., α or a), vectors as lower-
case bold letters (e.g., v) and matrices as uppercase bold letters (e.g. M). We use
the shorthand gv where v = (v1, . . . , vn) to denote the vector of group elements
gv1 , . . . , gvn , and naturally extend this notation to matrices V. To distinguish

13

between the case where x refers to a specific value and the case where x is used
as a formal variable, we will explicitly write x̂ if it is a formal variable. This
notation will also extend to vectors v̂ = (v̂1, . . . , v̂n) where each entry is itself a
formal variable, as well as to matrices M̂ where each entry is a formal variable.

2.1 Bilinear Groups

We briefly recall the definition of an asymmetric bilinear group [Jou04, BF01].
Let G1,G2,GT be distinct groups, all of prime order q, and let e : G1×G2 → GT
be a mapping from G1×G2 onto the target group GT . Let g1, g2 be generators for
G1 and G2, respectively. We say that (G1,G2,GT , e) is an asymmetric bilinear
group if the following conditions are met:
– (Efficiency) The group operations in G1,G2,GT as well as the mapping e(·, ·)

are all efficiently computable.
– (Non-degeneracy) e(g1, g2) = gT , where gT is a generator of GT .
– (Bilinearity) e(ga1 , gb2) = gabT for all a, b ∈ Zq.

2.2 Generic Bilinear Group Model

We use an extension of the generic group model [Nec94, Sho97] adapted to
bilinear groups. The following definition is taken verbatim from [KLM+18].

Definition 1 (Generic Bilinear Group Oracle). A generic bilinear group
oracle is a stateful oracle BG that responds to queries as follows:

– On a query BG.Setup(1λ), the oracle generates two fresh nonces pp, sp ←
{0, 1}λ and a prime p. It outputs (pp, sp, p). It stores the generated values,
initializes an empty table T ← {}, and sets the internal state so subsequent
invocations of BG.Setup fail.

– On a query BG.Encode(k, x, i) where k ∈ {0, 1}λ, x ∈ Zp and i ∈ {1, 2, T}, the
oracle checks that k = sp (returning ⊥ otherwise). The oracle then generates
a fresh nonce h ← {0, 1}λ, adds the entry h 7→ (x, i) to the table T , and
outputs h.

– On a query BG.Add(k, h1, h2) where k, h1, h2 ∈ {0, 1}λ, the oracle checks
that (1) k = pp, and (2) the handles h1, h2 are present in its internal table
T and are mapped to the values (x1, i1) and (x2, i2), respectively, with i1 =
i2 (returning ⊥ otherwise). The oracle then generates a fresh handle h ←
{0, 1}λ, computes x = x1 + x2 ∈ Zp, adds the entry h 7→ (x, i1) to T , and
outputs h.

– On a query BG.Pair(k, h1, h2) where k, h1, h2 ∈ {0, 1}λ, the oracle checks that
(1) k = pp, and (2) the handles h1, h2 are present in T and are mapped to
values (x1, 1) and (x2, 2), respectively (returning ⊥ otherwise). The oracle
then generates a fresh handle h ← {0, 1}λ, computes x = x1x2 ∈ Zp, adds
the entry h 7→ (x, T) to T , and outputs h.

– On a query BG.ZeroTest(k, x) where k, x ∈ {0, 1}λ, the oracle checks that
(1) k = pp, and (2) the handle h is present in T and it maps to some value
(x, i) (returning ⊥ otherwise). The oracle then outputs “zero” if x = 0 ∈ Zp
and “non-zero” otherwise.

14

2.3 Virtual Black Box Obfuscation

We recall the definition of a distributional virtual black-box (VBB) obfuscator.
We roughly follow the definition of Brakerski and Rothblum [BR13].

Definition 2 (Distributional VBB Obfuscation). Let C = {Cn}n∈N be a
family of polynomial-size circuits, where Cn is a set of boolean circuits operating
on inputs of length n, and let Obf be a PPT algorithm which takes as input an
input length n ∈ N and a circuit C ∈ Cn and outputs a boolean circuit Obf(C)
(not necessarily in C). Let D = {Dn}n∈N be an ensemble of distribution families
Dn where each D ∈ Dn is a distribution over Cn.

Obf is a distributional VBB obfuscator for the distribution class D over the
circuit family C if it has the following properties:

1. (Strong) Functionality Preservation: For every n ∈ N, C ∈ Cn, there exists
a negligible function µ such that

Pr[Obf(C, 1n)(x) = C(x) ∀x ∈ {0, 1}n] = 1− µ(n) .

2. Polynomial Slowdown: For every n ∈ N and C ∈ Cn, the evaluation of
Obf(C, 1n) can be performed in time poly(|C|, n).

3. Distributional Virtual Black-Box: For every PPT adversary A, there exists
a (non-uniform) polynomial size simulator S such that for every n ∈ N,
every distribution D ∈ Dn (a distribution over Cn), and every predicate
P : Cn → {0, 1}, there exists a negligible function µ such that∣∣∣∣ Pr

C←Dn

[A(Obf(C, 1n)) = P(C)]− Pr
C←Dn

[SC(1|C|, 1n) = P(C)]
∣∣∣∣ = µ(n) .

2.4 Predicate Encryption

Let F = {Fλ}λ be a function class, where Fλ = {f : Xλ → {0, 1}}. Let M =
{Mλ}λ be a message space.

Definition 3 (Public-key Predicate Encryption). A public-key predicate
encryption scheme Π = (Setup,KeyGen,Enc,Dec) for a function class F and
message spaceM is a tuple of ppt algorithms defined as follows:

– Setup(1λ): On input security parameter λ ∈ N provided in unary, output
master secret key msk and public key pk.

– KeyGen(msk, f): On input master secret key msk and function f ∈ Fλ, output
decryption key skf .

– Enc(pk, x, µ): On input public key pk an attribute x ∈ Xλ, and a payload
µ ∈Mλ, output ciphertext ct.

– Dec(skf , ct): On input decryption key skf for function f ∈ Fλ and ciphertext
ct, output an element ofMλ ∪ {⊥}.

15

A public-key predicate encryption scheme Π for function class F = {Fλ}λ and
message space M = {Mλ}λ is correct if for all λ ∈ N, f ∈ Fλ, x ∈ Xλ, and
µ ∈Mλ, it holds that:

Pr

 (msk, pk)← Setup(1λ)
skf ← KeyGen(msk, f)
ct← Enc(pk, x, µ)

∣∣∣∣∣∣ Dec(skf , ct) =

{
µ if f(x) = 1

⊥ if f(x) = 0

 = 1− ν(λ) ,

where the probability is taken over the internal randomness of the algorithms
and ν(·) is a negligible function.

We defer the security notions for predicate encryption to Section 4.

3 Obfuscating Small Supersets

We define the “small superset” functionality. As mentioned earlier, this is an al-
ternative but virtually identical view of the “big subset” functionality proposed
by Beullens and Wee [BW19]. However, we find the “small superset” formula-
tion to be significantly more intuitive for our applications. The small superset
functionality fn,t,X is parameterized by a universe size n, a threshold value t,
and a set X ⊆ [n]. fn,t,X takes as input a set Y ⊆ [n], and accepts if |Y | ≤ t
and X ⊆ Y . While Beullens and Wee [BW19] limit n to be polynomial-size, we
integrate the approach of Bartusek, Lepoint, Ma, and Zhandry [BLMZ19] for
large-alphabet conjunctions to handle exponential size n, provided t = poly(λ).

Definition 4. Let X ⊆ Fq consist of elements x1, . . . , xk. Let Bt,X,q ∈ Fk×(t+1)
q

be defined as

Bt,X,q :=

x1 x

2
1 . . . x

t+1
1

x2 x
2
2 . . . x

t+1
2

...
...
. . .

...
xk x

2
k · · · x

t+1
k

 .

We also define the following helper functionalities.

– SampCodeword(B ∈ Fk×(t+1)
q). Output a random codeword in the code gen-

erated by B by sampling uniformly random e ∈ Fkq and outputting e> ·B.
– SampDualCodeword(B ∈ Fk×(t+1)

q). Output a uniformly random vector w ∈
Ft+1
q in the right kernel of B, i.e., w such that B ·w = 0.

3.1 Small Superset Obfuscation Construction

In this section, we define a small superset obfuscator using the above helper
functionalities. The following construction is similar to the generic group con-
structions in [BW19, BLMZ19] (which build on [BKM+18]), though the presen-
tation is tailored to fit the scope of this work. We assume that global parameters
(λ, n, t, q) are set in advance, where λ is the security parameter, n = 2poly(λ) is

16

the universe size, t = poly(λ) is the threshold size, and q is a prime larger than n
(for strong functionality preservation, we will require that q ≥ 2λ

(
n′

t

)
= 2poly(λ),

where n′ = max{n, 2t}). Let G be a group of order q with generator g.

– Obf((n, t, q), X ⊆ [n]). c> ← SampCodeword(Bt,X,q). Output gc
>

(inter-
preted as gc1 , . . . , gct+1).

– Eval((n, t, q), gc
> ∈ Gt+1, Y ⊆ [n]). Let w ← SampDualCodeword(Bt,Y,q).

Accept if and only if gc
>·w = g0.

3.2 Functionality Preservation

We rely on the following fact (also stated in [BLMZ19]).

Lemma 1. For any t + 1 values of x1, . . . , xt+1 < q, the corresponding set of
t+ 1 vectors {

(
xi x

2
i · · ·x

t+1
i

)
}i∈[t+1] are linearly independent over Fq.

Functionality preservation now follows almost immediately from the following.

Lemma 2. Let X,Y ⊆ Zq be such that |X|, |Y | ≤ t and X 6⊆ Y . Let c> ←
SampCodeword(Bt,X,q) and w← SampDualCodeword(Bt,Y,q). Then Pr[c> ·w =
0] ≤ 2/q.

Proof. We first show that Pr[Bt,X,q · w = 0] ≤ 1/q. By definition, there must
be some element x ∈ X such that x /∈ Y . By Lemma 1, the row vector
(x x2 . . . xt+1) is not in the row span of Bt,Y,q. Thus, only a 1/q fraction of the
vectors in the kernel of Bt,Y,q are orthogonal to (x x2 . . . xt+1). Noting that w
is a uniformly random vector in the kernel of Bt,Y,q, and that (x x2 . . . xt+1) is
a row of Bt,X,q establishes the claim. Finally, note that if Bt,X,q ·w 6= 0, then
the uniform randomness of the vector c chosen by SampCodeword implies that
Pr[c> ·w = 0] = 1/q. Thus Pr[c> ·w = 0] ≤ 1/q + ((q − 1)/q)(1/q) ≤ 2/q. ut

Now, if X ⊆ Y , then w is in the kernel of Bt,X,q, so c> · w = 0 with
probability 1. Otherwise, the above lemma shows that c> · w 6= 0 except with
probability 2/q. Now let q ≥ 2λ

(
n′

t

)
, where n′ = max{n, 2t}, and consider all

sets Y such that |Y | ≤ t and X 6⊆ Y . The number of such sets is at most∑
i∈[t] i

(
n
i

)
< t
(
n′

t

)
. A union bound shows that strong functionality is preserved

except with probability at most t/2λ = negl(λ).

3.3 Security

Definition 5. Let n(·) and t(·) be functions of the security parameter. We say
that a family of distributions {Dn,t,λ}λ where each Dn,t,λ is a distribution over
subsets X ⊆ [n(λ)] such that |X| ≤ t(λ), is an evasive distribution for the small-
superset functionality, if for all fixed Y ⊆ [n(λ)], |Y | ≤ t(λ),

Pr[X ⊆ Y | X ← Dn,t,λ] = negl(λ).

17

Theorem 1. For any functions n(·) and t(·), and evasive family of distribu-
tions {Dn,t,λ}λ for the small superset functionality, the above construction is a
distributional-VBB secure obfuscator in the generic group model.

The proof is similar to the generic group proofs given in prior work [BLMZ19,
BW19].

4 Function-Private Predicate Encryption Security
Definitions

4.1 Data Privacy

Our data privacy definition is standard and captures the property that an adver-
sary should not be able to tell the difference between two encrypted attributes
x0 and x1 or payloads µ0 and µ1, provided that it does not have decryption
keys that allow it to distinguish trivially. We allow the adversary access to a key
generation oracle, allowing it to produce decryption keys for functions f of its
choice (from a specified function class), subject to the usual requirement that
f(x0) = f(x1), and if f(x0) = f(x1) = 1 for some queried f , then µ0 = µ1.

Definition 6 (Data Privacy). Let Π be a public-key predicate encryption
scheme for function class F = {Fλ}λ where Fλ = {f : Xλ → {0, 1}} and
message space M = {Mλ}λ, and let A be a stateful adversary. We define the
data privacy (DP) advantage as

AdvDP
Π,A(λ)

def
=
∣∣∣Pr [ExptDP

Π,A(λ, 0) = 1
]
− Pr

[
ExptDP

Π,A(λ, 1) = 1
]∣∣∣ ,

where for λ ∈ N and b ∈ {0, 1}, we de-
fine experiment ExptDP

Π,A(λ, b) as on the
right, where x0, x1 ∈ Xλ, and µ0, µ1 ∈
Mλ. We additionally require that A is
admissible in the following sense: for all
KeyGen queries f ∈ Fλ made by A we
have that f(x0) = f(x1), and if there ex-
ists an f such that f(x0) = f(x1) = 1,
then µ0 = µ1.

ExptDP
Π,A(λ, n, b)

(msk, pk)← Setup(1λ)

(x0, x1, µ0, µ1)← AKeyGen(msk,·)(1λ, pk)

ct← Enc(pk, xb, µb)

return AKeyGen(msk,·)(ct)

We say Π is a data-private predicate encryption scheme if for all admissible ppt
adversaries A, there exists a negligible function ν(·) such that for all λ ∈ N,
AdvDP

Π,A(λ) ≤ ν(λ).

4.2 Function Privacy

Now consider a set of distribution ensembles over functions, where for each choice
of λ, we have a set of distributions Dλ. Our first function privacy notion states
that function keys for functions drawn from any distribution D ∈ Dλ can be

18

simulated even without the description of D. We consider two experiments. In
the first, the adversary has access to a “distributional key generation oracle” that
takes as input some D ∈ Dλ and outputs a decryption key for a boolean function
f drawn from D. In the second, we replace the distributional key generation
oracle by a simulator. This simulator has no access to the input D, and thus must
produce “fake” decryption keys that are indistinguishable to any ppt adversary
from real decryption keys produced by the key generation oracle.

Since we consider public-key schemes, an adversary essentially has oracle
access to the function corresponding to any decryption key in its possession.
Thus it may be easy for the adversary to distinguish these two experiments if
for f ← D, it can find an attribute x such that f(x) = 1. So this notion is only
realizable for carefully chosen sets of distributions Dλ, which in particular must
consist solely of evasive distributions D [BBC+14]. That is, for f ← D, finding
x such that f(x) = 1 given oracle access to f is computationally intractable.

Definition 7 (Function Privacy). Let Π be a public-key predicate encryption
scheme for function class F and message spaceM, let A be a stateful adversary,
and let S be an explicit ppt algorithm simulating KeyGen. We define the function
privacy (FP) advantage for set of distribution ensembles D = {Dλ}λ as

AdvFH
Π,S,A(λ,D)

def
=
∣∣∣Pr [ExptFHΠ,S,A(λ,D, 0) = 1

]
− Pr

[
ExptFHΠ,S,A(λ,D, 1) = 1

]∣∣∣ ,
where for λ ∈ N and b ∈ {0, 1}, we define experiment ExptFHΠ,S,A(λ,D, b) as:

ExptFHΠ,S,A(λ,D, 0)

(msk, pk)← Setup(1λ)

return AODKeyGen(msk,·)(1λ, pk)

ODKeyGen(msk,D)
If D ∈ Dλ, f ← D, return KeyGen(msk, f)

Else return ⊥

ExptFHΠ,S,A(λ,D, 1)

(msk, pk)← Setup(1λ)

return AS(msk)(1λ, pk)

We say Π is a D-function-private predicate encryption scheme if there exists a
simulator S such that for all ppt adversaries A, there exists a negligible function
ν(·) such that for all λ ∈ N, AdvFH

Π,S,A(λ,D) ≤ ν(λ).

4.3 Enhanced Function Privacy

In the standard notion of function privacy described above, the fact that the
adversary only receives decryption keys skfj for functions fj (where fj denotes
the jth output of ODKeyGen during the course of the experiment) drawn from
an evasive distribution D implies it will not be able to generate a ciphertext c
encrypting (x, µ) such that Dec(skfj , c) → µ (except with negligible probabil-
ity). We now describe a strictly stronger notion of function privacy known as

19

enhanced function privacy, where we provide the adversary with an oracle OEnc

that generates ciphertexts of (x, µ) such that that fj(x) = 1 for some fj . More
precisely, OEnc takes pk and an index j as input, and outputs a ciphertext c of
some arbitrary (x, µ) such that Dec(skfj , c)→ µ.

Note that normal (non-enhanced) function privacy does not guarantee any
security the moment a function decryption key holder receives a ciphertext of
(x, µ) such that f(x) = 1. This renders the standard function privacy notion
almost useless in many settings, since as soon as a user is able to use its decryp-
tion key to decrypt any payload µ, all function privacy may be lost. We give
our formal definition below, which generalizes the enhanced function privacy no-
tion proposed by Boneh et al. [BRS13a, §3.2] in the context of identity-based
encryption (IBE).

Definition 8 (Enhanced Function Privacy). Let Π be a public-key predicate
encryption scheme for function class F and message spaceM, let A be a stateful
adversary, and let S = (SDKeyGen,SEnc) be an explicit ppt algorithm simulating
KeyGen and Enc. We define the enhanced function privacy (eFP) advantage for
distribution ensemble D = {Dλ}λ as

AdveFP
Π,S,A(λ,D)

def
=
∣∣∣Pr [ExpteFPΠ,S,A(λ,D, 0) = 1

]
− Pr

[
ExpteFPΠ,S,A(λ,D, 1) = 1

]∣∣∣ ,
where for λ ∈ N and b ∈ {0, 1}, we define experiment ExpteFHΠ,S,A(λ,D, b) as:

ExpteFHΠ,S,A(λ,D, 0)

(msk, pk)← Setup(1λ)

j := 1

return AODKeyGen(msk,·),OEnc(pk,·)(1λ, pk)

ODKeyGen(msk,D)
If D ∈ Dλ, fj ← D, return KeyGen(msk, f)

Else return ⊥
(j := j + 1)

OEnc(pk, j)

choose any (x, µ) ∈ Xλ ×Mλ

such that fj(x) = 1

return Enc(pk, x, µ)

ExpteFHΠ,S,A(λ,D, 1)

(msk, pk)← Setup(1λ)

return ASDKeyGen(msk),SEnc(pk,·)(1λ, pk)

We say Π is a D-enhanced function-private predicate encryption scheme if there
exists a simulator S = (SDKeyGen,SEnc) such that for all ppt adversaries A, there
exists a negligible function ν(·) such that for all λ ∈ N, AdveFH

Π,S,A(λ,D) ≤ ν(λ).

4.4 Discussion

We view our enhanced function privacy definition as a direct generalization of
the “real-or-random” enhanced function privacy definition considered by Boneh

20

et al. [BRS13a]. Boneh et al. give their definition in the context of identity-based
encryption (IBE), where an adversary is given an oracle that accepts distribu-
tions D over identities. The guarantee is that the adversary cannot determine
whether the oracle is in “real” or “random” mode, where real mode means that it
will return the secret key for an identity I drawn from the input distribution D,
and random mode means that it will return the secret key for a uniformly ran-
dom identity. When attempting to generalize this definition to more expressive
function classes (note that IBE corresponds to predicate encryption for point
functions), it is not necessarily clear what the behavior of the random mode
oracle should be.

We instead view the random mode oracle as a simulator which does not get to
see the input distribution D. In the case of IBE, one possible simulator could be
defined to return a secret key for a uniformly random identity. But in general, we
can allow the simulator’s behavior to be arbitrary, as long as it does not depend
on the queried distribution.

We note that our definition is weaker than the Boneh et al. defini-
tion [BRS13a] for IBE in one sense: we no longer provide the adversary with
an explicit KeyGen oracle, which can be used to obtain secret keys for arbi-
trary functions of the adversary’s choice (our only key generation oracle outputs
functions drawn from evasive distributions). This is because such a definition
is trivially unachievable when considering general functionalities such as small
superset.

Indeed, since the behavior of the Enc oracle is arbitrary, assume that given
an index j corresponding to a secret key for hidden subset Xj , it encrypts using
the attribute Xj itself, a valid accepting input. Assume further that the universe
size n is polynomial. Now an adversary can use the KeyGen oracle n times to
receive a secret key for each of the subsets {i} for i ∈ [n]. Then it simply tries
to decrypt the encryption with attribute Xj with each of the keys, and can
figure out exactly what Xj is, breaking function privacy. This style of attack
does not exist when considering IBE where the functions encrypted are simply
point functions.

As a final note about our definitions, we compare to those of Patranabis
et al. [PMR19], which to the best of our knowledge is the only previous work
proposing function private hidden vector encryption. They consider a notion of
“left-or-right” security, where the adversary queries two distributions at a time to
its oracle, and the oracle chooses which one to draw the function from depending
on whether it is in “left” or “right” mode. They do not consider the enhanced
version where an Enc oracle is provided, but they do provide a KeyGen oracle as
in the original Boneh et al. [BRS13a] definition.

In the full version, we augment our basic (non-enhanced) function privacy
definition to include a KeyGen oracle, sketch a proof that our small superset
construction obtains this definition, and then show that this definition implies
the left-or-right definition considered by Patranabis et al. [PMR19]. By going
through our HVE-to-small-superset compiler and comparing the class of distri-
butions considered in this work with those of Patranabis et al. [PMR19] (which,

21

in particular, reveal the positions of the wildcards), we demonstrate that the
security of our function private HVE construction generalizes that of Patranabis
et al. [PMR19].

5 Function-Private Predicate Encryption for Small
Superset

The following construction Π relies on an asymmetric bilinear map e : G1 ×
G2 → GT . We let [a]1, [b]2, [c]T denote encodings of a, b, c in groups G1,G2,GT
respectively. For a vector v or matrix M, we use the shorthand [v] or [M] (for
any of the three groups) to denote the group elements obtained by encoding each
entry of v or M respectively. Let n(·), t(·) be functions of the security parameter.
Let the message spaceM :=Mλ be a subset of the target group GT such that
|M|/|GT | = negl(λ).16

– Setup(1λ). Set n := n(λ), t := t(λ). Pick a prime q > max{n, 2λ}. Sample
a uniformly random matrix R ∈ F(t+2)×(t+2)

q and compute R−1. Output
msk := R−1 and pk := [R]2.

– KeyGen(msk, X). Parse msk as R−1. To encrypt a subset X ⊆ [n], draw
c> ← SampCodeword(Bt,X,q), sample α← Fq, and output

[(1 | α · c>) ·R−1]1.
– Enc(pk, Y, µ). Parse pk as [R]2. To encrypt a message Y ⊆ [n] such that
|Y | ≤ t, let w← SampDualCodeword(Bt,Y,q), sample β, γ ← Fq, and output

[R]2 · (γ | w> · β)>, µ · [γ]T .
– Dec(skX , ctxtY). Parse skX as [v>]1 and ctxtY as ([w]2, h). Compute

µ := h/[v> ·w]T ,

where the dot product in the target group is computed using the bilinear
operation. If µ ∈M, output µ, otherwise output ⊥.

Correctness. If X ⊆ Y , note that the w vector associated with ctxtY is a code-
word in the dual of the code from which the c> vector from skX was drawn. This
follows since every row in the generator matrix of c>’s code is one of the rows in
the generator matrix of w’s dual code. Thus the dot product computed during
decryption will be equal to γ, and dividing h by [γ]T will give the encrypted
payload µ.

If X 6⊆ Y , a straightforward application of Lemma 2 shows that with over-
whelming probability, h/[v> · w]T will be a uniformly random group element,
and will thus be an element ofM with negligible probability. Thus, decryption
will output ⊥ with overwhelming probability.
16 In [BW07], it is noted that this restriction on the size of the message space can be

avoided in practice by essentially setting the payload to be the key of a symmetric
key encryption scheme, and releasing an encryption of the actual message under this
key (along with a consistency check). This technique can easily be applied in our
setting.

22

5.1 Security

We make use of a variant [BGMZ18] of a lemma by Badrinarayanan et
al. [BMSZ16]. In fact, we only need a particular special case of the lemma,
stated below.

Lemma 3 ([BMSZ16, BGMZ18]). Let R̂ be an n × n matrix of distinct
formal variables r̂i,j, and u,v ∈ Fnq be two arbitrary vectors. Let û = u> · R̂−1

and v̂ = R̂ ·v be two vectors of rational functions over the r̂i,j formal variables.
Let P be a polynomial over the entries of û and v̂ such that each monomial
contains exactly one entry from û and one from v̂. Then if P is identically
a constant over the r̂i,j variables, it must be a constant multiple of the inner
product of û and v̂.

Theorem 2. The above construction Π is a data-private predicate encryption
scheme for small superset.

Proof. Consider any Y0, Y1 ⊆ [n] such that |Y0|, |Y1| ≤ t, and µ0, µ1 ∈ GT .
The adversary A receives the public key and an encryption of (Yb, µb) where
b← {0, 1}. For convenience, we will let µ′0 and µ′1 be the discrete logs of µ0, µ1.
A is free to request keys for sets Xi such that Xi is not contained in either Y0 or
Y1. If µ0 = µ1, it is also free to request keys for sets Xi such that Xi is contained
in both Y0 and Y1.

Thus, A has access to the handles of the elements

[R]2, {[(1 | αi · c>Xi
) ·R−1]1}i, [R · (γ | w>Yb

· β)>]2, [µ′b + γ]T .

Recall that the only distinguishing information the adversary can obtain in the
generic group model is the responses to zero-test queries in the target group.
We first imagine replacing {αi}i, β,γ, and the entries of R with formal variables.
So we let R̂ be a (t + 2) × (t + 2) matrix of formal variables r̂i,j for i, j ∈
[t+2]. We would like to apply Schwartz-Zippel to every zero-test query submitted
by A in order to conclude that A cannot distinguish this switch except with
negligible probability. However, the resulting zero-test expressions are rational
functions of the above formal variables. We instead imagine taking each zero-test
query and multiplying through by det(R̂), which does not change whether it is
identically zero or not. By construction, this results in a polynomial of degree at
most t + 5 = poly(λ) over the formal variables. Thus applying Schwartz-Zippel
and union bounding over the polynomially many zero-test queries submitted
by A establishes that A cannot distinguish this switch except with negligible
probability.

Now, define (û(i))> := (α̂−1i | c>Xi
) · R̂−1, and v̂ := R̂ · (β̂−1γ̂ | w>Yb

)>.
Using this notation, we will write down a general expression for any zero-test
query submitted by the adversary. We consider all the possible ways that A
can produce elements in the target group: pairing its ciphertext, secret key, or
public key elements with a constant in the other group, or pairing its secret key

23

elements with public key or ciphertext elements. Then we write a general linear
combination of such elements, where κi,j , τk, δk,`, ηi,j,k, ρi,j,k,`, and ν represent
coefficients submitted by A. This results in the following expression.∑

i,j

κi,jα̂iû
(i)
j +

∑
k

τkv̂kβ̂ +
∑
k,`

δk,`r̂k,` +
∑
i,j,k

ηi,j,kα̂i(û
(i)
j)>v̂kβ̂

+
∑
i,j,k,`

ρi,j,k,`α̂iû
(i)
j r̂k,` + ν(µ′b + γ̂)

= β̂

∑
k

τkv̂k +
∑
i

α̂i

∑
j,k

ηi,j,k(û
(i)
j)>v̂k

+
∑
i,j

κi,jα̂iû
(i)
j +

∑
k,`

δk,`r̂k,`

+
∑
i,j,k,`

ρi,j,k,`α̂iû
(i)
j r̂k,` + ν(µ′b + γ̂)

Now any potentially distinguishing zero-test query must result in an identically
zero rational function for at least one setting of b ∈ {0, 1}, and thus must set
the coefficient on β̂ to some scaling of β̂−1 for one of these settings (since β̂ does
not appear in the other terms). This implies a few things about the adversary’s
coefficients. First, for each k, τk = 0, since each entry of v̂ is a sum over distinct
formal variables from R̂ which cannot be canceled out elsewhere in the coefficient
on β̂. Next, for each i, the coefficient on α̂i within this β̂ coefficient must be some
scaling of α̂−1i . Then by Lemma 3, for each i, the coefficients {ηi,j,k}j,k must be
set to induce a scaling of the inner product of û(i) and v̂. Let zi denote this
scaling. We can rewrite the above expression as follows.

β̂

(∑
i

α̂i

(
zi(α̂

−1
i β̂−1γ̂ + c>Xi

·wYb
)
))

+
∑
i,j

κi,jα̂iû
(i)
j +

∑
k,`

δk,`r̂k,`

+
∑
i,j,k,`

ρi,j,k,`α̂iû
(i)
j r̂k,` + ν(µ′b + γ̂)

= γ̂

(∑
i

zi + ν

)
+ β̂

(∑
i

α̂izic
>
Xi
·wYb

)
+
∑
i,j

κi,jα̂iû
(i)
j +

∑
k,`

δk,`r̂k,`

+
∑
i,j,k,`

ρi,j,k,`α̂iû
(i)
j r̂k,` + νµ′b

Now observe that we need the coefficient on γ̂ to be zero in order to obtain a
successful zero-test. We consider two cases. First, if zi = 0 for all i, then the
coefficient on γ̂ is zero only if ν = 0. But in this case, the remaining term is∑

i,j

κi,jα̂iû
(i)
j +

∑
k,`

δk,`r̂k,` +
∑
i,j,k,`

ρi,j,k,`α̂iû
(i)
j r̂k,`,

which is independent of the bit b. Thus, such a zero-test cannot be used to
distinguish.

24

Otherwise, let S be the set of i such that zi 6= 0. If the coefficient on β̂ is
zero for some b, this implies that c>Xi

· wYb
= 0 for each i ∈ S, and thus by

correctness, Xi ⊆ Yb for each i ∈ S. Then by admissibility, Xi ⊆ Y0, Y1 for each
i ∈ S, meaning that the coefficient on β̂ is zero regardless of b. But again by
admissibility, this also implies that µ′0 = µ′1. Then it is clear that the remaining
expression ∑

i,j

κi,jα̂iû
(i)
j +

∑
k,`

δk,`r̂k,` +
∑
i,j,k,`

ρi,j,k,`α̂iû
(i)
j r̂k,` + νµ′b

is independent of the bit b, completing the proof. ut

Definition 9. Let n(·), t(·) be functions of the security parameter. Let En,t be
the entire set of families of evasive small superset distributions {Dn,t,λ}λ. Write
En,t = {En,t,λ}λ.

Theorem 3. For any n(·), t(·), the above construction Π is an En,t-enhanced
function-private predicate encryption scheme for small superset.

Proof. In ExpteFPΠ,S,A(1
λ, En,t, 0) from Definition 8, A interacts with an honest

implementation of the construction Π in the generic bilinear group model. We
prove through a series of hybrid experiments that A’s view in the honest world
is indistinguishable from its view in ExpteFPΠ,S,A(1

λ, En,t, 1), in which the oracles
ODKeyGen and OEnc are implemented by the simulator S with no knowledge of
the queried distributions in En,t,λ. Note that the oracles ODKeyGen and OEnc are
allowed to share state.

First, we make explicit the following generic group instantiation of
ExpteFPΠ,S,A(1

λ, En,t, 0). Note that the adversary A in the below experiment and
all following hybrid experiments also implicitly has access to generic group bi-
linear map operations described in Definition 1. Since A is ppt, we’ll say that
A makes J = poly(λ) queries to ODKeyGen and K = poly(λ) queries to OEnc.
ExpteFPΠ,S,A(1

λ, En,t, 0):

1. Set n := n(λ), t := t(λ), q > max{n, 2λ}.
2. Sample R← F(t+2)×(t+2)

q and set msk := R−1.
3. Generate fresh handles in group 2 for each entry of R, letting pk consist of

this set of handles.
4. Output AODKeyGen(msk,·),OEnc(pk,·)(1λ, pk).

ODKeyGen(msk,D):
This oracle maintains an internal counter j, initialized at j = 1. After each oracle
call, increment j. On each oracle call:

1. Sample Xj ← D and set (c(j))> ← SampCodeword(Bt,Xj ,q).
2. Sample αj ← Fq.
3. Set (u(j))> := (1 | αj · (c(j))>) ·R−1.
4. Generate and return fresh handles in group 1 for (u(j))>.

25

OEnc(msk, j):
On the kth oracle call, do the following:

1. Let Yk ⊆ [n] be any set satisfying |Yk| ≤ t and Xj ⊆ Yk.
2. Let µ′k ∈ Fq.
3. Sample:

– w(k) ← SampDualCodeword(Bt,Yk,q)
– βk, γk ← Fq
– v(k) := R · (γk | (w(k))> · βk)>

4. Generate and return fresh handles in group 2 for v(k), and a fresh handle in
group T for µ′k + γk.

Now, we present a series of hybrid experiments, beginning with the above exper-
iment and ending with a generic group instantiation of ExpteFPΠ,S,A(1

λ, En,t, 1).

– Expt0 is exactly ExpteFPΠ,S,A(1
λ, Et,n, 0).

– Expt1 is obtained from Expt0 by modifying OEnc(msk, ·) to the following:
OEnc(msk, j):
On the kth oracle call, do the following:
1. Let µ′k ∈ Fq.
2. Sample βk, γk ← Fq.
3. Define t new formal variables ŵk,1, . . . , ŵk,t.

4. Define w(k) :=

[
ŵk,1, . . . , ŵk,t − 1

c
(j)
t+1

∑t
i=1 c

(j)
i ŵk,i

]
.

5. Set v̂(k) := R · (γk | (w(k))> · βk)>.
6. Generate and return fresh handles in group 2 for v̂(k), and a fresh handle

in group T for µ′k + γk.
Note that the generic bilinear group operations are now performed over the
ring Z[{ŵk,i}k∈[K],i∈[t]]. Also note that OEnc and ODKeyGen are sharing state,
in particular the set of c(j) vectors.

– Expt2,` (for ` = 0, . . . , J) is obtained from Expt1, except ODKeyGen(msk, ·) is
modified to the following:
ODKeyGen(msk,D):
The oracle maintains an internal counter j, initialized at j = 1. After each
oracle call, increment j. On each oracle call:
1. If j ≤ `, sample uniformly random (c(j))> ← Ft+1

q . If j > `, sample
Xj ← D and set (c(j))> ← SampCodeword(Bt,Xj ,q).

2. Sample αj ← Fq.
3. Set (û(j))> := (1 | αj · (c(j))>) ·R−1.
4. Generate and return fresh handles in group 1 for (û(j))>.
Observe that Expt1 = Expt2,0, and that Expt2,J is a generic group instanti-
ation of ExpteFPΠ,S,A(1

λ, En,t, 1). This follows since the input D is not used by
ODKeyGen at any point during the course of the experiment, so ODKeyGen can
be simulated by S.

Claim. A cannot distinguish between Expt0 and Expt1 except with negl(λ) ad-
vantage.

26

Proof. Let jk denote the index input to OEnc(pk, ·) on the kth query. We con-
dition on the event that for each Yk, Xj′ 6⊆ Yk for all j′ 6= jk. This occurs with
overwhelming probability due to the definition of En,t and a union bound over
J,K = poly(λ). We further condition on the event that in Expt0, for all k, j,
(c(j))> ·w(k) = 0 if and only if j = jk, which follows from Lemma 2 and a union
bound.

In both games, consider replacing all the entries of R and all αj , βk, γk with
formal variables, and call the resulting games Sim-Real’ and Sim-Enc’. By a
similar argument as in the proof of Theorem 5.1, A notices this switch with
negligible probability. Now fix any zero-test query that A submits. We claim
that it evaluates to identically zero in Sim-Real’ if and only if it does so in
Sim-Enc’.

As in the proof of Theorem 5.1, we first write explicitly the form of a zero-
test query in Sim-Real’/Sim-Enc’. Define (û′(j))> := (α̂−1j | (c(j))>) · R̂−1, and
v̂′(k) := R̂ · (β̂−1k γ̂k | (w(k))>)>. Letting κj,m, τk,`, δk,`, ηj,m,k,`, ρj,m,k,`, νk refer
to the coefficients submitted by A, the general form of a zero-test query is∑
j,m

κj,mα̂jû
′(j)
m +

∑
k,`

τk,`v̂
′(k)
` β̂k +

∑
k,`

δk,`r̂k,` +
∑

j,m,k,`

ηj,m,k,`α̂j(û
′(j)
m)>v̂

′(k)
` β̂k

+
∑

j,m,k,`

ρj,m,k,`α̂jû
′(j)
m r̂k,` +

∑
k

νk(µ
′
k + γ̂k).

First, notice that all but the second and fourth terms are identical between
the two games Sim-Real’ and Sim-Enc’, since the only difference lies in the v′(k)

vectors. Note further that an adversary can only hope to obtain a successful zero-
test in either game by setting τk,` = 0 for all k, `. This follows from a similar
argument as in the proof of Theorem 5.1, where the entire expression is stratified
by the β̂k variables. Looking at each β̂k term, it is clear that the formal variables
from R̂ in the elements of the v̂′(k) vectors cannot be canceled out.

Thus we focus on the fourth term, and stratify by the α̂j and β̂k variables to
obtain ∑

j,k

α̂j β̂k

∑
m,`

ηj,m,k,`(û
′(j)
m)>v̂

′(k)
`

 .

A can only hope to obtain a successful zero-test if the coefficient on each α̂j β̂k
is a constant multiple of α̂−1j β̂−1k . So by Lemma 3, for this to happen, it must
be the case that for each (j, k), the coefficients {ηj,m,k,`}m,` induce a scaling of
the inner product between û′(j) and v̂′(k). For each (j, k), let zj,k be this scaling.
Now we can re-write this term as∑

j,k

α̂j β̂kzj,k
(
α̂−1j β̂−1k γ̂k + (c(j))> ·w(k)

)
=

∑
k

γ̂k

∑
j

zj,k

+
∑
j,k

α̂j β̂kzj,k(c
(j))> ·w(k).

27

Again notice that the first term will be identical in both games, so focus
attention on the second. We see that the term will be zero if and only, for each
(j, k) such that zj,k 6= 0, (c(j))> ·w(k) = 0. Finally, we see that (c(j))> ·w(k) = 0
under the exact same conditions in both games, namely, if and only j = jk (due
to the conditioning at the beginning of this proof). This completes the proof of
the claim. ut

Claim. For ` = 1, . . . , J , A cannot distinguish between Expt2,`−1 and Expt2,`
except with negl(λ) advantage.

Proof. This follows from a straightforward reduction to the generic group se-
curity of small superset obfuscation with the simulator specified in the proof
of Theorem 1 (which initializes the adversary with t+1 uniformly random group
elements). Let Ŵ refer to the set of formal variables {ŵk,i}k∈[K],i∈[t]. Notice that
the only difference between Expt2,`−1 and Expt2,` is whether c(`) is a uniformly
random vector or an obfuscation of X`. Consider a reduction B interacting with
the generic group model game for small superset obfuscation. B associates the
t+1 handles it receives with c(`), which it sets to be formal variables ĉ1, . . . , ĉt+1.
Let Ĉ refer to this set of formal variables. It can now simulate Expt2,`−1 or Expt2,`
for A, maintaining its table with polynomials over Ĉ and Ŵ . Whenever A make
a zero-test query, B stratifies the resulting polynomial by the Ŵ variables, con-
sidering separately each coefficient on ŵk,i. Note that by the restrictions imposed
by the bilinear generic group model, each such coefficient must be a linear poly-
nomial over the Ĉ variables. Therefore, B can determine whether it is zero via
a zero-test query to its own generic group oracle. Combining the results, B can
respond appropriately to A. If B’s generic group oracle is implementing the valid
obfuscation, then A sees exactly Expt2,`−1. If B’s generic group oracle is initial-
izing B with t+1 random elements, then A sees exactly Expt2,`. This completes
the proof of the claim. ut

Acknowledgements

This research was supported in part by ARO and DARPA Safeware under con-
tracts W911NF-15-C-0227, W911NF-15-C-0236, W911NF-16-1-0389, W911NF-
15-C-0213, and by NSF grants CNS-1633282, 1562888, 1565208, and 1814919.
Any opinions, findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the
ARO and DARPA.

References

AAB+15. Shashank Agrawal, Shweta Agrawal, Saikrishna Badrinarayanan, Abishek
Kumarasubramanian, Manoj Prabhakaran, and Amit Sahai. On the prac-
tical security of inner product functional encryption. In PKC 2015, 2015.

28

ABF16. Afonso Arriaga, Manuel Barbosa, and Pooya Farshim. Private functional en-
cryption: Indistinguishability-based definitions and constructions from ob-
fuscation. In INDOCRYPT 2016, 2016.

BBC+14. Boaz Barak, Nir Bitansky, Ran Canetti, Yael Tauman Kalai, Omer Paneth,
and Amit Sahai. Obfuscation for evasive functions. In TCC 2014, 2014.

BCKP14. Nir Bitansky, Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On
virtual grey box obfuscation for general circuits. In CRYPTO 2014, Part II,
2014.

BF01. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the
Weil pairing. In CRYPTO 2001, 2001.

BGI+01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In CRYPTO 2001, 2001.

BGMZ18. James Bartusek, Jiaxin Guan, Fermi Ma, and Mark Zhandry. Return of
GGH15: Provable security against zeroizing attacks. In TCC 2018, Part II,
2018.

BKM+18. Allison Bishop, Lucas Kowalczyk, Tal Malkin, Valerio Pastro, Mariana
Raykova, and Kevin Shi. A simple obfuscation scheme for pattern-matching
with wildcards. In CRYPTO 2018, Part III, 2018.

BLMZ19. James Bartusek, Tancrède Lepoint, Fermi Ma, and Mark Zhandry. New
techniques for obfuscating conjunctions. In EUROCRYPT 2019, Part III,
2019.

BMSZ16. Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry.
Post-zeroizing obfuscation: New mathematical tools, and the case of evasive
circuits. In EUROCRYPT 2016, Part II, 2016.

BR13. Zvika Brakerski and Guy N. Rothblum. Obfuscating conjunctions. In
CRYPTO 2013, Part II, 2013.

BR17. Zvika Brakerski and Guy N. Rothblum. Obfuscating conjunctions. Journal
of Cryptology, (1), 2017.

BRS13a. Dan Boneh, Ananth Raghunathan, and Gil Segev. Function-private
identity-based encryption: Hiding the function in functional encryption. In
CRYPTO 2013, Part II, 2013.

BRS13b. Dan Boneh, Ananth Raghunathan, and Gil Segev. Function-private
subspace-membership encryption and its applications. In ASI-
ACRYPT 2013, Part I, 2013.

BSW09. John Bethencourt, Dawn Song, and Brent Waters. New techniques for
private stream searching. ACM Transactions on Information and System
Security (TISSEC), 12(3):16, 2009.

BW07. Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on
encrypted data. In TCC 2007, 2007.

BW19. Ward Beullens and Hoeteck Wee. Obfuscating simple functionalities from
knowledge assumptions. In PKC 2019, Part II, 2019.

Can97. Ran Canetti. Towards realizing random oracles: Hash functions that hide
all partial information. In CRYPTO’97, 1997.

CRV10. Ran Canetti, Guy N. Rothblum, and Mayank Varia. Obfuscation of hyper-
plane membership. In TCC 2010, 2010.

DS05. Yevgeniy Dodis and Adam Smith. Correcting errors without leaking partial
information. In 37th ACM STOC, 2005.

GKW17. Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation.
In 58th FOCS, 2017.

29

GW11. Craig Gentry and Daniel Wichs. Separating succinct non-interactive argu-
ments from all falsifiable assumptions. In 43rd ACM STOC, 2011.

ITZ16. Vincenzo Iovino, Qiang Tang, and Karol Zebrowski. On the power of public-
key function-private functional encryption. In CANS 16, 2016.

Jou04. Antoine Joux. A one round protocol for tripartite Diffie-Hellman. Journal
of Cryptology, (4), 2004.

KLM+18. Sam Kim, Kevin Lewi, Avradip Mandal, Hart Montgomery, Arnab Roy,
and David J. Wu. Function-hiding inner product encryption is practical. In
SCN 18, 2018.

KSW08. Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption sup-
porting disjunctions, polynomial equations, and inner products. In EURO-
CRYPT 2008, 2008.

KSW13. Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption sup-
porting disjunctions, polynomial equations, and inner products. Journal of
Cryptology, (2), 2013.

LPS04. Ben Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results and tech-
niques for obfuscation. In EUROCRYPT 2004, 2004.

Mau05. Ueli M. Maurer. Abstract models of computation in cryptography (invited
paper). In 10th IMA International Conference on Cryptography and Coding,
2005.

Nao03. Moni Naor. On cryptographic assumptions and challenges (invited talk).
In CRYPTO 2003, 2003.

Nec94. V. I. Nechaev. Complexity of a determinate algorithm for the discrete
logarithm. Mathematical Notes, 55(2):165–172, 1994.

OS07. Rafail Ostrovsky and William E. Skeith. Private searching on streaming
data. Journal of Cryptology, (4), 2007.

PM18. Sikhar Patranabis and Debdeep Mukhopadhyay. New lower bounds on pred-
icate entropy for function private public-key predicate encryption. Cryp-
tology ePrint Archive, Report 2018/190, 2018. https://eprint.iacr.org/
2018/190.

PMR19. Sikhar Patranabis, Debdeep Mukhopadhyay, and Somindu C. Ramanna.
Function private predicate encryption for low min-entropy predicates. In
PKC 2019, Part II, 2019.

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems.
In EUROCRYPT’97, 1997.

SSW09. Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption
systems. In TCC 2009, 2009.

SWP00. Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical tech-
niques for searches on encrypted data. In 2000 IEEE Symposium on Security
and Privacy, 2000.

Wee05. Hoeteck Wee. On obfuscating point functions. In 37th ACM STOC, 2005.
WZ17. Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare pro-

grams under LWE. In 58th FOCS, 2017.

30

https://eprint.iacr.org/2018/190
https://eprint.iacr.org/2018/190

	Public-Key Function-Private Hidden Vector Encryption (and More)

