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Abstract. We study the broadcast message complexity of secure multi-
party computation (MPC), namely, the total number of messages that
are required for securely computing any functionality in the broadcast
model of communication.
MPC protocols are traditionally designed in the simultaneous broadcast
model, where each round consists of every party broadcasting a message
to the other parties. We show that this method of communication is sub-
optimal; specifically, by eliminating simultaneity, it is, in fact, possible
to reduce the broadcast message complexity of MPC.
More specifically, we establish tight lower and upper bounds on the
broadcast message complexity of n-party MPC for every t < n corrup-
tion threshold, both in the plain model as well as common setup models.
For example, our results show that the optimal broadcast message com-
plexity of semi-honest MPC can be much lower than 2n, but necessarily
requires at least three rounds of communication. We also extend our
results to the malicious setting in setup models.

1 Introduction

The ability to securely compute on private datasets of individuals has wide
applications of tremendous benefits to society. Secure multiparty computation
(MPC) [25, 19, 2, 8] provides a solution to the problem of computing on private
data by allowing a group of mutually distrusting parties to jointly evaluate any
function over their private inputs in a manner that reveals nothing beyond the
output of the function.

Broadcast Message Complexity. Traditionally, the most popular commu-
nication model for the design of MPC protocols is the broadcast model, where
parties communicate with each other by sending messages over an authenticated
broadcast channel. Indeed, starting from [19], most computationally secure pro-
tocols in the literature are designed in the broadcast model.

Viewing a broadcast channel as a resource, in this work, we initiate the
study of the broadcast message complexity of MPC, namely, the number of mes-
sages that are required for securely computing any functionality in the broadcast
model. Specifically, we ask the following basic question:



What is the broadcast message complexity of n-party MPC w.r.t. t < n
corruptions (for every t)?

At first, it may seem that the above question can be easily resolved by appealing
to the known bounds on the round complexity of MPC. For example, in the case
of semi-honest corruptions (for any t > 1), two rounds are known to be necessary
[21]. Then, it may seem that the broadcast message complexity in this case must
be at least 2n since each of the n parties must presumably send a message in each
of the two rounds. In this work, we show that the above intuition is incorrect.

Simultaneity is wasteful. MPC protocols are traditionally designed in the
simultaneous broadcast model, where in each round, every party sends a message.
We show that this model is wasteful, and that by eliminating simultaneity, it is
possible to reduce the number of required messages.

Specifically, we consider the general setting where in each round, any subset of
parties may send a message. In this setting, we show that the broadcast message
complexity of MPC can be much lower than in the simultaneous broadcast model.

1.1 Our Results

We study the broadcast message complexity of MPC in the plain model, as well as
common setup models, including the public-key infrastructure (PKI) model and
the common reference string (CRS) model. We provide a tight characterization
of broadcast message complexity as well as the number of rounds necessary for
achieving optimal number of broadcasts. In particular, our results show that two
rounds are insufficient for achieving optimal broadcasts; instead, at least three
rounds are necessary. We elaborate on our results below.

I. Broadcast Message Complexity. We first investigate the broadcast mes-
sage complexity of semi-honest MPC in the plain model. We provide a tight
characterization that varies with the number of corrupted parties t and the
number of output parties |O|, where O denotes the set of parties who can learn
the output.

Theorem 1 (Informal). For any t < n−1 semi-honest, static corruptions and
|O| > 1 (resp., |O = 1|) output parties, n + t + 1 (resp., n + t) broadcasts are
necessary and sufficient for MPC in the plain model. For t = n− 1 corruptions,
the broadcast message complexity is n+ t (resp., n+ t− 1) when |O| > 1 (resp.,
|O = 1|).

A few remarks about the above theorem are in order: (1) Our lower bound
also holds in the CRS model. (2) Our positive result is based on any two-round
semi-honest oblivious transfer (OT), which is the optimal assumption for t > n/2.
In the CRS model, it can be extended to achieve UC security against malicious
corruptions based on two-round malicious-secure OT.

We next show that the broadcast message complexity of MPC is lower in the
PKI model, where the parties first post their respective public keys on a bulletin
board.
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Theorem 2 (Informal). For any t 6 n−1 semi-honest, static corruptions and
|O| > n− t (resp., |O| 6 n− t) output parties, n+ t (resp., n+ t− 1) broadcasts
are necessary and sufficient for MPC in the bare PKI model.

We, in fact, provide two different positive results in this model:

– Our first construction works in the honest majority setting (i.e., t < n/2)
and achieves security even against malicious adversaries. It does not require
any additional assumptions beyond public-key encryption, and is therefore
optimal in that sense. Interestingly, we achieve this result by drawing a con-
nection to the security notion of guaranteed output delivery.

– Our second construction works for any t < n corruptions and achieves se-
curity against semi-honest adversaries based on any two-round semi-honest
OT. In the CRS model, this construction can be extended using standard
techniques to achieve UC security against malicious adversaries.

II. Round Complexity. While two rounds are known to be necessary and
sufficient for semi-honest MPC, we show that they are insufficient for achieving
optimal broadcast message complexity. In particular, we show that three rounds
are necessary and sufficient. This result holds both in the plain model as well as
the PKI and CRS models.

Theorem 3. Three rounds are necessary and sufficient for semi-honest MPC
with optimal broadcast message complexity.

We, in fact, prove two strengthenings of the above theorem:

– We show that three rounds are also sufficient for achieving security against
malicious adversaries, either in the PKI model for t < n/2 corruptions or in
the CRS model for t < n corruptions.

– We show that in the plain model, any three round protocol that achieves op-
timal broadcast message complexity must necessarily utilize a unique com-
munication pattern, where a communication pattern specifies which parties
speak in which round(s). We also prove an analogous result in the PKI model.

The table below provides a summary of our lower bounds for broadcast mes-
sage complexity and round complexity.

Model Corruptions Rounds Output Parties Broadcasts

Plain 1 6 t < n− 1 3 |O| > 1
|O| = 1

n+ t+ 1
n+ t

Plain t = n− 1 3 |O| > 1
|O| = 1

2n− 1
2n− 2

PKI 1 6 t 6 n− 1 3 |O| > n− t
|O| 6 n− t

n+ t
n+ t− 1

III. Application to P2P Model. While we focus on broadcast message
complexity in this work, our positive results can also be used to obtain MPC
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protocols in the point-to-point (P2P) communication model with optimal P2P
message complexity for any corruption threshold.

The P2P message complexity of (computationally secure) MPC was recently
studied by Ishai et al. [22] who established lower and upper bounds for t = n−1.
Subsequently, [23] extended their lower bound to any t < n, but left open the
problem of obtaining a matching upper bound for general t. We show that our
construction from Theorem 2 for general t < n can be used to resolve this open
problem.

Theorem 4 (Informal). Assuming the existence of two-round semi-honest
OT, for any t < n semi-honest, static corruptions and |O| output parties,
(n + t + |O| − 2) messages are sufficient for MPC in the P2P communication
model.

1.2 Technical Overview

Starting Ideas. Recall that two rounds are known to be necessary for MPC,
even for achieving security against semi-honest adversaries [21]. Further, in all
known two-round MPC protocols in the broadcast model [16, 24, 14, 5, 17, 6, 18,
3], each party broadcasts a message in each round, resulting in a total of 2n
messages.

At first, it may seem that this is inherent. Indeed, consider the scenario where
one of the n parties, say Pi, does not send any message in the first round, and
instead only sends a message in the second round. Can we construct a secure
protocol in the plain model with this communication pattern? The answer is no,
and to see this, recall that the security guarantee of semi-honest MPC stipulates
that an adversary can only learn a single function output corresponding to a fixed
set of inputs. To achieve this guarantee, a protocol transcript must somehow “fix”
an input of each party. In the above scenario, since Pi only sends a message in
the second round, its input cannot be fixed.3 Therefore, an adversarial Pi can
launch the following residual function attack: it first completes an execution of
the protocol to obtain a transcript, and then replaces its message in the transcript
with a freshly computed message w.r.t. a different input. It now computes its
output function to learn a new output, w.r.t. the same set of inputs of the other
parties, thereby violating MPC security.

The above still leaves open the possibility of designing a protocol where Pi
only sends a message in the first round. In this case, Pi’s input can indeed be
fixed by the honest party messages sent in the second round. Unfortunately, it
turns out that this is still not sufficient, even against the minimal corruption
threshold of t = 1. The reason is that an adversary can simply “spoof” all the
other parties Pj (where j 6= i). That is, after obtaining a protocol transcript,
the adversary can simply replace the messages of all the other parties Pj with
freshly computed messages w.r.t. different inputs, while keeping Pi’s message
3 Recall that the messages sent by honest parties in any round are independent of
each other.
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intact. Now, the adversary is able to learn multiple outputs w.r.t. a fixed input
of Pi, thereby violating MPC security.

Towards a Template. Our main insight is that by increasing the round com-
plexity, we can decrease the broadcast message complexity. To explain the basic
idea, let us consider a toy scenario with n = 5 and t = 2. Our goal here is to
obtain a template that requires n+t+1 = 8 messages, as per Theorem 1. Clearly,
to achieve this broadcast message complexity, two parties must send only one
message each. Now, consider the following communication pattern:

R1 In the first round, P4 and P5 send a message.
R2 In the second round, P1, P2 and P3 send a message.
R3 In the third round, P1, P2 and P3 send a message.

Since t = 2, at least one of P1, P2, P3 must be honest. Let Pi be that party.
Then, Pi’s message in the third round must fix the inputs of all the other parties.
Therefore, it would seem that this template should already work. Unfortunately,
this is not the case as the spoofing attack we discussed earlier is also applicable
here. Indeed, an adversary can simply spoof P1, P2, P3 and launch a residual
function attack on the inputs of P4 or P5 in a similar manner as above.

Upon closer inspection, we find that the reason for the spoofing attack in the
above template is that while Pi can fix the input of all the parties, Pi’s input
itself is not fixed by any other party. Indeed, this is why the spoofing attack
includes spoofing of Pi as well.

To address this issue, we modify the above template by exchanging rounds
one and two. That is, we consider the following template:

R1 In the first round, P1, P2 and P3 send a message.
R2 In the second round, P4 and P5 send a message.
R3 In the third round, P1, P2 and P3 send a message.

In the technical sections, we show that the above template indeed works. The
key point is that now, not only can Pi fix the inputs of all the other adversarial
and honest parties, but crucially, the other honest parties, who send messages
in round two, can also fix Pi’s input (which must be used to compute its first
round message). This raises several questions:

– Does the above idea generalize to any n and t?
– How can we prove a lower bound on the broadcast message complexity?
– Does the lower bound stay intact in the public-key model, or does it change?
– Are three rounds really necessary?
– Is the above communication pattern necessary, or can we also achieve security

with other communication patterns?
– How can we construct protocols with optimal broadcast message complexity?

In the technical sections, we show that the above idea indeed generalizes to
any n and t; the specific details vary depending upon the number of output
parties and the number of corruptions, as well as whether we are working in the
plain model or the public-key model.
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We now proceed to address the remaining questions.

Lower Bounds on Broadcast Message Complexity. Our proof for lower
bound on broadcast message complexity in Section 3 is simple and relies on
establishing the minimum number of parties who must send two messages in the
protocol.

We start by proving that in the plain model, for t < n − 1 and |O| > 1
output parties, the number of parties that broadcast more than one message
in the protocol must be strictly greater than the number of corrupted parties.
Let us consider a toy example with n = 5 and t = 2, where all parties receive
the output. Let us assume for contradiction that the number of parties that
broadcast more than one message is equal to the number of corrupted parties.
For example, suppose that P1, P2, P3 broadcast a single message, while P4 and P5

broadcast more than one messages. Now, consider an adversary that corrupts
both P4 and P5. Let P1 be the first party to broadcast its message amongst
P1, P2, P3. Note that in this case, the message of P1 does not depend on the
messages (or inputs) of P2 and P3. The adversary can simply spoof P2 and P3

and launch a residual function attack on the inputs of P1 as discussed before.
Therefore, in order to prevent such attacks at least three parties must broadcast
at least two messages each.

As we show in the technical section, the above idea generalizes to any n and
t < n − 1 and any |O| > 1 output parties. Now, in an n-party protocol, each
party must broadcast at least one message for its input to be included in the
computation. Thus, the total broadcast message complexity in this setting must
be at least 2(t+ 1) + 1(n− (t+ 1)) = n+ t+ 1. We use this result to establish
lower bounds for |O| = 1 output party when t < n− 1 parties are corrupted.

We prove our lower bound for t = n− 1 in the plain model and for any t < n
in the PKI model using a similar approach as above. However the optimal lower
bound in this case is lower than in the plain model; intuitively, this is because
in this case, spoofing attacks are not possible. Specifically, we establish that the
number of parties that broadcast more than one messages in this case must be
greater than or equal to the number of corrupted parties. This means that the
total broadcast message complexity in this case must be at least 2(t)+1(n−t) =
n+ t.

Lower Bounds on Round Complexity. In Section 4, we prove that at least
three rounds are necessary for achieving optimal broadcast message complexity.
Our proof generalizes the intuition discussed earlier for the toy example:

– We first show that any party that broadcasts a single message must not do
so in the last round of the protocol. Roughly, this is because in this case,
there is no opportunity for the input of this party to be “fixed” by messages
of the other parties. Indeed, an adversary can otherwise simply corrupt this
party and launch a residual function attack on the inputs of all the other
honest parties in the manner as discussed earlier in the toy example.

– Given the observation, we show that two round MPC with optimal message
complexity is impossible. Roughly, this is because, in any such two round
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protocol, all the parties that send a single message must necessarily do so in
the first round. However, in this case, the adversary can launch a residual
function attack on the inputs of any one of the honest parties that broadcast
their only message in the first round, as discussed earlier in the toy example.

Interestingly, this lower bound also holds in the public-key model, regardless
of the number of corruptions.

In Section 4.3, we also prove that in the plain model, there is a unique com-
munication pattern that must be used to achieve optimal broadcast message
complexity. This communication pattern is a generalization of the one discussed
above; roughly, we prove that the parties who send one message must speak
in the second round, while the parties who send two messages must speak in
the first and the third rounds! In the public-key model, we do not establish
uniqueness of communication pattern; instead, we show that there is a specific
class of communication patterns that must be used to achieve optimal broadcast
message complexity.

Upper Bounds. To establish positive results on optimal broadcast message
complexity, we provide multiple transformations.

Let us first focus on t < n/2 corruptions. In this setting, we establish our
positive result in the PKI model by drawing a connection with the notion of
guaranteed output delivery, which, roughly speaking, concerns with ensuring that
the honest parties are able to compute the output even if the corrupted parties
abort the computation prematurely. More Specifically,

– We show a general compiler from any two round MPC protocol with “strong”
guaranteed output delivery (namely, where in the second round, for any
t < n/2, only t + 1 honest parties are required to send a message in order
for all the honest parties to compute output4) against fail-stop adversaries
into a three round semi-honest protocol with optimal broadcast message
complexity.

– Further, we show that if the underlying two round protocol additionally
achieves security with abort against malicious adversaries, then our result-
ing three round protocol also achieves security against malicious adversaries
security.

Instantiating our compiler with the recent protocol of Ananth et al. [1] (which
satisfies both of the aforementioned properties) yields a malicious-secure MPC
protocol with optimal broadcast message complexity based on public-key en-
cryption. Finally, we remark that this transformation inherently fails in the plain
model since two round MPC over broadcast channels with guaranteed output
delivery is impossible in the plain model, even in the semi-honest setting [20].

Let us now consider the case where t < n. We show a general transforma-
tion from any two round MPC that achieves security against dishonest majority

4 When n = 2t + 1, this is the same as guaranteed output delivery. However, for
n > 2t+ 1, this is a strengthening of guaranteed output delivery.
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into a three round MPC with optimal broadcast message complexity. The trans-
formation is simple and works by having a subset of parties (say S1) send out
encrypted secret shares of their private states to the other parties (say S2), who
can compute upon these states to generate messages on behalf of the parties in
S1. In order for this approach to work, it is crucial that at least one party in
S2 is honest, and indeed, this is why we require that the underlying two-round
protocol achieves security against dishonest majority. This transformation works
both in the plain model as well as the public-key model. Instantiating it with
the two-round protocols of [18, 3], we obtain a protocol with optimal broadcast
message complexity based on OT.

Finally, we also show that our positive results in the PKI model can be used
to obtain tight upper bounds on P2P message complexity (for any corruption
threshold), resolving an open question from [22, 23]. We note that if we use a
naive transformation from a broadcast model protocol to a P2P model protocol
(as discussed above), the resulting protocol would also require the public-key
infrastructure used by the underlying protocol. To overcome this, we show al-
ternative, direct transformations from our specific broadcast model protocols to
obtain P2P model protocols with optimal P2P message complexity. We refer the
reader to Section 7.2 for more details.

1.3 Related Work

To the best of our knowledge, no prior work has studied the broadcast message
complexity of MPC.

P2PMessage Complexity. The most closely related work to ours is the recent
work of Ishai et al [22] who study the message complexity of computationally-
secure MPC in the P2P model (i.e., where the parties only rely on P2P channels).
For t = n − 1 corruptions and |O| output parties, they show that 2n + |O| − 3
P2P messages are necessary and sufficient for semi-honest MPC, even in the
correlated randomness setup model. Mittal [23] extended their lower bound to
any t < n corruptions and showed that at least (n+ t+ |O| − 2) P2P messages
are necessary for |O| output parties. However, they left open the problem of
obtaining a matching upper bound, which we resolve in this work.

We note that the lower bounds on P2P message complexity can be used to
derive some lower bounds on broadcast message complexity. The basic idea is
simple and works by transforming any broadcast model protocol Π into a P2P
model protocol Π ′ executed over a “chain” communication pattern, where the
parties are arranged as per their speaking order in Π.5 At each step, each party
computes its new message and sends it together with the aggregated transcript
it received from the previous party to the next party on the chain. The last
party on the chain computes the output. We give a formal description of this
transformation in the full version our paper.

However, this approach has two important shortcomings. First, it does not
give optimal lower bounds in the plain model. Second, it only works in extremal
5 if multiple parties speak in the same round in Π, they can be arranged in any order.
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cases where the number of output parties |O| inΠ are either |O| = 1 or |O| = n.6
In particular, it is unclear how to obtain P2P message complexity k − 1 if the
number of output parties is 1 < |O| < n. This is because, in this case, the
underlying protocol Π in the broadcast model may not contain an output party
in the last round.

To obtain a full picture with optimal lower bounds, our work instead provides
a direct approach to proving lower bounds on broadcast message complexity.
Previously, the P2P message complexity of MPC in the information-theoretic
setting with a bounded fraction of corrupted parties was studied in [9, 12, 13], in
different models.

Other Works. We also mention the works of [11, 7, 4, 15] who consider MPC
protocols that achieve sublinear communication complexity by assigning the
computation to a small random subset of parties in the honest majority set-
ting. They do not give any specific bounds on the P2P or broadcast message
complexity of MPC.

2 Preliminaries

2.1 Secure Multi-Party Computation

A secure multi-party computation protocol is a protocol executed by n parties
P1, · · · , Pn for a n-party functionality F .

Communication Model. We consider two kinds of protocols: (1) ones that
only rely upon an authenticated broadcast channel, (2) and ones that only rely
upon private point-to-point channels. We discuss each case separately:

– Broadcast model: In almost all prior work in the broadcast model of com-
munication, in each round of the protocol, all parties broadcast a message.
We consider a generalization of this setting, where in any round, any sub-
set of parties may broadcast a message. We define the broadcast message
complexity as follows:

Definition 1 (Broadcast Message Complexity). The broadcast mes-
sage complexity of a protocol is the total number of broadcast messages sent
by all the parties in the protocol. The broadcast message complexity of MPC
for a functionality f is the minimum number of broadcast messages required
for securely computing f .

6 In the case of |O| = 1, we simply add the output party as the last node on the chain.
With this approach, we obtain a protocol with P2P message complexity k, starting
from a protocol with broadcast message complexity k. For the case of |O| = n, we
can actually do better, and simply delete the last message (since the last node on
the chain can compute it on its own), resulting in a protocol with P2P message
complexity k − 1.
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– Point-to-point model: While our focus is on the broadcast message complex-
ity, we also consider protocols in the point-to-point (P2P) communication
model (i.e., where the parties only use private point-to-point channels, and
no broadcasts). We define the P2P message complexity as follows:

Definition 2 (P2PMessage Complexity). The P2P message complexity
of a protocol is the total number of private messages sent by all the parties in
the protocol. The P2P message complexity of MPC is the minimum number
of P2P messages required for securely computing any functionality.

Security. One of the primary goals in secure computation is to protect the
honest parties against dishonest behavior from the corrupted parties. This is
usually modeled using a central adversarial entity, that controls the set of cor-
rupted parties and instructs them on how to operate. That is, the adversary
obtains the views of the corrupted parties, consisting of their inputs, random
tapes and incoming messages, and provides them with the messages that they
are to send in the execution of the protocol. In our protocols we only consider
static adversaries, meaning that the adversary selects the set of parties that it
wants to corrupt at the start of the protocol. We discuss the following security
models in this work:

– Security against Semi-Honest Adversaries: A semi-honest adversary
always follows the instructions of the protocol. This is an “honest but curious”
adversarial model, where the adversary might try to learn extra information
by analyzing the transcript of the protocol later.

Definition 3. Let f be an n-party functionality. We say that a protocol Π
t-securely computes F in the presence of a semi-honest, non-uniform PPT
adversary A that corrupts a subset A of t parties, if there exists a PPT
simulator algorithm S such that for every security parameter λ, and all input
vectors x ∈ {0, 1}λ×n = {x1, . . . , xn}, it holds that:

{S(1λ, {xi}i∈A, f(x)), f(x)} ≈c {viewΠA(1λ,x), outΠA(1λ,x)}

– Security against Fail-Stop Adversaries: A fail-stop adversary instructs
the corrupted parties to follow the protocol as a semi-honest adversary, but
it may also instruct a corrupted party to halt early (only sending some of
its messages in a round). The decision to abort or not may depend on its
view. Fail-stop adversaries may be rushing or non-rushing. We consider the
following security notions against fail-stop adversaries:

Guaranteed Output Delivery: Secure computation against fail-stop ad-
versaries with guaranteed output delivery ensures that the honest parties
always learn the function output (computed over the inputs of “active” par-
ties) even if some parties prematurely abort the protocol. It is well known
that guaranteed output delivery is impossible to realize for general functions
in the dishonest majority setting [10].
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Strong Guaranteed Output Delivery: Note that guaranteed output
delivery ensures that the honest parties can always reconstruct the output
as long as all the honest parties send messages in the last round. We require
a stronger variant of this notion, where it suffices for any t+1 honest parties
to broadcast messages in the last round. Observe that if n = 2t + 1 (i.e.,
if there are exactly t + 1 honest parties in the system), then this notion is
equivalent to the standard notion of guaranteed output delivery. However for
n > 2t+ 1, this notion is strictly stronger than standard guaranteed output
delivery.

2.2 MPC with Strong Guaranteed Output Delivery

For our semi-honest construction in the honest majority setting (i.e., for t < n/2)
with optimal message complexity, we make use of a two round MPC protocol
that achieves strong guaranteed output delivery against fail-stop adversaries. As
defined above, in a protocol that achieves strong guaranteed output delivery, it
suffices for any t+1 honest parties to broadcast a message in the last round. Thus,
the message complexity of such a two round protocol is n+ t+1. Although note
that with n + t + 1 messages, this protocol only achieves security with abort,
since the adversary can always corrupt the parties that send messages in the
last round. However, this weakened security is sufficient for us. We show how to
reduce the message complexity of this protocol to n+ t by adding an additional
round.

Interestingly, we observe that if such a two round protocol also achieves
security with abort against malicious adversaries, then our resulting protocols
with optimal message complexity in the PKI model for t < n/2 can also be
proved maliciously secure, without requiring any additional assumptions. We
observe that the two round MPC protocol from Corollary 7 of Ananth et. al [1]
satisfies both these properties that we require. We give a sketch of the proof for
the following theorem in in the full version our paper.

Theorem 5 (Implicit from [1]). Assuming the existence of public-key encryp-
tion, there exists a two-round secure MPC protocol that achieves strong guaran-
teed output against t < n/2 fail-stop corruptions and achieves security with abort
against t < n/2 malicious corruptions in the PKI model.

2.3 Functionalities of Interest

Our lower bounds rely on residual function attacks (as described earlier), where
only one honest party’s input is fixed, and the adversary can evaluate the func-
tion on multiple different inputs (by changing the inputs of other parties). For
most functionalities, this is a non-trivial information that cannot be simulated.
In fact, it usually leads to a complete break in the privacy of the honest party
whose input is fixed. For concreteness, we present our lower-bounds using one
such functionality called the multi-party OT functionality defined in [22]. This
functionality is a variant of oblivious transfer where each party has three-input
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bits. At the end, based on the first input bits of all parties, the output parties
only learn one of the input bits of all parties.

Definition 4 (MOT Functionality). For n > 2 and nonempty O ⊆ [n], let
MOT : Xn → Y n be the n−party functionality defined as follows:

– The input domain of each party is X = {0, 1}3 and the output domain is
Y = {0, 1}n+1.

– Given input (ci, x0i , x1i ) from each party Pi, the functionality lets c = c1 ⊕
. . .⊕cn and outputs (c, xc1, . . . , xcn) to all parties Pj , j ∈ O(the output of party
Pj for j /∈ O is the fixed string 0n+1).

For simplicity, the proofs of all the lower bounds in this work are described
with respect to the MOT functionality. However, it should be easy to see that
all our proofs extend to any such non-trivial functionality.

3 Lower Bounds on Broadcast Message Complexity

In this section, we provide lower bounds on the broadcast message complexity
of MPC in the plain model and the bare public-key model. We show that the
broadcast message complexity is different in the two models, and further depends
on the number of corruptions t and the number of output parties |O|, where O
is the set of parties who learn the output.

3.1 Plain model

We first investigate the lower bounds on broadcast message complexity of semi-
honest MPC protocols in the plain model. We start by proving our lower bound
for t < n − 1 corruptions and |O| > 1 output parties. In this case, we first
show that for a secure MPC protocol, at least t+1 parties must broadcast more
one messages in Lemma 1. Using this result, it is easy to see that even if these
t+1 parties send two messages each, the total number of messages required are
2(t+1)+1(n− (t+1)) = n+ t+1, since each party in an n-party protocol must
broadcast at least one message. Finally we show how this result can be used to
get a lower bound for |O| = 1 output party.

We now formally state the following two theorems, for 1 6 t < (n− 1), and
t = n − 1, respectively. In this subsection, we only give a proof for Theorem 6.
The proof of Theorem 7, which follows similarly to Theorem 6, except that it
does not rely on spoofing attacks, is deferred to the full version our paper.

Theorem 6. In the plain model, the broadcast message complexity of n-party
MPC for non-trivial functionalities secure against 1 6 t < (n− 1) semi-honest,
static corruptions is n + t + 1 if the number of output parties is |O| > 1, and
n+ t if |O| = 1.

Theorem 7. In the plain model, the broadcast message complexity of n-party
MPC for non-trivial functionalities secure against t = n− 1 semi-honest, static
corruptions is 2n − 1 if the number of output parties is |O| > 1, and 2n − 2 if
|O| = 1.
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Proof of Theorem 6.. We divide the proof into two cases, depending upon the
number of output parties.

Case1 : |O|>1 Let Π be a secure n-party broadcast channel MPC protocol for
the MOT functionality in the plain model with |O| > 1, that is secure against a
semi-honest adversary that corrupts 1 6 t < (n−1) parties. Let S1 be the set of
parties that broadcast a single message in Π and S>1 be the set of parties that
broadcast more than one messages. We start by proving the following lemma.

Lemma 1. There must be at least t+1 parties in Π that broadcast more that 1
message, i.e., |S>1| > t+ 1

Proof. Let us assume for the sake of contradiction that |S>1| 6 t. Let A be an
adversary who corrupts all the parties in S>1 and no other party, i.e., all parties
in S1 are honest. Since |S>1| 6 t, this is a valid adversary.

Let P ∗ ∈ S1 be the first party to broadcast a message amongst all parties in
S1. We note that there might be more than one such party in S1 that broadcast
their messages simultaneously in a round. In that case, w.l.o.g. we let P ∗ be the
lexicographically first party amongst those. Let S∗1 = S1 \ {P ∗} be the set of
all other parties in S1. Let P denote the set of all parties in Π and let (xi, ri)
denote the input and randomness of party Pi ∈ P. We now describe the strategy
of A.

– A runs an honest execution of Π where it sets xj = 000 for every corrupted
party Pj ∈ S>1. Let transΠ be the transcript of this execution.

– Let Pk be any party in S∗1 . A then runs two mental experiments where in
the first experiment it sets xj = 000 for every Pj ∈ S∗1 and in the second
experiment it sets xk = 100 and xj = 000 for every Pj ∈ S∗1 \ {Pk}. Let
P ∗ broadcast its message in round ` and let trans<`Π be the transcript of
honest execution up to round `. Given trans<`Π , the message sent by P ∗ in
the honest execution and the new set of inputs, A uses the next message
function of the remaining parties Pj ∈ P \ {P ∗} to compute their messages
from round ` onwards. Let transΠ1 and transΠ2 denote the transcripts of the
two mental experiments. Note that since |O| > 1, there is at least one output
party in the set P \ {P ∗}. It uses the output function of any output party
Pi ∈ O ∩ (S>1 ∪ S∗1 ) to compute outputs y1 = OutΠ(i, xi, ri, transΠ1) and
y2 = OutΠ(i, xi, ri, transΠ2).

Claim. y1 = (c∗, xc
∗

1 , . . . , x
c∗

n ), where xi = 000 for each Pi ∈ P \ {P ∗} and c∗ is
the first input bit of party P ∗.

Proof. Since P ∗ is the first party to broadcast a message amongst all parties in
S1, its message does not depend on messages from any other party in S1. Thus
transΠ1 represents honestly computed transcript of Π where the inputs of all
parties in S∗1 have been replaced with 000. Therefore, from the correctness of Π,
we get y1 = (c∗, xc

∗

1 , . . . , x
c∗

n ).

Claim. y2 = ((1 − c∗), x(1−c
∗)

1 , . . . , x
(1−c∗)
n ) where xk = 100 for any one party

Pk ∈ S∗1 and xi = 000 for each Pi ∈ P \ {P ∗, Pk}.
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The proof of this claim is similar to the proof of the previous claim.
From the above claims, we can see that the two outputs y1 and y2 reveal both
the input bits of the honest party P ∗. Such a protocol is clearly not secure.
Therefore our assumption is wrong and there must be at least t + 1 parties in
Π that broadcast more that 1 messages. This concludes the proof of Lemma 1.
We now use this lemma to prove the first part of Theorem 6.

Let us assume for the sake of contradiction that there exists a semi-honest
secure MPC protocol Π in the plain model, that has a broadcast message com-
plexity of n + t for |O| > 1 output parties. From Lemma 1, we know that at
least t + 1 parties must broadcast at least 2 messages. This means that there
is at least one party out of the remaining n− (t+ 1) parties, that doesn’t send
a message, i.e., the output of the protocol is independent of this party’s input.
But we know that for correctness of output of the MOT functionality, every
party’s input is necessary for computation. Therefore the output computed by
this protocol is incorrect. Thus, our assumption is wrong and such a protocol
with broadcast complexity n+ t cannot exist.

Case2 : |O|=1 We now prove the second part of Theorem 6. Let us assume for
the sake of contradiction that there exists an n-party broadcast channel MPC
protocol for any non-trivial functionality in the plain model with |O| = 1, that
is secure against a semi-honest adversary that corrupts 1 6 t < (n − 1) parties
and has a broadcast message complexity of n+ t−1. This protocol can be easily
transformed into another protocol Π ′ with the same corruption threshold, where
|O| = n. This can be obtained by adding a round at the end of Π where the
output party broadcasts the output. Clearly, every party learns the output in
Π ′ and it only has a broadcast message complexity of n+ t. But from the first
part of Theorem 6, we know that such a protocol with a broadcast message
complexity of n + t cannot exist. Therefore, our assumption is wrong and the
minimum broadcast message complexity for such a protocol with one output
party is n+ t. This completes the proof of Theorem 6.

3.2 PKI Model

We now investigate the lower bounds on broadcast message complexity of semi-
honest MPC protocols against 1 6 t 6 (n − 1) corruptions in the PKI model.
We observe that the lower bound for |O| 6 n − t output parties follows similar
to the proof of Theorem 7 using the lower bounds of Mittal in [23] on the P2P
message complexity.

For |O| > n− t parties, we start by showing that in a secure MPC protocol
in the PKI model, at least t parties must broadcast more than one message each
in Lemma 2. The proof of this lemma is very similar to the proof of Lemma
1, except that now it is not possible for the adversary to spoof other parties in
the PKI model. Using this result, as before it is easy to see that even if these
t parties send two messages each, the total number of messages required are
2(t)+ 1(n− t) = n+ t, since each party must broadcast a message in an n-party
protocol. We now formally prove the following theorem.
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Theorem 8. In the PKI model, the broadcast message complexity of n-party
MPC for non-trivial functionalities secure against 1 6 t 6 (n− 1) semi-honest,
static corruptions is n + t if the number of output parties is |O| > n − t, and
n+ t− 1 if |O| 6 n− t.

Proof. The lower bound for |O| 6 n − t and |O| = n output parties can be
derived from the lower bound given in [23]. Intuitively, it can be shown that, if
there exists a broadcast protocol in this setting with n+ t−2 broadcast message
complexity, and |O| 6 n − t output parties, then the lower bound given in [23]
on the P2P message complexity will be violated. Similarly the bound of n + t
messages for |O| = n output parties also holds. We defer the full proof for this
setting to the full version of our paper.

But this still leaves open the question about broadcast message complexity
of MPC with 1 6 t 6 n− 1 semi-honest corruptions and n− t < |O| < n output
parties in th PKI model. We know prove the lower bound of n+ t messages for
n − t < |O| < n output parties. The following proof also works for |O| = n
output parties. We prove this bound for the MOT functionality, but this proof
can be easily extended for any non-trivial functionality. Let Π be an secure n-
party broadcast channel MPC protocol for the MOT functionality in the PKI
model with |O| > t + 1, that is secure against a semi-honest adversary that
corrupts 1 6 t 6 (n − 1) parties. Let S1 be the set of parties that broadcast a
single message in Π and S>1 be the set of parties that broadcast more than one
messages. We start by proving the following lemma.

Lemma 2. There must be at least t parties in Π that broadcast more that 1
message, i.e., |S>1| > t

Proof. Let us assume for the sake of contradiction that |S>1| = (t−1). Let Plast ∈
S1 be the last party to broadcast a message amongst all parties in S1. Note that
there might be more than one such parties in S1 that broadcast their messages
simultaneously in a round. In that case we let Plast be the lexicographically last
party amongst those. Let A be an adversary who corrupts Plast and all the parties
in S>1. Since |S>1| = (t − 1), this is a valid adversary. Let P ∗ be any honest
party. From the above definition of A, we know that P ∗ ∈ S1. Let P denote the
set of all parties in Π and let (xi, ri) denote the input and randomness of party
Pi ∈ P. We now describe the strategy of A.

– A runs an honest execution of Π where it sets xj = 000 for every corrupted
party Pj ∈ S>1∪{Plast}. Let transΠ be the transcript of this execution. It uses
the output function of any corrupted output party Po ∈ O ∩ (S>1 ∪ {Plast})
to compute the output (c, xc1, . . . , xcn) = OutΠ(o, xo, ro, transΠ). Since |O| >
n− t, there is at least one corrupt output party.

– A then runs a mental experiment where it sets xlast = 100. Let Plast broadcast
its message in round ` and let trans<`Π be the transcript of honest execution
up to round `. Given trans<`Π and the new sets of inputs, A uses the next
message function of all the corrupted parties to compute their messages from
round ` onwards. Let trans′Π denote the transcript of the mental experiment.
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It uses the output function of the output party Po to compute the output
y′ = OutΠ(o, xo, ro, trans

′
Π).

Claim. y′ = ((1− c), x1−c1 , . . . , x1−cn ), where xlast = 100.

Proof. Since Plast is the last party to broadcast a message amongst all parties
in S1, messages of other parties (honest parties) in S1 do not depend on Plast’s
message. Thus trans′Π represents an honestly computed transcript of Π where
only the input of Plast has been replaced with 100. Therefore, from the correctness
of Π, y′ = ((1− c), x1−c1 , . . . , x1−cn ).

From the above claim, we see that the output of the honest execution and y′

reveal both the input bits of the honest party P ∗. Such a protocol is clearly not
secure. Therefore our assumption is wrong and there must be at least t parties
in Π that broadcast more that 1 messages.

We now use this lemma to prove Theorem 8. Let us assume for the sake of
contradiction that there exists a semi-honest secure MPC protocol Π in the
PKI model for 1 6 t 6 n − 1, that has a broadcast message complexity of
n+ t−1. From Lemma 2, we know that at least t parties must broadcast at least
2 messages. Since 2×(t) = 2t and (n+t−1)−(2t) = n−t−1, there is at least one
party that doesn’t send a message, i.e., the output of the protocol is independent
of this party’s input. But we know that for correctness of output of the MOT
functionality, every party’s input is necessary for computation. Therefore the
output computed by this protocol is incorrect. Thus, our assumption is wrong
and such a protocol with broadcast complexity n + t − 1 cannot exist. This
completes the proof of Theorem 8.

4 Lower Bounds on Round Complexity

In this section, we investigate the minimal round complexity of semi-honest MPC
with optimal broadcast message complexity. The following theorem summarizes
our results.

Theorem 9. Three-rounds are necessary for semi-honest MPC with optimal
broadcast message complexity. This result holds regardless of the model (plain or
bare public key), the number of corruptions or the number of output parties.

We divide this proof into two parts. In section 4.1, we consider MPC protocols
in the plain model with 1 6 t < (n − 1) corruptions. Later in section 4.2, we
consider MPC protocols in the plain model with t = n − 1 corruptions and in
the PKI model with 1 6 t < n corruptions.

4.1 Plain model : 1 6 t < (n− 1)

We start by proving in Lemma 3, that the last round in a secure MPC protocol
in the plain model with t < n − 1 semi-honest corruptions cannot consist of
messages from parties that broadcast a single message in the protocol.
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Next we use this result to show that at least three rounds are necessary
for optimal message complexity in the plain model with t < n − 1 semi-honest
corruptions. Intuitively, assuming for contradiction that there exists such a two-
round protocol with optimal message complexity, from Lemma 3 we know that
all the parties that send a single message in the protocol must broadcast their
message in the first round, and all the other parties broadcast their messages
in both the first and second rounds. The adversary can now launch a residual
function attack on the inputs of any one party that sends a single message by
spoofing all other honest parties. This is possible because the message of this
honest party that sends its only message in the first round, does not depend
on the messages (or the inputs) of any other party. The adversary can keep
recomputing the remaining transcript using different inputs of other parties to
compute different outputs of the function.

We now give a formal proof for the MOT functionality, but it is easy to
see that this proof can be extended to any non-trivial functionality. Let Π be
a secure n-party broadcast channel MPC protocol for the MOT functionality
in the plain model with minimum broadcast message complexity, that is secure
against a semi-honest adversary who may corrupt up to 1 6 t < (n− 1) parties.
Let S1 be the set of parties that broadcast a single message in Π and S2 be the
set of parties that broadcast two messages. We start by proving the following
lemma.

Lemma 3. The last round in Π does not consist of messages from parties that
broadcast a single message in the protocol.

Proof. Let us assume for the sake of contradiction that there is a party Plast ∈ S1
that broadcasts its message in the last round `. Let A be an adversary who
corrupts any output party Po ∈ O. Let P denote the set of all parties in Π and
let (xi, ri) denote the input and randomness of party Pi ∈ P. We now describe
the strategy of A.

– A runs an honest execution of Π where it sets xo = 000 for the corrupt
output party Po. Let transΠ be the transcript of this execution.

– A then runs two mental experiments where in the first experiment it sets
the input of party Plast, xlast = 000 and in the second experiment it sets
xlast = 100. Let trans<`Π denote the transcript of the honest execution of Π,
up to round `. Given trans<`Π and the new inputs, A computes Plast’s new
messages in the two mental experiments. Let transΠ1 and transΠ2 denote the
final transcripts of the two mental experiments. It uses the output function
of the output party Po to compute outputs y1 = OutΠ(o, xo, ro, transΠ1) and
y2 = OutΠ(o, xo, ro, transΠ2).

Claim. y1 = (c, xc1, . . . , x
c
n), where xlast = 000 and c is the xor of the first input

bits of all other parties in P.

Proof. Since Plast broadcasts its message only in the last round, the mes-
sages of all other parties in the protocol are independent of its message. Thus
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transΠ1 represents an honestly computed transcript of Π where the input of
Plast is replaced with 000. Therefore, from the correctness of Π, we get that
y1 = (c, xc1, . . . , x

c
n).

Claim. y2 = ((1− c), x(1−c)1 , . . . , x
(1−c)
n ) where xlast = 100 and 1− c is the xor of

the first input bits of all other parties in P.

The proof of this claim is similar to the proof of the previous claim.
From the above claims, we can see that the two outputs y1 and y2 reveal both
the input bits of all the honest parties Pi ∈ P \ {Plast, Po}. Such a protocol is
clearly not secure. Therefore our assumption is wrong and there must be at least
t+ 1 parties in Π that broadcast more that 1 messages.

We now use this lemma to prove the first part of theorem 9.
We prove this theorem separately for the following cases:

Case 1: |O| = 1. From Theorem 6, we know that the broadcast message
complexity of Π is n + t, i.e., |S1| = n − t and |S2| = t. Let us assume for the
sake of contradiction that there are only 2 rounds in Π. From Lemma 3, we know
that in a 2 round protocol, all the parties in S1 must broadcast their messages
in the first round. Let Po be the output party.

Let A be an adversary who corrupts all parties in S2. Since |S2| = t, this is
a valid adversary. Let P denote the set of all parties in Π and let (xi, ri) denote
the input and randomness of party Pi ∈ P. We now describe the strategy of
A. A runs an honest execution of Π where it sets xi = 000 for every corrupted
party Pi ∈ S2. Let transΠ be the transcript of this execution. We now have the
following cases:

Po ∈ S2 : The adversary computes the output of the honest execution y =
(c, xc1, . . . , x

c
n) = OutΠ(o, xo, ro, transΠ).

It then runs a mental experiment where it sets the input of Po, xo = 100.
Given the first round messages of all other parties from the honest execution,
it computes the new first round message of Po and the second round messages
of all parties in S2. Let trans′Π denote the transcript of the mental experiment.
It uses the output function of the output party Po to compute the new output
y′ = OutΠ(o, xo, ro, trans

′
Π).

Po ∈ S1 : A runs two mental experiments, where it sets xo = 000 and xo = 100
respectively. It computes Po’s messages in the two mental experiments using
these new inputs. It also computes the second round messages of all corrupted
parties given Po’s new message and the remaining first round messages from
honest execution. Let transΠ1 and transΠ2 denote the transcripts in the two
mental experiments. It then uses the output function of Po to compute outputs
y1 = OutΠ(o, xo, ro, transΠ1) and y2 = OutΠ(o, xo, ro, transΠ2).
We now analyze these two cases separately:

Analysis for Po ∈ S2.

Claim. y′ = ((1− c), x(1−c)1 , . . . , x
(1−c)
n )
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Proof. Since all honest parties only broadcast a message in the first round,
their messages are independent of the messages from any other party. Thus
trans′Π represents an honestly computed transcript of Π where the input of
xo has been replaced with 100. Therefore, from the correctness of Π, y′ =

((1− c), x(1−c)1 , . . . , x
(1−c)
n )

From the above claim, we can see that y and y′ reveal both the input bits of all
the honest parties. Such a protocol is clearly insecure. Therefore our assumption
is wrong there must be at least 3 rounds in Π in this case.

Analysis for Po ∈ S1.

Claim. y1 = (c, xc1, . . . , x
c
n), where xo = 000 and c is the xor of the first input

bits of all other parties in P.

Proof. Since all parties in S1 broadcast their message in the first round, their
messages are independent of the messages from any other party. Thus transΠ1

represents an honestly computed transcript ofΠ where the input of Po is replaced
with 000. Therefore, from the correctness of Π, we get that y1 = (c, xc1, . . . , x

c
n).

Claim. y2 = ((1− c), x(1−c)1 , . . . , x
(1−c)
n ) where xo = 100 and c is the xor of the

first input bits of all other parties in P.

The proof of this claim is similar to the proof of the previous claim.
From the above claims, we can see that y1 and y2 reveal both the input bits of all
the honest parties. Such a protocol is clearly insecure. Therefore our assumption
is wrong there must be at least 3 rounds in Π in this case.

Case 2: |O| > 1. From theorem 6, we know that the broadcast message com-
plexity of Π is n + t + 1, i.e., |S1| = n − t − 1 and |S2| = t + 1. Let us assume
for the sake of contradiction that there are only 2 rounds in Π. From Lemma 3,
we know that in a 2 round protocol, all the parties in S1 must broadcast their
messages in the first round.

Let A be an adversary who corrupts all but one party in S2. Let Premain be the
remaining honest party in S2. Since |S2| = t+1, this is a valid adversary. Let P
denote the set of all parties inΠ and let (xi, ri) denote the input and randomness
of party Pi ∈ P. We now describe the strategy of A. A runs an honest execution
of Π where it sets xi = 000 for every corrupted party Pi ∈ S2 \ {Premain}. Let
transΠ be the transcript of this execution. We can have the following cases:

One of the parties in S2 is an output party: It then runs two mental
experiments where in the first experiment, it sets the input xremain = 000 and in
the second experiment it sets xremain = 100. Given the new input and first round
messages of all other parties from the honest execution, it computes the new first
and second round messages of Premain and the second round messages of all other
parties in S2. Let transΠ1 and transΠ2 denote the transcripts of the two mental
experiments. It uses the output function of the output party Po ∈ S2 to compute
outputs y1 = OutΠ(o, xo, ro, transΠ1) and y2 = OutΠ(o, xo, ro, transΠ2).
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None of the parties in S2 is an output party: Let Po ∈ S1 be an output
party. A runs two mental experiments where in the first experiment, it sets
xo = 000 and xremain = 000 and in the second experiment it sets xo = 100
and xremain = 000. Given the new sets of inputs and the first round messages
of all other parties from the honest execution, it computes the new first round
messages of Po and Premain. It also computes the new second round messages
of all parties in S2. Let transΠ1 and transΠ2 denote the transcripts in the two
mental experiments. It then uses the output function of Po to compute outputs
y1 = OutΠ(o, xo, ro, transΠ1) and y2 = OutΠ(o, xo, ro, transΠ2).

Remark. Note that if t = n− 2, since |O| > 1, at least one of the parties in S2
will always be an output party. The second case can only occur if there are at
least 3 honest parties. Therefore, if the adversary spoofs two honest parties Po
and Premain, it can still compromise the privacy of at least one honest party.
We analyze the two cases separately:

Analysis for the case when one of the parties in S2 is an output party:

Claim. y1 = (c, xc1, . . . , x
c
n), where xremain = 000 and c is the xor of first input

bits of all parties other than Premain in the honest execution.

Proof. Since all parties in S1 broadcast their messages in the first round, their
messages are independent of the messages from any other party. Thus transΠ1

represents an honestly computed transcript of Π where the input of Premain has
been changed is replaced with 000. Therefore, from the correctness of Π, we get
that y1 = (c, xc1, . . . , x

c
n).

Claim. y2 = ((1− c), x(1−c)1 , . . . , x
(1−c)
n ), where c is the xor of first input bits of

all parties other than Premain in the honest execution.

The proof of this claim is similar to the proof of the previous claim.
From the above claims, we can see that y1 and y2 reveal both the input bits of all
the honest parties. Such a protocol is clearly insecure. Therefore our assumption
is wrong there must be at least 3 rounds in Π in this case.

Analysis for the case when none of the parties in S2 is an output party:

Claim. y1 = (c, xc1, . . . , x
c
n), where xo = 000, xremain = 000 and c is the xor of

first input bits of all parties other than Premain and Po in the honest execution.

Claim. y2 = ((1− c), x(1−c)1 , . . . , x
(1−c)
n ), where xo = 100, xremain = 000 and c is

the xor of first input bits of all parties other than Premain and Po in the honest
execution.

The proofs of these claims are similar to the proofs of the two claims in the
previous case. From the above claims, we can see that y1 and y2 reveal both
the input bits of all the other honest parties. Such a protocol is clearly insecure.
Therefore our assumption is wrong there must be at least 3 rounds in Π in this
case. This completes the proof for the first part of Theorem 9
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4.2 Plain Model : t = n− 1 and PKI Model : 1 6 t 6 n− 1

Similar to the previous subsection, we start by proving that even in this setting,
the last round round of a secure MPC protocol cannot consist of messages from
parties that broadcast a single message in the protocol. The rest of the proof
also works very similar to the one in the previous subsection. We now give a
formal proof for the lower bound on number of rounds in the plain model with
t = n− 1 corruptions. The proof for PKI model with 1 6 t 6 n− 1 corruptions
follows similarly.

Let Π be any n-party broadcast channel MPC protocol for any non-trivial
functionality in the plain model with minimum broadcast message complexity,
that is secure against a semi-honest adversary who may corrupt up to t = (n−1)
parties. Let S1 be the set of parties that broadcast a single message in Π and
S2 be the set of parties that broadcast two messages. Let O be the set of output
parties. We start with the following lemma.

Lemma 4. The last round in Π does not consist of messages from parties that
broadcast a single message in the protocol.

The proof of this lemma is similar to the proof of lemma 3. Now we prove
Theorem 9. Let us assume for the sake of contradiction that there are only 2
rounds in Π. From Lemma 4, we know that in a 2 round protocol, all the parties
in S1 must broadcast their messages in the first round. We have the following
cases:

Case 1: |O| = 1. From Theorem 7, we know that the broadcast message
complexity of Π is 2n − 2, i.e., |S1| = 2 and |S2| = n − 2. Let Po ∈ O be the
only output party.

Claim. In this case Po ∈ S1.

Proof. If we have protocol with broadcast message complexity 2n−2, where the
output party sends a message in the last round, we can always get a protocol
with broadcast message complexity 2n−3 where the output party does not send
a message in the last round. Instead it computes the last round message offline
and learns the output. But this clearly violates the lower bound of 2n−2 on the
broadcast message complexity of such protocols. Therefore Po does not send a
message in the last round and hence Po ∈ S1.

Now letA be an adversary who corrupts all parties in S2 and the output party
Po. Note that since A only corrupts t parties, this is a valid adversary. Clearly
in this case, the message of the honest party does not depend on the messages
of any of the corrupted parties. After running an honest execution of Π, the
adversary can simply change the inputs of the corrupted parties while keeping
the message of the honest party same and learn multiple different outputs. Thus,
Π is clearly insecure and it must have at least three-rounds.

Case 2: |O| > 1. From Theorem 7, we know that the broadcast message
complexity of Π is 2n− 1, i.e., |S1| = 1 and |S2| = n− 1. Since there are at least
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2 output parties, one of them is definitely in S2. Let A be an adversary that
chooses to corrupt all the parties in S2. Clearly in this case, the honest party
sends its message in the first round and therefore its message is not dependent
on the messages from any of the corrupted parties. After running an honest
execution of Π, the adversary can simply change the inputs of the corrupted
parties while keeping the message of the honest party same and learn multiple
different outputs. Thus, Π is clearly insecure and there must be at least three-
rounds in Π.

4.3 Communication Pattern

Since our broadcast model of communication allows for only a subset of parties
to send a message in each broadcast round, there are a number of possible com-
munication patterns in which parties may broadcast their messages. However,
not all these combinations are viable for obtaining a secure MPC protocol. In
the previous section, we already established that all protocols with minimum
broadcast message complexity must comprise of at least three-rounds. We in-
spect the exact communication patterns for secure MPC protocols with optimal
broadcast message complexity.

Plain Model : 1 6 t 6 n − 1 We show that any MPC protocol with optimal
broadcast message complexity in the plain model must follow a unique commu-
nication pattern. We state the formal result and give a proof in the full version
our paper.

PKI Model : 1 6 t 6 n − 1 We show that any MPC protocol with optimal
broadcast message complexity in the PKI model must use a communication
pattern from a specific class of communication patterns (which is a strict subset
of all possible communication patterns). We call it a class of communication
patterns because there are more than one communication patterns that fall into
the same category of communication patterns that can be use to obtain a secure
MPC protocol. We state the formal result and give a proof in the full version
our paper.

5 Positive Result in the PKI Model : t < n
2

In this section we describe a general compiler to get a three-round semi-honest
MPC protocol secure against t < n

2 corruptions with optimal broadcast message
complexity in the PKI model from any two round MPC protocol with strong
guaranteed output delivery against t < n

2 fail-stop corruptions in the PKI model.
Using the two-round protocol from Theorem 5, that also achieves security with
abort against t < n

2 malicious adversaries, our resulting three round protocol
with optimal broadcast message complexity is also secure against malicious cor-
ruptions.
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5.1 Overview

To enable the honest output parties to learn the output in an MPC protocol that
satisfies strong guaranteed output delivery against t < n

2 fail-stop corruptions
and security with abort against t < n

2 malicious corruptions, only t + 1 honest
parties are required to participate in the last round. It is easy to observe that
such a protocol would provide security with abort against t < n

2 malicious cor-
ruptions if any t+1 parties participate in the last round. This already gives us a
maliciously secure MPC protocol with broadcast message complexity of n+t+1.
To further reduce the broadcast message complexity, we add an extra round in
the middle where one of the parties sends it first and second message at the same
time. This gives us a three-round maliciously secure MPC protocol against t < n

2
corruptions and minimal broadcast message complexity for |O| > n − t output
parties. This protocol can also be transformed into a protocol for |O| 6 n − t
output parties. Her we describe a compiler for |O| > n − t output parties. In
the full version of our paper we discuss how this can be extended to |O| 6 n− t
output parties in this setting. Let Φ be a two-round protocol that achieves strong
guaranteed output delivery against t < n

2 fail-stop corruptions and security with
abort against t < n

2 malicious corruptions, then the transformed three-round
protocol has the following template:

R1: Parties P1, . . . , Pn−1 send their first round messages of Φ in the first round.
R2: Party Pn sends its first and second round messages of Φ in the second

round.
R3: Parties P1, . . . , Pt send their second round messages of Φ in the third round.

This gives us the following theorem statement.

Theorem 10. Let Φ be a two-round MPC protocol with strong guaranteed output
delivery against t < n

2 fail-stop corruptions and security with abort against t < n
2

malicious corruption with |O| = n output parties in the PKI model. Then there
exists a general compiler that transforms Φ into a three-round maliciously secure
MPC protocol with minimum broadcast message complexity in the PKI model
that tolerates t < n

2 corruptions.

Applying Theorem 10 to the protocol from Theorem 5, we get the following.

Corollary 1. Assuming public-key encryption, there exists a three-round ma-
liciously secure MPC protocol with minimum broadcast complexity in the PKI
model that tolerates up to t < n

2 corruptions.

5.2 Our Compiler for |O| > n− t

Let P = {P1, . . . , Pn} be the set of parties in the protocol and let {x1, . . . , xn},
{r1, . . . , rn}, {pk1, . . . , pkn} and {sk1, . . . , skn} be their respective inputs, ran-
domness, public keys and secret keys. Let λ be the security parameter.

Round 1. Each party Pi for i ∈ [n− 1] does the following:
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It computes the first round message Φ1
i using its input xi, ran-

domness ri, secret key ski and public keys of all parties: Φ1
i ←

NextMsg1Φ(1
λ, i, xi, ski, {pk1, . . . , pkn},⊥; ri) and broadcasts M1

i := Φ1
i to all

other parties.

Round 2. Party Pn does the following:

1. Computes the first round message Φ1
n using its input xn and randomness rn:

Φ1
n ← NextMsg1Φ(1

λ, n, xn, ski, {pk1, . . . , pkn},⊥; rn)
2. For i ∈ [n− 1], it parses M1

i as Φ1
i and sets trans1Φ := {Φ1

i }i∈[n].
3. Computes the second round message Φ2

n using its input xn, randomness rn
and previous round transcript trans1Φ:
Φ2
n ← NextMsg2Φ(1

λ, n, xn, ski, {pk1, . . . , pkn}, trans1Φ; rn)
4. Broadcasts M2

n := (Φ1
n, Φ

2
n)

At the end of Round 2. Each party Pi for i ∈ [n− 1] does the following:
For j from 1 to n− 1, parses M1

j as Φ1
j . It parses M2

n as (Φ1
n, Φ

2
n). Finally it sets

trans1Φ := {Φ1
j}j∈[n].

Round 3. Each party Pi for i ∈ [t] does the following:
It computes the second round message Φ2

i ←
NextMsg2Φ(1

λ, i, xi, ski, {pk1, . . . , pkn}, trans1Φ; ri) using its input xi, ran-
domness ri and previous round transcript trans1Φ and broadcasts M3

i := (Φ2
i ) to

all other parties.

Output Phase. Each party Pi for i ∈ [n] does the following:
For j ∈ [t], it parses M3

j as (Φ2
j ). Then it sets trans2Φ := {{Φ2

j}j∈[t], Φ2
n}. Finally

it runs the output phase of Φ, OutΦ(i, xi, ri, ski, {pk1, . . . , pkn}, trans1Φ, trans2Φ) to
learn the output.

This completes the description of our compiler. We provide a proof of security
in the full version our paper.

6 Positive Result in the PKI Model : t < n

In this section we describe a general compiler to get a three-round semi-honest
MPC protocol against t < n corruptions with optimal broadcast message com-
plexity in the PKI model from any two-round semi-honest MPC with dishonest
majority in the plain model.

6.1 Overview

We start with any two round N -party semi-honest MPC protocol Φ, secure
against N −1 corruptions, where N = (n− t+2)× (t+1). Let P = {P1, . . . , Pn}
be the set of parties in our protocolΠ and {x1, . . . , xn} be their respective inputs.
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Let the n-party functionality that they compute on these inputs be f(x1, . . . , xn).
We consider an N -party functionality F such that

F (x1, . . . , xt, x(t+1)1 , . . . , x(t+1)(t+1)
, . . . , x(n−1)1 , . . . , x(n−1)(t+1)

, xn)

:= f(x1, . . . , xt, x(t+1)1 ⊕ . . .⊕ x(t+1)(t+1)
, . . . , x(n−1)1 ⊕ . . .⊕ x(n−1)(t+1)

, xn)

The main idea behind this compiler is to first let n − t − 1 parties in Π split
their inputs into t+1 additive shares each. Then the n parties together compute
the N -input function F using Φ. Here we describe a compiler for |O| > n − t
output parties. In the full version we show how this can be extended to the case
where the number of output parties are |O| 6 n − t. In the full version our
paper, we also show how to extend these protocols to the malicious setting. The
transformed three-round protocol for |O| > n−t output parties has the following
template:

R1: Parties P1, . . . , Pn−1 participate in the first round.
R2: Only Party Pn participates in the second round.
R3: Parties P1, . . . , Pt participate in the third round.

This gives us the following theorem statement.

Theorem 11. Let Φ be a two-round semi-honest MPC protocol with dishonest
majority and |O| = n output parties in the plain model. Then there exists a
general compiler that transforms Φ into a three-round MPC protocol with mini-
mum broadcast message complexity in the PKI model that tolerates up to t < n
semi-honest corruptions.

Applying Theorem 11 to the protocol from Theorem 5.1 from [18], we get
the following Corollary.

Corollary 2. Assuming the existence of two-message semi-honest OT, there ex-
ists a three-round semi-honest MPC protocol with minimum broadcast complexity
in the PKI model that tolerates up to t < n corruptions.

6.2 Our Compiler

Next, we describe the compiler for |O| > n− t output parties in detail.

Building Blocks. The main primitives required in this construction are: (1) A
two-round semi-honest MPC protocol Φ for N parties in the plain/CRS model
that only uses broadcast channels. (2) An additive secret sharing scheme. We
denote this by SS := (Share,Reconstruct). (3) A public-key encryption scheme
E := (Gen,Enc,Dec)

Protocol. Let P = {P1, . . . , Pn} be the set of parties in the protocol and let
{x1, . . . , xn}, {r1, . . . , rn}, {pk1, . . . , pkn} and {sk1, . . . , skn} be their respective
inputs, randomness, public keys and secret keys. Let λ be the security parameter.
Round 1. Each party Pi for i ∈ [t] does the following:

It computes the first round message Φ1
i ← NextMsg1Φ(1

λ, i, xi,⊥; ri) using its
input xi and randomness ri and broadcasts M1

i := (Φ1
i ) to all other parties.

Each party Pi for i ∈ {t+ 1, . . . , n− 1} does the following:
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1. Uses an additive secret sharing scheme SS to compute t + 1 shares of its
input xi and randomness ri using some random string si as follows:
{xi1 , . . . , xit , xin} ← Share(1λ, xi; si) and {ri1 , . . . , rit , xin} ←
Share(1λ, ri; si)

2. Encrypts each input and randomness share xij and rij under public key pkj
for j ∈ {1, . . . , t, n}: cij ← Enc(pkj , (xi,j , ri,j); si)

3. Computes the first round message Φ1
ij
using each of its input and randomness

share xij and rij for j ∈ {1, . . . , t, n}: Φ1
ij
← NextMsg1Φ(1

λ, ij , xij ,⊥; rij )
4. Broadcasts M2

i := ({cij , Φ1
ij
}j∈{1,...,t,n}) to all other parties.

Round 2. Party Pn does the following:

1. Computes the first round message Φ1
n using its input xn and randomness rn.

Φ1
n ← NextMsg1Φ(1

λ, n, xn,⊥; rn)
2. For j from t+ 1 to n− 1:

(a) Parses M2
j as {cjk , Φ1

jk
}k∈[t+1].

(b) Decrypts cjn to obtain xjn and rjn : (xjn , rjn) := Dec(ski, cjn)
3. Sets trans1Φ := {{Φ1

j}j∈{1,...,t,n}, {Φ1
jk
}j∈{t+1,...,n−1},k∈[t+1]}

4. Computes the second round message Φ2
n using its input xn, randomness rn

and previous round transcript trans1Φ: Φ
2
n ← NextMsg2Φ(1

λ, n, xn, trans
1
Φ; rn)

5. For each j ∈ {t + 1, . . . , n − 1}, it computes the second round message Φ2
jn

using input and randomness share xjn and rjn and previous round transcript
trans1Φ: Φ

2
jn
← NextMsg2Φ(1

λ, jn, xjn , trans
1
Φ; rjn)

6. Broadcasts M2
n := (Φ1

n, Φ
2
n, {Φ2

jn
}j∈{t+1,...,n−1})

At the end of Round 2. Each party Pi for i ∈ [t] does the following:

1. For j from t+1 to n− 1, it parses M2
j as {cjk , Φ1

jk
}k∈{1,...,t,n} and decrypts

cji to obtain xji and rji : (xji , rji) := Dec(ski, cji)
2. For j from 1 to t, it parses M1

j as (Φ1
j ).

3. Parses M2
n as (Φ1

n, Φ
2
n, {Φ2

jn
}j∈{t+1,...,n−1})

4. Sets trans1Φ := {{Φ1
j}j∈{1,...,t,n}, {Φ1

jk
}j∈{t+1,...,n−1},k∈{1,...,t,n}}

Round 3. Each party Pi for i ∈ [t] does the following:

1. Computes the second round message Φ2
i using its own input xi, randomness

ri and previous round transcript trans1Φ: Φ
2
i ← NextMsg2Φ(1

λ, i, xi, trans
1
Φ; ri)

2. For each j ∈ {t + 1, . . . , n − 1}, it computes the second round message Φ2
ji

using input and randomness share xji and rji and previous round transcript
trans1Φ. For each j ∈ {t+ 1, . . . , n}: Φ2

ji
← NextMsg2Φ(1

λ, ji, xji , trans
1
Φ; rji)

3. Broadcasts M3
i := (Φ2

i , {Φ2
ji
}j∈{t+1,...,n})

Output Phase. Each party Pi for i ∈ [n] does the following: For j from 1 to
t, it parses M3

j as (Φ2
j , {Φ2

kj
}k∈{t+1,...,n−1}). Then it sets

trans2Φ := {{Φ2
j}j∈{1,...,t,n}, {Φ2

jk
}j∈{t+1,...,n−1},k∈{1,...,t,n}}. Finally, it runs the

output phase of Φ, OutΦ(i, xi, ri, trans1Φ, trans
2
Φ) to learn the output.

This completes the description of the compiler. We prove its security in the
full version our paper.
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7 Extensions

The protocols presented in the previous sections can be extended in various ways
to obtain different protocols with additional properties.

7.1 Protocol in the Plain Model for 1 6 t < n− 1:

Such a three-round protocol can be obtained by slightly modifying the compiler
from section 6.2. In the first round, parties P1, . . . , Pt behave exactly as they
do in the previous compiler, additionally they also send their public keys. Pn
also sends its first message of the underlying protocol in the first round along
with its public key. Parties Pt+1, . . . , Pn−1 compute their messages exactly as do
are doing in the previous compiler. The only difference is that now they send
these messages in the second round. Then in the third round, parties P1, . . . , Pt
behave exactly as they do in the previous compiler. Additionally Pn also sends
its remaining message in the third round. This compiler can also be instantiated
using two-round protocols from [18, 3]. The resulting protocol has a broadcast
message complexity of n + t + 1 messages which is optimal for |O| > 1 output
parties. The broadcast message complexity of this protocol can be reduced by
one if there is a single output party. If one less party broadcasts a message in
the third round and instead computes this message and output offline, we get
a protocol with broadcast message complexity of n + t, which is also optimal
for |O| = 1 output party. Similar to the previous one, this result can also be
extended to achieve malicious security in the CRS model while preserving the
optimal broadcast message complexity. This can be done by instantiating the
above compiler using the two-round maliciously secure protocol from the work
of Garg et al. in [18] based on two-round OT in the CRS model with simulation-
based security against malicious receivers and semi-honest senders along with
an equivocation property. We give a similar to extension to obtain a protocol for
t = n− 1 in the plain model with optimal message complexity in the full version
our paper.

7.2 P2P Message Complexity

In [22, 23], Ishai et al. and Mittal give a lower bound of n + t − 1 messages
on the P2P message complexity of MPC for |O| = 1 output party with t < n
corruptions. While Ishai et. al. do give a construction for t = n− 1, the work of
Mittal in [23] does not give a positive result for this lower bound for t < n− 1.
In this section we give a protocol with optimal P2P message complexity. At
first, it might seem that the positive results discussed in our work in broadcast
setting would directly give a protocol with optimal P2P message complexity by
applying a simple. But this is in fact not true. If we apply this transformation
to our protocol in the plain model, we only get a protocol with P2P message
complexity of n + t for |O| = 1, which is not optimal. If we instead apply this
transformation to our protocols from the PKI model, we do get a protocol with
optimal P2P message complexity, but the resulting protocol is also in the PKI
model, which is not optimal in the assumptions. Below we describe an extension
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to our protocols from the PKI model to obtain protocols that are optimal in
the assumptions as well as the P2P message complexity. The protocol given in
section 6.2 can transformed as follows:

– P1 computes its first round message as described in that protocol and for-
wards it to party P2 along with the public key.

– For i ∈ {2, . . . , t}, Party Pi computes its first round message as described in
that protocol and forwards it to party Pi+1 along with its public key and all
the messages received from Pi−1.

– Now that party Pt+1 has access to the public keys of the first t parties, it
computes its first round message as described in that protocol except that it
does not encrypt the shares for party Pn, instead the shares for Pn are kept
in the clear. It forwards its message along with all the messages received
from Pt to Pt+2.

– For i ∈ {t+ 2, . . . , n− 1}, party Pi computes its message exactly as Pt does
above and forwards it along along with all the messages received from Pi−1
to Pi+1.

– Party Pn computes its message exactly as it does in the described protocol,
except that it does not need to decrypt the shares, instead it receives all
the shares in the clear from Pn−1. It forwards its message along with all
the other messages (except the secret shares intended for Pn) received from
Pn−1 to P1.

– For i ∈ {1, . . . , t − 1}, Party Pi computes its second message as described
in that protocol and forwards it to party Pi+1 along with all the messages
received from Pi−1.

– At the end Party Pt can compute the output.

This gives us an n+ t−1 message P2P protocol without any setup assumptions.
This protocol can be trivially extended to obtain a protocol with |O| output
parties that has n+ t+ |O|−2 messages. This can be done by having Pt forward
the output of the protocol to all the other output parties, using |O|−1 additional
messages.
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