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Abstract. Fine-grained cryptographic primitives are secure against ad-
versaries with bounded resources and can be computed by honest users
with less resources than the adversaries. In this paper, we revisit the re-
sults by Degwekar, Vaikuntanathan, and Vasudevan in Crypto 2016 on
fine-grained cryptography and show the constructions of three key fun-
damental fine-grained cryptographic primitives: one-way permutations,
hash proof systems (which in turn implies a public-key encryption scheme
against chosen chiphertext attacks), and trapdoor one-way functions. All
of our constructions are computable in NC1 and secure against (non-
uniform) NC1 circuits under the widely believed worst-case assumption
NC1 ⊊ ⊕L/poly.
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1 Introduction

1.1 Background

To prove the security of a cryptographic scheme, we typically reduce the security
to some computational hardness assumption with a precise security definition.
Due to the fact that most assumptions are unproven, it is desirable to make the
underlying assumptions as weak as possible. However, it turns out to be very hard
to construct a public-key cryptographic scheme without assuming the existence
of one-way functions (OWF). Moreover, for a vast majority of primitives (includ-
ing public-key encryption (PKE)), we further need to assume the hardness of
specific problems such as factoring, discrete-logarithm, learning with errors, etc..
It still remains open whether it is possible to construct even basic cryptographic
primitives under no assumptions, or at least mild complexity-theoretic assump-
tions. For instance, the complexity-theoretic assumption NP ⊈ BPP, which is
strictly weaker than the assumption of OWFs, has been proven to be insufficient
for constructing even OWFs as shown by Akavia et al. [4].

Due to the difficulty of directly constructing cryptographic primitives against
any polynomial probabilistic time adversaries based on mild complexity-theoretic
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assumptions such as NP ⊈ BPP, a line of beautiful works focused on fine-grained
cryptographic primitives [16], where (1) the resource of an adversary is a-prior
bounded, (2) an honest party can run the algorithms with less resource than an
adversary, and (3) the underlying assumption is extremely mild.

Merkle [35] initialized the study in this field by constructing a non-interactive
key exchange scheme, which can be run in time O(n) and adversaries running
in time o(n2) cannot break the security. The construction only requires random
functions (i.e., the random oracle). Subsequent to his work, Biham et al. [10]
showed the existence of strong OWFs based on the same assumption.

While Merkle restricted adversaries in the term of running time, Maurer
considered a model where adversaries have infinite computing power but only
restricted storage [34]. Afterwards, he proposed a key exchange protocol in
this model [36]. Following these works, Cachin and Maurer [13] constructed
a symmetric-key encryption scheme and a key exchange protocol which can be
run with storage O(s) and are unconditionally secure against adversaries with
storage o(s2). Besides, there have been many other works focusing on primitives
in this model [9, 42, 18, 8, 19, 20].

In the constant depth circuit model, Ajtai and Wigderson [3] constructed
an unconditional secure pseudo-random generator. Then, Boppana and La-
garias [12] exploited the results by Ajitai [2] and Furst et al. [21], which shows
that parity cannot be computed in size-bounded circuits, to achieve OWFs. The
proposed OWF can be computed in AC0 (constant-depth polynomial-sized) cir-
cuits consisting of AND, OR, and NOT gates of unbounded fan-in, while the
inverse cannot. Afterwards, several works treating the same model have been
proposed [28, 6, 43, 44].

Recently, Degwekar et al. [16] proposed fine-grained cryptographic primi-
tives against adversaries captured by two (non-uniform) classes of adversaries,
which are AC0 and NC1 (logarithmic-depth polynomial-sized) circuits consisting
of AND, OR, and NOT gates of fan-in 2. They first constructed an uncondition-
ally secure pseudorandom generator with arbitrary polynomial stretch, a weak
pseudorandom function, and a secret-key encryption scheme, all of which are
computable in AC0 and secure against adversaries that are AC0 circuits. Then,
under the widely believed separation assumption NC1 ⊊ ⊕L/poly, they con-
structed a OWF, a pseudorandom generator, a collision-resistant hash function,
and a semantically secure PKE scheme that are computable in NC1 and secure
against NC1 circuits.

Following the above work, Campanelli and Gennaro [14] constructed a some-
what homomorphic encryption and a verifiable computation against NC1 circuits.
As in [16], the underlying assumption is NC1 ⊊ ⊕L/poly.

While the above sequence of works have achieved amazing success, it still
remains open whether it is possible to construct other fine-grained primitives,
such as one-way permutation (OWP), PKE against chosen ciphertext attacks
(CCA), and even trapdoor one-way function (TDF).
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1.2 Our Results and Techniques

In this paper, we propose several fine-grained cryptographic primitives under
the assumption NC1 ⊊ ⊕L/poly. Specifically, we propose a OWP, a hash proof
system (HPS) (which in turn derives a CCA-secure PKE scheme), and a TDF.
All of them are computable in NC1 and secure against adversaries captured by
the class of NC1 circuits. Since a lot of results have been devoted to constructing
advanced primitives from these fundamental ones, our results greatly alleviate
the efforts to achieve more fine-grained primitives from scratch.

Our constructions rely on the fact shown in the papers by Appelebaum, Ishai,
and Kushilevitz [29, 5], that if NC1 ⊊ ⊕L/poly, there exist a distribution Dn

0 over
n×n matrices of rank (n−1) and a distribution Dn

1 over n×n matrices of rank
n, which are indistinguishable for NC1 circuits.

One-way permutation. As one of the most fundamental cryptographic prim-
itives, OWP has been shown to be sufficient for constructing many primitives
(e.g. pseudorandom generators [11] and universal one-way hash functions [37]).
Compared with primitives built from OWFs which are not bijective (e.g., [40,
26]), ones built from OWPs are usually more efficient [7, 33].

In the previous work, Degwekar et al. [16] showed a construction of fine-
grained OWFs in NC1. Their construction relies on a randomized encoding of a
boolean function f , which is a randomized function outputting the distribution
related only to f(x). Specifically, let f̂ : {0, 1}n × {0, 1}m → {0, 1}m+1 ∈ NC1

be the randomized encoding of f ∈ ⊕L/poly, where the existence of f̂ is shown

in [5]. Then, their construction of a OWF is g(x) = f̂(0n, x).3 However, the
domain and range of g are {0, 1}m and {0, 1}m+1 respectively, i.e., the domain
and range of g are inconsistent. Thus their construction is not a permutation.
Moreover, since they define OWFs using randomized encoding directly, it is
difficult to make their construction a permutation, i.e., it is not clear how to
further achieve OWPs under the same worst-case assumption.

In this work, we propose a collection of OWPs and extend it to a OWP,
both of which are computable in NC1 and secure against NC1 circuits under the
assumption NC1 ⊊ ⊕L/poly.

To achieve the goal, we exploit the two distributions Dn
0 and Dn

1 described
above. Essentially, our idea is to construct a “lossy function family” {fM(x) =
Mx}M∈Dn

1
. We let M ← Dn

1 and M ← Dn
0 in the injective and lossy model

respectively, and the indistinguishability between the two models can be reduced
to the indistinguishability between Dn

1 and Dn
0 . Then we follow the Peikert-

Waters [38] approach to prove that fM in the injective model satisfies one-
wayness. Furthermore, since a matrix M← Dn

1 is of full rank, it holds that fM
in the injective model is a permutation. Therefore, {fM(x) = Mx}M∈Dn

1
is a

collection of OWPs. Next, we extend it to a OWP, i.e., we give a construction
of OWP based on a collection of OWPs which satisfies the distribution of index

3 The one-wayness of g is based on the indistinguishability of the output distributions
of f̂ conditioned on f(x) = 0 and f(x) = 1, which can be reduced to NC1 ⊊ ⊕L/poly.
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sample algorithm is identical to the uniform distribution over index set as follows.
For a collection of OWPs {fi : Di → Di}i∈I where I is an index set, define a
function g with the domain D :=

∪
i∈I({i} ×Di) and g((i, x) ∈ D) = (i, fi(x)).

Since fi is a permutation and one-way, g is a permutation and one-way as well,
i.e., g is a OWP.

Hash proof system and CCA secure PKE scheme. The notion of HPS,
which can be treated as designated verifier non-interactive zero-knowledge proof
system for a language, was first introduced by Cramer and Shoup [15] for the
purpose of constructing a CCA secure PKE scheme. An HPS allows one to gen-
erate a valid proof π proving that a statement x is in a language L by using a
witness w and a public key pk. Also, one can generate a valid proof for x (not
necessarily in L) by using only a secret key sk. For x ∈ L, proofs generated in
these two ways should be the same. Typically, L is required to be a hard subset
membership one, i.e., statements sampled from inside and outside the language
should be indistinguishable. Furthermore, an HPS usually satisfies universality
and smoothness. Universality means that for fixed x outside L and pk, the en-
tropy of π is high enough (due to the entropy of sk). Smoothness means that
for x outside L, the distribution of π honestly generated with sk is close to
the uniform distribution in the proof space. HPSs are very versatile. Besides
the application of PKE schemes, they play important roles in constructing var-
ious primitives, such as password authenticated key exchange [24, 32], oblivious
transfer [31, 1], and zero-knowledge arguments [30].

In previous works, there has been no known way to construct HPSs that is
computable in NC1 and secure against adversaries bounded in NC1 yet. Note that
HPS is a quite different primitive from the ones in [16, 14], and its instantiation
cannot be achieved via some simple extension. The main bottleneck is that it
is not clear how to construct an HPS, where we can reduce the hardness of
the subset membership problem to the indistinguishability between Dn

0 and Dn
1 .

To overcome this problem, we define two sets L and L′ that are identical to
the supported language in a somewhat sophisticated way. The interesting part is
that we can reduce the indistinguishability between L′ and X/L to that between
Dn

0 and Dn
1 . Also we did very careful analysis on the entropy of secret keys with

respect to fixed public keys the to prove smoothness and universality. More
details are given as follows.

In this work, we propose the first HPS that is computable in NC1 and secure
against NC1 adversaries based on the worst-case assumption NC1 ⊊ ⊕L/poly.

Our idea is to let a proof in the HPS be of the form sk⊤M⊤w, where M←
Dn

0 , x = M⊤w is the statement with witness w, sk is the secret key, and
Msk = pk is the public key. A proof can be generated as either pk⊤w or sk⊤x.
The language that our HPS supports is Im(M⊤). To achieve the the hardness
of our subset membership problem, we exploit the fact that Im(M⊤) is identical
to both

L = {x|w ∈ 1×{0, 1}n−1,x = M⊤w} and L′ = {x|w ∈ 0×{0, 1}n−1,x = M⊤w}.
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We prove that if we sample M as M ← Dn
1 instead of M ← Dn

0 for L′, L′ be-
comes exactly X \L where X = {0, 1}n. Then we reduce the indistinguishability
between the uniform distributions over L′ and X \ L to that between Dn

0 and
Dn

1 . To prove the universality and smoothness, we show that for one pk, there
exist different valid secret keys, which lead to different outputs for any statement
not in the language. Hence, the entropy of the proof is high due to the entropy
of the secret key for a fixed pk and statement. We refer the reader to Section 4
for further details.

The proof size of the above scheme is only one single bit, while we can extend
it to an HPS with multi-bit proofs by running many HPSs in parallel and show
that the extension is still computable in NC1 and secure against NC1 circuits.

We now can instantiate the generic constructions [15] of a CCA-secure PKE
scheme with our HPSs. The resulting scheme is secure against NC1 circuits al-
lowed to make constant rounds of adaptive decryption queries, while in each
round, it can make arbitrary polynomial number of queries. This restriction is
natural and defined in the same way as the adversaries for the NC1-verifiable
computation scheme in [14].

As far as we know, this is the first PKE that is CCA secure against NC1

circuits under a mild complexity-theoretic assumptions, and there is no known
way to make the PKE in [16] and the somewhat homomorphic encryption scheme
in [14], which are malleable, CCA secure.

Trapdoor one-way function. TDF is a fundamental primitive introduced by
Diffie and Hellman [17]. Unlike PKE schemes, where the decryption algorithm
only recovers the plaintext (not including the internal randomness used in the
encryption procedure), the inversion algorithm of a TDF recovers the entire pre-
image. The property of TDF mentioned above is useful in many applications,
where proofs of well-formedness are required [22]. However, in the same time, it
makes constructing TDFs very challenging.

In the previous works [16, 14], the PKEs use randomness in the encrypting
procedures and it is difficult to recover the randomness in the decrypting proce-
dures since the constructions recover the plaintexts by canceling the randomness
using the property of the kernel of M ← Dn

0 . Namely, it is not easy to extend
their construction to achieve a TDF. In fact, it has been shown that a TDF can-
not be built from a PKE scheme in a black-box way [25]4. On the other hand, it
seems that there is a naive approach to construct a TDF f by defining it in the
same way as our OWP, i.e., f(x) = M1x where M1 is a sampled from Dn

1 , and
sample the inverse M−1

1 or some other elements that can be used to solve linear
equations efficiently as the trapdoor. However, there is no known way to perform
such a sampling procedure in NC1 circuits. Therefore, some more sophisticated
approach has to be taken.

In this work, we propose a TDF computable in NC1 and secure against NC1

circuits based on NC1 ⊊ ⊕L/poly. The intuition is as follows.

4 There is no rigorous proof showing that the separation holds for NC1, while it is an
evidence that TDF is not easy to achieve.
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We first change the domain to {0, 1}t × (L × X \ L)t where M ← Dn
0 ,

L = Im(M), and X = {0, 1}n. On input (x, (c1, c
′
1), · · · , (ct, c′t)) ∈ {0, 1}t ×

(L ×X \ L)t, our TDF computes y = f(x), and additionally outputs (ci, c
′
i) if

xi = 0 and (c′i, ci) otherwise for all i. Here, f is a OWF that is computable in
NC1 and secure against NC1 and xi denotes the ith bit of x. Then, if we have
a non-zero vector k in the kernel of M, which is samplable in NC1 [16], we can
determine whether x ∈ {0, 1}n is in Im(M⊤) or {0, 1}n \ Im(M⊤) and recover
xi by checking whether ci and c′i are swapped. This provides us an efficiently
samplable trapdoor. Due to the subset membership problem for L = Im(M) we
described before, the uniform distributions over Im(M⊤) and {0, 1}n \ Im(M⊤)
are indistinguishable when M is a matrix sampled from Dn

0 . Therefore, the
adversary in the one-wayness game can only obtain information on f(x) (which
is one-way) and the additional pairs do little help to it.

The above technique of sampling additional pairs is called bits planting which
was used by Garg et al. [23] to construct a TDF based on the computational
Diffie-Hellman problem. Although both our construction and the one in [23] aim
at constructing trapdoor TDFs, we use the bits planting in a different way. In [23],
this technique is exploited to recover the randomness used in the computation
procedure of the TDF (see [23] for details), while in our work, we use it to avoid
sampling the inverse of M so that every operation can be performed in NC1.

1.3 Possibility on the Extension from Our Proposed NC1

Fine-Grained Primitives

As described above, the fundamental cryptographic primitives we considered
play key roles in a great deal of applications. Hence, our results directly imply
the existence of more advanced NC1-fine-grained primitives. As a simple instance,
besides CCA secure PKE schemes, our HPS immediately implies the existence
of a non-interactive key exchange scheme according to the recent construction
by [27]. However, some NC1 primitives can not be directly derived from existing
ones by adopting previous generic conversions in the polynomial-time world since
the resulting primitive may not be in NC1 any more. For example, although it is
well known that pseudorandom functions can be constructed from OWF/OWPs,
ones in NC1 are neither implied by our NC1-OWP nor the OWF in [16]. It remains
open how to construct such fine-grained primitives, and we believe that our works
will serve a good starting point.

2 Preliminaries

2.1 Notation

For a distribution D, we denote sampling x according to D by x ← D. For a
set S, we denote sampling x from S uniformly at random by x← S. We denote
the set {1, · · · , n} by [n] and the ith element of a vector x by xi. For a vector
x ∈ {0, 1}∗, x will be regarded by default as a column vector. For a matrix M,
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we denote the sets {y | ∃x s.t. y = Mx} and {x |Mx = 0} by Im(M) and
Ker(M) respectively. Let X and Y be random variables over a finite set S. The
statistical distance between X and Y is defined to be

Dist(X,Y ) =
1

2

∑
s∈S

|Pr[X = s]− Pr[Y = s]|.

We say that X and Y are ϵ-close if Dist(X,Y ) ≤ ϵ
We note that all arithmetic computations are over GF (2) in this work.

Namely, all arithmetic computations are performed with a modulus of 2. By
negl we denote an unspecified negligible function.

2.2 Definitions

In this section, we recall the definitions of a function family, NC1 circuits,
⊕L/poly.

Definition 1 (Function Family) A function family is a family of (possibly

randomized) functions F = {fλ}λ∈N, where for each λ, fλ has a domain Df
λ and

a range Rf
λ.

Definition 2 (NC1) The class of (non-uniform) NC1 function families is the
set of all function families F = {fλ} for which there is a polynomial p and
constant c such that for each λ, fλ can be computed by a (randomized) circuit
of size p(λ), depth c log(λ) and fan-in 2 using AND, OR, and NOT gates.

Definition 3 (⊕L/poly) ⊕L/poly is the set of all boolean function families
F = {fλ} for which there is a constant c such that for each λ, there is a
non-deterministic Turing machine Mλ such that for each input x with length
λ, Mλ(x) uses at most c log(λ) space, and fλ(x) is equal to the parity of the
number of accepting paths of Mλ(x).

We now give the lemma about the number of solutions for the linear equations
defined by a matrix. It is straightforwardly follows from the fact that the rank
of A is n− 1.

Lemma 1 For any n×n matrix A, if the rank of A is n− 1 and all arithmetic
computations are over GF (2), then for any y ∈ Im(A), there exist and only exist
two different vectors x and x′ such that Ax = Ax′ = y.

2.3 Definitions in Fine-Grained Cryptography

In this section, we define several cryptographic primitives which are secure
against restricted complexity classes of adversaries and easy to run for hon-
est parties. In the following definitions, we denote the class of honest parties by
C1 i.e., function families that compose the primitive are in the class C1 and the
class of adversaries by C2, and the condition C1 ⊆ C2 is implicit in each definition
and hence left unmentioned.
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Definition 4 (One-way Function [16]) Let l be a polynomial in λ. Let F =
{fλ : {0, 1}λ → {0, 1}l(λ)} be function families. F is a C1-one-way function
(OWF) against C2 if:

– Computability: For each λ, fλ is deterministic.
– One-wayness: For any G = {gλ : {0, 1}l(λ) → {0, 1}λ} and any λ ∈ N:

Pr

[
fλ(gλ(y)) = y

∣∣∣∣x← {0, 1}λy = fλ(x)

]
≤ negl(λ).

Definition 5 (One-way Permutation) Let F = {fλ : Dλ → Dλ} be function
families. F is a C1-one-way permutation (OWP) against C2 if:

– Permutation: For each λ, fλ is a permutation.
– One-wayness: For any G = {gλ : Dλ → Dλ} and any λ ∈ N:

Pr

[
gλ(y) = x

∣∣∣∣ x← Dλ

y = fλ(x)

]
≤ negl(λ).

Definition 6 (Collection of OWPs) Let KeyGen = {KeyGenλ : ϕ →
Kλ} and Eval = {Evalλ : Kλ × {0, 1}λ → {0, 1}λ} be function families.
(KeyGen, Eval) is a collection of C1-OWPs against C2 if:

– Permutation: For each λ and k ← KeyGenλ, Evalλ(k, ·) : Dλ,k → Dλ,k is
a permutation where Dλ,k ⊆ {0, 1}λ.

– One-wayness: For any G = {gλ : Kλ × {0, 1}λ → {0, 1}λ} and any λ ∈ N:

Pr

gλ(k, y) = x

∣∣∣∣∣∣
k ← KeyGenλ

x← Dλ,k ⊆ {0, 1}λ
y = Evalλ(k, x)

 ≤ negl(λ).

Definition 7 (Hash Proof System) Let PPλ = (Xλ, Lλ, Wλ, Rλ, SKλ,
PKλ, Πλ, Hλ, αλ, auxλ) where Xλ is a finite non-empty set, Lλ is a subset of X
such that x ∈ Lλ iff there exists a witness w ∈Wλ with (x,w) ∈ Rλ ⊂ Xλ×Wλ,
SKλ is a secret key space, PKλ is a public key space, Πλ is a proof space,
Hλ : SKλ×Xλ → Πλ is a hash function, αλ : SKλ → PKλ is a projective map,
and auxλ is an auxiliary information. Define the following function families.

· Setup = {Setupλ : ϕ → PPλ} where Setupλ outputs a public parameter
pp ∈ PPλ.
· SampYes = {SampYesλ : PPλ → Rλ} where SampYesλ on input pp ∈ PPλ

outputs a random element x ∈ Lλ with a witness w ∈ Wλ, i.e., a random
element (x,w) ∈ Rλ.
· SampN o = {SampNoλ : PPλ → Xλ \ Lλ} where SampNoλ on input pp ∈
PPλ outputs a random element x ∈ Xλ \ Lλ.
· KeyGen = {KeyGenλ : PPλ → PKλ × SKλ} where KeyGenλ on input pp ∈
PPλ outputs a public key pk and secret key sk such that pk = αλ(sk).
· Priv = {Privλ : PPλ × SKλ ×Xλ → Πλ} where Privλ on input pp ∈ PPλ,
sk ∈ SKλ, and an instance x ∈ Xλ outputs its proof π = Hλ(sk, x).
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· Pub = {Pubλ : PPλ × PKλ × Rλ → Πλ} where Pubλ on input pp ∈ PPλ,
pk ∈ PKλ, and an instance with a witness (x,w) ∈ Rλ outputs its proof
π ∈ Πλ.

(Setup,SampYes,SampN o,KeyGen,Priv,Pub) is a C1-hash proof system
(HPS) against C2 if for any λ ∈ N, it holds that:

– Correctness: For any (x,w) ∈ Rλ, we have

Privλ(pp, sk, x) = Hλ(sk, x) = Pubλ(pp, pk, x, w)

where pp← Setupλ and (pk, sk)← KeyGenλ(pp).
– Subset membership problem:
• The distributions of x and x′ are identical where pp← Setupλ, (x,w)←

SampYesλ(pp), and x′ ← Lλ.
• The distributions of x and x′ are identical where pp ← Setupλ, x ←

SampNoλ(pp), and x′ ← Xλ \ Lλ.
• For any G = {gλ} ∈ C2,

|Pr[gλ(pp, x0) = 1]− Pr[gλ(pp, x1) = 1]| ≤ negl(λ)

where pp← Setupλ, (x0, w)← SampYesλ(pp) and x1 ← SampNoλ(pp).

(Setup,SampYes,SampN o,KeyGen,Priv,Pub) is perfectly smooth C1-
HPS against C2 if it satisfies the following property.

– Perfect smoothness: For any pp← Setupλ, the following random variables
are identical, i.e., 0-close.

(x, pk, π), (x, pk, π′)

where x← SampNoλ(pp), (pk, sk)← KeyGenλ(pp), π = Privλ(pp, sk, x), and
π′ ← Π.

(Setup,SampYes,SampN o,KeyGen,Priv,Pub) is ϵ-universal1 C1-HPS
against C2 if it satisfies the following property.

– ϵ-universality1: For any pp← Setupλ, pk ∈ PKλ, x ∈ Xλ\Lλ and π ∈ Πλ,
it holds that

Pr[Privλ(pp, sk, x) = π | αλ(sk) = pk] ≤ ϵ.

If ϵ is a negligible function, then (Setup, SampYes, SampN o, KeyGen,
Priv, Pub) is a strong universal1 C1-HPS against C2.

(Setup,SampYes,SampN o,KeyGen,Priv,Pub) is ϵ-universal2 C1-HPS
against C2 if it satisfies the following property.

– ϵ-universality2: For any pp← Setupλ, pk ∈ PKλ, x, x
∗ ∈ Xλ and π, π∗ ∈

Πλ with x /∈ Lλ ∪ {x∗}, it holds that

Pr[Privλ(pp, sk, x) = π | Privλ(pp, sk, x∗) = π∗ ∧ αλ(sk) = pk] ≤ ϵ.

If ϵ is a negligible function, then (Setup, SampYes, SampN o, KeyGen,
Priv, Pub) is a strong universal2 C1-HPS against C2.
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Definition 8 (Trapdoor One-Way Function) Let KeyGen = {KeyGenλ :
ϕ→ EKλ×TKλ}, Eval = {Evalλ : EKλ×Dλ →Rλ} and Inverse = {Inverseλ :
TKλ × Dλ → Rλ} be a function families where Dλ and Rλ are determined by
the key pair (ek, tk) generated by KeyGenλ. (KeyGen, Eval, Inverse) is a C1-
trapdoor one-way function (TDF) against C2 if:

– Correctness: For any λ ∈ N, any (ek, tk)← KeyGenλ, and any X ∈ Dλ:

Inverseλ(tk,Evalλ(ek,X)) = X.

– One-wayness: For any G = {gλ} ∈ C2, and any λ ∈ N:

Pr

Evalλ(ek, gλ(ek, Y )) = Y

∣∣∣∣∣∣
(ek, tk)← KeyGenλ

X ← Dλ

Y = Evalλ(ek,X)

 ≤ negl(λ).

2.4 Sampling Procedure

In this section, we recall the sampling procedure in [16], and then show several
lemmas on the sampling procedure that will be used later in the security proofs.

Construction 1 (Sampling Procedure) Let Mn
0 and Mn

1 be the following
n× n matrices:

Mn
0 =



0 · · · 0 0
1 0 0

0 1
. . .

...
...

...
. . . 0

0 · · · 0 1 0

 , Mn
1 =



0 · · · 0 1
1 0 0

0 1
. . .

...
...

...
. . . 0

0 · · · 0 1 0

 .

– LSamp(n):
1. Output the following n× n upper triangular matrix:

1 r1,2 · · · r1,n−1 r1,n
0 1 r2,3 · · · r2,n

0 0
. . .

...
...

...
. . . 1 rn−1,n

0 · · · 0 0 1


where ri,j ← {0, 1}.

– RSamp(n):
1. Output the following n× n matrix:

1 · · · 0 r1
0 1 r2

0 0
. . .

...
...

...
. . . 1 rn−1

0 · · · 0 0 1


where ri ← {0, 1}.
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– ZeroSamp(n):
1. Sample R1 ← LSamp(n) and R2 ← RSamp(n).
2. Output R1M

n
0R2.

– OneSamp(n):
1. Sample R1 ← LSamp(n) and R2 ← RSamp(n).
2. Output R1M

n
1R2.

Here, the output of ZeroSamp(n) is always a matrix of rank n−1 and the output
of OneSamp(n) is always a matrix of full rank.

Lemma 2 ( [29, 5]) If NC1 ⊊ ⊕L/poly, then there is a polynomial n such that
for any family F = {fλ} in NC1 and any λ ∈ N, we have

|Pr[fλ(M) = 1 |M← ZeroSamp(n(λ))]−
Pr[fλ(M

′) = 1 |M′ ← OneSamp(n(λ))]| ≤ negl(λ).

Lemma 3 For any M← ZeroSamp(n), it holds that Ker(M) = {0,k} where k
is a vector such that k ∈ {0, 1}n−1 × 1.

Proof. M is a matrix sampled from ZeroSamp(n), i.e.,

M = R1M
n
1R2

= R1



0 · · · 0 0
1 0 0

0 1
. . .

...
...

...
. . . 0

0 · · · 0 1 0





1 · · · 0 r1
0 1 r2

0 0
. . .

...
...

...
. . . 1 rn−1

0 · · · 0 0 1


where R1 ← LSamp(n) and R2 ← RSamp(n). Then, we have k = (r1r2 · · · 1)⊤ ∈
Ker(M) since

M = R1M
n
1R2k

= R1



0 · · · 0 0
1 0 0

0 1
. . .

...
...

...
. . . 0

0 · · · 0 1 0





1 · · · 0 r1
0 1 r2

0 0
. . .

...
...

...
. . . 1 rn−1

0 · · · 0 0 1




r1
r2
...

rn−1

1



= R1



0 · · · 0 0
1 0 0

0 1
. . .

...
...

...
. . . 0

0 · · · 0 1 0




0
0
...
0
1

 = R10 = 0.

Moreover, according to Lemma 1, there are only two vectors v such thatMv = 0.
Therefore, we have Ker(M) = {0,k}, completing the proof of Lemma 3. ⊓⊔
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Lemma 4 For any M ← ZeroSamp(n), it holds that Ker(M⊤) = {0,k} where
k is a vector such that k ∈ 1× {0, 1}n−1.

Proof. M is a matrix sampled from ZeroSamp(n) i.e., M = R1M
n
0R2, where

R1 ← LSamp(n), R2 ← RSamp(n). Since R⊤
1 has full rank, the equation

R⊤
1 x = (1 0 · · · 0)⊤ has a unique solution x∗. x∗ is in the kernel of M⊤

since R⊤
2 M

n⊤
0 R⊤

1 x
∗ = R⊤

2 M
n⊤
0 (1 0 · · · 0)⊤ = R⊤

2 0 = 0. According to the
following equation

R⊤
1 x

∗ =



1 0 · · · 0 0
r2,1 1 0 · · · 0

r3,1 r3,2
. . .

...
...

...
. . . 1 0

rn,1 · · · rn,n−1 1




x∗
1

x∗
2

x∗
3
...
x∗
n

 =


1
0
0
...
0

 ,

we have x∗
1 = 1, i.e., x ∈ 1× {0, 1}n−1.

Moreover, according to Lemma 1 and the fact that the rank of M⊤ is n− 1,
there are only two vectors v such thatM⊤v = 0. Therefore, we have Ker(M⊤) =
{0,x∗}, completing the proof of Lemma 4. ⊓⊔

Lemma 5 For any M← ZeroSamp(λ), it holds that

Im(M⊤) = {x|w ∈ 0×{0, 1}λ−1,x = M⊤w} = {x|w ∈ 1×{0, 1}λ−1,x = M⊤w}.

Proof. Let U be a set such that U = {x|w ∈ 0×{0, 1}λ−1,x = M⊤w} and V be a
set such that V = {x|w ∈ 1×{0, 1}λ−1,x = M⊤w}. Let k be a non-zero vector
such that k ∈ Ker(M⊤). According to Lemma 4, we have k ∈ 1 × {0, 1}λ−1.
Therefore, for any x ∈ U such that x = M⊤w where w ∈ 0×{0, 1}λ−1, we have
x = M⊤w = M⊤(w + k) ∈ V since (w + k) ∈ 1× {0, 1}λ−1. Moreover, for any
x ∈ V such that x = M⊤w where w ∈ 1 × {0, 1}λ−1, we have x = M⊤w =
M⊤(w + k) ∈ U since (w + k) ∈ 0× {0, 1}λ−1. Therefore, we have U = V and
it follows that Im(M⊤) = U ∪ V = U ∪ U = U = {x|w ∈ 0 × {0, 1}λ−1,x =
M⊤w}. In the same way, we have Im(M⊤) = U ∪ V = V ∪ V = V = {x|w ∈
1× {0, 1}λ−1,x = M⊤w}. As a result, we have

Im(M⊤) = {x|w ∈ 0×{0, 1}λ−1,x = M⊤w} = {x|w ∈ 1×{0, 1}λ−1,x = M⊤w},

completing the proof of Lemma 5. ⊓⊔

Lemma 6 The distributions of M + N and M′ are identical, where M ←
ZeroSamp(λ), M′ ← OneSamp(λ), and N is the following matrix.

N =


0 · · · 0 1
0 0 · · · 0
...

. . .
...

0 · · · 0 0

 .
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Proof. For R1 ← LSamp(λ) and R2 ← RSamp(λ), we have

M′ = R1M
λ
1R2 = R1


0 · · · 0 1

1 0
... 0

...
...

. . . 0
...

0 · · · 0 1 0

R2

= R1


0 · · · 0 0

1 0
... 0

...
...

. . . 0
...

0 · · · 0 1 0

R2 +R1


0 · · · 0 1

0 0
... 0

...
...

. . . 0
...

0 · · · 0 0 0

R2

= R1


0 · · · 0 0

1 0
... 0

...
...

. . . 0
...

0 · · · 0 1 0

R2 +


0 · · · 0 1

0 0
... 0

...
...

. . . 0
...

0 · · · 0 0 0


= R1M

λ
0R2 +N = M+N.

Hence, the distributions of M+N and M′ are identical for M← ZeroSamp(λ)
and M′ ← OneSamp(λ), completing the proof of Lemma 6. ⊓⊔

3 Construction of NC1-OWP against NC1

In this section, we first give our construction of a collection of NC1-OWPs against
NC1 under the assumption NC1 ⊊ ⊕L/poly. Next, we extend it to a NC1-OWP
against NC1 based on the same assumption.

Construction 2 (Collection of NC1-OWPs) Let λ be a security parameter.
We define the families KeyGen = {KeyGenλ} with key spaces {Kλ = {M |M ∈
OneSamp(λ)}} and Eval = {Evalλ} as follows.

– KeyGenλ:
1. Sample M← OneSamp(λ).
2. Output M (which defines the domain as Dλ,M := {0, 1}λ).

– Evalλ(M,x):
1. Compute y := Mx and output y.

Theorem 1 (KeyGen, Eval) defined as Construction 2 is a collection of NC1-
OWPs against NC1 under the assumption NC1 ⊊ ⊕L/poly.

Proof sketch. As described in Introduction, our construction is essentially a
“lossy function”. More specifically, it is straightforward that our scheme is a
permutation, since M is of full rank when M ← OneSamp(λ). Moreover, when
we generate M ← ZeroSamp(λ) instead of M ← OneSamp(λ) in KeyGenλ, we
can prove that an adversary A breaking the one-wayness of our construction
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with probability ϵ can also be used to find a second pre-image x′ for Evalλ(M,x)
such that x ̸= x′ with probability 1

2ϵ. This is due to the fact that M is not
of full rank in this case and A has no information on whether the pre-image
is x or x′. However, it is unlikely that A can find such a second pre-image,
since this construction is indistinguishable with the original one, where M is
generated as M ← OneSamp(λ) and there exists no second pre-image for each
M. Therefore, we can conclude that this scheme is one-way, which immediately
gives us the one-wayness of the original scheme (due to the indistinguishability
between OneSamp(λ) and ZeroSamp(λ)).

The formal proof is as follows.

Proof. First note that both KeyGen and Eval are computable in NC1, since
they only involve operations including multiplications of a constant number
of matrices, inner products, and sampling random bits. We now show that
(KeyGen, Eval) satisfies computability and one-wayness.

Permutation. Since for M ← OneSampλ, M is a full rank matrix, we have
that Evalλ(M,x) = Mx ∈ Dλ,M = {0, 1}λ is a permutation.

One-wayness. Let A = {aλ} be any adversary in NC1. We give hybrid games
to show that the advantage of A in breaking the one-wayness of Construction 2
is negligible.

Game 0: This is the original one-wayness game for A = {aλ}. CH runs M ←
KeyGenλ and samples x ← {0, 1}λ. Then, it runs y = Evalλ(M,x) and sends y
to aλ. aλ succeeds if it outputs x̃ such that x = x̃. Otherwise, it fails.

Game 1: This game is the same as Game 0 except that CH runs ZeroSamp(λ)
instead of OneSamp(λ) in the key generation procedure.

Lemma 7 If A = {aλ} succeeds with advantage ϵ0 (resp., ϵ1) in Game 0 (resp.,
Game 1), then |ϵ0 − ϵ1| = negl(λ).

Proof. We now construct B = {bλ} ∈ NC1 that distinguishes M← ZeroSamp(λ)
and M← OneSamp(λ) with advantage |ϵ0− ϵ1|, which contradicts to Lemma 2.

bλ takes as input M, which is generated as M ← ZeroSamp(λ) or M ←
OneSamp(λ) from its challenger. Then, it samples x ← {0, 1}λ. Next, bλ runs
y = Evalλ(M,x) and sends y to aλ. When aλ outputs x̃, if x = x̃, bλ outputs 1.
Otherwise, it outputs 0.

Since all operations in bλ are performed in NC1, we have B = {bλ} ∈ NC1.
One can see that when M ← ZeroSamp(λ) (resp., M ← OneSamp(λ)),

the view of aλ is identical to its view in Game 0 (resp., Game 1), i.e., bλ
outputs 1 with probability ϵ0 (resp., ϵ1). Therefore, B = {bλ} distinguishes
M ← ZeroSamp(λ) and M ← OneSamp(λ) with advantage |ϵ0 − ϵ1|, which
should be negligible according to Lemma 2, completing the proof of Lemma 7.

⊓⊔
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Game 2: This game is the same as Game 1 except that aλ succeeds if x ̸=
x̃ ∧ Evalλ(M,x) = Eval(M, x̃).

Lemma 8 If A = {aλ} succeeds with advantage ϵ1 (resp., ϵ2) in Game 1 (resp.,
Game 2), then ϵ1 = ϵ2.

Proof. According to Lemma 1 and due to the fact that the rank of M ←
ZeroSamp(λ) is λ − 1, for any y ∈ Im(M), there are two vectors x,x′ such
that Mx = Mx′ = y ∧ x ̸= x′, and we have

ϵ1 = Pr

x̃ = x∗

∣∣∣∣∣∣
x∗ ← {x,x′}
y = Mx∗

x̃← aλ(y)


=

1

2
Pr

x̃ = x

∣∣∣∣∣∣
x∗ = x

y = Mx∗

x̃← aλ(y)

+
1

2
Pr

x̃ = x′

∣∣∣∣∣∣
x∗ = x′

y = Mx∗

x̃← aλ(y)


=

1

2
Pr

x̃ = x

∣∣∣∣∣∣
x∗ = x′

y = Mx∗

x̃← aλ(y)

+
1

2
Pr

x̃ = x′

∣∣∣∣∣∣
x∗ = x

y = Mx∗

x̃← aλ(y)


= Pr

 x̃ ̸= x∗ ∧
Evalλ(M, x̃) = Evalλ(M,x∗)

∣∣∣∣∣∣
x∗ ← {x,x′}
y = Mx∗

x̃← aλ(y)

 = ϵ2,

completing the proof of Lemma 8.

Lemma 9 If A = {aλ} succeeds with advantage ϵ2 in Game 2, then ϵ2 =
negl(λ).

Proof. We now construct B = {bλ} ∈ NC1 that distinguishes M← ZeroSamp(λ)
and M← OneSamp(λ) with advantage ϵ2, which contradicts to Lemma 2.

bλ takes as input M, which is generated as M ← ZeroSamp(λ) or M ←
OneSamp(λ) from its challenger. Then, it samples x← {0, 1}λ. Next, bλ runs y =
Evalλ(M,x) and send y to aλ. When aλ outputs x̃, if x ̸= x̃ ∧ y = Evalλ(M,x),
bλ outputs 1. Otherwise, it outputs 0.

Since all operations in bλ are performed in NC1, we have B = {bλ} ∈ NC1.
One can see that when M← ZeroSamp(λ), the view of aλ is identical to its

view in Game 2, i.e., bλ outputs 1 with probability ϵ2.
When M← OneSamp(λ), since Eval(M, x̃) is permutation, there is no vector

x̃ such that x ̸= x̃ ∧ y = Evalλ(k,x), i.e. bλ outputs 1 with probability 0.
Therefore, B = {bλ} distinguishes M← ZeroSamp(λ) and M← OneSamp(λ)

with advantage ϵ2, which should be negligible according to Lemma 2, completing
the proof of Lemma 9. ⊓⊔

Since |ϵ0 − ϵ1| = negl(λ), ϵ1 = ϵ2, and ϵ2 = negl(λ), we have

ϵ0 ≤ |ϵ0 − ϵ1|+ ϵ1 = negl(λ) + ϵ2 = negl(λ),

i.e., Construction 2 satisfies one-wayness. This completes the proof of Theorem 1.
⊓⊔
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Extension to NC1-OWPs against NC1. We now show a transformation from
collections of NC1-OWPs against NC1, where the output distributions of the
key generation algorithms are uniformly random over key space, to NC1-OWPs
against NC1. Specifically, given a collection of OWPs {fk : Dk → Dk}k∈K where
K is the key space, we construct a OWP g : D → D where D :=

∪
k∈K({k} ×

Dk) and g((k, x) ∈ D) = (k, fk(x)). This transformation can be applied in
NC1, and the properties of permutation and one-wayness of g hold due to those
properties of f . Note that in [5], it is shown that OneSamp(λ) samples M ←
{M ∈ OneSamp(λ)} uniformly. Thus, KeyGenλ of our construction samples k ←
Kλ = {M |M ∈ OneSamp(λ)} uniformly, and we can apply this transformation
to our collection of NC1-OWPs against NC1. We refer the reader to the full paper
for the details.

Computability in AC0[2]. Perhaps interestingly, our one-way permutation can
be run by an even smaller class of circuits AC0[2], which satisfies AC0[2] ⊊
NC1 [39, 41] and consists of constant-depth circuits withMOD2 gates. The reason
is that it only involves multiplications of a constant number of matrices, inner
products, and sampling random bits. Due to the same reason, our constructions
of single-bit HPS introduced later in Section 4 is also computable in AC0[2].

4 Construction of NC1-HPS against NC1

In this section, we start by giving a construction of perfectly smooth and 1
2 -

universal1 NC1-HPS against NC1 such that the proof space is one-bit. Next, we
turn this construction into a perfectly smooth and strong universal1 NC1-HPS
against NC1 such that the proof space is multi-bit. Finally, we construct a strong
universal2 NC1-HPS against NC1 such that the language L supports {0, 1}n.

4.1 Perfectly Smooth and Universal1 for One-Bit

In this section, we give our construction of perfectly smooth and 1
2 -universal1

NC1-HPS against NC1 circuits under the assumption NC1 ⊊ ⊕L/poly.

Construction 3 (NC1-HPS) Let λ be a security parameter. We define the
families Setup = {Setupλ}, SampYes = {SampYesλ}, SampN o = {SampNoλ},
KeyGen = {KeyGenλ}, Priv = {Privλ} and Pub = {Pubλ} as follows.

– Setupλ:
1. Sample M← ZeroSamp(λ).
2. Output pp = (Xλ, Lλ,Wλ, Rλ, SKλ, PKλ,Πλ,Hλ, αλ, auxλ) where

• Xλ := {0, 1}λ.
• Lλ := {x|w ∈ 1× {0, 1}λ−1,x = Mw} = Im(M⊤) (∵ Lemma 5).
• Wλ := 1× {0, 1}λ−1.
• Rλ := {(x,w)| w ∈ 1× {0, 1}λ−1,x = Mw}.
• SKλ := {0, 1}λ.
• PKλ := Im(M).
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• Πλ := {0, 1}.
• Hλ(sk,x) := sk⊤x.
• αλ(sk) := Msk.
• auxλ := M.

– SampYesλ(pp):
1. Parse pp = (Xλ, Lλ,Wλ, Rλ, SKλ, PKλ,Πλ,Hλ, αλ, auxλ) and let

auxλ = M.
2. Sample w← 1× {0, 1}λ−1.
3. Compute x := M⊤w and output x.

– SampNoλ(pp):
1. Parse pp = (Xλ, Lλ,Wλ, Rλ, SKλ, PKλ,Πλ,Hλ, αλ, auxλ) and let

auxλ = M.
2. Sample w← 1× {0, 1}λ−1.
3. Compute M′ as

M′ = M+


0 · · · 0 1
0 0 · · · 0
...

. . .
...

0 · · · 0 0

 .

4. Compute x := M′⊤w and output x.
– KeyGenλ(pp):

1. Parse pp = (Xλ, Lλ,Wλ, Rλ, SKλ, PKλ,Hλ,Πλ, αλ, auxλ).
2. Sample sk← SKλ.
3. Compute pk := αλ(sk) and output (pk, sk).

– Privλ(pp, sk,x):
1. Parse pp = (Xλ, Lλ,Wλ, Rλ, SKλ, PKλ,Πλ,Hλ, αλ, auxλ).
2. Compute π := Hλ(sk,x) and output π.

– Pubλ(pp,pk,x,w):
1. Compute π := pk⊤w and output π.

Theorem 2 If NC1 ⊊ ⊕L/poly, then (Setup, SampYes, SampN o, KeyGen,
Priv, Pub) defined as Construction 3 is a perfectly smooth and 1

2 -universal1
NC1-HPS against NC1 circuits.

Proof sketch. It is straightforward that this HPS is correct.
To show the subset membership problem of our construction, we first give

two observations: (1) for any M sampled from ZeroSamp(λ), the distribution of
M+N is identical to OneSamp(λ), where

N =


0 · · · 0 1
0 0 · · · 0
...

. . .
...

0 · · · 0 0

 ,

and (2) perhaps interestingly, for any w ∈ 0 × {0, 1}n−1 (respectively, w ∈
1 × {0, 1}n−1), there is a vector k in the kernel of M such that Mw⊤ =



18 S. Egashira et al.

M(w+k)⊤ and (w+k) ∈ 1×{0, 1}n−1 (respectively, (w+k) ∈ 0×{0, 1}n−1),
which implies Im(M⊤) = {x|w ∈ 0 × {0, 1}n−1,x = M⊤w} = {x|w ∈
1 × {0, 1}n−1,x = M⊤w}. Since for any vector w ∈ 0 × {0, 1}n−1, it holds
that (M + N)⊤w = M⊤w + N⊤w = M⊤w + 0 = M⊤w, we have L =
Im(M⊤) = {x|w ∈ 0 × {0, 1}n−1,x = (M + N)⊤w} due to observation
(2). Moreover, since M + N is of full rank due to observation (1), we have
X = {0, 1}n = {x|w ∈ {0, 1}n,x = (M +N)⊤w}. Thus, we can conclude that
X \ L = {x|w ∈ 1 × {0, 1}n−1,x = (M + N)⊤w}. Then, the subset member-
ship problem follows from the fact that Im(M⊤) = {x|w ∈ 1 × {0, 1}n−1,x =
M⊤w} and the indistinguishability between the distributions over Im(M⊤) and
X \ L can be reduced to the indistinguishability between ZeroSamp(λ) and
OneSamp(λ).

We now explain the intuition of the proof of universal1. Since the rank of M
is n − 1, when we fix the public key pk, there are two different secret keys sk
and sk′ such that pk = Msk = Msk′. As explained before, for any x ∈ X \ L,
there exists w ∈ 1 × {0, 1}n−1 such that x = (M + N)⊤w, and (M + N)
is a full rank matrix. Therefore, we have (M + N)sk ̸= (M + N)sk′ which
implies Nsk ̸= Nsk′, i.e., either Nsk or Nsk′ is zero-vector and the other is
(1 0 · · · 0)⊤. Therefore, when we let Nsk = (0 · · · 0)⊤ and Nsk′ = (1 0 · · · 0)⊤,
it holds that H(sk,x) = sk⊤(M+N)⊤w = sk⊤M⊤w+ (0 · · · 0)w = sk⊤M⊤w
and H(sk′,x) = sk′⊤(M+N)⊤w = sk′⊤M⊤w+ (1 0 · · · 0)w = sk′⊤M⊤w+ 1,
which implies H(sk,x) ̸= H(sk′,x). As a result, for fixed pk, one can guess the
proof for an instance x ∈ X \ L with probability at most 1

2 since there is no
information on whether the secret key is sk or sk′.

The formal proof is as follows.

Proof. First note that all of the algorithms Setup, SampYes, SampN o, KeyGen,
Priv, and Pub are in NC1, since they only involve operations including multipli-
cations of a constant number of matrices, inner products, and sampling random
bits.

Next we prove that Construction 3 satisfies correctness, subset membership
problem, perfect smoothness, and 1

2 -universality1.

Correctness. Since Privλ(pp, sk,x) = Hλ(sk,x) = sk⊤x = sk⊤M⊤w =
(Msk)⊤w = pk⊤w = Pubλ(pp,pk,x,w), Construction 3 satisfies correctness.

Subset membership problem. We now propose and prove three propositions
corresponding to the three properties in the definition of subset membership
problem (see Definition 7) respectively.

Proposition 1 The distributions of x and x′ are identical where pp← Setupλ,
x← SampYesλ(pp), and x′ ← Lλ.

Proof. Let M← ZeroSamp(λ) be a matrix generated in the procedure of Setupλ.
Let f be a map f : 1× {0, 1}λ−1 → Im(M⊤) such that f(w) = M⊤w. One can
see that for any pp ← Setupλ, the distributions of x and x′ are identical where
x ← SampYesλ(pp), w

′ ← 1 × {0, 1}λ−1, and x′ = f(w′). Moreover, if f is



Fine-Grained Cryptography Revisited 19

bijective, the distributions of x′ and x′′ are identical for w′ ← 1 × {0, 1}λ−1,
x′ = f(w′), and x′′ ← Im(M⊤). Therefore, if f is bijective, the distributions of
x and x′′ are identical. Namely, to show Proposition 1, we only have to show
that f is bijective.

Injectivity. We now show that for any w,w′ ← 1×{0, 1}λ−1 such that w ̸= w′,
we have f(w) ̸= f(w′). We prove by contradiction, i.e. we show that if there are
w,w′ ← 1× {0, 1}λ−1 such that w ̸= w′ and f(w) = f(w′), then it contradicts
on Lemma 4.

Since M⊤w = M⊤w′, we have M⊤(w −w′) = 0. Moreover, since w ̸= w′

and w,w′ ∈ 1×{0, 1}λ−1, w−w′ is the non-zero vector in the kernel of M⊤ and
w −w′ ∈ 0 × {0, 1}λ−1. However, according to Lemma 4, we have Ker(M⊤) =
{0,k} where k ∈ 1× {0, 1}λ, which gives us the conflict.

Surjectivity. We now show that for any x ∈ Im(M⊤), there exists a vector
w ∈ 1× {0, 1}λ−1 such that x = f(w), i.e., x = M⊤w. According to Lemma 5,
we have Im(M⊤) = {x|w ∈ 1 × {0, 1}λ,x = M⊤w}. Therefore, it holds that
for any x ∈ Im(M⊤), there exists w ∈ 1 × {0, 1}λ such that x = M⊤w, i.e.,
x = f(w), completing the proof of surjectivity.

Putting all the above together, Proposition 1 immediately follows. ⊓⊔

Proposition 2 The distributions of x and x′ are identical for pp ← Setupλ,
x← SampNoλ(pp), and x′ ← Xλ \ Lλ.

Proof. Let M← ZeroSamp(λ) and M′ be

M′ = M+


0 · · · 0 1
0 0 · · · 0
...

. . .
...

0 · · · 0 0

 .

We first show that for any w ∈ 1×{0, 1}λ−1, we have M′⊤w ∈ {0, 1}λ\Im(M⊤).

(⋆) For any w ∈ 0× {0, 1}λ−1, we have

M′w =

M+


0 · · · 0 1
0 0 · · · 0
...

. . .
...

0 · · · 0 0




⊤

w

= M⊤w +


0 · · · 0
... 0 · · · 0

0
. . .

...
1 0 · · · 0




0
w2

...
wλ

 = M⊤w + 0 = M⊤w.
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Moreover, according to Lemma 5, we have Im(M⊤) = {x |w ∈ 0×{0, 1}λ−1, x =
M⊤w}. Hence, we have

{x |w ∈ 0× {0, 1}λ−1, x = M′⊤w} = {x |w ∈ 0× {0, 1}λ−1, x = M⊤w} (⋆)

= Im(M⊤).

As a result, for all x ∈ Im(M⊤), there exists w′ ∈ 0 × {0, 1}λ−1 such that
x = M′⊤w′. Moreover, according to Lemma 6, M′ is a full rank matrix, which
means that for any w ∈ 1×{0, 1}λ−1 and any x ∈ Im(M⊤), we have M′⊤w ̸= x.
Namely, for any w ∈ 1× {0, 1}λ−1, we have M′⊤w ∈ {0, 1}λ \ Im(M⊤).

It is straightforward that for any pp ← Setupλ, the distributions of x ←
SampNoλ(pp) and x′ = M′⊤w′ are identical wherew′ ← 1×{0, 1}λ−1. Moreover,
since M′⊤ is of full rank, the map f : 1 × {0, 1}n−1 → {0, 1}λ \ Im(M⊤) such
that f(w) = M′⊤w is bijective, i.e., the distributions of x′ = f(w′) and x′′ ←
{0, 1}λ \ Im(M⊤) are identical for w′ ← 1 × {0, 1}λ−1, completing the proof of
Proposition 2. ⊓⊔

Proposition 3 For any A = {aλ} ∈ NC1,

|Pr[aλ(pp,x0) = 1]− Pr[aλ(pp,x1) = 1]| ≤ negl(λ)

where pp← Setupλ, (x0,w)← SampYesλ(pp), and x1 ← SampNoλ(pp).

Proof. Let A = {aλ} be any adversary in NC1. We give hybrid games to show
that the advantage of A in breaking the hardness of subset membership problem
is negligible.

Game 0: This is the original SampYes game for A. CH runs pp ← Setupλ,
(x,w) ← SampYesλ(pp). Then it sends (pp,x) to aλ. aλ succeeds if aλ outputs
1. Otherwise, it fails.

Game 1: This game is the same as Game 0 except that CH runs M ←
OneSampλ in the procedure of Setupλ.

Lemma 10 If A = {aλ} succeeds with advantage ϵ0 (resp., ϵ1) in Game 0
(resp., Game 1), then |ϵ0 − ϵ1| = negl(λ).

Proof. We now construct B = {bλ} ∈ NC1 that distinguishes M← ZeroSamp(λ)
and M← OneSamp(λ) with advantage |ϵ0− ϵ1|, which contradicts to Lemma 2.

bλ takes as input M, which is generated as M ← ZeroSampλ or M ←
OneSampλ from its challenger. Then, it runs pp ← Setupλ using M, samples
w ← 1× {0, 1}λ−1, and sets x := M⊤w. Next, bλ gives (pp,x) to aλ. When aλ
outputs b, then bλ outputs b.

Since all operations in bλ are performed in NC1, we have B = {bλ} ∈ NC1.
One can see that when M ← ZeroSamp(λ) (resp., M ← OneSamp(λ)),

the view of aλ is identical to its view in Game 1 (resp., Game 2), i.e., bλ
outputs 1 with probability ϵ0 (resp., ϵ1). Therefore, B = {bλ} distinguishes
M ← ZeroSamp(λ) and M ← OneSamp(λ) with advantage |ϵ0 − ϵ1|, which
should be negligible according to Lemma 2, completing the proof of Lemma 10.

⊓⊔
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Game 2: This is the original SampNo game for A, i.e., it is the same as Game 1
except that CH runs M′ ← ZeroSamp(λ) and set M := M′+N in the procedure
of Setupλ, where

N =


0 · · · 0 1
0 0 · · · 0
...

. . .
...

0 · · · 0 0

 .

Lemma 11 If A = {aλ} succeeds with advantage ϵ1 (resp., ϵ2) in Game 1
(resp., Game 2), then ϵ1 = ϵ2.

Proof. Lemma 11 follows from the fact that the distributions of M0 + N and
M1 are identical where M0 ← ZeroSamp(λ) and M1 ← OneSamp(λ) (according
to Lemma 6). ⊓⊔

Note that, ϵ0 = Pr[aλ(pp,x) = 1] and ϵ2 = Pr[aλ(pp,x
′) = 1] where pp ←

Setupλ, (x,w)← SampYesλ(pp), and x′ ← SampNoλ(pp). Moreover, since |ϵ0 −
ϵ1| = negl(λ) and ϵ1 = ϵ2, we have

|ϵ0 − ϵ2| ≤ |ϵ0 − ϵ1|+ |ϵ1 − ϵ2| = negl(λ).

⊓⊔

According to Proposition 1, 2, and 3, Construction 3 satisfies the subset
membership problem, completing this part of proof.

Perfect smoothness. We now show that for any pp ← Setupλ, the random
variables (x,pk, π) and (x,pk, π′) are identical where x← Xλ \Lλ, (pk, sk)←
KeyGenλ(pp), and π′ ← Πλ.

According to Lemma 1, for any pk∗ ∈ PKλ, there are only two secret keys
sk and sk′ such that pk∗ = αλ(sk) = Msk = αλ(sk

′) = Msk′. Moreover,
according to Lemma 3, we have sk = sk′ + k where k is a vector such that k ∈
Ker(M) and k ∈ {0, 1}λ−1 × 1, i.e., the last elements in sk and sk′ are different
(one is 1 and other is 0). Therefore, for any x∗ ∈ Xλ \ Lλ and pk∗ ∈ PKλ, we
have

π = Privλ(pp, sk,x
∗) = sk⊤M′⊤w∗

= sk⊤

M+


0 · · · 0 1
0 0 · · · 0
...

. . .
...

0 · · · 0 0




⊤

w∗

= sk⊤M⊤w∗ + (sk1 · · · skλ)


0 · · · 0
... 0 · · · 0

0
. . .

...
1 0 · · · 0




1
w∗

2
...
w∗

λ


= pk∗⊤w∗ + skλ,
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and it follows that for any x∗ ∈ Xλ \ Lλ and pk∗ ∈ PKλ, there are two se-
cret key sk, sk′ such that pk∗ = αλ(sk) = αλ(sk

′), Privλ(sk,x
∗) = 0, and

Privλ(pp, sk
′,x∗) = 1. Namely, the number of secret keys satisfying pk∗ =

αλ(sk) ∧ π∗ = Privλ(sk,x
∗) is 1. Therefore, we have

Pr[(x,pk, π) = (x∗,pk∗, π∗)] = Pr

[
pk = pk∗ ∧

π = π∗

∣∣∣∣ x = x∗
]
Pr[x = x∗]

= Pr

[
pk∗ = αλ(sk) ∧

π∗ = Privλ(pp, sk,x
∗)

]
Pr [x = x∗]

=
1

|SKλ|
Pr [x = x∗]

where sk← SKλ and x← Xλ × Lλ. Similarly, we have

Pr[(x,pk, π′) = (x∗,pk∗, π∗)] = Pr[π′ = π∗] Pr[pk = pk∗] Pr[x = x∗]

=
1

2

2

|SKλ|
Pr [x = x∗]

=
1

|SKλ|
Pr [x = x∗] .

Therefore, we have Pr[(x,pk, π) = (x∗,pk∗, π∗)] = Pr[(x,pk, π′) =
(x∗,pk∗, π∗)] and it follows that Construction 3 satisfies perfect smoothness.

1
2 -universality1.

1
2 -universality1 follows from the fact that for any pp← Setupλ,

x ∈ Xλ \ Lλ, pk ∈ PKλ, and π ∈ Πλ, the number of secret keys such that
pk = αλ(sk) is 2 and the number of secret keys such that pk = αλ(sk) ∧ π =
Privλ(pp, sk,x) is 1 as described above. Therefore, we have

Pr[Privλ(pp, sk,x) = π ∧ αλ(sk) = pk] =
1

|SKλ|
=

1

2

2

|SKλ|

=
1

2
Pr[αλ(sk) = pk]

⇔ Pr[Privλ(pp, sk,x) = π|αλ(sk) = pk] =
1

2
.

Therefore, Construction 3 satisfies 1
2 -universality1.

Putting all the above together, Theorem 2 immediately follows. ⊓⊔

Multi-bit NC1-HPS. Notice that the size of proof space of Construction 3 is
only one-bit, which makes it less useful. However, we can extend this construction
with multi-bit proofs by running multiple HPS in parallel. We refer the reader
to the full paper for the multi-bit version of our HPS and the security proof.

Universal2 NC1-HPS. By carefully adopting the technique by Cramer and
Shoup [15], we achieve a universal2 NC1-HPS. The resulting scheme can be
computed in NC1 and it is secure against NC1 circuits under the assumption
NC1 ⊊ ⊕L/poly. We refer the reader to the full paper for the details.



Fine-Grained Cryptography Revisited 23

4.2 Application: NC1-CCA Secure PKE

As one of the most important application of HPSs, Cramer and shoup [15] con-
structed a CCA secure PKE scheme. Interestingly, by instantiating the under-
lying HPS with our construction, we immediately achieve an NC1-CCA secure
PKE scheme against NC1 circuits restricted in the same way as the ones defined
for verifiable computation schemes by Campanelli and Gennaro [14], i.e., ones
allowed to make constant rounds of adaptive queries to the decryption oracle,
while in each round, they can make arbitrary polynomial number of queries. We
refer the reader to the full paper for the details on this application.

5 Construction of NC1-TDF against NC1

In this section, we give our construction of NC1-TDF against NC1 under the
assumption NC1 ⊊ ⊕L/poly.

Construction 4 (NC1-TDF) Let λ be a security parameter and l be a polyno-
mial in λ. Let F = {fλ : {0, 1}λ → {0, 1}l(λ)} be a NC1-OWF against NC1. We
define the families KeyGen = {KeyGenλ} with key spaces EKλ = {M | M ←
ZeroSamp(λ)} and TKλ = Ker(M), Eval = {Evalλ} and Inverse = {Inverseλ}
as follows.

– KeyGenλ:
1. Run R← LSamp(λ), R′ ← RSamp(λ).
2. Set k := (r 1)⊤ where (r 1)⊤ is the last column of R′.
3. Compute M := RMλ

0R
′ where Mλ

0 is defined as Construction 1.
4. Set ek := M and tk := k, and output (ek, tk) (according to the proof of

Lemma 3, it holds that k ∈ Ker(M) ).
The domain Dλ,ek and range Rλ,ek are defined as follows.

Dλ,ek := {0, 1}λ ×
(
Im(M⊤)× {0, 1}λ \ Im(M⊤)

)λ
.

Rλ,ek := {0, 1}l(λ)+2λ2

.

– Evalλ(ek,X):
1. Parse X := (x, (c1,0, c1,1), (c2,0, c2,1), · · · , (cλ,0, cλ,1)) ∈ Dλ,ek.
2. For x = x1x2 · · ·xλ ∈ {0, 1}λ and all i ∈ [λ], if xi = 0, set (ci, c

′
i) :=

(ci,0, ci,1), otherwise set (ci, c
′
i) := (ci,1, ci,0).

3. Compute y := fλ(x).
4. Set Y := (y, (c1, c

′
1), (c2, c

′
2), · · · , (cλ, c′λ)) and output Y .

– Inverseλ(tk, Y ):
1. Parse tk := k and Y := (y, (c1, c

′
1), (c2, c

′
2), · · · , (cλ, c′λ)) ∈ Rλ,ek.

2. For all i ∈ [λ], if k⊤ci = 0∧k⊤c′i = 1, then set xi := 0 and (ci,0, ci,1) :=
(ci, c

′
i).

3. Else if k⊤ci = 1 ∧ k⊤c′i = 0, then set xi := 1 and (ci,0, ci,1) := (c′i, ci).
4. Else output ⊥ and halt.
5. Set X = (x, (c1,0, c1,1), · · · , (cλ,0, cλ,1)) and output X.

Theorem 3 If NC1 ⊊ ⊕L/poly and there exists an NC1-OWF against NC1 cir-
cuits, Construction 4 is an NC1-TDF against NC1.
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Proof sketch. Let k and M be the trapdoor key and evaluation key generated
by KeyGenλ respectively. For any c ∈ Im(M⊤), we must have k⊤c = 0 since
k ∈ Ker(M). Also, we prove that for any c ∈ {0, 1}λ \ Im(M⊤), there must

exists w such that w ∈ 1× {0, 1}λ−1 and c =

M+


0 · · · 0 1
0 0 · · · 0
...

. . .
...

0 · · · 0 0


w. Since

k⊤M⊤w = 0 and k⊤


0 · · · 0 1
0 0 · · · 0
...

. . .
...

0 · · · 0 0


⊤

w = 1, we must have k⊤c = 1 in this case.

Therefore, k, which is samplable in NC1, can be used to determine whether c is
in Im(M⊤) or {0, 1}λ \ Im(M⊤) and recover xi by checking whether ci and c′i
are swapped in the inversing procedure, i.e., correctness holds.

Moreover, due to the subset membership problem for L = Im(M), the
uniform distributions over Im(M⊤) and {0, 1}λ \ Im(M⊤) are indistinguish-
able when M is a correctly generated evaluation key, i.e., the distributions
(ci,0, ci,1)← Im(M⊤)×{0, 1}λ \ Im(M⊤) and (ci,0, ci,1)← Im(M⊤)× Im(M⊤)
are indistinguishable. Therefore, the adversary in the one-way game can only ob-
tain information on fλ(x) (which is one-way), and the additional pairs (ci,0, ci,1)
can be simulated by just sampling them from Im(M⊤)× Im(M⊤), i.e., they re-
veal little information on x.

The formal proof is as follows.

Proof. Note that KeyGen, Eval, and Inverse only involve operations including
multiplications of the constant number of matrices, inner products and sampling
random bits. Since these operation can be performed in NC1, we have KeyGen,
Eval, and Inverse can be computed in NC1.

Next, we prove that Construction 4 satisfies correctness and one-wayness.

Correctness. For any M← ZeroSamp(λ) and any c ∈ Im(M⊤), we have

k⊤c = k⊤M⊤w = (Mk)⊤w = 0⊤w = 0

where k ∈ Ker(M) and w is a vector such that c = Mw.
Next we show that when c ∈ {0, 1}λ\Im(M⊤) then k⊤c = 1. Before showing

this, we first propose the following lemma, which is straightforwardly implied by
Proposition 2 in Theorem 2.

Lemma 12 For any M← ZeroSamp(λ), it holds that

{0, 1}λ \ Im(M⊤) = {x | ∃w ∈ 1× {0, 1}λ−1,x = M′⊤w}

where

M′ = M+


0 · · · 0 1
0 0 · · · 0
...

. . .
...

0 · · · 0 0

 .
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According to Lemma 12, for any M ← ZeroSamp(λ) and any c ∈ {0, 1}λ \
Im(M⊤), we have

k⊤c = k⊤M′⊤w = k⊤

M+


0 · · · 0 1
0 0 · · · 0
...

. . .
...

0 · · · 0 0




⊤

w

= (Mk)⊤w +



0 · · · 0 1
0 0 · · · 0
...

. . .
...

0 · · · 0 0

k


⊤

w

= 0⊤w + (1 0 · · · 0)w = 0 + 1 = 1

where k is a vector in the kernel of M and w is a vector such that w ∈ 1 ×
{0, 1}λ−1 ∧ c = M′⊤w.

As a result, for all i ∈ [λ], k generated by KeyGenλ can be used to determine
whether ci (resp., c

′
i) generated by Evalλ are in Im(M⊤) or {0, 1}λ \ Im(M⊤),

and hence recover xi.

One-wayness. Let A = {aλ} be any adversary in NC1. We give hybrid games
to show that the advantage of A in breaking the one-wayness of Construction 4
is negligible.

Game 0: This is the original one-wayness game for A = {aλ}. CH runs
(ek, tk) ← KeyGenλ, samples X ← Dλ,ek, and runs Y = Evalλ(ek,X). Then it
sends (ek, Y ) to aλ. aλ succeeds if aλ outputs X∗ such that Evalλ(ek,X

∗) = Y .
Otherwise it fails.

Game 1 ∼ Game λ: For i ∈ [λ], Game i is the same as Game i-1 except
that CH samples (ci,0, ci,1)← Im(M⊤)× Im(M⊤).

Lemma 13 If A = {aλ} succeeds with advantage ϵi−1 (resp., ϵi) in Game i-1
(resp., Game i), then |ϵi−1 − ϵi| = negl(λ).

Proof. According to the proof of the part of subset membership problem in
Theorem 2, we have the following lemma.

Lemma 14 For any G = {gλ} ∈ NC1,

|Pr[gλ(M, c0) = 1]− Pr[gλ(M, c1) = 1]| ≤ negl(λ),

where M← ZeroSamp(λ), c0 ← Im(M⊤), and c1 ← {0, 1}λ \ Im(M⊤).

Proof. Let (Setup,SampYes,SampN o,KeyGen,Priv,Pub) be a strong smooth
HPS defined as Construction 3. According to Proposition 1, 2, and 3, we have
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– the distributions of x0 and c0 are identical where pp ← Setupλ, (x0, w) ←
SampYesλ(pp), and c← Im(M⊤) (∵ Proposition 1).

– the distributions of x1 and c1 are identical where pp ← Setupλ, (x0, w) ←
SampNoλ(pp), and c← {0, 1}λ \ Im(M⊤) (∵ Proposition 2).

– it holds that for any G = {gλ} ∈ C2,

|Pr[gλ(pp,x0) = 1]− Pr[gλ(pp,x1) = 1]| ≤ negl(λ)

where pp ← Setupλ, (x0, w) ← SampYesλ(pp), and x1 ← SampNoλ(pp) (∵
Proposition 3).

Moreover, the distribution of pp ← Setupλ depends only on the distribution of
M← ZeroSamp(λ). Therefore, for any G = {gλ} ∈ C2, we have

|Pr[gλ(M, c0) = 1]− Pr[gλ(M, c1) = 1]| ≤ negl(λ),

where M← ZeroSamp(λ), c0 ← Im(M⊤), and c1 ← {0, 1}λ \ Im(M⊤), complet-
ing the proof of Lemma 14. ⊓⊔

We now construct B = {bλ} ∈ NC1 that distinguishes c ← Im(M⊤) and
c← {0, 1}λ\Im(M⊤) with advantage |ϵi−1−ϵi|, which contradicts to Lemma 14.

bλ takes as input (M, c), which is generated as M ← ZeroSamp(λ) and c
sampled as c ← Im(M⊤) or c ← {0, 1}λ \ Im(M⊤) from its challenger. Then,
it sets ek := M and ci,1 := c. Next, bλ samples x ← {0, 1}λ, (cj,0, cj,1) ←
Im(M⊤) × Im(M⊤) for all j ∈ [i − 1], ci,0 ← Im(M⊤), and (cj,0, cj,1) ←
Im(M⊤) × {0, 1}λ \ Im(M⊤) for all j ∈ {i + 1, · · · , λ}. Next, bλ sets X :=
(x, (c1,0, c1,1), (c2,0, c2,1), · · · , (cλ,0, cλ,1)) and computes Y = Evalλ(ek,X). Fi-
nally, bλ gives (ek, Y ) to aλ. When aλ output X∗, if Y = Evalλ(ek,X

∗), bλ
outputs 1. Otherwise, it outputs 0.

Since all operations in bλ are performed in NC1, we have B = {bλ} ∈ NC1.
One can see that when c← Im(M⊤) (resp., c← {0, 1}λ \Im(M⊤)), the view

of aλ is identical to its view in Game i-1 (resp., Game i), i.e., bλ outputs 1
with probability ϵi−1 (resp., ϵi). Therefore, B = {bλ} distinguishes c← Im(M⊤)
and c← {0, 1}λ \ Im(M⊤) with advantage |ϵi−1− ϵi|, which should be negligible
according to Lemma 14, completing the proof of Lemma 13. ⊓⊔

Lemma 15 If A = {aλ} succeeds with advantage ϵλ in Game λ, then ϵλ =
negl(λ).

Proof. We now construct B = {bλ} ∈ NC1 that breaks the one-wayness of F =
{fλ} with advantage ϵn.

bλ takes as input y, which is generated as x ← {0, 1}λ and y =
fλ(y) from its challenger. Then, bλ runs (ek, tk) ← KeyGenλ, parses ek :=
M, and samples ((c0,0, c0,1), · · · , (cλ,0, cλ,1)) ← Im(M⊤)2λ. Next bλ gives
(y, (c0,0, c0,1), · · · , (cλ,0, cλ,1)) to aλ. When aλ outputs X∗, bλ parses X∗ :=
(x∗(c∗0,0, c

∗
0,1), · · · , (c∗λ,0, c∗λ,1)) and outputs x∗.

Since all operations in bλ are performed in NC1, we have B = {bλ} ∈ NC1.
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One can see that the view of aλ is identical to its view in Game λ, i.e., bλ
outputs x∗ such that y = fλ(x

∗) with probability ϵλ. Therefore, B = {bλ} breaks
the one-wayness of F = {fλ} with advantage ϵλ, which should be negligible,
completing the proof of Lemma 15.

Since for i ∈ [λ], |ϵi−1 − ϵi| = negl(λ), ϵλ = negl(λ), we have

ϵ0 ≤
λ∑

i=1

|ϵi−1 − ϵi|+ ϵλ = negl(λ).

Therefore, Construction 4 satisfies one-wayness. ⊓⊔

Putting all the above together, Theorem 3 immediately follows. ⊓⊔

6 Conclusion

In this paper, we formalize fine-grained OWPs, HPSs (which in turn derives a
CCA-secure PKE), and TDFs, and show how to construct the NC1 versions of
them secure against NC1 adversaries. Compared with traditional cryptographic
primitives, our schemes treat restricted class of adversaries, while they can be run
more efficiently and are only based on the mild worst case assumption NC1 ⊊
⊕L/poly. It remains open how to construct more fine-grained primitives not
implied by our results, such as pseudo-random functions and signature schemes,
in the same model.
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