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Abstract. We present here a new family of trapdoor one-way functions
that are Preimage Sampleable on Average (PSA) based on codes, the
Wave-PSA family. The trapdoor function is one-way under two compu-
tational assumptions: the hardness of generic decoding for high weights
and the indistinguishability of generalized (U,U + V )-codes. Our proof
follows the GPV strategy [28]. By including rejection sampling, we en-
sure the proper distribution for the trapdoor inverse output. The domain
sampling property of our family is ensured by using and proving a variant
of the left-over hash lemma. We instantiate the new Wave-PSA family
with ternary generalized (U,U + V )-codes to design a “hash-and-sign”
signature scheme which achieves existential unforgeability under adaptive
chosen message attacks (EUF-CMA) in the random oracle model.

1 Introduction

Code-Based Signature Schemes. It is a long standing open problem to build
an efficient and secure digital signature scheme based on the hardness of decoding
a linear code which could compete with widespread schemes like DSA or RSA.
Those signature schemes are well known to be broken by quantum computers and
code-based schemes could indeed provide a valid quantum resistant replacement.
A first answer to this question was given by the CFS scheme proposed in [15].
It consisted in finding parity-check matrices H ∈ Fr×n2 such that the solution e
of smallest weight of the equation

eH
ᵀ

= s. (1)

could be found for a non-negligible proportion of all s in Fr2. This task was
achieved by using high rate Goppa codes. This signature scheme has however
two drawbacks: (i) for high rates Goppa codes the indistinguishability assump-
tion used in its security proof has been invalidated in [22], (ii) security scales only
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weakly superpolynomially in the keysize for polynomial time signature genera-
tion. A crude extrapolation of parallel CFS [23] and its implementations [35, 10]
yields for 128 bits of classical security a public key size of several gigabytes and
a signature time of several seconds. Those figures even grow to terabytes and
hours for quantum-safe security levels, making the scheme unpractical.

This scheme was followed by other proposals using other code families such
as for instance [4, 29, 36]. All of them were broken, see for instance [43, 41].
Other signature schemes based on codes were also given in the literature such as
for instance the KKS scheme [34, 33], its variants [7, 27] or the RaCoSS proposal
[25] to the NIST. But they can be considered at best to be one-time signature
schemes and great care has to be taken to choose the parameters of these schemes
in the light of the attacks given in [13, 42, 31]. Finally, another possibility is to
use the Fiat-Shamir heuristic. For instance by turning the Stern zero-knowledge
authentication scheme [47] into a signature scheme but this leads to rather large
signature lengths (hundred(s) of kilobits). There has been some recent progress in
this area for another metric, namely the rank metric. A hash and sign signature
scheme was proposed, RankSign [26], that enjoys remarkably small key sizes, but
it got broken too in [20]. On the other hand, following the Schnorr-Lyubashevsky
[37] approach, a new scheme was recently proposed, namely Durandal [2]. This
scheme enjoys small key sizes and managed to meet the challenge of adapting
the Lyubashevsky [38] approach for code-based cryptography. However, there
is a lack of genericity in its security reduction to a rather convoluted problem,
namely PSSI+ (see [2, §4.1]).

One-Way Preimage Sampleable Trapdoor Functions. There is a very
powerful tool for building a hash-and-sign signature scheme. It is based on the
notion of one-way trapdoor preimage sampleable function [28, §5.3]. Roughly
speaking, this is a family of trapdoor one-way functions (fa)a such that with
overwhelming probability over the choice of fa (i) the distribution of the images
fa(e) is very close to the uniform distribution over its range (ii) the distribution
of the output of the trapdoor algorithm inverting fa samples from all possible
preimages in an appropriate way. This trapdoor inversion algorithm should sam-
ple its outputs e for any x in the domain of fa such that the distribution of e
is indistinguishable in a statistical sense from the input distribution of fa con-
ditioned by fa(e) = x. This notion and its lattice-based instantiation was used
in [28] to give a full-domain hash (FDH) signature scheme with a tight security
reduction based on lattice assumptions, namely that the Short Integer Solution
(SIS) problem is hard on average. Furthermore, this approach also allowed to
build the first identity based encryption scheme that could be resistant to a
quantum computer. We will refer to this approach for obtaining a FDH scheme
as the GPV strategy. This strategy has also been adopted in Falcon [24], a lat-
tice based signature submission to the NIST call for post-quantum cryptographic
primitives that was recently selected as a second round candidate.

This preimage sampleable primitive is notoriously difficult to obtain when the
functions fa are not trapdoor permutations but many-to-one functions. This is
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typically the case when one wishes quantum resistant primitives based on lattice
based assumptions. The reason is the following. The hard problem on which this
primitive relies is the SIS problem where we want to find for a matrix A in Zn×mq

(with m ≥ n) and an element s ∈ Znq a short enough (for the Euclidean norm)
solution e ∈ Zmq to the equation

eA
ᵀ

= s mod q. (2)

A defines a preimage sampleable function as fA(e) = eAᵀ and the input to fA
is chosen according to a (discrete) Gaussian distribution of some variance σ2.
Obtaining a nearly uniform distribution for the fA(e)’s over its range requires to
choose σ2 so large so that there are actually exponentially many solutions to (2).
It is a highly non-trivial task to build in this case a trapdoor inversion algorithm
that samples appropriately among all possible preimages, i.e. oblivious to the
trapdoor.

The situation is actually exactly the same if we want to use another candidate
problem for building this preimage sampleable primitive for being resistant to a
quantum computer, namely the decoding problem in code-based cryptography.
Here we rely on the difficulty of finding a solution e of Hamming weight exactly
w with coordinates in a finite field Fq for the equation

eH
ᵀ

= s. (3)

where H is a given matrix and s (usually called a syndrome) a given vector
with entries in Fq. The weight w has to be chosen large enough so that this
equation has always exponentially many solutions (in n the length of e). As in
the lattice based setting, it is non-trivial to build trapdoor candidates with a
trapdoor inversion algorithm for fH (defined as fH(e) = eHᵀ) that is oblivious
to the trapdoor.

Our Contribution: a Code-Based PSA Family and a FDH Scheme.
Our main contribution is to give here a code-based one way trapdoor func-
tion that meets the preimage sampleable property in a slighty relaxed way: it
meets this property on average. We call such a function Preimage Sampleable
on Average, PSA in short. This property on average turns out to be enough for
giving a security proof for the signature scheme built from it. Our family relies
here on the difficulty of solving (3). We derive from it a FDH signature scheme
which is shown to be existentially unforgeable under a chosen-message attack
(EUF-CMA) with a tight reduction to solving two code-based problems: one is
a distinguishing problem related to the trapdoor used in our scheme, the other
one is a multiple targets version of the decoding problem (3), the so called “De-
coding One Out of Many” problem (DOOM in short) [45]. In [28] a signature
scheme based on preimage sampleable functions is given that is shown to be
strongly existentially unforgeable under a chosen-message attack if in addition
the preimage sampleable functions are also collision resistant. With our choice
of w and Fq, our preimage sampleable functions are not collision resistant. How-
ever, as observed in [28], collision resistance allows a tight security reduction
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but is not necessary: a security proof could also be given when the function is
“only” preimage sampleable. Here we will show that it is even enough to have
such a property on average. Moreover, in contrast with the lattice setting where
the size of the alphabet q grows with n, our alphabet size will be constant in our
proposal, it is fixed to q = 3.

Our Trapdoor: Generalized (U,U + V )-Codes. In [28] the trapdoor con-
sists in a short basis of the lattice considered in the construction. Our trapdoor
will be of a different nature, it consists in choosing parity-check matrices of gen-
eralized (U,U + V )-codes. In our construction, U and V are chosen as random
codes. The number of such generalized (U,U + V )-codes of dimension k and
length n is of the same order as the number of linear codes with the same pa-

rameters, namely qΘ(n2) when k = Θ (n). A generalized (U,U + V ) code C of
length n over Fq is built from two codes U and V of length n/2 and 4 vectors

a,b, c and d in Fn/2q as the following “mixture” of U and V :

C = {(a� u + b� v, c� u + d� v) : u ∈ U, v ∈ V }

where x�y stands for the component-wise product, also called the Hadamard or

Schur product. It is defined as: x�y
4
=(x1y1, · · · , xn/2yn/2). Standard (U,U+V )-

codes correspond to a = c = d = 1n/2 and b = 0n/2, the all-one and the all-zero
vectors respectively.

The point of introducing such codes is that they have a natural decoding
algorithm DUV solving the decoding problem (3) that is based on a generic
decoding algorithm Dgen for linear codes. Dgen will be here a very simple decoder,
namely a variation of the Prange decoder [44] that is able to easily produce for
any parity-check matrix H ∈ Fr×nq a solution of (3) for any w in the range

J q−1q r, n − r
q K. Note that this algorithm works in polynomial time and that the

complexity of the best known algorithms is exponential in n for weights w of the
form w = ωn where ω is a constant that lies outside the interval [ q−1q ρ, 1− ρ

q ] with

ρ
4
= r

n . DUV works by combining the decoding of V with Dgen with the decoding
of U by Dgen. The nice feature is that DUV is more powerful than Dgen applied
directly on the generalized (U,U +V )-code: the weight of the error produced by
DUV in polynomial time can be made to lie outside the interval J q−1q r, n − r

q K.
This is in essence the trapdoor of our signature scheme. A tweak in this decoder
consisting in performing only a small amount of rejection sampling (with our
choice of parameters one rejection every 10 or 12 signatures, see the full paper
[18]) allows to obtain solutions that are uniformly distributed over the words of
weight w. This is the key for obtaining a PSA family and a signature scheme
from it.

Finally, a variation of the proof technique of [28] allows to give a tight security
proof of our signature scheme that relies only on the hardness of two problems,
namely

Decoding Problem: Solving at least one instance of the decoding problem (1)
out of multiple instances for a certain w that is outside the range J q−1q r, n− r

q K
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Distinguishing Problem: Deciding whether a linear code is a permuted gen-
eralized (U,U + V ) code or not.

Hardness of the Decoding Problem. All code-based cryptography relies
upon that problem. Here we are in a case where there are multiple solutions of
(3) and the adversary may produce any number of instances of (3) with the same
matrix H and various syndromes s and is interested in solving only one of them.
This relates to the, so called, Decoding One Out of Many (DOOM) problem.
This problem was first considered in [32]. It was shown there how to adapt
the known algorithms for decoding a linear code in order to solve this modified
problem. This modification was later analyzed in [45]. The parameters of the
known algorithms for solving (3) can be easily adapted to this scenario where
we have to decode simultaneously multiple instances which all have multiple
solutions.

Hardness of the Distinguishing Problem. This problem might seem at
first sight to be ad-hoc. However, even in the very restricted case of (U,U + V )-
codes, deciding whether a code is a permuted (U,U + V )-code or not is an NP-
complete problem. Therefore the Distinguishing Problem is also NP-complete for
generalized (U,U+V )-codes. This theorem is proven in the case of binary (U,U+
V )-codes in [17, §7.1, Thm 3] and the proof carries over to an arbitrary finite
field Fq. However as observed in [17, p. 3], these NP-completeness reductions
hold in the particular case where the dimensions kU and kV of the code U and
V satisfy kU < kV . If we stick to the binary case, i.e. q = 2, then in order that our
(U,U+V ) decoder works outside the integer interval J r2 , n−

r
2K it is necessary that

kU > kV . Unfortunately in this case there is an efficient probabilistic algorithm
solving the distinguishing problem that is based on the fact that in this case
the hull of the permuted (U,U +V )-code is typically of large dimension, namely
kU−kV (see [16, §1 p.1-2]). This problem can not be settled in the binary case by
considering generalized (U,U + V )-codes instead of just plain (U,U + V )-codes,
since it is only for the restricted class of (U,U + V )-codes that the decoder
considered in [16] is able to work properly outside the critical interval J r2 , n−

r
2K.

This explains why the ancestor Surf [16] of the scheme proposed here that relies
on binary (U,U + V )-codes can not work.

This situation changes drastically when we move to larger finite fields. In
order to have a decoding algorithm DUV that has an advantage over the generic
decoder Dgen we do not need to have a = c = d = 1n/2 and b = 0n/2 (i.e. (U,U+
V )-codes) we just need that a�c and a�d−b�c are vectors with only non-zero
components. This freedom of choice for the a,b, c and d thwarts completely the
attacks based on hull considerations and changes completely the nature of the
distinguishing problem. In this case, it seems that the best approach for solving
the distinguishing problem is based on the following observation. The generalized
(U,U + V )-code has codewords of weight slightly smaller than the minimum
distance of a random code of the same length and dimension. It is very tempting
to conjecture that the best algorithms for solving the Distinguishing Problem
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come from detecting such codewords. This approach can be easily thwarted by
choosing the parameters of the scheme in such a way that the best algorithms for
solving this task are of prohibitive complexity. Notice that the best algorithms
that we have for detecting such codewords are in essence precisely the generic
algorithms for solving the Decoding Problem. In some sense, it seems that we
might rely on the very same problem, namely solving the Decoding Problem,
even if our proof technique does not show this.

Large Weights Decoding and q = 3. In terms of simplicity of the decoding
procedure used in the signing process, it seems that defining our codes over the
finite field F3 is particularly attractive. In such a case, the biggest advantage of
DUV over Dgen is obtained for large weights rather than for small weights (there
is an explanation for this asset in §4.3). This is a bit unusual in code-based
cryptography to rely on the difficulty of finding solutions of large weight to the
decoding problem. However, it also opens the issue of whether or not it would be
advantageous to have (non-binary) code-based primitives rely on the hardness
of solving the decoding problem for large weights rather than for small weights.
Of course these two problems are equivalent in the binary case, i.e. q = 2, but
this is not the case for larger alphabets anymore and still everything seems to
point to the direction that large weights problem is by no means easier than its
small weight counterpart.

All in all, this gives the first practical signature scheme based on ternary codes
which comes with a security proof and which scales well with the parameters:
it can be shown that if one wants a security level of 2λ, then the signature size
is of order O(λ), the public key size is of order O(λ2), and the computational
effort is of order O(λ3) for generating a signature and O(λ2) for verifying it. It
should be noted that contrarily to the current thread of research in code-based
or lattice-based cryptography which consists in relying on structured codes or
lattices based on ring structures in order to decrease the key-sizes we did not
follow this approach here. This allows for instance to rely on the NP-complete
Decoding Problem which is generally believed to be hard on average rather that
on decoding in quasi-cyclic codes for instance whose status is still unclear with
a constant number of circulant blocks. Despite the fact that we did not use the
standard approach for reducing the key sizes relying on quasi-cyclic codes for
instance, we obtain acceptable key sizes (about 3.2 megabytes for 128 bits of
security) which compare very favorably to unstructured lattice-based signature
schemes such as TESLA for instance [1]. This is due in part to the tightness of
our security reduction.

2 Notation

General Notation. The notation x
4
= y defines x to be equal to y. We denote

by Fq the finite field with q elements and by Sw,n, or Sw when n is clear from
the context, the subset of Fnq of words of weight w. For a and b integers with
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a ≤ b, we denote by Ja, bK the set of integers {a, a + 1, . . . , b}. Furthermore, h3

will denote the function: h3(x)
4
=−x log3(x)−(1−x) log3(1−x) defined on [0, 1].

Vector and Matrix Notation. Vectors will be written with bold letters (such as
e) and uppercase bold letters are used to denote matrices (such as H). Vectors
are in row notation. Let x and y be two vectors, we will write (x,y) to denote
their concatenation. We also denote by xI the vector whose coordinates are
those of x = (xi)1≤i≤n which are indexed by I, i.e. xI = (xi)i∈I . We will
denote by HI the matrix whose columns are those of H which are indexed by
I. We may denote by x(i) the i-th entry of a vector x, or by A(i, j) the entry
in row i and column j of a matrix A. We define the support of x = (xi)1≤i≤n

as Supp(x)
4
={i ∈ {1, · · · , n} such that xi 6= 0}. The Hamming weight of x is

denoted by |x|. By some abuse of notation, we will use the same notation to
denote the size of a finite set: |S| stands for the size of the finite set S. For a
vector a ∈ Fnq , we denote by Diag(a) the n × n diagonal matrix A with its
entries given by a, i.e. A(i, i) = ai for all i ∈ J1, nK and A(i, j) = 0 for i 6= j.

Probabilistic Notation. Let S be a finite set, then x←↩ S means that x is assigned
to be a random element chosen uniformly at random in S. For two random vari-
ables X,Y , X ∼ Y means that X and Y are identically distributed. We will also
use the same notation for a random variable and a distribution D, where X ∼ D
means that X is distributed according to D. We denote the uniform distribution
on Sw by Uw. The statistical distance between two discrete probability distribu-

tions over a same space E is defined as: ρ(D0,D1)
4
= 1

2

∑
x∈E |D0(x) − D1(x)|.

Recall that a function f(n) is said to be negligible, and we denote this by
f ∈ negl(n), if for all polynomials p(n), |f(n)| < p(n)−1 for sufficiently large
n.

Coding Theory. For any matrix M we denote by 〈M〉 the vector space spanned
by its rows. A q-ary linear code C of length n and dimension k is a subspace of
Fnq of dimension k. A parity-check matrix H over Fq of size r × n is such that

C = 〈H〉⊥ =
{
x ∈ Fnq : xHᵀ = 0

}
. When H is of full rank we have r = n − k.

The code rate, usually denoted by R, is defined as the ratio k/n. An information
set of a code C of length n is a set of k coordinate indices I ⊂ J1, nK such that
its complement indexes n− k independent columns on any parity-check matrix.

For any s ∈ Fn−kq , H ∈ F(n−k)×n
q , and any information set I of C = 〈H〉⊥, for

all x ∈ Fnq there exists a unique e ∈ Fnq such that eHᵀ = s and xI = eI .

3 The Wave-family of Trapdoor One-Way Preimage
Sampleable Functions

3.1 One-way Preimage Sampleable Code-based Functions

In this work we will use the FDH paradigm [9, 14] using as one-way the syndrome
function:

fH : e ∈ Sw 7−→ eHᵀ ∈ Fn−kq
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The corresponding FDH signature uses a trapdoor to choose σ ∈ f−1w,H(h) where
h is the digest of the message to be signed. Here, the signature domain is Sw
and its range is the set of syndromes Fn−kq according to H, an (n−k)×n parity
check matrix of some q-ary linear [n, k] code. The weight w is chosen such that
the one-way function fw,H is surjective but not bijective. Building a secure FDH
signature in this situation can be achieved by imposing additional properties
[28] to the one-way function (we will speak of the GPV strategy). This is mostly
captured by the notion of Preimage Sampleable Functions, see [28, Definition
5.3.1]. We express below this notion in our code-based context with a slightly
relaxed definition dropping the collision resistance condition and only assuming
that the preimage sampleable property holds on average and not for any possible
element in the function range. This will be sufficient for proving the security of
our code-based FDH scheme.

Definition 1 ( Trapdoor One-way Preimage Sampleable on Average
Code-based Functions). It is a pair of probabilistic polynomial-time algo-
rithms (Trapdoor, InvAlg) together with a triple of functions (n(λ), k(λ), w(λ))
growing polynomially with the security parameter λ and giving the length and
dimension of the codes and the weights we consider for the syndrome decoding
problem, such that

– Trapdoor when given λ, outputs (H, T ) where H is an (n − k) × n matrix
over Fq and T the trapdoor corresponding to H.

– InvAlg is a probabilistic algorithm which takes as input T and an element
s ∈ Fn−kq and outputs an e ∈ Sw,n such that eHᵀ = s.

The following properties have to hold for all but a negligible fraction of H output
by Trapdoor.

1. Domain Sampling with uniform output:

ρ(eH
ᵀ
, s) ∈ negl(λ), where e←↩ Sw,n and s←↩ Fn−kq .

2. Preimage Sampling on Average (PSA) with trapdoor:

ρ (InvAlg(s, T ), e) ∈ negl(λ), where e←↩ Sw,n and s←↩ Fn−kq .

3. One wayness without trapdoor: for any probabilistic poly-time algorithm A
outputting an element e ∈ Sw,n when given H ∈ F(n−k)×n

q and s ∈ Fn−kq , the
probability that eHᵀ = s is negligible, where the probability is taken over the
choice of H, the target value s chosen uniformly at random, and A’s random
coins.

Remark 1. 1. The preimage property as defined in [28] would translate in our
setting in the following way. For any s ∈ Fn−kq we should have

ρ (InvAlg(s, T ), es) ∈ negl(λ), where es ←↩
{
e ∈ Sw,n : eH

ᵀ
= s
}

.
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As observed by an anonymous reviewer, we have

ρ (InvAlg(s, T ), e) =
∑
s

∑
e∈f−1

H (s)

∣∣∣ 1
|Sw| −

1
qn−kP(InvAlg(s, T ) = e)

∣∣∣
=
∑
s

∑
e∈f−1

H (s)

∣∣∣ 1
|Sw| −

1
qn−k|f−1

H (s)| + 1
qn−k|f−1

H (s)| −
1

qn−kP(InvAlg(s, T ) = e)
∣∣∣

≥
∑
s

1
qn−k

∑
e∈f−1

H (s)

∣∣∣ 1
|f−1

H (s)| − P(InvAlg(s, T ) = e)
∣∣∣−∑s

∣∣∣ |f−1
H (s)|
|Sw| −

1
qn−k

∣∣∣
=

∑
s∈Fn−k

q

1
qn−k ρ (InvAlg(s, T ), es)− ρ(eHᵀ, s).

Therefore with the domain sampling property and our definition of the
preimage sampling property the average of the ρ (InvAlg(s, T ), es)’s is neg-
ligible too, whereas [28] requires that all terms ρ (InvAlg(s, T ), es) are neg-
ligible. Note that our property that holds for the average implies that this
property holds for all but a negligible fraction of s’s. Indeed, if we have

1

qn−k

∑
s∈Fn−k

q

ρ (InvAlg(s, T ), es) = ε,

then
# {s : ρ (InvAlg(s, T ), es) ≥

√
ε}

qn−k
≤
√
ε.

As noted by the anonymous reviewer, this relaxed property is enough to
apply the GPV proof technique.

2. It turns out that this relaxed definition of preimage sampleable function is
enough to prove the security of the associated signature scheme using a salt
as given in the next paragraph. This relaxed definition is of independent
interest, since it can be easier to find trapdoor one-way functions meeting
this property than the more stringent definition given in [28].

Given a one-way preimage sampleable code-based function (Trapdoor, InvAlg)
we easily define a code-based FDH signature scheme as follows. We generate
the public/secret key as (pk, sk) = (H, T ) ← Trapdoor(λ). We also select a
cryptographic hash function Hash : {0, 1}∗ → Fn−kq and a salt r of size λ0. The

algorithms Sgnsk and Vrfypk are defined as follows

Sgnsk(m): Vrfypk(m, (e′, r)):
r←↩ {0, 1}λ0 s← Hash(m, r)
s← Hash(m, r) if e′Hᵀ = s and |e′| = w return 1
e← InvAlg(s, T ) else return 0
return(e, r)

A tight security reduction in the random oracle model is given in [28] for the
associated signature schemes. It requires collision resistance. Our construction
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uses a ternary alphabet q = 3 together with large values of w and collision resis-
tance is not met. Still, we achieve a tight security proof [18, §7] by considering
a reduction to the multiple target decoding problem.

3.2 The Wave Family of PSA Functions

The trapdoor family of codes which gives an advantage for inverting fw,H is
built upon the following transformation:

Definition 2. Let a, b, c and d be vectors of Fn/2q . We define

ϕa,b,c,d : (x,y) ∈ Fn/2q × Fn/2q → (a� x + b� y, c� x + d� y) ∈ Fn/2q × Fn/2q

We will say that ϕa,b,c,d is UV-normalized if

∀i ∈ J1, n/2K, aidi − bici = 1, aici 6= 0.

For any two subspaces U and V of Fn/2q , we extend the notation

ϕa,b,c,d(U, V )
4
= {ϕa,b,c,d(u,v) : u ∈ U,v ∈ V }

Proposition 1 (Normalized Generalized (U,U + V )-code). Let n be an
even integer and let ϕ = ϕa,b,c,d be a UV-normalized mapping. The mapping ϕ
is bijective with ϕ−1(x,y) = (d� x− b� y,−c� x + a� y).

For any two subspaces U and V of Fn/2q of parity check matrices HU and HV ,
the vector space ϕ(U, V ) is called a normalized generalized (U,U + V )-code. It
has dimension dimU + dimV and admits the following parity check matrix

H(ϕ,HU ,HV )
4
=

(
HUD −HUB
−HV C HV A

)
where A

4
= Diag(a), B

4
= Diag(b), C

4
= Diag(c) and D

4
= Diag(d).

In the sequel, a UV-normalized mapping ϕ implicitly defines a quadruple of
vectors (a,b, c,d) such that ϕ = ϕa,b,c,d. We will use this implicit notation and
drop the subscript whenever no ambiguity may arise.

Remark 2. – This construction can be viewed as taking two codes of length
n/2 and making a code of length n by “mixing” together a codeword u in U
and a codeword v in V as the vector formed by the set of aiui + bivi’s and
ciui + divi’s.

– The condition aici 6= 0 is here to ensure that coordinates of U appear in all
the coordinates of the normalized generalized (U,U + V ) codeword. This is
essential for having a decoding algorithm for the generalized (U,U+V )-code
that has an advantage over standard information set decoding algorithms for
linear codes. The trapdoor of our scheme builds upon this advantage. It can
really be viewed as the “interesting” generalization of the standard (U,U+V )
construction.

– We have fixed aidi − bici = 1 for every i to simplify some of the expressions
in what follows. It is readily seen that any generalized (U,U + V )-code that
can be obtained in the more general case aidi−bici 6= 0 can also be obtained
in the restricted case aidi − bici = 1 by choosing U and V appropriately.
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Defining Trapdoor and InvAlg. From the security parameter λ, we derive the
system parameters n, k, w and split k = kU +kV (see [18, §5.4] for more details).
The secret key is a tuple sk = (ϕ,HU ,HV ,S,P) where ϕ is a UV-normalized

mapping, HU ∈ F(n/2−kU )×n/2
q , HV ∈ F(n/2−kV )×n/2

q , S ∈ F(n−k)×(n−k)
q is non-

singular with k = kU +kV , and P ∈ Fn×nq is a permutation matrix. Each element
of sk is chosen randomly and uniformly in its domain.

From (ϕ,HU ,HV ) we derive the parity check matrix Hsk = H(ϕ,HU ,HV )
as in Proposition 1. The public key is Hpk = SHskP. Next, we need to produce
an algorithm Dϕ,HU ,HV

which inverts fw,Hsk
. The parameter w is such that this

can be achieved using the underlying (U,U + V ) structure while the generic
problem remains hard. In §5 we will show how to use rejection sampling to
devise Dϕ,HU ,HV

such that its output is uniformly distributed over Sw when
s is uniformly distributed over Fn−kq . This enables us to instantiate algorithm
InvAlg. To summarize:

sk← (ϕ,HU ,HV ,S,P)
pk← Hpk

(pk, sk)← Trapdoor(λ)

∣∣∣∣∣∣
InvAlg(sk, s)

e← Dϕ,HU ,HV
(s
(
S−1

)ᵀ
)

return eP

As in [28], putting this together with a domain sampling condition –which we
prove in §6 from a variation of the left-over hash lemma– allows us to define
a family of trapdoor preimage sampleable functions, later referred to as the
Wave-PSA family.

4 Inverting the Syndrome Function

This section is devoted to the inversion of fw,H which amounts to solve:

Problem 1 (Syndrome Decoding with fixed weight). Given H ∈ F(n−k)×n
q , s ∈

Fn−kq , and an integer w, find e ∈ Fnq such that eHᵀ = s and |e| = w.

We consider three nested intervals Jw−easy, w+
easyK ⊂ Jw−UV, w

+
UVK ⊂ Jw−, w+K for

w such that for s randomly chosen in Fn−kq :

– f−1w,H(s) is likely/very likely to exist if w ∈ Jw−, w+K (Gilbert-Varshamov
bound)

– e ∈ f−1w,H(s) is easy to find if w ∈ Jw−easy, w+
easyK for all H (Prange algorithm)

– e ∈ f−1w,H(s) is easy to find if w ∈ Jw−UV, w
+
UVK and H is the parity check

matrix of a generalized (U,U + V )-code. This is the key for exploiting the
underlying (U,U + V ) structure as a trapdoor for inverting fw,H.

4.1 Surjective Domain of the Syndrome Function

The issue is here for which value of w we may expect that fw,H is surjective.
This clearly implies that |Sw| ≥ qn−k. In other words we have:
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Fact 1 If fw,H is surjective, then w ∈ Jw−, w+K where w− < w+ are the ex-
tremum of the set

{
w ∈ J0, nK |

(
n
w

)
(q − 1)w ≥ qn−k

}
.

For a fixed rate R = k/n, let us define ω−
4
= lim
n→+∞

w−/n and ω+ 4= lim
n→+∞

w+/n.

Note that the quantity ω− is known as the asymptotic Gilbert-Varshamov dis-
tance. A straightforward computation of the expected number of errors e of
weight w such that eHᵀ = s when H is random shows that we expect an expo-
nential number of solutions when w/n lies in (ω−, ω+). However, coding theory
has never come up with an efficient algorithm for finding a solution to this prob-
lem in the whole range (ω−, ω+).

4.2 Easy Domain of the Syndrome Function

The subrange of (ω−, ω+) for which we know how to solve efficiently Problem 1
is given by the condition w/n ∈ [ω−easy, ω

+
easy] where

ω−easy
4
=
q − 1

q
(1−R) and ω+

easy
4
=
q − 1

q
+
R

q
, (4)

where R is the code rate k/n. This is achieved by a slightly generalized version
of the Prange decoder [44]. Prange algorithm is able to complement any word
whose coordinates are fixed on an information set into a word of prescribed
syndrome. In practice, it outputs in polynomial time using linear algebra, a
word e of prescribed syndrome and of the form (e′′, e′) up to a permutation.
The word e′ ∈ Fkq has its support on an information set and can be chosen.

The word e′′ ∈ Fn−kq is random, thus of average weight q−1
q (n− k). By properly

choosing |e′| the algorithm average output relative weight can thus take any
value between q−1

q
n−k
n = ω−easy and k + q−1

q
n−k
n = ω+

easy. This procedure, that

we call PrangeOne(·), is formalized in Algorithm 1.

Proposition 2. When H is chosen uniformly at random in F(n−k)×n
q and s

uniformly at random in Fn−kq , for the output e of PrangeOne(H, s) we have
|e| = S + T where S and T are independent random variables, S ∈ J0, n − kK,
T ∈ J0, kK, S is the Hamming weight of a vector that is uniformly distributed

over Fn−kq and P(T = t) = D(t). Let D =
∑k
t=0 tD(t), we have:

P (|e| = w) =

w∑
t=0

(
n−k
w−t
)
(q − 1)w−t

qn−k
D(t),E(|e|) = D + q−1

q (n− k) = D + nω−easy

From this proposition, we deduce that any weight w in Jω−easyn, ω+
easynK can be

reached by this Prange decoder with a probabilistic polynomial time algorithm
that uses a distribution D such that D = w − ω−easyn and which is sufficiently
concentrated around its expectation. It will be helpful in what follows to be
able to choose a probability distribution D as this gives a rather large degree
of freedom in the distribution of |e| that will come very handy to simulate an
output distribution that is uniform over the words of weight w in the generalized
(U,U + V )-decoder that we will consider in what follows.
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Algorithm 1 PrangeOne(H, s) — One iteration of the Prange decoder

Parameters: q, n, k, D a distribution over J0, kK
Require: H ∈ F(n−k)×n

q , s ∈ Fn−k
q

Ensure: eH
ᵀ

= s
1: t←↩ D
2: I ← InfoSet(H) . InfoSet(H) returns an information set of 〈H〉⊥
3: x←↩ {x ∈ Fn

q | |xI | = t}
4: e← PrangeStep(H, s, I,x)
5: return e

function PrangeStep(H, s, I,x) — Prange vector completion

Require: H ∈ F(n−k)×n
q , s ∈ Fn−k

q , I an information set of 〈H〉⊥, x ∈ Fn
q

Ensure: eH
ᵀ

= s and eI = xI
P← any n× n permutation matrix sending I on the last k coordinates
(A | B)← HP ; (∗ | e′)← xP . A ∈ F(n−k)×(n−k)

q ; e′ ∈ Fk
q

e←
((

s− e′B
ᵀ) (

A−1
)ᵀ
, e′
)
P

ᵀ

return e

Enlarging the Easy Domain Jw−
easy, w

+
easyK. Inverting the syndrome func-

tion fw,H is the basic problem upon which all code-based cryptography relies.

This problem has been studied for a long time for relative weights ω
4
= w

n in
(0, ω−easy) and despite many efforts the best algorithms [46, 21, 6, 39, 8, 40, 19, 11]
for solving this problem are all exponential in n for such fixed relative weights.
In other words, after more than fifty years of research, none of those algorithms
came up with a polynomial complexity for relative weights ω in (0, ω−easy). Fur-
thermore, by adapting all the previous algorithms beyond this point we observe
for them the same behaviour: they are all polynomial in the range of relative
weights [ω−easy, ω

+
easy] and become exponential once again when ω is in (ω+

easy, 1).
All these results point towards the fact that inverting fw,H in polynomial time
on a larger range is fundamentally a hard problem.

4.3 Solution with Trapdoor

Let us recall that our trapdoor to invert fw,H is given by the family of normalized
generalized (U,U + V )-codes (Proposition 1 in §3.2). As we will see, this family
comes with a simple procedure which enables to invert fw,H with errors of weight
which belongs to Jw−UV, w

+
UVK ⊂ Jw−, w+K but with Jw−easy, w+

easyK ( Jw−UV, w
+
UVK.

We summarize this situation in Figure 1. We wish to point out here, to avoid
any misunderstanding that the procedure we give here is not the one we use at
the end to instantiate Wave, but is merely here to give the underlying idea of the
trapdoor. Rejection sampling will be needed as explained in the following section
to avoid any information leakage on the trapdoor coming from the outputs of
the algorithm given here.

It turns out that in the case of a normalized generalized (U,U + V )-code, a
simple tweak of the Prange decoder will be able to reach relative weights w/n
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hard hardhardeasy
w

0 w−easy w+
easy nw−UV w+

UV

easy with (U,U+V) trapdoor

Fig. 1. Hardness of (U,U + V ) Decoding

outside the “easy” region [ω−easy, ω
+
easy]. It exploits the fundamental leverage of

the Prange decoder : it consists in choosing the error e satisfying eHᵀ = s as we
want in k positions when the code that we decode is random and of dimension k.
When we want an error of low weight, we put zeroes on those positions, whereas
if we want an error of large weight, we put non-zero values. This idea leads to
even smaller or larger weights in the case of a normalized generalized (U,U+V )-
code. To explain this point, recall that we want to solve the following decoding
problem in this case.

Problem 2 (decoding problem for normalized generalized (U,U+V )-codes). Given
a normalized generalized (U,U + V ) code (ϕ,HU ,HV ) (see Proposition 1) of

parity-check matrix H = H(ϕ,HU ,HV ) ∈ F(n−k)×n
q , and a syndrome s ∈ Fn−kq ,

find e ∈ Fnq of weight w such that eHᵀ = s.

The following notation will be very useful to explain how we solve this problem.

Notation 1 For a vector e in Fnq , we denote by eU and eV the vectors in Fn/2q

such that (eU , eV ) = ϕ−1(e).

The decoding algorithm will recover eV and then eU . From eU and eV we recover
e since e = ϕ(eU , eV ). The point of introducing such an eU and a eV is that

Proposition 3. Solving the decoding problem 2 is equivalent to find an e ∈ Fnq
of weight w satisfying

eUH
ᵀ
U = sU and eV H

ᵀ
V = sV (5)

where s = (sU , sV ) with sU ∈ Fn/2−kUq and sV ∈ Fn/2−kVq .

Remark 3. We have put U and V as superscripts in sU and sV to avoid any
confusion with the notation we have just introduced for eU and eV .

Proof. Let us observe that e = ϕ(eU , eV ) = (a�eU +b�eV , c�eU +d�eV ) =
(eUA+eV B, eUC+eV D) with A = Diag(a),B = Diag(b),C = Diag(c),D =
Diag(d). By using this, eHᵀ = s translates into{

eUADᵀHᵀ
U + eV BDᵀHᵀ

U − eUCBᵀHᵀ
U − eV DBᵀHᵀ

U = sU

−eUACᵀHᵀ
V − eV BCᵀHᵀ

V + eUCAᵀHᵀ
V + eV DAᵀHᵀ

V = sV

which amounts to eU (AD −BC)Hᵀ
U = sU and eV (AD −BC)Hᵀ

V = sV , since
A, B, C, D are diagonal matrices, they are therefore symmetric and commute
with each other. We finish the proof by observing that AD−BC = In/2. ut
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Performing the two decoding in (5) independently with the Prange algorithm
gains nothing. However if we first solve in V with the Prange algorithm, and
then seek a solution in U which properly depends on eV we increase the range
of weights accessible in polynomial time for e. It then turns out that the range
[ω−UV, ω

+
UV] of relative weights w/n for which the (U,U + V )-decoder works in

polynomial time is larger than [ω−easy, ω
+
easy]. This will provide an advantage to

the trapdoor owner.

Tweaking the Prange Decoder for Reaching Large Weights. When q = 2, small
and large weights play a symmetrical role. This is not the case anymore for q ≥ 3.
In what follows we will suppose that q ≥ 3. In order to find a solution e of large
weight to the decoding problem eHᵀ = s, we use Proposition 3 and first find an
arbitrary solution eV to eV HV

ᵀ
= sV . The idea, now for performing the second

decoding eUHU
ᵀ

= sU , is to take advantage of eV to find a solution eU that
maximizes the weight of e = ϕ(eU , eV ). On any information set of the U code,
we can fix arbitrarily eU . Such a set is of size kU and on those positions i we
can always choose eU (i) such that this induces simultaneously two positions in
e that are non-zero. These are ei and ei+n/2. We just have to choose eU (i) so
that we have simultaneously aieU (i) + bieV (i) 6= 0 and cieU (i) + dieV (i) 6= 0.
This is always possible since q ≥ 3 and it gives an expected weight of e:

E(|e|) = 2

(
kU +

q − 1

q
(n/2− kU )

)
=
q − 1

q
n+

2kU
q

(6)

The best choice for kU is to take kU = k up to the point where q−1
q n+ 2k

q = n,

that is k = n/2 and for larger values of k we choose kU = n/2 and kV = k− kU .

Why Is the Trapdoor More Powerful for Large Weights than for Small Weights?
This strategy can be clearly adapted for small weights. However, it is less power-
ful in this case. Indeed, to minimize the final error weight we would like to choose
eU (i) in kU positions such that aieU (i) + bieV (i) = 0 and cieU (i) + dieV (i) = 0.
Here as aidi − bici = 1 and aici 6= 0 in the family of codes we consider, this is
possible if and only if eV (i) = 0. Therefore, contrarily to the case where we want
to reach errors of large weight, the area of positions where we can gain twice is
constrained to be of size n/2 − |eV |. The minimal weight for eV we can reach
in polynomial time with the Prange decoder is given by q−1

q (n/2− kV ). In this
way the set of positions where we can double the number of 0 will be of size
n/2− q−1

q (n/2− kV ) = n
2q + q−1

q kV . It can be verified that this strategy would
give the following expected weight for the final error we get:

E(|e|) =
q − 1

q
n− 2

q − 1

q
kU if kU ≤

n

2q
+
q − 1

q
kV and

2(q − 1)2

(2q − 1)q
(n− k) else.

5 Preimage Sampling with Trapdoor: Achieving a
Uniformly Distributed Output

We restrict our study to q = 3 but it can be generalized to larger q. To be a
trapdoor one-way preimage sampleable function, we have to enforce that the
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outputs of our algorithm, which inverts our trapdoor function, are very close
to be uniformly distributed over Sw. The procedure described in the previous
section using directly the Prange decoder, does not meet this property. As we
will prove, by changing it slightly, we will achieve this task by still keeping the
property to output errors of weight w for which it is hard to solve the decoding
problem for this weight. However, the parameters will have to be chosen carefully
and the area of weights w for which we can output errors in polynomial time
decreases. Figure 2 gives a rough picture of what will happen. A calculation

hard hardhardeasy
w

0

w−easy w+
easy

nw−UV w+
UV

easy with (U,U+V) trapdoor

no leakage with (U,U + V ) trapdoor

Fig. 2. Hardness of (U,U + V ) Decoding with no leakage of signature

available in [18] shows that leakage immunity can be efficiently achieved by
rejection sampling for w > w+

easy. At this moment, we do not know how to
achieve this efficiently for w < w−easy.

5.1 Rejection Sampling to reach Uniformly Distributed Output

We will tweak slightly the generalized (U,U + V )-decoder from the previous
section by performing in particular rejection sampling on eU and eV in order
to obtain an error e satisfying eHᵀ = s that is uniformly distributed over the
words of weight w when the syndrome s is randomly chosen in Fn−k3 . Solving the
decoding problem 2 of the generalized (U,U+V )-code will be done by solving (5)
through an algorithm whose skeleton is given in Algorithm 2. DecodeV(HV , s

V )
returns a vector satisfying eV HV

ᵀ
= sV , whereas DecodeU(HU , ϕ, s

U , eV )
returns a vector satisfying eUHU

ᵀ
= sU and such that |ϕ(eU , eV )| = w. Here

s = (sU , sV ) with sU ∈ Fn/2−kU3 and sV ∈ Fn/2−kV3 . What we want to achieve

Algorithm 2 DecodeUV(HV ,HU , ϕ, s)

1: repeat
2: eV ← DecodeV(HV , sV )
3: until Condition 1 is met
4: repeat
5: eU ← DecodeU(HU , ϕ, s

U , eV ) . We assume that |ϕ(eU , eV )| = w here.
6: e← ϕ(eU , eV )
7: until Condition 2 is met
8: return e

by rejection sampling is that the distribution of e output by this algorithm is the
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same as the distribution of eunif that denotes a vector that is chosen uniformly
at random among the words of weight w in Fn3 . This will be achieved by ensuring
that:

1. the eV fed into DecodeU(·) at Step 5 has the same distribution as eunif
V ,

2. the distribution of eU surviving to Condition 2 at Step 7 conditioned on the
value of eV is the same as the distribution of eunif

U conditioned on eunif
V .

There is a property of the decoders DecodeV(·) and DecodeU(·) derived from
Prange decoders that we will consider that will be very helpful here.

Definition 3. DecodeV(·) is said to be weightwise uniform if the output eV of
DecodeV(HV , s

V ) is such that P(eV ) is a function of the integer |eV | when sV

is chosen uniformly at random in Fn/2−kV3 . DecodeU(·) is m1-uniform if the
outputput eU of DecodeU(HU , ϕ, s

U , eV ) is such that the conditional probability
P(eU |eV ) is a function of the pair of integers (|eV |,m1(ϕ(eU , eV )) where

m1(x)
4
=
∣∣{1 ≤ i ≤ n/2 : |(xi, xi+n/2)| = 1

}∣∣ .
It is readily observed that P(eunif

V ) and P(eunif
U |eunif

V ) are also only functions of
|eunif
V | and (|eunif

V |,m1(eunif)) respectively. From this it is readily seen that we
obtain the right distributions for eV and eU conditioned on eV by just ensuring
that the distribution of |eV | follows the same distribution as |eunif

V | and that
the distribution of m1(e) conditioned on |eV | is the same as the distribution of
m1(eunif) conditioned on |eunif

V |. This is shown by the following lemma.

Lemma 1. Let e be the output of Algorithm 2 when sV and sU are uniformly

distributed in Fn/2−kV3 and Fn/2−kU3 respectively. Assume that DecodeU(·) is
m1-uniform whereas DecodeV(·) is weightwise uniform. If for any possible y
and z, |eV | ∼ |eunif

V | and P(m1(e) = z | |eV | = y) = P(m1(eunif) = z | |eunif
V | =

y), then e ∼ eunif. The probabilities are taken here over the choice of sU and sV

and over the internal coins of DecodeU(·) and DecodeV(·).
Proof. We have for any x in Sw

P(e = x) = P(eU = xU | eV = xV )P(eV = xV )

= P(DecodeU(HU , ϕ, s
U , eV ) = xU | eV = xV )

P(DecodeV(HV , s
V ) = xV )

=
P(m1(e) = z | |eV | = y)

n(y, z)

P(|eV | = y)

n(y)

4
=P (7)

where n(y) is the number of vectors of Fn/23 of weight y and n(y, z) is the number
of vectors e in Fn3 such that eV = xV and such that m1(e) = z (this last number
only depends on xV through its weight y). Equation (7) is here a consequence of
the weightwise uniformity of DecodeV(·) on one hand and the m1-uniformity
of DecodeU(·) on the other hand. We conclude by noticing that

P =
P(m1(eunif) = z | |eunif

V | = y)

n(y, z)

P(|eunif
V | = y)

n(y)
(8)

= P(eunif
U = xU | eunif

V = xV )P(eunif
V = xV ) = P(eunif = x)
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Equation (8) follows from the assumptions on the distribution of |eV | and of the
conditional distribution of m1(e) for a given weight |eV |. ut

This shows that in order to reach a uniformly distribution for e over Sw it is
enough to perform a rejection sampling based on the weight |eV | for DecodeV(·)
and based on the pair (|eV |,m1(e)) for DecodeU(·). In other words, our decod-
ing algorithm with rejection sampling will use a rejection vector rV indexed by
the weights of eV for DecodeV(·) and a two-dimensional rejection vector rU
indexed by (|eV |,m1(e)) for DecodeU(·). This is described in Algorithm 3.

Algorithm 3 DecodeUV(HV ,HU , ϕ, s)

1: repeat
2: eV ← DecodeV(HV , sV )
3: until rand([0, 1]) ≤ rV (|eV |)
4: repeat
5: eU ← DecodeU(HU , ϕ, s

U , eV )
6: e← ϕ(eU , eV )
7: until rand([0, 1]) ≤ rU (|eV |,m1(e))
8: return e

Standard results on rejection sampling yield the following proposition:

Proposition 4. For any i, t ∈ J0, n/2K and s ∈ J0, tK, let

q1(i)
4
=P (|eV | = i) ; qunif1 (i)

4
=P

(
|eunif
V | = i

)
(9)

q2(s, t)
4
=P (m1(e) = s | |eV | = t) ; qunif2 (s, t)

4
=P

(
m1(eunif) = s | |eunif

V | = t
)

(10)

rV (i)
4
=

1

M rs
V

qunif1 (i)

q1(i)
and rU (s, t)

4
=

1

M rs
U (t)

qunif2 (s, t)

q2(s, t)
with

M rs
V
4
= max

0≤i≤n/2

qunif1 (i)

q1(i)
and M rs

U (t)
4
= max

0≤s≤t

qunif2 (s, t)

q2(s, t)

Then if DecodeV(·) is weightwise uniform and DecodeU(·) is m1-uniform,
the output e of Algorithm 3 satisfies e ∼ eunif.

5.2 Application to the Prange Decoder

To instantiate rejection sampling, we have to provide here (i) how DecodeV(·)
and DecodeU(·) are instantiated and (ii) how qunif1 , qunif2 , q1 and q2 are com-
puted. Let us begin by the following proposition which gives qunif1 and qunif2 .
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Proposition 5. Let n be an even integer, w ≤ n, i, t ≤ n/2 and s ≤ t be
integers. We have,

qunif1 (i) =

(
n/2
i

)(
n
w

)
2w/2

i∑
p=0

w+p≡0 mod 2

(
i

p

)(
n/2− i

(w + p)/2− i

)
23p/2 (11)

qunif2 (s, t) =

(
t
s

)( n/2−t
w+s

2 −t

)
2

3s
2∑

p

(
t
p

)( n/2−t
w+p

2 −t

)
2

3p
2

if w + s ≡ 0 mod 2 and 0 else (12)

Algorithm 4 DecodeV(HV , s
V ) the Decoder outputting an eV such that

eV Hᵀ
V = sV .

1: J , I ← FreeSet(HV )
2: `←↩ DV

3: xV ←↩
{
x ∈ Fn/2

3 | |xJ | = `,Supp(x) ⊆ I
}

. (xV )I\J is random

4: eV ← PrangeStep(HV , sV , I,xV )
5: return eV

function FreeSet(H)

Require: H ∈ F(n−k)×n
3

Ensure: I an information set of 〈H〉⊥ and J ⊂ I of size k − d
1: repeat
2: J ←↩ J1, nK of size k − d
3: until rankHJ = n− k
4: repeat
5: J ′ ←↩ J1, nK\J of size d
6: I ← J t J ′
7: until I is an information set of 〈H〉⊥
8: return J , I

Algorithms DecodeV(·),DecodeU(·) are described in Algorithms 4 and 5.
These two algorithms both use the Prange decoder in the same way as we did
with the procedure described in §4.3 to reach large weights, except that here
we introduced some internal distributions DV and the DtU ’s. These distributions
are here to tweak the weight distributions of DecodeV(·) and DecodeU(·) in
order to reduce the rejection rate. We have:

Proposition 6. Let n be an even integer, w ≤ n, i, t, kU ≤ n/2 and s ≤ t be

integers. Let d be an integer, k′V
4
= kV − d and k′U

4
= kU − d. Let XV (resp. Xt

U )
be a random variable distributed according to DV (resp. DtU ). We have,

q1(i) =

i∑
t=0

(
n/2−k′V
i−t

)
2i−t

3n/2−k
′
V

P(XV = t) (13)
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Algorithm 5 DecodeU(HU , ϕ, s
U , eV ) the U-Decoder outputting an eU such

that eUHᵀ
U = sU and |ϕ(eU , eV )| = w.

1: t← |eV |
2: k 6=0 ←↩ Dt

U

3: k0 ← k′U − k 6=0 . k′U
4
= kU − d

4: repeat
5: J , I ← FreeSetW(HU , eV , k 6=0)

6: xU ←↩ {x ∈ Fn/2
3 | ∀j ∈ J , x(j) /∈ {− bi

ai
eV (i),− di

ci
eV (i)} and Supp(x) ⊆ I}

7: eU ← PrangeStep(HU , s
U , I,xU )

8: until |ϕ(eU , eV )| = w
9: return eU

function FreeSetW(H,x, k 6=0)

Require: H ∈ F(n−k)×n
q ,x ∈ Fn

q and k 6=0 ∈ J0, kK.
Ensure: J and I an information set of 〈H〉⊥ such that |{i ∈ J : xi 6= 0}| = k 6=0 and
J ⊂ I of size k − d.

1: repeat
2: J1 ←↩ Supp(x) of size k 6=0

3: J2 ←↩ J1, nK\Supp(x) of size k − d− k 6=0.
4: J ← J1 t J2

5: until rankHJ = n− k
6: repeat
7: J ′ ←↩ J1, nK\J of size d
8: I ← J t J ′
9: until I is an information set of 〈H〉⊥

10: return J , I

q2(s, t) =


∑
k6=0∈K

(
t−k6=0

s

)( n/2−t−k0
w+s

2 −t−k0

)
2

3s
2∑

p

(
t−k6=0

p

)( n/2−t−k0
w+p

2 −t−k0

)
2

3p
2

P(Xt
U = k 6=0) if w − s even.

0 else

(14)

with K = {k 6=0 | t+ k′U − n/2 ≤ k6=0 ≤ t} and k0
4
= k′U − k6=0

A parameter d is introduced in Proposition 6 and in Algorithms 4 and 5.
When d is large enough ρ(e, eunif) will be typically very small as shown by

Theorem 1. Let e be the output of Algorithm 3 based on Algorithms 4,5 where
the entry s is chosen uniformly at random in Fn−k3 and eunif be a uniformly
distributed error of weight w. We have

PHU ,HV

(
ρ(e, eunif) > 3−d/2

)
≤ 3−d/2.

A much stronger result showing that ρ(e, eunif) is typically smaller than n23−d

will be given in the full paper [18]. It will be helpful to consider now the following
definition.
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Definition 4 (Bad and Good Subsets). Let d ≤ k ≤ n be integers and

H ∈ F(n−k)×n
3 . A subset E ⊆ J1, nK of size k − d is defined as a good set for H

if HE is of full rank where E denotes the complementary of E. Otherwise, E is
defined as a bad set for H.

The proof of this theorem relies on introducing a variant of the decoder based on
variants of the U and V decoders VarDecodeV(·) and VarDecodeU(·) of al-
gorithms DecodeV(·) and DecodeU(·) respectively that work as DecodeV(·)
and DecodeU(·) when J is a good set and depart from it when J is a bad
set. In the later case, the Prange decoder is not used anymore and an error is
output that simulates what the Prange decoder would do with the exception
that there is no guarantee that the error eV that is output by VarDecodeV(·)
satisfies eV HV = sV or that the eU that is output by VarDecodeU(·) satisfies
eUHU = sU . The eV and eU that are output are chosen on the positions of
J as DecodeV() and DecodeU() as would have done it, but the rest of the
positions are chosen uniformly at random in F3. It is clear that in this case

Fact 2 VarDecodeV(·) is weightwise uniform and VarDecodeU(·) is m1-
uniform.

The point of considering VarDecodeV(·) and VarDecodeU(·) is that they
are very good approximations of DecodeV(·) and DecodeU(·) that meet the
uniformity conditions that ensure by using Lemma 1 that the output of Algo-
rithm 3 using VarDecodeV(·) and VarDecodeU(·) instead of DecodeV(·)
and DecodeU(·) produces an error e that is uniformly distributed over the
words of weight w. The outputs of VarDecodeV(·) and VarDecodeU(·) only
differ from the output of DecodeV(·) and DecodeU(·) when a bad set J is
encountered. These considerations can be used to prove the following proposi-
tion.

Proposition 7. Algorithm 3 based on VarDecodeV(·) and VarDecodeU(·)
produces uniformly distributed errors eunif of weight w. Let e be the output of
Algorithm 3 with the use of DecodeV(·) and DecodeU(·). Let Junif be uni-
formly distributed over the subsets of J1, n/2K of size kV − d whereas JHV is
uniformly distributed over the same subsets that are good for HV . Let IunifxV ,`

be
uniformly distributed over the subsets of J1, n/2K of size kU − d such that their
intersection with xV is of size ` whereas IHU

xV ,`
is the uniform distribution over

the same subsets that are good for HU . We have:

ρ
(
e; eunif

)
≤ ρ

(
JHV ; Junif

)
+
∑
xV ,`

ρ
(
IHU

xV ,`
; IunifxV ,`

)
P (k 6=0 = ` | eV = xV )P

(
eunif
V = xV

)
Proof. The first statement about the output of Algorithm 3 is a direct conse-
quence of Fact 2 and Lemma 1. The proof of the rest of the proposition relies
on the following proposition [30, Proposition 8.10]:
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Proposition 8. Let X,Y be two random variables over a common set A. For
any randomized function f with domain A using internal coins independent from
X and Y , we have:

ρ (f(X); f(Y )) ≤ ρ (X;Y ) .

Let us define for xV ∈ Fn/23 and xU ∈ Fn/23 ,

p(xV )
4
= P (eV = xV )

q(xV )
4
= P

(
eunif
V = xV

)
p(xU |xV )

4
= P (eU = xU | eV = xV )

q(xU |xV )
4
= P

(
eunif
U = xU | eunif

V = xV
)

We have,

ρ
(
e; eunif

)
= ρ

(
eU , eV ; eunif

U , eunif
V

)
=
∑

xV ,xU

|p(xV )p(xU |xV )− q(xV )q(xU |xV )|

=
∑

xV ,xU

|(p(xV )− q(xV ))p(xU |xV ) + (p(xU |xV )− q(xU |xV ))q(xV )|

≤
∑

xV ,xU

|(p(xV )− q(xV ))p(xU |xV )|+ |(p(xU |xV )− q(xU |xV )q(xV )|

=
∑
xV

|(p(xV )− q(xV ))|+
∑

xV ,xU

|p(xU |xV )− q(xU |xV )| q(xV ) (15)

where in the last line we used that
∑

xU
|p(xU |xV )| = 1 for any xV . Thanks to

Proposition 8: ∑
xV

|p(xV )− q(xV )| ≤ ρ
(
JHV ; Junif

)
(16)

as the internal distribution DV of DecodeV(·) is independent of JHV and Junif.
Let us upper-bound the second term of the inequality. The distribution of k6=0

is only function of the weight of the vector given as input to DecodeU(·) or
VarDecodeU(·). Therefore,

P (k6=0 = ` | eV = xV ) = P
(
k 6=0 = ` | eunif

V = xV
)

(17)

From (17), using the notation p(xU |xV , `)
4
=P(eU = xU | k 6=0 = `, eV = xV )

and q(xU |xV , `)
4
=P(eunif

U = xU | k 6=0 = `, eunif
V = xV ), we obtain

p(xU |xV )− q(xU |xV ) =
∑
`

(p(xU |xV , `)− q(xU |xV , `))P (k 6=0 = ` | eV = xV )

(18)
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The internal coins of DecodeU(·) and VarDecodeU(·) are independent of
IHU

xV ,`
and IunifxV ,`

and by using Proposition 8 we have for any xV and `:∑
xU

|p(xU |xV , `)− q(xU |xV , `)| ≤ ρ
(
IHU

xV ,`
; IunifxV ,`

)
(19)

Combining Equations (15), (16), (18) and (19) concludes the proof. ut

The expectations of ρ
(
JHV ; Junif

)
and ρ

(
IHU

xV ,`
; IunifxV ,`

)
are upperbounded by

Lemma 2. We have

ρ
(
JHV ; Junif

)
=

#{subsets of J1, n/2K of size k − d bad for H}(
n/2
k−d
) (20)

ρ
(
IHU

xV ,`
; IunifxV ,`

)
=

Nx,`(|x|
`

)(
n/2−|x|
k−d−`

) (21)

E
{
ρ
(
JHV ; Junif

)}
≤ 3−d

2
(22)

E
{
ρ
(
IHU

xV ,`
; IunifxV ,`

)}
≤ 3−d

2
(|x|
`

)(
n/2−|x|
k−d−`

) , , (23)

where Nx,` is the number of subsets of J1, n/2K of size k − d such that their
intersection with Supp(x) is of size ` and that are bad for H.

Proof. (20) and (21) follow from the fact that that the statistical distance be-
tween the uniform distribution over J1, sK and the uniform distribution over J1, tK
(with t ≥ s) is equal to t−s

t . Let us index from 1 to
(
n/2
k−d
)

the subsets of size
k − d of J1, n/2K and let Xi be the indicator of the event “the subset of in-

dex i is bad”. We have N =
∑(n/2

k−d)
i=1 Xi. For integers d < m we have (see [18,

Lemma 6]) P(rank M < m − d) ≤ 1
2·3d when M is chosen uniformly at ran-

dom in F(m−d)×m
3 . This implies P(Xi = 1) ≤ 1

2·3d and E
{
ρ
(
JHV ; Junif

)}
=

E
{

N

(n/2
k−d)

}
=
∑(n/2

k−d)
i=1

P(Xi=1)

(n/2
k−d)

≤ 1
2·3d . This proves (22). (23) follows from similar

arguments. ut

Proof (of Theorem 1). By using Markov’s inequality we have, by Proposition 7
and Lemma 2

P
(
ρ(e, eunif) > 3−d/2

)
≤ 3d/2E

{
ρ(e, eunif)

}
≤ 3d/2E

{
ρ
(
JHV ; Junif

)
+
∑
xV ,`

ρ
(
IHU

xV ,`
; IunifxV ,`

)
P (k 6=0 = ` | eV = xV )

P
(
eunif
V = xV

)}
≤ 3d/2

3−d

2
+
∑
xV ,`

3−d

2
(|x|
`

)(
n/2−|x|
k−d−`

)
 ≤ 3−d/2.

ut



24 Thomas Debris, Nicolas Sendrier, and Jean-Pierre Tillich

6 Achieving Uniform Domain Sampling

Hpk denotes the public parity-check matrix of a normalized generalized (U,U +
V )-code as described in §3.2. The random structure of Hpk makes the syndromes
associated to Hpk indistinguishable in a very strong sense from random syn-
dromes as the following proposition shows. This achieves the Domain Sampling
property of Definition 1. The following definition will be useful.

Definition 5. (number of V blocks of type I). In a normalized generalized
(U,U + V ) code of length n associated to (a,b, c,d), the number of V blocks of

type I, which we denote by nI , is defined as: nI
4
= |{1 ≤ i ≤ n/2 : bidi = 0}| .

Proposition 9. Let DH
w be the distribution of eHᵀ when e is drawn uniformly

at random among Sw and let U be the uniform distribution over Fn−k3 . We have

EHpk

(
ρ(DHpk

w ,U)
)
≤ 1

2

√
ε with,

ε = 3n−k

2w(n
w)

+
∑n

2
j=0

3
n
2
−kV (

n
2
j )

(
j∑

p=0:p≡w (mod 2)
(j
p)(

n
2
−j

w+p
2
−j

)2
3p
2

)2

2w+j(n
w)

2 +3
n
2
−kU

(∑nI
j=0

(nI
j )(n−nI

w−j )
2

(n
w)

2
2j

)
.

This bound decays exponentially in n in a certain regime of parameters:

Proposition 10. Let RU
4
= 2kU

n , RV
4
= 2kV

n , R
4
= k

n , ω
4
= w

n , ν
4
= nI

n , then under
the same assumptions as in Proposition 9, we have as n tends to infinity

EHpk

(
ρ(DHpk

w ,U)
)
≤ 2(α+o(1))n

where α
4
= 1

2 min ((1−R) log2(3)− ω − h2(ω), α1, α2) and

α1
4
= min

(x,y)∈R

1

2
(1−RV ) log2 3− ω − 2h2(ω) +

h2(x)

2
+ x

(
h2(y) +

3

2
y − 1

2

)
+(1− x)h2

(
ω − x(1− y)

1− x

)
R 4= {(x, y) ∈ [0, 1)× [0, 1] : 0 ≤ ω − x(1− y) ≤ 1− x}

α2
4
= min

max(0,ω+ν−1)≤x≤min(ν,ω)

1

2
(1−RU ) log2 3− 2h2(ω) + νh2

(x
ν

)
+2(1− ν)h2

(
ω − x
1− ν

)
− x.

Remark 4. For the set of parameters suggested in [18], we have ε ≈ 2−354 and
α ≈ −0.02135. Note that the upper-bound of Proposition 9 is by no means

sharp, this comes from the 3
n
2−kU

(∑nI

j=0

(nI
j )(n−nI

w−j )
2

(n
w)

2
2j

)
term which is a very

crude upper-bound which is given here to avoid more complicated terms. It is
straightforward to come up with a much sharper bound by improving this part
of the upper-bound.
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The proof of this proposition relies among other things on a variation of the
left-over hash lemma [5] that is adapted to our case: here the hash function to
which we apply the left-over hash lemma is defined as H(e) = eHᵀ

pk. H does not
form a universal family of hash functions (essentially because the distribution of

the Hpk’s is not the uniform distribution over F(n−k)×n
3 ).

Lemma 3. Consider a finite family H = (hi)i∈I of functions from a finite set
E to a finite set F . Denote by ε the bias of the collision probability, i.e. the
quantity such that

Ph,e,e′(h(e) = h(e′)) =
1

|F |
(1 + ε)

where h is drawn uniformly at random in H, e and e′ are drawn uniformly
at random in E. Let U be the uniform distribution over F and D(h) be the
distribution of the outputs h(e) when e is chosen uniformly at random in E. We
have

Eh {ρ(D(h),U)} ≤ 1

2

√
ε.

To use this lemma we observe that

Lemma 4. Assume that x and y are random vectors of Sw that are drawn
uniformly at random in this set. We have

PHpk,x,y

(
xH

ᵀ
pk = yH

ᵀ
pk

)
≤ 1

3n−k
(1 + ε) with ε given in Proposition 9.

Proof. By Proposition 3, the probability we want to compute for is given by
P ((xU − yU )Hᵀ

U = 0 and (xV − yV )Hᵀ
V = 0) where the probability is taken over

HU ,HV ,x,y. To compute this, we use a standard result [18, Lemma 6] that gives

P
(
yH

ᵀ
= s
)

=
1

3r
, (24)

when y is a non-zero vector of Fn3 , s an arbitrary element in Fr3 and when H is
chosen uniformly at random in Fr×n3 . We distinguish between the events:

E1
4
={xU = yU and xV 6= yV }; E2

4
={xU 6= yU and xV = yV }

E3
4
={xU 6= yU and xV 6= yV }; E4

4
={xU = yU and xV = yV }

Under these events we get thanks to (24) and k = kU + kV :

PHsk,x,y

(
xH

ᵀ
sk = yH

ᵀ
sk

)
=

4∑
i=1

PHsk

(
xH

ᵀ
sk = yH

ᵀ
sk|Ei

)
Px,y (Ei)

=
Px,y (E1)

3n/2−kV
+

Px,y (E2)

3n/2−kU
+

Px,y (E3)

3n−k
+ Px,y (E4)

≤ 1

3n−k

(
1 + 3n/2−kUP (E1) + 3n/2−kV P (E2) + 3n−kP(E4)

)
,
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where we used for the last inequality the trivial upper-bound P (E3) ≤ 1. Let us
now upper-bound (or compute) the probabilities of the events E1, E2 and E4. For
E4, recall that from the definition of normalized generalized (U,U + V )-codes
Px,y (E4) = P(x = y) = 1

2w(n
w)

. For E2 we observe that P (E2) ≤ P (xV = yV ). To

upper-bound this probability, we first observe that for any error e ∈ Sj,n/2

P(xV = e) = P (xV = e | |xV | = j)P(|xV | = j) =
1

2j
(
n/2
j

)q1(j)

where qunif1 (j) denotes P(|eunif
V | = j) and is computed in Proposition 5. From

this we deduce that

P(xV = yV ) =

n/2∑
j=0

∑
e∈Fn/2

3 :|e|=j

Px(xV = e)2 =

n/2∑
j=0

1

2j
(
n/2
j

)qunif1 (j)2

which gives:

P (E2) ≤
n/2∑
j=0

qunif1 (j)2

2j
(
n/2
j

) .
The upper-bound on E1 is obtained in a similar way by using first that P(E1) ≤
P(xU 6= yU ) and then the following bound

P(xU 6= yU ) ≤
nI∑
j=0

(
nI
j

)
2−j

((
n−nI

w−j
)(

n
w

) )2

.

proven in [18, §C.2]. ut

7 Concluding Remarks and Further Work

We have presented Wave the first code-based “hash-and-sign” signature scheme
which follows the GPV strategy [28]. It allows to reduce the security of our
scheme to only two assumptions from coding theory. Both of those assumptions
relate closely to hard decoding problems. In the full paper [18], we provide a
precise quantification of the security of the scheme and provide parameters for
it. Note that the GPV strategy provides a very high level of security, but because
of the multiple constraints it imposes, very few schemes managed to comply to
it. For instance, only one such scheme based on hard lattice problems [24] was
proposed to the recent NIST standardization effort. The main purpose of our
work was to propose this new scheme and assess its security. Still, it has a few
issues and extensions that are of interest.
The Far Away Decoding Problem. The message security of Wave relates to the
hardness of finding a codeword far from a given word. A recent work [12] adapts
the best ISD techniques for low weight [39, 8] and goes even further with a
higher order generalized birthday algorithm [48]. Interestingly enough, in the
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non-binary case, this work gives a worst case exponent for the far away codeword
that is significantly larger than the close codeword worst case exponent. This
suggest that one could design code-based primitives with better parameters by
considering the far away codeword problem rather than the usual close codeword
problem.
Distinguishability. Deciding whether a matrix is a parity check matrix of a gen-
eralized (U,U +V )-code is also a new problem. As shown in [17] it is hard in the
worst case since the problem is NP-complete. In the binary case, (U,U+V ) codes
have a large hull dimension for some set of parameters which are precisely those
used in [17]. In the ternary case the normalized generalized (U,U + V )-codes
do not suffer from this flaw. The freedom of the choice on vectors a,b, c and d
is very likely to make the distinguishing problem much harder for generalized
(U,U + V )-codes than for plain (U,U + V )-codes. Coming up with non-metric
based distinguishers in the generalized case seems a tantalizing problem here.
On the Tightness of the Security Reduction. It could be argued that one of
the reasons of why we have a tight security-reduction comes from the fact that
we reduce to the multiple instances version of the decoding problem, namely
DOOM, instead of the decoding problem itself. This is true to some extent,
however this problem is as natural as the decoding problem itself. It has already
been studied in some depth [45] and the decoding techniques for linear codes
have a natural extension to DOOM as noticed in [45]. We also note that with our
approach, where a message has many possible signatures, we avoid the tightness
impossibility results given in [3] for instance.
Rejection Sampling. Rejection sampling in our algorithm is relatively unobtru-
sive: a rejection every few signatures with a crude tuning of the decoder. We
believe that it can be further improved. Our decoding has two steps. Each step is
parametrized by a weight distribution which conditions the output weight distri-
bution. We believe that we can tune those distributions to reduce the probability
of rejection to an arbitrarily small value and thus to avoid the rejection phase.
Improving Parameters. In order to predict accurately enough the output distri-
bution of the signature algorithm, we had to restrict the decoders by excluding
d positions from the information sets. Our result almost certainly applies when
d = 0. By either proving it or stating it as a conjecture we may reduce the block
size by more than 10%.
Instantiation. The scheme is instantiated in [18, §5,§8]. For 128 bits of security,
a signature takes 13 kilobits and a public key 3 megabytes. The rejection rate is
under 10%. An implementation is also available at http://wave.inria.fr.
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