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Abstract. In this work we advance the study of leakage-resilient Au-
thenticated Encryption with Associated Data (AEAD) and lay the the-
oretical groundwork for building such schemes from sponges. Building
on the work of Barwell et al. (ASIACRYPT 2017), we reduce the prob-
lem of constructing leakage-resilient AEAD schemes to that of building
fixed-input-length function families that retain pseudorandomness and
unpredictability in the presence of leakage. Notably, neither property
is implied by the other in the leakage-resilient setting. We then show
that such a function family can be combined with standard primitives,
namely a pseudorandom generator and a collision-resistant hash, to yield
a nonce-based AEAD scheme. In addition, our construction is quite ef-
ficient in that it requires only two calls to this leakage-resilient function
per encryption or decryption call. This construction can be instantiated
entirely from the T-sponge to yield a concrete AEAD scheme which we
call Slae. We prove this sponge-based instantiation secure in the non-
adaptive leakage setting. Slae bears many similarities and is indeed
inspired by Isap, which was proposed by Dobraunig et al. at FSE 2017.
However, while retaining most of the practical advantages of Isap, Slae
additionally benefits from a formal security treatment.

Keywords: AEAD · Leakage Resilience · Side Channels · SLAE
· ISAP

1 Introduction

The oldest and most fundamental application of cryptography is concerned with
securing the communication between two parties who already share a secret key.
The modern cryptographic construct for this application is authenticated en-
cryption with associated data (AEAD), which was the topic of the recent CAE-
SAR competition [6]. Most of the effort in this competition has been directed
towards exploring new designs, optimising performance, and offering robust secu-
rity guarantees. However, there has not been much progress in the development
of AEAD constructions that, by design, protect against side-channel attacks.



This is a challenging problem that is likely to become a primary focus in the
area of AEAD design.

Recently, a handful of AEAD designs with this exact goal have emerged.
Each of these is based on a different approach with varying trade-offs between
complexity, efficiency, and security guarantees. One notable example is the work
of Barwell et al. [4], which proposes AEAD constructions with strong security
guarantees but pays a relatively high price in terms of complexity and efficiency.
Specifically, their constructions achieve security against adaptive leakage but
resort to elliptic-curve pairings and secret sharing in order to realise implemen-
tations of a leakage-resilient MAC and a leakage-resilient pseudorandom function
(employed in a block-wise fashion for encryption) for instantiating their scheme.
A more hands-on approach was adopted by Dobraunig et al. in the design of
their proposed AEAD scheme Isap. It was conceived with the intent to protect
against Differential Power Analysis (DPA) [10]. Isap is entirely sponge-based
and follows a fairly conventional design, augmented with a rekeying strategy.
Arguably, this simpler approach, employing readily-available symmetric prim-
itives, is more likely to lead to a pragmatic solution. However, Isap’s design
rationale is predominantly heuristic, lacking any formal security analysis to jus-
tify its claims. As such the efficacy of Isap’s approach in resisting side-channel
attacks is unclear, both qualitatively and quantitatively, curtailing any objective
comparison with the constructions from [4] and others.

In light of the practical advantages that the sponge-based approach offers,
we remedy this state of affairs as follows. We propose Slae, a derivative of Isap
which retains its main structure and benefits but includes certain modifications
to admit a formal security proof. We analyse its security in the framework of
leakage-resilient cryptography introduced by Dziembowski and Pietrzak [13],
adapted to the random transformation model. Specifically, we prove it secure
with respect to the leakage-resilient AEAD definition, put forward in [4] by
Barwell et al., in the non-adaptive leakage setting. That is, we assume a leakage
function that is fixed a priori and whose output is limited to some number of
bits λ.

Admittedly, Slae achieves qualitatively weaker security than the schemes
of Barwell et al., since it only achieves non-adaptive leakage resilience. Never-
theless, we contend that Slae strikes a more pragmatic balance by improving
on efficiency and ease of implementation while still benefiting from a provably-
secure design. Indeed, several other works [1, 12, 14, 22, 24] have settled for and
argued that non-adaptive leakage security often suffices in practice. Moreover,
as discussed in [24], the syntax of primitives like pseudorandom functions makes
adaptive-leakage security impossible to achieve. In fact Barwell et al. achieve
security against adaptive leakage by resorting to a specialised implementation
of a pseudorandom function which requires an additional random input per in-
vocation. In contrast, Slae adheres to the standard nonce-based AEAD syntax
and requires no source of randomness.

When viewed as sponge-based constructions, Slae and Isap look very simi-
lar and we do not claim any particular novelty in that respect. Nevertheless, the
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rationale behind their design is rather different. Isap was conceived as augment-
ing a standard sponge-based AEAD design with a rekeying strategy, where the
rekeying function is in turn also built from sponges, followed by some optimisa-
tions. The rekeying is intended to frustrate Differential Power Analysis (which
requires several power traces on the same key but distinct inputs) by running
the AEAD scheme with a distinct session key each time its inputs change. In
turn, the session key is produced by combining a hash of the inputs and the
master key through a rekeying function. Ostensibly, the rekeying function is it-
self strengthened against DPA by reducing its input data complexity through
a low sponge absorption rate. In contrast Slae is understood through a top-
down design where we gradually decompose a leakage-resilient AEAD scheme
into smaller components which we then instantiate using sponges. In particular
there is no mention of rekeying or session keys. Note that there is more to this
distinction than mere renaming. For instance, if we compare the MAC compo-
nents in Isap and Slae we notice that the same value that serves as the MAC
session key in Isap is used directly as the MAC tag in Slae.

At a more general level, the key premise made in [10] is that sponges of-
fer a promising and practical solution to protect against side-channel attacks.
Our work serves to provide formal justification to this claim and allows one to
calculate concrete parameters for a desired security level.

1.1 Contribution

Below is an outline of our contributions highlighting how we improve on prior
works and some of the challenges we face in our analysis.

A Generic Construction (FGHF′). The composition theorem in [4] reconsid-
ers the N2 construction from [19] in the setting of leakage resilience. Specifically
they show that given a MAC that is both leakage-resilient strongly unforge-
able and a leakage-resilient pseudorandom function, together with an encryption
scheme that is leakage-resilient against augmented chosen plaintext attacks, the
N2 construction yields a leakage-resilient AEAD scheme. We extend this result,
in the non-adaptive setting, by further decomposing the MAC and the encryption
scheme into simpler lower-level primitives, ultimately giving rise to the FGHF′

construction. In turn this constructs a leakage-resilient AEAD scheme from two
fixed-size leakage-resilient functions F and F ′, a standard pseudorandom gener-
ator G, and a collision-resistant vector hash H. The construction requires that
both F and F ′ be leakage-resilient pseudorandom functions and that F ′ addi-
tionally be a leakage-resilient unpredictable function. The latter is a notion that
we introduce.

As pointed out in [4], in the adaptive leakage setting any MAC whose verifi-
cation algorithm recomputes the tag and checks for equality with the candidate
tag, simply cannot be strongly unforgeable. They overcome this issue through
an ingenious MAC implementation. However this requires three pairing evalua-
tions per verification and a source of randomness. In the FGHF′ construction
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we show that by settling for non-adaptive leakage security the canonical MAC
construction, which recomputes the tag and checks for equality, can be rescued.
Specifically, we show that any leakage-resilient unpredictable function gives rise
to a canonical MAC which is strongly unforgeable. In contrast to the leakage-free
setting, not every pseudorandom function is an unpredictable function. This has
to do with the fact that in unpredictability we give the adversary more freedom
in what it can query to its oracles, which is in turn a necessary requirement
for composition to hold. In addition, we prove that one can combine a collision-
resistant hash function with fixed-input-length leakage-resilient pseudorandom
and unpredictable functions to obtain corresponding primitives with extended
input domains.

For the encryption part, Barwell et al. use Counter Feedback Mode instanti-
ated with a leakage-resilient pseudorandom function and an additional extra call
to generate the initial vector from the nonce. Thus multiple calls to the leakage-
resilient pseudorandom function are required for each encryption call. In contrast
we show that to meet the required security notion, one can do with just one call
to the leakage-resilient pseudorandom function and a pseudorandom generator,
thereby resulting in a considerably more efficient scheme. Thus, if one is content
with non-adaptive leakage security then the FGHF′ construction constitutes a
simpler recipe yielding a more efficient AEAD scheme.

All the results needed to prove the security of the FGHF′ construction hold in
the general adaptive setting. The limitation to the non-adaptive leakage setting
comes from the fact that leakage-resilient unpredictable functions are unattain-
able in the adaptive-leakage setting if no further restriction is imposed on the
set of leakage functions.

Non-Adaptively Leakage-Resilient Functions from Sponges. Having re-
duced the task of constructing a leakage-resilient AEAD scheme to that of con-
structing suitable leakage-resilient function families, we turn our attention to
the latter problem. We instantiate both F and F ′ with the same sponge-based
construction, which we refer to as SlFunc. This construction is essentially the
rekeying function employed in Isap [10] instantiated with a random transforma-
tion (T-sponge) instead of a random permutation (P-sponge). In [10] this was
proposed without proof, instead its security was argued based on its apparent
similarity to the GGM construction [15] and the corresponding results in [14,22]
for it yielding a leakage-resilient pseudorandom function family. However, there
are clear differences between the sponge construction and the GGM construc-
tion and we do not see a way to make a direct connection between the security
of the two. In fact our proof follows a fairly different strategy from the ones
presented in [14,15,22] – which all rely on a hybrid argument whereas ours does
not. Moreover, for the overall security of Slae we need this function family to
additionally be leakage-resilient unpredictable, which, as was discussed above,
does not follow from it being leakage-resilient pseudorandom. Nevertheless, in
both cases we are able to show the intuitive claim made in [10] that λ bits of
leakage can be compensated for by increasing the capacity by λ bits.
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Another technical challenge that we face here is that we cannot employ the
H-coefficient technique which is commonly used to prove the security of var-
ious sponge-based constructions. Like most other works on leakage resilience,
we resort to arguments based on min-entropy and its chain rule in order to
deal with leakage. Unfortunately, such arguments do not combine well with the
H-coefficient technique, which precludes us from using it. In turn, this renders
the security proof more challenging, as we have to deal with an adversary that
may choose its queries (not the leakage function) adaptively. In contrast, the
H-coefficient technique would automatically bypass this issue by reducing the
security proof to a counting problem.

A Concrete Sponge-Based AEAD Scheme (Slae). Finally, by instantiat-
ing the FGHF′ construction with the above sponge-based construction for F and
F ′ and matching sponge-based constructions for G and H we obtain Slae. We
also present security proofs for the T-sponge instantiations of the pseudorandom
generator and the vector hash, which we were unable to readily find in the litera-
ture. Slae is perhaps our most practical contribution – an entirely sponge-based
leakage-resilient nonce-based AEAD scheme with provable security guarantees
that is simple to implement and reasonably efficient. The efficiency of Slae could
be further optimised using similar techniques to the ones described in [10] for
Isap. Furthermore our security proofs are conducted in the concrete security
setting thereby allowing practitioners to easily derive parameter estimates for
their desired security level.

1.2 Related Work

To the best of our knowledge, the first authenticated encryption scheme claimed
to be leakage-resilient was RCB [3], but it was broken soon after [2].

A series of works [7,8,16,20] have proposed a number of leakage-resilient sym-
metric encryption schemes, message authentication codes, and authenticated en-
cryption schemes. These constructions assume that a subset of their components
(block cipher instances) are leakage-free and that the leakage in the other compo-
nents is simulatable, an assumption that is somewhat contentious [18,23]. Based
on these assumptions, they show that the security of their encryption schemes
reduces to the security of a single-block variant of the same scheme. However,
the security of the corresponding single-block schemes remains an open question
that is implicitly assumed to hold.

Abdalla, Beläıd, and Fouque [1] construct a symmetric encryption scheme
that is non-adaptively leakage-resilient against chosen-plaintext attacks. Inter-
estingly, their scheme employs a rekeying function that is not a leakage-resilient
pseudorandom function. However their encryption scheme is not nonce-based as
it necessitates a source of randomness.

In independent and concurrent work [11] Dobraunig and Mennink analyse
the leakage resilience of the duplex sponge construction. While their leakage
model is closer to ours, they prove something different. Namely they show that
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the duplex is indistinguishable from an adjusted ideal extendible input func-
tion (AIXIF) which is an ideal functionality incorporating leakage. In contrast
we show that SlFunc is both a leakage-resilient PRF (LPRF) and a leakage-
resilient unpredictable function (LUF). Furthermore, while the duplex is a more
general construction than SlFunc, we prove better security bounds that allow
for a more efficient realisation for the same level of security. Essentially for λ bits
of leakage and absorption rate rr , their security bound degrades by λ(rr + 1)
whereas ours degrades by λ+ rr . In addition, we leverage the leakage resilience
of SlFunc to construct the leakage-resilient AEAD scheme Slae.

Other independent and concurrent work by Guo et al. [17] proposes an AEAD
design, TETSPonge, that combines a sponge construction with two tweakable
block cipher instances. While their work and ours share the goal of constructing
leakage-resilient AEAD schemes, the two works adopt very different approaches.
Both the security definitions and the assumptions on which the security of the
schemes rely on are significantly different. One notable difference, is that the
leakage resilience of TETSPonge relies crucially on the tweakable block cipher in-
stances being leak-free, presumably due to a hardened implementation, whereas
our treatment exploits and exposes the inherent leakage resilience of the sponge
construction.

1.3 Organization of the Paper

In Section 2 we review the basic concepts and security definitions that we require
in the rest of the paper. This is followed by a detailed description of Slae in
Section 3. In Section 4 we cover the security analysis of the generic FGHF′

construction. We conclude with Section 5 where we cover the security of the
sponge-based primitives used to instantiate FGHF′ and thereby obtain Slae.
The full details of the proofs can be found in the full version of this paper. We
conclude in Section 6 with some remarks on implementing Slae.

2 Preliminaries

We start by reviewing the basic tools and definitions that we require for our
results. We begin by establishing some notation.

2.1 Notation

For any non-negative integer n ∈ N we use [n] to denote the set {1, . . . , n}, where
[n] = ∅ when n = 0. For any two strings s1 and s2, |s1| denotes the size of s1
and s1 ‖ s2 denotes their concatenation. For a positive integer k ≤ |s1|, we use
bs1ck to denote the string obtained by truncating s1 to its leftmost k bits. The
empty string is denoted by ε, {0, 1}n denotes the set of bit strings of size n, and
{0, 1}∗ denotes the set of all strings of finite length. We write x � S to denote
the process of uniformly sampling a value from the finite set S and assigning it
to x.
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We make use of the code-based game-playing framework by Bellare and
Rogaway [5], where the interaction between a game and the adversary is im-
plicit. In all games, the adversary is given as its input the output of the ini-
tialize procedure, it has oracle access to the other procedures described in the
game, and its output is fed into the finalize procedure. The output of the fi-
nalize procedure is the output of the game. For a game G and an adversary A,
GA ⇒ y denotes the event that G outputs y when interacting with A. Simi-
larly, AG ⇒ x denotes the event that A outputs x when interacting with G.
By convention all boolean variables Bad are initialized to false, and for any
table p[ ] its entries are all initialized to ⊥. When lazy-sampling a random
function with domain X and co-domain Y into a table p[ ], we use inset(p)
and outset(p) to denote respectively the sets of input and output values de-
fined up to that point. That is, inset(p) = {X : p[X] 6=⊥ ∧X ∈ X} and
outset(p) = {p[X] : p[X] 6=⊥ ∧X ∈ X}. If G1 and G2 are games and A is an
adversary we define the corresponding adversarial advantage as

Adv
(
AG1 ,AG2

)
= Pr[AG1 ⇒ 1]− Pr[AG2 ⇒ 1] ,

and the corresponding game advantage as

Adv
(
GA
1 ,G

A
2

)
= Pr[GA

1 ⇒ true]− Pr[GA
2 ⇒ true] .

We will operate in the random transformation model, where ρ is an idealised
random transformation mapping n-bit strings to n-bit strings. For any algorithm
F that uses ρ as a subroutine, we use QF (q , µ) to denote the number of calls to
ρ required when evaluating F q times on a total of µ bits.

2.2 Syntax

Encryption. An authenticated encryption scheme with associated data Aead =
(E ,D) is a pair of efficient algorithms such that:

- The deterministic encryption algorithm E : K×N ×A×M→ {0, 1}∗ takes
as input a secret key K , a nonce N , associated data A, and a message M to
return a ciphertext C .

- The deterministic decryption algorithm D : K×N ×A×{0, 1}∗ →M∪{⊥}
takes as input a secret key K , a nonce N , associated data A, and a ciphertext
C to return either a message in M or ⊥ indicating that the ciphertext is
invalid.

Sets K, N , A, andM denote respectively the key space, the nonce space, the as-
sociated data space, and the message space associated to the scheme. We assume
throughout that E and D are never queried on inputs outside of these sets. An
authenticated encryption scheme is required to be correct and tidy. Correctness
requires that for all K ,N ,A,M if E(K ,N ,A,M ) = C then D(K ,N ,A,C ) = M .
Analogously, tidiness requires that for all K ,N ,A,C if D(K ,N ,A,C ) = M 6= ⊥
then E(K ,N ,A,M ) = C . Furthermore we demand that encryption be length

7



regular, i.e for all K ,N ,A,M it should hold that |E(K ,N ,A,M )| is entirely
determined by |N |, |A|, and |M |.

We will use the terms authenticated encryption scheme and symmetric en-
cryption scheme to refer to the analogously defined encryption scheme which
does not admit associated data as part of its input. For such schemes, A is
implicitly set to the empty string in the security games.

Message Authentication. A message authentication code Mac = (T ,V) is a
pair of efficient algorithms with an associated key space K, domain X , and tag
length t such that:

- The deterministic tagging algorithm T : K × X → {0, 1}t takes as input a
key K and a value X to return a tag T of size t.

- The deterministic verification algorithm V : K×X ×{0, 1}t → {>,⊥} takes
as input a key K , a value X , and a tag T to return either > indicating a
valid input or ⊥ otherwise.

We require that for any key K ∈ K and any admissible input X ∈ X , if
T ← T (K ,X ), then V(K ,X ,T ) = >. When X = {0, 1}∗ we end up with the
usual MAC definition, however we will also consider MACs over tuples of strings,
e.g. X = {0, 1}∗×{0, 1}∗×{0, 1}∗. Such MACs where considered in [19] and we
follow suit in referring to such MACs as vector MACs.

We say that a MAC is canonical if it is implicitly defined by T , where
V(K ,X ,T ) consists of running T ′ ← T (K ,X ) and returning > if T ′ = T
and ⊥ otherwise.

2.3 The Sponge Construction

The sponge construction is a versatile object that can be used to realise various
cryptographic primitives. Several variations of the sponge exist, Fig. 1 illustrates
the plain version of the sponge as originally introduced by Bertoni et al. [9]. We
give here only a brief overview of its operation and the associated nomenclature
that we will use throughout this paper.

The sponge operates iteratively on its inputs through a transformation ρ, and
generally includes an absorbing phase and a squeezing phase. The transformation
ρ maps strings of size n to strings of size n. Associated to the sponge are two
other values called the rate r and the capacity c, where n = r + c. At any
given iteration we refer to the output of the transformation as the state, which
we denote by S . Furthermore, we denote the leftmost r bits of S by S̄ and
the remaining c bits by Ŝ . We will at times refer to S̄ and Ŝ as the outer and
inner parts of the state, respectively. In the absorbing phase an input M is
“absorbed” iteratively r bits at a time. At iteration i input Mi is absorbed by
letting Yi ← (Mi⊕ S̄i) ‖ Ŝi and setting Si+1 ← ρ(Yi). The initial value of S may
generally be set to a constant, a concatenation of a secret key and a constant, or
by applying the transformation to either of these values. Output is produced from
the sponge during the squeezing phase in one or more iterations, r bits at a time.
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absorbing phase squeezing phase
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Fig. 1: Illustration of the plain sponge construction.

At iteration i output Zj is produced by setting Zj ← S̄i and Si+1 ← ρ(Si). The
above variant is normally referred to as the T-sponge, as it employs a fixed-size
random transformation. An alternative instantiation, known as the P-sponge,
replaces this random transformation with a random permutation.

2.4 The Leakage Model

Our leakage model is based on leakage resilience as defined in [13]. This as-
sumes that only computation leaks, and in particular, that only the data that
is accessed during computation can leak information. It allows for continuous
adaptive leakage, where in each query to a leakage oracle the adversary can
specify a leakage function from some predefined set L that it can chose adap-
tively based on prior outputs and leakage. Throughout, we restrict ourselves to
leakage functions that are deterministic and efficiently computable. While our
security definitions are formulated in this general setting, our main results will
be in the weaker granular non-adaptive leakage setting proposed in [14]. We view
the non-adaptive leakage setting as the special case where the leakage set L is
restricted to be a singleton, fixed at the start of the game. In granular leakage,
a single time step is with respect to a single computation of some underlying
primitive, in our case, the transformation ρ. Correspondingly, in this case the
adversary specifies a vector of leakage functions and gets in return the aggregate
leakage from the entire evaluation of the higher-level construction. Note that
in the granular setting the leakage sets for each iteration can be distinct. Sim-
ilarly, when studying the leakage resilience of composite constructions we have
to consider compositions of leakage functions. For instance, if construction C is
composed of primitives A and B with associated leakage sets LA and LB , then we
associate to C the Cartesian product of the two leakage sets, i.e. LC = LA×LB .
The actual inputs that get fed to the leakage functions are implicitly defined by
the construction and its inputs, whereas the combined output is the aggregate
output of all function evaluations.

An analysis of sponge-based constructions compels us to consider leakage
resilience in the random transformation model. A similar setting, albeit in the
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random oracle model, was already considered by Standaert et al. in [22]. A central
question that arises in idealised settings like this is whether the leakage function
should be given access to the ideal primitive. As in [22], we will not give this
access to the leakage function. On the one hand, providing the leakage function
with unlimited access to the random oracle gives rise to artificial attacks, such
as the “future computation attack” discussed in [22], that would not arise in
practice. On the other hand, depriving the leakage function from accessing the
ideal primitive, means that the leakage function cannot leak any bits of the ideal
primitive’s output, which may seem overly restrictive. However, for the case of
sponge-based constructions this is less problematic because from the adversary’s
perspective the full output of a transformation call is completely determined
by the input to the next transformation call. As such, information about the
output of one transformation call can leak as part of the leakage in the next
transformation call. Combined with the fact that the only restriction that we
will impose on the leakage function is to limit its output length, we think that
this leads to a fairly realistic leakage model.

We conclude our discussion on the leakage model by offering our interpre-
tation of the significance of leakage resilience security with respect to practical
side channel attacks. One might object that we model leakage by a deterministic
function whose output is of a fixed bit-length whereas in practice the leakage is
noisy. However through the leakage function we are really trying to capture the
maximum amount of information that an adversary may obtain from evaluating
the scheme on a single input. Hence, the underlying assumption is that no mat-
ter how many times the scheme is run on the same input, in order to even out
the noise, the information that the adversary can obtain is limited. Put in more
practical terms, this roughly translates to assuming that the scheme’s implemen-
tation resists Simple Power Analysis (SPA). On the other hand, if the scheme is
proven to be leakage-resilient then we are guaranteed that an adversary cannot
do much better even if it can observe and accumulate leakage on multiple other
(differing) inputs. Thus a proof of leakage resilience can be interpreted as saying
that if the scheme’s implementation is secure against SPA then, by the inherent
properties of the scheme, it is also secure against Differential Power Analysis
(DPA). However, a proof of leakage resilience is of course no guarantee that a
scheme’s implementation will be secure against SPA.

2.5 Authenticated Encryption and Leakage Resilience

Recently, Barwell et al. [4] provided a definitional framework augmenting nonce-
based authenticated encryption with leakage. Their security notions capture the
leakage resilience setting as defined in [13]. Furthermore, they prove composition
theorems analogous to [19] that additionally take leakage into account. Below we
reproduce their security definitions and composition result which we will employ
in this work, with some minor adaptations. We recast their definitions in a style
that admits code-based proofs [5]. Unlike [4] we make no distinction between a
scheme and its implementation since we are interested in proving security for
the actual scheme. When defining these security notions, we only describe the
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game and the corresponding adversarial advantage. A scheme is understood to
be secure if the adversarial advantage is bounded by a sufficiently small value for
all reasonably-resourced adversaries. Our security theorems will then establish
a bound on the adversarial advantage in terms of the adversary’s resources,
without drawing judgement as to what constitutes “small” and “reasonable”
since that is a rather subjective matter.

Classifying Adversarial Queries. As usual, the adversary has to be forbidden
from making certain queries in order to avoid trivial win conditions. Following
the terminology of [4], if an adversary makes a query (N ,A,M ) to an encryption
oracle that returns C , then repeating this query to one of the encryption oracles
or querying (N ,A,C ) to one of the decryption oracles, is considered to be an
equivalent query. Note that any additional components of a query, such as the
leakage function, are ignored for the purpose of determining equivalence between
two queries. If an adversary makes equivalent queries across two oracles, it is said
to forward that query from one oracle to the other. Note that the two oracles
do not need to be distinct, and thus forwarded queries include repeated queries
to the same oracle.4

Let an encryption query refer to any query made to either a challenge en-
cryption oracle or a leakage encryption oracle. Then an adversary against an
(authenticated) encryption scheme is said to be nonce respecting if it never re-
peats a nonce in two distinct encryption queries.

Games INDaCPLA

procedure Initialize

b� {0, 1}; K � K
return

procedure Enc(N ,M )

C ← E(K ,N ,M )

if b = 0

if f [N ,M ] = ⊥

f [N ,M ] � {0, 1}|C |

return f [N ,M ]

else

return C

procedure LEnc(N ,M , L)

Λ← L(K ,N ,M )

C ← E(K ,N ,M )

return (C , Λ)

procedure LDec(N ,C , L)

Λ← L(K ,N ,C )

M ← D(K ,N ,C )

return (M , Λ)

procedure Finalize (b′)

return (b′ = b)

Fig. 2: Game used to define IND-aCPLA security.

4 This is not really required, since contrary to [4] the challenge oracles are not forgetful
in our case. Nevertheless we conform to the original definition of forwarded queries.
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Chosen-Plaintext Security with Leakage. Barwell et al. introduce an aug-
mented variant of leakage-resilient chosen-plaintext security called IND-aCPLA,
that is required by their composition theorem. Here the adversary is given ac-
cess to three oracles. A challenge oracle that returns either a valid encryption
of a message or a random string of appropriate length. A leakage encryption
oracle that, upon being queried on a message and a leakage function, returns
the corresponding ciphertext and the evaluated leakage. The adversary is not
allowed to forward queries between the two encryption oracles. In addition, it
has limited access to a leakage decryption oracle which returns the decryption
of the queried ciphertext and the leakage corresponding to the queried leakage
function. However, it can only query this oracle on inputs forwarded from the
leakage encryption oracle. Thus the adversary can obtain decryption leakage,
but only on ciphertexts for which it already knows the corresponding message.
Below is the formal definition.

Definition 1 (IND-aCPLA Security). Let Se = (E ,D) be a symmetric en-
cryption scheme and the INDaCPLA game be as defined in Fig. 2. Then for any
nonce-respecting adversary A that never forwards queries to or from the Enc or-
acle, only makes queries to LDec that are forwarded from LEnc, and only makes
encryption and decryption queries containing leakage functions in the respective
sets LE and LD, its corresponding IND-aCPLA advantage is given by:

Advind-acpla
Se (A,LE ,LD) = 2 Pr

[
INDaCPLAA ⇒ true

]
− 1 .

Game LPRF

procedure Initialize

b� {0, 1}; K � K
return

procedure LF(X , L)

y ← F(K ,X )

Λ← L(K ,X )

return (y, Λ)

procedure F(X )

if b = 0

if f [X ] = ⊥
f [X ] � {0, 1}t

return f [X ]

else

return F(K ,X )

procedure Finalize (b′)

return (b′ = b)

Fig. 3: Game used to define LPRF security.

Leakage-Resilient Function Families. We will distinguish among function
families based on their domain X . We will use the terms fixed-input-length func-
tion when X = {0, 1}l for some l ∈ N, variable-input-length function when

12



X = {0, 1}∗, and vector function when the domain is a cartesian product of
string sets, e.g. X = {0, 1}∗ × {0, 1}∗.

For such function families we will consider two security notions: leakage-
resilient pseudorandom functions (LPRF) and leakage-resilient unpredictable
functions (LUF). While LPRF security is well-established in the literature, LUF
security is new. Below are the formal definitions.

Definition 2 (LPRF Security). Let F : K×X → {0, 1}t be a function family
over the domain X and indexed by K, and the LPRF game be as defined in Fig. 3.
Then for any adversary A that never forwards queries to or from the F oracle and
only queries leakage functions in the set LF , its corresponding LPRF advantage
is given by:

Advlprf
F (A,LF ) = 2 Pr

[
LPRFA ⇒ true

]
− 1 .

Game LUF

procedure Initialize

win← false; K � K
return

procedure F(X )

S ←∪ X

y ← F(K ,X )

return y

procedure Lkg(X , L)

Λ← L(K ,X )

return Λ

procedure Guess(X , y′)

y ← F(K ,X )

if X 6∈ S ∧ y = y′

win← true

return (y = y′)

procedure Finalize

return (win)

Fig. 4: Game used to define LUF security.

Definition 3 (LUF Security). Let F : K × X → {0, 1}t be a function family
over the domain X and indexed by K, and the LUF game be as defined in Fig. 4.
Then for any adversary A its corresponding LUF advantage is given by:

Advluf
F (A,LF ) = Pr

[
LUFA ⇒ true

]
.

Unforgeability in the Presence of Leakage. For message authentication
we will require the analogue of strong unforgeability in the leakage setting
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Game SUFCMLA

procedure Initialize

b� {0, 1}; K � K
return

procedure Vfy(X ,T )

if b = 0

return ⊥
else

v ← V(K ,X ,T )

return v

procedure LTag(X , L)

Λ← L(K ,X )

T ← T (K ,X )

return (T , Λ)

procedure LVfy(X ,T , L)

Λ← L(K ,X ,T )

v ← V(K ,X ,T )

return (v, Λ)

procedure Finalize (b′)

return (b′ = b)

Fig. 5: Game used to define SUF-CMLA security.

(SUF-CMLA) put forth in [4]. This is essentially strong unforgeability (SUF-CMA)
formulated as a distinguishing game, with a challenge verification oracle and ad-
ditional tagging and verification oracles that leak. Below is the formal definition.

Definition 4 (SUF-CMLA Security). Let Mac = (T ,V) be a message authen-
tication code and the SUFCMLA game be as defined in Fig. 5. For any adversary
A that never forwards queries from LTag to Vfy, and only queries leakage func-
tions to its tagging and verification oracles in the respective sets LT and LV , its
corresponding SUF-CMLA advantage is given by:

Advsuf-cmla
Mac (A,LT ,LV ) = 2 Pr

[
SUFCMLAA ⇒ true

]
− 1 .

Authenticated Encryption with Leakage. For an authenticated encryption
scheme with associated data our target will be LAE security, which is a natural
extension of the classical security notion put forth by Rogaway [21] to the leakage
setting. This is defined formally below.

Definition 5 (LAE Security). Let Aead = (E ,D) be an authenticated en-
cryption scheme with associated data and the LAE game be as defined in Fig. 6.
Then for any adversary A that never forwards queries to or from the Enc and
Dec oracles and only makes encryption and decryption queries containing leakage
functions in the respective sets LAE and LV D, its corresponding LAE advantage
is given by:

Advlae
Aead (A,LAE ,LV D) = 2 Pr

[
LAEA ⇒ true

]
− 1 .
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Game LAE

procedure Initialize

b� {0, 1}; K � K
return

procedure Enc(N ,A,M )

C ← E(K ,N ,A,M )

if b = 0

if f [N ,A,M ] = ⊥

f [N ,A,M ] � {0, 1}|C |

return f [N ,A,M ]

else

return C

procedure Finalize (b′)

return (b′ = b)

procedure Dec(N ,A,C )

M ← D(K ,N ,A,C )

if b = 0

return ⊥
else

return M

procedure LEnc(N ,A,M , L)

Λ← L(K ,N ,A,M )

C ← E(K ,N ,A,M )

return (C , Λ)

procedure LDec(N ,A,C , L)

Λ← L(K ,N ,A,C )

M ← D(K ,N ,A,C )

return (M , Λ)

Fig. 6: Game used to define LAE security.

Generic Composition in the Leakage Setting. The N2 construction was
introduced in [19] and is depicted pictorially in Fig. 7. In [4] Barwell et al. prove
a composition theorem for this construction that holds in the leakage setting.
We will make use of this theorem and for completeness we reproduce it below,
adapted to the random transformation model.

Theorem 1 (LAE Security of the N2 Construction [4]). Let Se = (E ,D)
be a symmetric encryption scheme with associated leakage sets (LE ,LD) and
Mac = (T ,V) be a MAC with associated leakage sets (LT ,LV ). Further let N2
be the composition of Se and Mac described in Fig. 7, with associated leakage
sets (LAE ,LV D) where LAE = LE × LT and LV D = LD × LV . Then for any
LAE adversary Aae against N2 there exist adversaries Ase, Aprf , and Amac
such that:

Advlae
N2 (Aae,LAE ,LV D) ≤ Advind-acpla

Se (Ase,LE ,LD)

+ Advlprf
T (Aprf ,LT ) + 2Advsuf-cmla

Mac (Amac,LT ,LV ) .

3 Slae: A Sponge-Based LAE Construction

Slae, pronounced “sleigh”, is a Sponge-based non-adaptive Leakage-resilient
AEAD scheme. It is based on, and is closely related to, a prior sponge-based
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Fig. 7: Graphical representation of the N2 construction.

AEAD scheme called Isap [10]. Isap is a nonce-based AEAD scheme intended
to inherently resist side-channel attacks while simultaneously fitting the well-
established syntax of AEAD schemes. More specifically, it claims security against
Differential Power Analysis (DPA) by employing a rekeying mechanism. An im-
portant challenge that Isap overcomes, is to avoid decrypting distinct cipher-
texts under the same key without maintaining a state. Furthermore, as noted
by Isap’s designers, the sponge construction seems markedly well-suited to pro-
tect against side-channels. Typically, the sponge employs a large state that is
continually evolving, which intuitively endows it with an intrinsic resilience to
information leakage. Thus, in contrast to other designs, Isap potentially offers
a fairly efficient LAE solution that can be instantiated with off-the-shelf primi-
tives. However, as we already noted, Isap’s biggest limitation is that its design
is not backed by any formal security analysis, not even in the absence of leakage.

Isap is composed of a symmetric encryption scheme IsapEnc and a MAC
IsapMac combined according to the N2 construction. These components were
conceived by augmenting established sponge constructs with a rekeying function.
In particular the design rationale behind IsapMac is to augment a sponge-based
suffix MAC with a rekeying function. The rekeying is such that the key fed into
the suffix MAC itself depends on the inputs being authenticated and a mas-
ter authentication key. Similarly IsapEnc is a standard sponge-based encryp-
tion scheme whose key is derived from a master encryption key and the nonce.
Throughout, the rekeying function is realised from the sponge by setting the ab-
sorption rate to be one. Intuitively, Isap’s resistance to DPA comes from the fact
that encryption and authentication never use the same key more than once, and
the slow absorption rate employed in the rekeying function. Both of these fac-
tors limit the so-called data complexity of computations involving secret values,
which in turn encumbers DPA attacks. See [10] for more details on Isap.

Slae retains the main structure of Isap, as well as its benefits, but it includes
some changes and restrictions that facilitate its security analysis. While the ma-
jority of these differences are conceptual, they are substantial enough, however,
to invalidate any claim that our security proof applies to Isap. The design of
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Slae can be understood across three different levels of abstraction. At the high-
est level, like Isap, it is the N2 composition of a symmetric encryption scheme
SlEnc and a MAC SlMac. At the second abstraction level, SlMac and SlEnc
can be viewed in terms of smaller components. Specifically, we view SlMac as
combining a collision-resistant vector hash function H and a fixed-input-length
function F ′, and we decompose SlEnc into a fixed-input-length function F and
a pseudorandom generator with variable output length G. Indeed this view cor-
responds to our generic construction of a non-adaptively leakage-resilient AEAD
scheme which we refer to as the FGHF′ construction.

Note that there is no explicit idea of rekeying in the FGHF′ construction. The
only leakage-resilient primitives are F and F ′. For security we will require both
to be LPRF secure and F ′ to additionally be LUF secure. Thus LAE schemes
are easy to construct once we have such primitives. Moreover, F is invoked once
for encryption, and likewise F ′ is invoked once for authentication, irrespective
of the message length. Slae is obtained by instantiating the four components
in the FGHF′ construction with T-sponges. This is the third level view. While
the design rationale behind the FGHF′ construction is quite distinct from that
of Isap, once instantiated, Slae and Isap suddenly look very similar.

We now describe Slae in more detail and then elaborate on the differences
between Slae and Isap in Section 3.4.

3.1 High-Level View of Slae

As already noted, Slae = (Slae-E ,Slae-D) is a nonce-based AEAD scheme
composed from a nonce-based symmetric encryption scheme SlEnc = (SlEnc-E ,
SlEnc-D) and a MAC SlMac = (SlMac-T ,
SlMac-V). These are combined according to the N2 composition, where the
key is split into an encryption key KE and an authentication key KA. During
encryption, SlEnc-E takes the nonce, message, and key KE to return a cipher-
text which is then fed together with the nonce, associated data, and key KA,
to SlMac-T to produce a tag which is then appended onto the ciphertext. De-
cryption proceeds by reversing these operations in a verify-then-decrypt manner,
whereby ciphertext decryption using SlEnc-D proceeds only if tag verification
under SlMac-V was successful. The pseudocode for this composition is described
in Fig. 8.

3.2 The SlMac Construction

A pseudocode description of SlMac = (SlMac-T ,SlMac-V) can be found in
Fig. 9. It is a vector MAC operating on the triple (N ,A,C ), where verification
works by recomputing the tag for the given triple and checking that it is identical
to the given tag. As such, the core functionality of SlMac is captured in the
tagging algorithm SlMac-T , which is additionally depicted in Fig. 10. The
tagging algorithm can be understood as being composed of a (sponge-based)
vector hash function compressing the triple (N ,A,C ) into a digest of size w
bits, which is then fed to the unpredictable function SlFunc to produce a tag
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Slae-E(K ,N ,A,M )

parse K as KE ‖ KA

C ← SlEnc-E(KE ,N ,M )

T ← SlMac-T (KA, (N ,A,C ))

C ← C ‖ T
return C

Slae-D(K ,N ,A,C )

parse K as KE ‖ KA

parse C as C ‖ T
v ← SlMac-V(KA, (N ,A,C ),T )

if v = >
M ← SlEnc-D(KE ,N ,C )

return M

else

return ⊥

Fig. 8: High-level description of Slae in terms of SlMac and SlEnc.

SlMac-T (KA, (N ,A,C ))

A← A ‖ lpad(A, r)

parse A as A1 ‖ . . . ‖ Au

st ∀i |Ai| = r

C ← C ‖ lpad(C , r)

parse C as C1 ‖ . . . ‖ Cv

st ∀i |Ci| = r

Y0 ← N ‖ IV
S1 ← ρ(Y0)

// Absorb Associated Data

for i in {1, . . . , u}

Yi ← (S̄i ⊕Ai) ‖ Ŝi

Si+1 ← ρ(Yi)

// Separate Inputs

Su+1 ← S̄u+1 ‖
(
Ŝu+1 ⊕ (1 ‖ 0c−1)

)
// Absorb Ciphertext

for i in {u+ 1, . . . , u+ v}

Yi ← (S̄i ⊕Ci−u) ‖ Ŝi

Si+1 ← ρ(Yi)

// Generate Tag

H ← bSu+v+1cw
T ← bSlFunc(KA,H )ct
return T

SlMac-V(KA, (N ,A,C ),T )

T ′ ← SlMac-T (KA, (N ,A,C ))

if T = T ′

return >
return ⊥

SlFunc(KA,H )

parse H as H1 ‖ . . . ‖ Hl

st ∀i |Hi| = rr

Y0 ← KA ‖ IV
S1 ← ρ(Y0)

for i in {1, . . . , l}

Yi ← (S̄i ⊕Hi) ‖ Ŝi

Si+1 ← ρ(Yi)

return bSl+1ct

lpad(A, r)

x← |A| mod r

return 1 ‖ 0r−x−1

Fig. 9: Pseudocode description of SlMac and SlFunc.
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Fig. 10: Graphical illustration of SlMac-T .

of size t bits. The nonce N is required to be m bits long, whereas A and C can
be of arbitrary length. Accordingly, SlMac-T starts by padding both A and C
so that their lengths are integer multiples of the sponge rate r . Note that the
padding function, lpad, always returns at least a single bit of padding and is
always applied, even if the input string is already an integer multiple of r .

To compute the hash digest H , the internal state is initialised to ρ(N ‖ IV ),
where IV is a constant string of size n − m, and the padded associated data
A and the padded ciphertext C are then absorbed block by block. An input
separation mechanism is employed in order to demarcate the boundary between
A and C. This involves XORing the string 1‖0c−1 to the inner part of the state
once A has been absorbed, and ensures that distinct pairs (A,C) 6= (A,C) for
which A ‖C = A ‖C do not result in the same hash digest.

Once the hash digest is evaluated, it is fed into SlFunc to compute the final
tag. This is also a sponge-based construction for which a graphical representation
appears in Fig. 11. Here the state is initialised to ρ(KA ‖IV ) and the hash digest
is then absorbed at a reduced rate of rr bits. Once the complete digest has been
absorbed the left most t bits of the state are output as the tag.
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Fig. 11: Graphical illustration of SlFunc.

3.3 The SlEnc Construction

This is the sponge-based symmetric encryption scheme SlEnc = (SlEnc-E ,
SlEnc-D) described in Fig. 12 and depicted in Fig. 13. It is easy to see that

19



SlEnc-E(KE ,N ,M )

parse N as N1 ‖ . . . ‖ Nl

st ∀i |Ni| = rr

parse M as M1 ‖ . . . ‖ Mv

st ∀i < v |Mi| = r and |Mv| ≤ r

// First Sponge Iteration

Y0 ← KE ‖ IV
S1 ← ρ(Y0)

// Absorb Nonce

for i in {1, . . . , l}

Yi ← (S̄i ⊕Ni) ‖ Ŝi

Si+1 ← ρ(Yi)

// Squeeze and Encrypt

for i in {l + 1, . . . , l + v − 1}
Ci−l ← S̄i ⊕Mi−l

Si+1 ← ρ(Si)

Cv ← bS̄l+vc|Mv| ⊕Mv

return C1 ‖ . . . ‖ Cv

SlEnc-D(KE ,N ,C )

parse N as N1 ‖ . . . ‖ Nl

st ∀i |Ni| = rr

parse C as C1 ‖ . . . ‖ Cv

st ∀i < v |Ci| = r and |Cv| ≤ r

// First Sponge Iteration

Y0 ← KE ‖ IV
S1 ← ρ(Y0)

// Absorb Nonce

for i in {1, . . . , l}

Yi ← (S̄i ⊕Ni) ‖ Ŝi

Si+1 ← ρ(Yi)

// Squeeze and Decrypt

for i in {l + 1, . . . , l + v − 1}
Mi−l ← S̄i ⊕ Ci−l

Si+1 ← ρ(Si)

Mv ← bS̄l+vc|Cv| ⊕ Cv

return M1 ‖ . . . ‖ Mv

Fig. 12: Pseudocode description of the SlEnc encryption scheme.

SlFunc SPrg

ρ

KE

IV

⊕

N1

ρ

⊕

Nl

ρ

⊕

C1

M1

ρ

⊕

Cv−1

Mv−1

ρ

⊕

Cv

Mv

k
/

rr
/

n-rr
/

rr
/

n-rr
/

r
/

c
/

r
/

c
/

|Mv|
/

Fig. 13: Graphical illustration of SlEnc-E .
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SPrg(seed ,L)

v ←
⌈
L
r

⌉
S1 ← seed

for i in {1, . . . , v − 1}
Si+1 ← ρ(Si)

R ← S̄1 ‖ . . . ‖ S̄v

return bRcL

Fig. 14: Pseudocode description of SPrg.

SlEnc-D(KE ,N , ·) = SlEnc-E(KE ,N , ·), and consequently we only describe
the operation of SlEnc-E . This algorithm can be viewed as being composed of
a pseudorandom function SlFunc, taking as input the pair (KE ,N ), and whose
output is then fed into a pseudorandom generator SPrg. The output of SPrg
is then used to encrypt the message.

The nonce N is required to be m bits long and we do not require any addi-
tional padding for the message. The evaluation of SlFunc proceeds by initialis-
ing the internal state to ρ(KE ‖ IV ), with a constant IV of size n − k , and then
absorbing the nonce at a reduced rate of rr bits. Once the nonce is absorbed,
the output state Sl+1 serves as the seed to the pseudorandom generator SPrg.
A separate pseudocode description of SPrg can be found in Fig. 14. The first
ciphertext block is generated by XORing the outer part of this state with the
first message block. Afterwards the initial state is given as input to the random
transformation outputting a new state which is then used to derive the next
ciphertext block by simply XORing again the outer state with the next message
block. This process is repeated until the whole message has been processed. If
the last message block is smaller than r bits, we simply truncate the outer state
to the required size and XOR both parts to obtain the last ciphertext block.

3.4 Differences Between Slae and Isap

We have already described in passing some of the differences between Slae and
Isap, but for clarity, we summarise these distinctions below and discuss them in
more detail.

The most prominent difference is that Slae is based on the T-sponge whereas
Isap employs the P-sponge. In particular the security proofs of Slae rely on
treating ρ as a non-invertible transformation. Treating ρ as an invertible random
permutation would add another layer of complexity to the security analysis and
we chose not to pursue this route at this point.

The description of Isap actually specifies three distinct permutations, each
obtained from the same round function but with a varying number of rounds.
These are used in the different components of Isap as a means of optimisation.
Such heuristic optimisations could be employed in Slae as well, but in our
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security analysis we instantiate Slae with the same random transformation
throughout. Indeed this is the more conservative assumption, since otherwise
we would be treating these variants as being sampled independently at random
when in fact they are intimately related.

Another difference between Slae and Isap can be seen in their MAC com-
ponents SlMac and IsapMac. The design of IsapMac is based on combining
a rekeying function IsapRk with a sponge-based suffix MAC. In turn, IsapRk
takes as input a hash of the MAC inputs. As a design optimisation, it is then
noted that this hash is already being computed as part of the suffix MAC, at
which point it is extracted, fed into IsapRk, and its output (the session key) is
fed back into the last permutation of the suffix MAC to yield the MAC tag. In
contrast, in SlMac, the value corresponding to the session key in IsapMac is
output directly as the MAC tag thereby showing that the last round in IsapMac
is essentially redundant.

Finally there are some differences in the way we set parameters in Slae as
opposed to Isap. For instance, Isap sets the size of the key and the nonce to
be equal. On the other hand, our analysis indicates that the limiting factor in
the security of Slae is the key size. As such it makes sense to set the key size k
equal to the width of the sponge n while setting the nonce to be much smaller,
say between 64 and 128 bits.

4 The Security of FGHF′

In this section we establish the security of the FGHF′ construction which is
depicted in Fig. 15. This is an abstraction of Slae, and proving its security
brings us halfway towards proving the security of Slae. At the same time,
we believe the FGHF′ construction to be of independent interest as it serves
as a generic blueprint for constructing efficient AEAD schemes that are non-
adaptively leakage-resilient.

The FGHF′ construction is a refinement of the N2 construction [19] which
builds a nonce-based AEAD scheme from a nonce-based symmetric encryption
scheme and a vector MAC. Barwell et al. [4] showed that the security of this
construction extends to the setting of leakage resilience. Specifically they showed
that if the encryption component is IND-aCPLA secure and the vector MAC is
both LPRF and SUF-CMLA secure, then the composition is LAE secure. In
turn the FGHF′ construction further breaks down the encryption component,
denoted by Se[F ,G], and the vector MAC component, denoted by Mac[H,F ′],
of N2 into smaller parts. Namely encryption is realised from a fixed-input-length
leakage-resilient PRF F and a standard PRG G, whereas the vector MAC is built
from a vector hash function H, and a fixed-input-length function F ′ that is both
leakage-resilient pseudorandom and leakage-resilient unpredictable.

Since FGHF′ is an instance of N2 we can apply the composition theorem of
Barwell et al. [4], which we reproduced and adapted to the random transforma-
tion model in Section 2.5. Moreover, since we can view non-adaptive leakage as a
special case of adaptive leakage where the leakage set is a singleton, the theorem
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Fig. 15: Graphical representation of the FGHF′ construction. It corresponds to
the N2 composition of Se[F ,G] = (E ,D) and Mac[H,F ′] = (T ,V) which are in
turn composed of a fixed-input-length LPRF F , a PRG G, a vector hash H, and
a fixed-input-length function F ′ that is both a LUF and an LPRF.

carries over to that setting which is what we are interested in here. Thus to
prove that the FGHF′ construction is LAE secure we only need to show that
the encryption and MAC components meet the requirements of Theorem 1.

As it turns out, we can realise an IND-aCPLA secure encryption directly from
an LPRF and a variable-output-length PRG. Here the PRG serves only to extend
the range of the LPRF in order for the encryption scheme to accommodate
variable-length messages. Surprisingly, a standard PRG without any leakage
resilience suffices. As for the vector MAC component it needs to be an LPRF
over a vector of strings and simultaneously satisfy SUF-CMLA security. Contrary
to the leakage-free setting, the latter property is not automatically implied by
the former when a MAC is constructed from an LPRF through the canonical
construction. This is because the SUFCMLA game is more permissive than the
LPRF game with respect to the adversary’s queries. Namely, the adversary can
forward queries from the LVfy to Vfy, whereas in the LPRF game the adversary is
not allowed to forward queries from LF to F. This precludes reducing SUF-CMLA
security to LPRF security due to our inability of simulating the verification
oracles via the respective LPRF oracles. Note that SUF-CMLA needs to be
defined this way for Theorem 1 to hold whereas lifting the restriction in the LPRF
game would make it unsatisfiable. We overcome this problem by noting that, in
the non-adaptive leakage setting, unpredictability suffices to achieve SUF-CMLA
security, and at the same time we can allow the adversary to forward queries
between its leakage and challenge oracles while maintaining satisfiability. This
leads to our notion of a LUF which we prove to be sufficient to yield SUF-CMLA
security. As we will see in the next section we can construct fixed-input-length
function families satisfying both notions rather easily from sponges. Given such
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a function family F ′, we can turn it into the required vector MAC by composing
it with a collision-resistant vector hash function. Specifically we show that we
can extend the domain of LPRFs and LUFs, rather efficiently, by composing
them with standard collision-resistant hash functions over appropriate domains.

Combining the results in this section, leads to the LAE security of the FGHF′

construction against non-adaptive leakage. We like this construction as it strikes
a practical balance between security and efficiency. By settling for non-adaptive
leakage, which seems to suffice for many practical applications, it only requires
one call to each of the leakage-resilient primitives, F and F ′, per encryption
query. In this work we focused on Slae which is a specific sponge-based instanti-
ation of FGHF′, but other instantiations, possibly based on different techniques,
are of course possible. Thus this construction essentially reduces the problem of
designing non-adaptively leakage-resilient AEAD schemes to that of designing
function families over small domains that are good LPRFs and LUFs, which
conceptually is a much simpler target.

4.1 Se[F ,G] is IND-aCPLA Secure

We begin by proving the security of the encryption component of FGHF′. Note
that for this part security holds in more general setting of adaptive leakage.
Below is the formal theorem statement and its proof is presented in the full
version of this paper.

Theorem 2. Let Se[F ,G] be the encryption scheme depicted in Fig. 15, com-
posed of the function family F : K×{0, 1}m → {0, 1}n and the PRG G : {0, 1}n →
{0, 1}∗ with respective associated leakage sets LF and LG. Then for any IND-aCPLA
adversary Ase against Se[F ,G] and associated leakage sets LE = LD = LF×LG,
there exist an LPRF adversary Alprf against F and a PRG adversary Aprg
against G such that:

Advind-acpla
Se[F,G] (Ase,LE ,LD) ≤ 2 Advlprf

F (Alprf ,LF ) + 2 Advprg
G (Aprg) .

Let q and µ be such that Ase makes at most q queries totalling µ bits to each of
its oracles Enc, LEnc, and LDec, and let qρ denote the number of queries it makes
to ρ. Then Alprf makes at most q and 2q queries to its oracles F and LF, totalling
qm and 2qm, respectively, and at most QG(2q , 2µ)+qρ to ρ. As for Aprg, it makes
at most q queries to its oracle G totalling µ bits and QF (2q , 2qm)+QG(2q , 2µ)+qρ
queries to ρ.

4.2 Mac[H,F ′] is SUF-CMLA Secure

Next we reduce the SUF-CMLA security of Mac[H,F ′] to the LUF security
of F ′ and the collision resistance of H. Towards this end, we first show that
any LUF F̂ over domain X yields a SUF-CMLA secure MAC with message
space X via the canonical construction. Then we show that such a function F̂
can be constructed from a fixed-input-length LUF F ′ and a collision-resistant
hash function with domain X . The formal theorem statements now follow. Their
proofs can be found in the full version of this paper.
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Theorem 3. Let F̂ : K×X → {0, 1}t be a function family with associated leak-
age set LF̂ , and let Mac[F̂ ] be the corresponding canonical MAC with associated
leakage sets LT , LV where LF̂ = LT = LV . Then for any SUF-CMLA adversary

Amac against Mac[F̂ ], there exists an adversary Aluf against F̂ such that:

Advsuf-cmla
Mac[F̂ ]

(Amac,LT ,LV ) ≤ Advluf
F̂
(
Aluf ,LF̂

)
.

Let q and µ be such that Amac makes at most q queries totalling µ bits to
each of its oracles Vfy, LTag, and LVfy. Then Aluf makes at most q , 2q , and 2q
queries to F, Lkg, and Guess, totalling µ, 2µ, and 2µ bits, respectively.

Theorem 4. Let F ′ : K×{0, 1}w → {0, 1}t be a function family with associated
leakage set LF ′ , and let H : X → {0, 1}w be a hash function over any domain
X . Further let their composition F̂ be defined as

F̂(K ,X ) = F ′(K ,H(X ))

where X ∈ X , K ∈ K, and LF̂ = LF ′ ×LH for any set of efficiently computable

functions LH . Then for any LUF adversary Aluf against F̂ , there exists a
corresponding LUF adversary A′luf against F ′ and an adversary Ahash against
H such that:

Advluf
F̂
(
Aluf ,LF̂

)
≤ 2 Advcr

H (Ahash) + Advluf
F ′

(
A′luf ,LF ′

)
.

Let q and µ be such that Aluf makes at most q queries totalling µ bits to each of
its oracles F, Lkg, and Guess, and let qρ denote the number of queries it makes
to ρ. Then A′luf makes at most q queries totalling qw bits to each of its oracles
F, Lkg, and Guess, and at most QH(3q , 3µ) + qρ queries to ρ. As for Ahash, it
requires at most QF ′(3q , 3qw) + QH(3q , 3µ) queries to ρ in order to simulate F ′
and H.

Combining both theorems, we obtain the following simple corollary reducing
the SUF-CMLA security of Mac[H,F ′] to that of its building blocks H and F ′.

Corollary 1. Let Mac[H,F ′] be the MAC component depicted in Fig. 15, com-
posed of the hash function H and the function family F ′ with respective leakage
sets LH and LF ′ . Then for any SUF-CMLA adversary Amac against Mac[H,F ′]
with associated leakage sets LT = LV = LF ′ ×LH , there exists a LUF adversary
Aluf against F ′ and an adversary Ahash against H such that:

Advsuf-cmla
Mac[H,F ′] (Amac,LT ,LV ) ≤ 2 Advcr

H (Ahash) + Advluf
F ′ (Aluf ,LF ′) .

Suppose Amac makes at most q queries totalling at most µ bits to each of its
oracles Vfy, LTag, and LVfy, and qρ to ρ. Then Aluf makes at most 2q queries to-
talling at most 2qw bits to each of the oracles in the LUF game, and QH(6q , 6µ)+
qρ queries to ρ. As for Ahash it needs at most QF ′(6q , 6qw)+QH(6q , 6µ) queries
to ρ to simulate F ′ and H.
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4.3 Mac[H,F ′] is LPRF Secure

The final piece needed to apply Theorem 1 is to show that Mac[H,F ′], or rather
its tagging algorithm T [H,F ′], is a leakage-resilient PRF. Since by assumption
F ′ is already an LPRF, this result is analogous to Theorem 4 in that it provides
us a with simple technique for extending the domain of an LPRF. The proof can
be found in the full version of this paper.

Theorem 5. Let F ′ : K×{0, 1}w → {0, 1}t be a function family with associated
leakage set LF ′ , and let H : X → {0, 1}w be a hash function over the domain X .
Further let their composition F̂ be defined as

F̂(K ,X ) = F ′(K ,H(X ))

where X ∈ X , K ∈ K, and LF̂ = LF ′ ×LH for any set of efficiently computable

functions LH . Then for any LPRF adversary Alprf against F̂ , there exists a
corresponding LPRF adversary A′lprf against F ′ and an adversary Ahash against
H such that:

Advlprf

F̂

(
Alprf ,LF̂

)
≤ 2 Advcr

H (Ahash) + Advlprf
F ′

(
A′lprf ,LF ′

)
.

Let q and µ be such that Alprf makes at most q queries totalling µ bits to each
of its oracles F and LF, and let qρ denote the number of queries it makes to ρ.
Then A′lprf makes at most q queries totalling qw bits to each of its oracles F and
LF, and at most QH(2q , 2µ) + qρ queries to ρ. As for Ahash, it requires at most
QF ′(2q , 2qw) + QH(2q , 2µ) queries to ρ in order to simulate F ′ and H.

4.4 The FGHF′ Composition Theorem

Collecting the results from this section and combining it with the N2 composition
theorem we get the following composition theorem for the FGHF′ construction.

Theorem 6 (LAE Security of the FGHF′ Construction). Let F be a fixed-
input-length LPRF, G a PRG, H a vector hash function, and F ′ be a fixed-input-
length function that is both an LUF and an LPRF with associated leakage sets
LF , LG, LH , and LF ′ , respectively. Let FGHF′ be the composition of F , G, H,
and F ′ with associated leakage sets LAE = LV D = LF × LG × LH × LF ′ . Then
for any LAE adversary Aae against FGHF′ there exist adversaries Alprf , A′lprf ,
Aprg, Ahash, and Aluf such that:

Advlae
FGHF′ (Aae,LAE ,LV D) ≤ 2 Advlprf

F (Alprf ,LF ) + 2 Advlprf
F ′

(
A′lprf ,LF ′

)
+ 2 Advprg

G (Aprg) + 6 Advcr
H (Ahash)

+ 2 Advluf
F ′ (Aluf ,LF ′) .
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Now suppose Aae makes at most q queries totalling at most µ bits to each of its
Enc, LEnc, Dec, and LDec oracles, and let qρ denote its number of queries to ρ.
Then, Alprf makes at most 2q queries totalling 2qm bits to each of its oracles
F and LF, and at most 2QH(2q , 2µ) + 2QF ′(2q , 2qw) + QG(2q , 2µ) queries to ρ.
Similarly, A′lprf makes at most 2q queries totalling 2qw bits to each of its oracles
F and LF, and at most 2QF (q , qm) + 2QG(q , µ) + QH(4q , 4µ) queries to ρ. Aluf
makes at most 4q queries, totalling 4qw bits to each of its oracles F and Lkg, and
at most 2QF (2q , 2qm) + 2QG(2q , 2µ) + QH(12q , 12µ) to ρ. As for Aprg, it makes
at most q queries, totalling µ bits, to its oracle G and at most 2QH(2q , 2µ) +
2QF ′(2q , 2qw) + QF (2q , 2qm) + QG(2q , 2µ) queries to ρ. Finally, Ahash requires
at most 2QF (2q , 2qm) + 2QG(2q , 2µ) + QF ′(12q , 12qw) + QH(12q , 12µ) queries
to ρ.

5 Security of Sponge-Based Primitives

We now turn our attention to instantiating the constituent blocks of the FGHF′

construction using sponge-based primitives. Specifically we prove the security
of the vector hash function SvHash, the pseudorandom generator SPrg, and
the leakage-resilient function family SlFunc for instantiating both F and F ′.
All primitives are based on the T-sponge and this particular instantiation of
the FGHF′ construction gives rise to Slae. The most interesting results are
Theorems 7 and 8 which substantiate our claim that sponges offer an inherent
resistance to non-adaptive leakage. Informally these two theorems state that
λ bits of leakage can be compensated for by increasing the capacity, the key,
and the output (in the case of LUF security) by λ bits. While this may seem
intuitive, and indeed this was already conjectured informally in [10], the actual
proofs are fairly involved. While sponge-based hash functions and pseudorandom
generators have been studied quite extensively, SvHash and SPrg are non-
standard constructions. Firstly, they are based on a transformation rather than
a permutation which is not common in the literature. Secondly, unlike other
constructions SPrg treats the whole initial state as the seed, and SvHash takes
a triple of strings as its input. Thus while not particularly novel, we include their
security proofs for completeness.

5.1 A Sponge-Based Leakage-Resilient Function Family

Although LPRF and LUF security are incomparable notions, it is still possible to
meet both notions simultaneously through a single primitive. Indeed the FGHF′

construction requires that such a primitive exist since F ′ is required to satisfy
both security notions. We now show that the SlFunc construction is well-suited
for this role, and in fact that it can be used to instantiate both the F and F ′
components – as is the case in Slae. Moreover, the most extensively studied
leakage-resilient object is that of a pseudorandom function due to its versatility
in several potential applications. SlFunc yields a practical construction of this
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primitive against non-adaptive leakage and as such we think it may be of inde-
pendent interest. The security of SlFunc is stated formally in the following two
theorems. Their proofs can be found in the full version of this paper.

Theorem 7. Let SlFunc be the function family described in Fig. 9 taking as
input strings of size (l · rr) bits and returning t-bit strings. Then for any LPRF
adversary A against SlFunc and any vector of leakage functions [L1, . . . , Ll ]
where each component maps n bits to λ bits such that Lλ = {[L1, . . . , Ll ]}, it
holds that:

Advlprf
SlFunc (A,Lλ) ≤ qT (qT + 2) + (qF + qLF)qρ

2n−rr−1
+

2qρ
2k−λ

+
2lqFqρ

2n−rr−λ
.

In the above qρ, qF, and qLF denote respectively the number of queries A makes
to its oracles ρ, F, and LF and qT = (l + 1)(qLF + qF) + qρ. Moreover it is required
that qρ + l(qF + qLF) ≤ 2k−1 and (2rr )qρ + l(qF + qLF) ≤ 2n−1.

The next Theorem shows that SlFunc is a good LUF. Its proof bears some
similarity to that of Theorem 7 as it uses similar ideas. However one important
difference lies in the leakage model that is used in this theorem. Since the Lkg

oracle returns only the leakage and no output, we add here an extra leakage
function that returns the leakage on the output of SlFunc. In the LPRF case
this was not required since in that game the leakage oracle returns the full output
anyway.

Theorem 8. Let SlFunc be the function family described in Fig. 9 taking as
input strings of size (l ·rr) bits and returning t-bit long strings. Then for any LUF
adversary A against SlFunc, and any vector of leakage functions [L1, . . . , Ll+1]
where each component maps n bits to λ bits such that Lλ = {[L1, . . . , Ll+1]}, it
holds that:

Advluf
SlFunc (A,Lλ) ≤ qT (qT + 2)

2n−rr
+

qρ
2k−λ−1

+
lqLkgqρ
2n−λ−1

+
qGuess

2t−λ−1
.

In the above qρ, qF, qLkg and qGuess denote respectively the number of queries
A makes to its oracles ρ, F, Lkg, and Guess and qT = (l + 1)(qF + qLkg +
qGuess) + qρ. Moreover it is required that the following conditions be satisfied
qρ+ (l + 1)(qF + qLkg + qGuess) ≤ 2k−1, (2rr )qρ+ (l + 1)(qF + qLkg + qGuess) ≤ 2n−1,
and qGuess + (l + 1)(qF + qLkg + qGuess) ≤ 2n−1 .

5.2 The Security of SPrg

As explained in Section 3.3, SlEnc can be decomposed into the cascade of
SlFunc and SPrg, matching the encryption component of the FGHF′ con-
struction. A pseudocode description of the variable-output-length pseudorandom
generator SPrg is given in Fig. 14. Decomposing SlEnc this way requires us to
treat all of SPrg’s initial state as the seed, which deviates from the more conven-
tional ways of constructing sponge-based pseudorandom generators. Moreover
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we consider a security definition which allows the adversary to make multiple
queries to the PRG, each with differing output lengths.

The security of SPrg is stated formally in Theorem 9. Its proof follows from
a standard hybrid argument and can be found in the full version of this paper.

Theorem 9. Let SPrg be the pseudorandom generator described in Fig. 14.
Then for any PRG adversary A, it holds that:

Advprg
SPrg (A) ≤

vmax−1∑
i=1

(
qGqρ

2c − qρ
+

qρqG + 2q2
G (vmax − i)
2n

)
+

q2
G

2n
.

In the above, A can make qρ queries to the random transformation ρ and qG
queries to the challenge oracle G of size at most Lmax, and vmax =

⌈
Lmax

r

⌉
.

5.3 A Sponge-Based Vector Hash Function

The final building block is the sponge-based vector hash function SvHash which
is graphically represented in Fig. 10. It takes as input a triple of strings, namely
a nonce, associated data and a ciphertext to return a string digest. A salient
feature of this construction is the xoring of 1 ‖ 0c−1 into the inner state in
order to separate the (padded) associated data from the (padded) ciphertext.
We prove the security of SvHash in a modular fashion, by first reducing its
security to that of a plain hash function taking a single input and then prove
the collision-resistance of this latter construction in the random transformation
model. The collision-resistance of SvHash is stated formally in the following
theorem, and the full proof details can be found in the full version of this paper.

Theorem 10. Let SvHash be the vector hash function described in Fig. 10.
Then for any adversary A making q queries to ρ, it holds that:

Advcr
SvHash (A) ≤ q(q − 1)

2w+1
+

q(q + 2)

2c−1
.

5.4 Concrete Security of Slae

A bound for the security of Slae is directly obtained by combining Theorem 6
with Theorems 7 –10. It only remains to derive concrete bounds for the expres-
sions QF ,QG ,QH,QF ′ for the specific case of Slae. Assuming a nonce size of m
bits and that the output of H is w bits long, the following expressions are easily
derived from the algorithm definitions. Namely, we have that:

QF (q , qm) = q

⌈
m + 1

rr

⌉
QF ′(q , qw) = q

⌈
w + 1

rr

⌉

QG(q , µ) =
⌈µ

r

⌉
QH(q , µ) =

⌈µ
r

⌉
+ 3q .
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6 Concluding Remarks

In this work we proposed the FGHF′ construction as a template for constructing
non-adaptively leakage-resilient AEAD schemes from relatively simpler primi-
tives – requiring only two calls to the leakage-resilient functions per encryption
or decryption call. We then presented Slae as a sponge-based instantiation of
this construction, offering good performance and simplicity. Our security anal-
ysis shows that λ bits of leakage per transformation call can be compensated
for by increasing the sponge capacity by λ bits. However some care is needed in
interpreting these results. Like most treatments of leakage resilience we assume
that the leakage per evaluation is limited and does not drain the entropy in
the secret state. Thus it is implicitly assumed that an implementation is good
enough to withstand basic side-channel attacks like Simple Power Analysis (SPA)
attacks. The benefit of our leakage-resilience security proof is that resistance to
basic attacks automatically translates to resistance against more sophisticated
attacks like Differential Power Analysis (DPA).

In the FGHF′ construction and Slae, authenticity is verified by recomputing
the MAC tag and testing for equality between the recomputed tag and the one
included in the ciphertext. While our leakage model accounts for the leakage
that may take place during the tag recomputation, equality testing is assumed
to be leak-free. Thus any implementation of Slae (or any other realisation of
the FGHF′ construction) needs to ensure that equality testing does not leak, or
take additional measures, such as masking, to protect against leakage from this
component.

Finally the security of Slae relies on it being instantiated with a non-
invertible transformation rather than a permutation. On the other hand, most
practical schemes employ permutations, such as Keccak-p and Xoodoo-p.
While in this work we did not specify any concrete transformation, a natural
candidate is to use ρ(x) = p(x)⊕ x for p ∈ {Keccak-p,Xoodoo-p}. Although
this construction is known to be differentiable from a random transformation
when given access to p, this should not preclude it from being a suitable candi-
date for instantiating constructions in the random transformation model. Indeed,
Keccak-p and Xoodoo-p are also differentiable from a random permutation
when given access to their underlying building blocks.
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