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Abstract. We present a new generic construction of multi-client func-
tional encryption (MCFE) for inner products from single-input func-
tional inner-product encryption and standard pseudorandom functions.
In spite of its simplicity, the new construction supports labels, achieves
security in the standard model under adaptive corruptions, and can be
instantiated from the plain DDH, LWE, and Paillier assumptions. Prior
to our work, the only known constructions required discrete-log-based
assumptions and the random-oracle model. Since our new scheme is not
compatible with the compiler from Abdalla et al. (PKC 2019) that de-
centralizes the generation of the functional decryption keys, we also show
how to modify the latter transformation to obtain a decentralized version
of our scheme with similar features.

1 Introduction

Functional encryption [11, 18] is a generalization of standard encryption which
allows for a more fine-grained control over the decryption capabilities of third
parties. In these schemes, the owner of a master secret key can derive secret keys
for specific functions via a key derivation algorithm. Then, given the encryption
of a message x, the holder of a secret decryption key skf for a function f can
compute f(x) using the decryption algorithm. Informally, a FE scheme is deemed
secure if it is infeasible for an adversary to learn any information about x other
than what it can be computed using the secret keys at its disposal.

Multi-input functional encryption [16] is an extension of the functional en-
cryption in which the function can be computed over several different inputs
that can be encrypted independently. More precisely, the decryption algorithm
of such schemes takes as input a secret key skf for a function f together with n
different ciphertexts Enc(x1), . . . ,Enc(xn) and outputs the value of the function
f applied to underlying plaintexts (x1, . . . , xn).
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In the setting in which each ciphertext of a multi-input functional encryption
scheme is generated by a different party or client Pi. we often refer to these
schemes as multi-client functional encryption (MCFE) schemes [13, 16]. In this
setting, it is natural to assume that the adversary can corrupt these parties
and learn their secret encryption keys. The master secret key, however, is still
assumed to be owned by a trusted third party.

Another important property of multi-client functional encryption considered
by Chotard et al. [13] is the inclusion of labels in the encryption process. More
precisely, in a labeled MCFE scheme, the individual encryption algorithms each
take a label as an additional parameter and decryption should only be possible
when using ciphertexts generated with respect to the same label. That is, labels
allow the users to have more control over the mix-and-match capabilities, as
opposed to MCFE without labels, where the owner of a functional decryption
key can mix and match all the ciphertexts.

Note that labels can be obtained without loss of generality for MCFE for
all functions; however, this is not the case of the practical constructions for
restricted classes of functions, such as inner products, which is the focus of
this paper. Reciprocally, any MCFE with labels can be turned into a label-
free MCFE for the same functionality, simply by setting the labels used by the
encryption algorithm to be always a fixed value ⊥. Put simply, labels are an
extra feature that offers a better control over the information leaked by each
generated functional decryption key.

For instance, suppose we want to use MCFE to allow teachers to grade their
students in a way that the students can use these grades in different college
applications and that colleges only learn the average grades of the students with
weights of their choice. In this scenario, each teacher would encrypt the grade of
each student for their subject. Each college would have a functional decryption
key to compute the weighted average of all the grades of each student. It is very
important that the teachers use the student ID as a label, otherwise colleges
would be able to compute weighted average of a mix of multiple students (like
Maths from student A and Physics from student B), which significantly hinders
privacy.

Prior work. As remarked in [5], most of the prior work in the multi-input
setting are either feasibility results for general functionalities (e.g,. [8, 9, 12, 16])
or efficient constructions for particular functionalities (e.g.,[2,4,5,13–15]). In the
latter case, which is the setting in which we are interested in this paper, the main
functionality under consideration is the inner-product functionality, in which
functions are associated to a collection y of n vectors y1, . . . ,yn. In particular, on
input a collection x of n vectors x1, . . . ,xn, it outputs fy(x) =

∑n
i=1〈xi,yi〉 =

〈x,y〉. As noted in prior works [3, 5, 13], inner-product functionalities can be
quite useful for computing statistics or performing data mining on encrypted
databases.

Among the constructions of multi-input functional inner-product encryption
schemes without labels, the work of Abdalla et al. in [4] is the one requiring
the weakest assumptions since it can be built from any single-input functional
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encryption scheme satisfying some mild properties (recalled in Section 3). In
particular, by instantiating it with the public-key functional inner-product en-
cryption schemes in [7], one can obtain constructions based on the DDH, Paillier,
and LWE assumptions. Moreover, as recently shown in [2], their schemes remain
secure even when the secret encryption keys can be adaptively corrupted by the
adversary. Unfortunately, as we further discuss below, we do not know how to
generalize the ACFGU scheme to the labeled setting. In fact, the construction
from [4] relies on an information-theoretic multi-input FE (as they put it, the
functional encryption equivalent of a one-time pad) to obtain security in the re-
stricted context of one challenge ciphertext per input slot. Then, they bootstrap
security to many challenge ciphertexts using an extra layer of single-input FE.
That information-theoretic approach cannot be emulated, since we need to hide
messages for arbitrarily many labels in our case. Thus, an entropy argument can
be used to show that we need to resort to a computational assumption, even for
proving security in the context of one challenge ciphertext per input slot and
label. In our case, we use PRFs.

Among the constructions of multi-input functional inner-product encryption
schemes with labels, the works of Abdalla et al. [2] and Chotard et al. [14]
currently represent the state of the art in this area. In particular, both schemes
provide labeled MCFE schemes in the random-oracle model in discrete-log-based
groups. The main advantage of the work of Chotard et al. is that its ciphertexts
are shorter and that it allows for multiple ciphertexts under the same label.
However, it requires pairing groups. The main advantage of the work of Abdalla
et al. is that it can be instantiated in pairing-free groups. However, its ciphertexts
are longer and it only allows for one ciphertext per label, a restriction inhereted
from [13]. As in the case of other discrete-log-based constructions of functional
inner-product encryption schemes (e.g, [3,5,7,10]), the size of supported messages
is restricted for both schemes since the decryption algorithm needs to compute
discrete logarithms.

Contributions. In order to address the shortcomings of previous labeled MCFE
schemes, the main contribution of this paper is to provide the first construction
of labeled MCFE schemes in the standard model from more general assumptions
than discrete-logarithm-based ones. As in the work of Abdalla et al. in [4], our
constructions can be built from any single-input public-key functional encryption
scheme satisfying some mild properties (recalled in Section 3). In particular, by
instantiating it with the schemes in [7], one can obtain constructions based on
the DDH, Paillier, and LWE assumptions. Our constructions have no restriction
on the number of ciphertexts per label and are proven secure with respect to
adaptive corruptions.

In order to achieve our main result, our security proof proceeds in two parts.
First, we prove the security of our MCFE scheme in a setting in which the
adversary is required to query the encryption oracle in all n positions for each
label. Then, in a second step, we apply the compiler suggested in [2] to remove
this requirement. Since the proof for the latter transformation given in [2] is in
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the random-oracle model, an additional contribution of our work is to provide
an alternative proof for it in Section 4 which does not require random oracles.

Finally, since our main construction is not compatible with the transforma-
tion from [2] that decentralizes the generation of the functional decryption keys,
we also show how to modify the latter to obtain a decentralized version of our
scheme with similar features. As a result, we obtain the first decentralized la-
beled MCFE schemes in the standard model based on the DDH, Paillier, and
LWE assumptions.

Independent work. In a recent work [6], the authors define multi-input func-
tional encryption schemes with decentralized key generation and setup, in which
users can join the system dynamically. They give a feasibility result for general
functions, and also provide a construction for inner products, from a standard
assumption (LWE). However, their construction does not handle labels.

Overview of our construction. Following the proof strategy first used in [5]
in the context of multi-input FE for inner products, we start with a scheme whose
security only holds when there is only one challenge ciphertext per input slot.
The novelty compared to multi-input FE is that we have to handle arbitrarily
many labels, even if there is only one challenge ciphertext per slot and label.

One-time security with labels. We modify the scheme from [4], where the one-
time secure MIFE is simply obtained using a one-time pad of the messages.
The functional decryption keys are simply the linear combination of these pads.
Namely, for any input slot i, we have cti := xi+ ti, and for sky :=

∑n
i=1〈ti,yi〉,

where ti ← ZmL , m denotes the dimension of individual messages xi, and ev-
erything is computed modulo L, for some specified integer L. Here, we write
y := (y1‖ . . . ‖yn), the concatenation of n vectors, each of dimension m. To
decrypt the set of ciphertext {cti}i, one simply compute

∑
i〈cti,yi〉, and sub-

tract by the key sky to get
∑
i〈xi,yi〉. Security follows by a perfect statistical

argument.
The technical challenge is to emulate this idea to a setting where ciphertexts

can be generated for many labels. Since the number of label is not a priori
bounded, we cannot resort to a perfectly statistical argument: the master secret
key (which in the previous scheme contains all the vectors ti) is simply too small
to contain all possible pads ti,` for all labels ` ∈ Labels that would required
to perform such an argument. We must resort to a computation argument. A
natural but flawed idea would to generate the pads ti,` using a PRF applied on
a label ` ∈ Labels. This approach faces two issues: first, if one slot is corrupted,
then the security of the entire system is compromised, since each input slot needs
the PRF key to encrypt. Second, since the labels are only known at encryption
time, the generation of functional decryption keys is unable to produce the value∑
i〈yi, ti,`〉.
To circumvent these issues we generate the pads ti,` :=

∑
j 6=i

(−1)j<iPRFKi,j (`),

where for all i < j ∈ [n], the keys Ki,j ← {0, 1}λ, and Kj,i = Ki,j , and (−1)j<i
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denotes −1 if j < i, 1 otherwise. This construction has first been used in [17] to
decentralize the computation of the sum of private values in a non-interactive
way. Each input slot i ∈ [n] needs the set of keys {Ki,j}j∈[n] to encrypt. Assuming
the security of the PRF, it produces pseudorandom pads, which will be able to
mask the messages xi simultaneously for all used label ` ∈ Labels. Thus, we
prove that this holds even when some users i ∈ [n] are corrupted (in fact, up to
n − 2 can be corrupted). This solves the first issue mentioned above. To solve
the second issue, namely, ensuring correctness holds for all possible labels, we
use the structure property that holds for all label ` ∈ Labels:

∑
i∈[n] ti,` = 0,

where 0 denotes the zero vector. Otherwise stated, these pads are shares of a
perfect n out of n secret sharing of 0. We use this by setting the ciphertext
for slot i ∈ [n] and label ` ∈ Labels to be an encryption of the vector wi,` :=
(0‖ . . . ‖0‖xi‖0‖ . . . ‖0) + ti,` ∈ ZmnL . This way, we have 〈wi,`,y〉 = 〈xi,yi〉 +
〈ti,`,y〉 for all slots i ∈ [n], therefore:

∑
i∈[n]〈wi,`,y〉 =

∑
i∈[n]〈xi,yi〉. The last

step is to encrypt the vector wi,` using any single-input, public-key FE for inner
products. The functional decryption key is simply the functional decryption key
of the single-input inner-product FE for the associated vector y. Correctness is
preserved, since the decryption only needs to compute the inner product between
wi,` and y.

Full-fledged security. To obtain security with many challenge ciphertexts per
input slot and label, we use similar techniques to those used in [4] in the context
of multi-input inner-product FE. However, these can only be applied when the
adversary does not make use of the information revealed by partial ciphertexts
{cti,`}i∈[n]\{missing}, where {missing} denotes the set of missing slots for label
`. Prior works [2, 14] provides generic compilers that precisely avoid partial ci-
phertexts to leak any information about the underlying plaintext (decryption
is only successful when ciphertexts for all slots are present), but they are only
proven secure in the random oracle model, and for [14], use additional assump-
tions (pairings). Since our focus it to build simple MCFE schemes from weak
assumptions, we give a new generic transformation (in Section 4) that avoids
the leakage of information of partial ciphertexts, with no extra assumption (only
PRFs, in the standard model), and that handles adaptive corruptions.

Decentralizing MCFE. In order to decentralize the generation of functional de-
cryption keys, we adapt the construction from [2]. The main idea is to secret
share the master secret key, since computing the functional secret key is a linear
operation, it can be done non-interactively from these shares.

Outline. The rest of the paper is organized as follows. After giving the relevant
technical preliminaries and definitions in Section 2, we give our new construction
of MCFE from single-input FE for inner products in Section 3. In Section 4,
we show how to generically strengthen the security of our MCFE construction,
thereby removing any artificial restrictions on the security model. Finally, in
Section 5, we show how to decentralize our MCFE to obtain a DMCFE.
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2 Definitions and Security Models

Notation. We use [n] to denote the set {1, . . . , n}. We write x for vectors and
xi for the i-th element. For security parameter λ and additional parameters n,
we denote the winning probability of an adversary A in a game or experiment
G as WinGA(λ, n), which is Pr[G(λ, n,A) = 1]. The probability is taken over the
random coins of G and A.

2.1 Multi-Client Functional Encryption

In this section, we recall the definition of MCFE [16]. It is taken almost verbatim
from [2], with the following differences: the use of a stronger security definition
(see Remark 2.3) and the introduction of a master public key mpk, so that
public-key functional encryption becomes a particular case of MCFE.

Definition 2.1. (Multi-Client Functional Encryption) Let F = {Fρ}ρ be
a family (indexed by ρ) of sets Fρ of functions f : Xρ,1 × · · · × Xρ,nρ → Yρ.5 Let
Labels = {0, 1}∗ or {⊥} be a set of labels. A multi-client functional encryption
scheme (MCFE) for the function family F and the label set Labels is a tuple of
five algorithms MCFE = (Setup,KeyGen,KeyDer,Enc,Dec):

Setup(1λ, 1n): Takes as input a security parameter λ and the number of par-
ties n, and generates public parameters pp. The public parameters implicitly
define an index ρ corresponding to a set Fρ of n-ary functions (i.e., n = nρ).

KeyGen(pp): Takes as input the public parameters pp and outputs n secret keys
{ski}i∈[n], a master secret key msk, and a master public key mpk.

KeyDer(pp,msk, f): Takes as input the public parameters pp, the master secret
key msk and a function f ∈ Fρ, and outputs a functional decryption key skf .

Enc(pp,mpk, ski, xi, `): Takes as input the public parameters pp, a master public
key mpk, a secret key ski, a message xi ∈ Xρ,i to encrypt, a label ` ∈ Labels,
and outputs ciphertext cti,`.

Dec(pp, skf , ct1,`, . . . , ctn,`): Takes as input the public parameters pp, a func-
tional key skf and n ciphertexts under the same label ` and outputs a value
y ∈ Yρ.

A scheme MCFE is correct, if for all λ, n ∈ N, pp ← Setup(1λ, 1n), f ∈ Fρ,
` ∈ Labels, xi ∈ Xρ,i, when ({ski}i∈[n],msk,mpk) ← KeyGen(pp) and skf ←
KeyDer(pp,msk, f), we have for x = (x1, . . . , xn):

Pr [Dec(pp, skf ,Enc(pp,mpk, sk1, x1, `), . . . ,Enc(pp,mpk, skn, xn, `)) = f(x)] = 1.

When ρ is clear from context, the index ρ is omitted. Note that the case
of (single-input) functional encryption as defined in [11, 18] corresponds to the
case n = 1, and Labels = {⊥}. For such schemes, we also consider the public-key
variant, where sk1 =⊥, that is, the encryption algorithm only requires the public
5 All the functions inside the same set Fρ have the same domain and the same range.
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parameters pp and the master public key mpk to encrypt the message x1. In this
setting, sk1 is omitted.

Except for public-key single-input functional encryption, the master public-
key can be included in each secret key ski and we omit it.

We follow the notation of [2] here, where the algorithm Setup only gener-
ates public parameters that determine the set of functions for which functional
decryption keys can be created, and the secret/encryption keys and the mas-
ter secret keys are generated by another algorithm KeyGen, while the functional
decryption keys are generated by KeyDer.

In the following, we define security as adaptive left-or-right indistinguishabil-
ity under both static (sta), and adaptive (adt) corruption. We also consider two
variants of these notions (any, pos+) related to the number of encryption queries
asked by the adversary for each slot.

Definition 2.2. (Security of MCFE) Let MCFE be an MCFE scheme, F =
{Fρ}ρ a function family indexed by ρ and Labels a label set. For xx ∈ {sta, adt},
yy ∈ {any, pos+}, and β ∈ {0, 1}, we define the experiment xx-yy-INDMCFE

β in
Fig. 1, where the oracles are defined as:

Corruption oracle QCor(i): Outputs the encryption key ski of slot i. We de-
note by CS the set of corrupted slots at the end of the experiment.

Left-Right oracle QLeftRight(i, x0i , x
1
i , `): Outputs cti,` = Enc(pp, ski, x

β
i , `) on

a query (i, x0i , x
1
i , `). We denote by Qi,` the number of queries of the form

QLeftRight(i, ·, ·, `).
Encryption oracle QEnc(i, xi, `): outputs cti,` = Enc(pp,mpk, ski, xi, `) on a

query (i, xi, `).
Key derivation oracle QKeyD(f): Outputs skf = KeyDer(pp,msk, f).

and where Condition (*) holds if all the following conditions hold:

– If i ∈ CS (i.e., slot i is corrupted): for any query QLeftRight(i, x0i , x
1
i , `),

x0i = x1i .6

– For any label ` ∈ Labels, for any family of queries {QLeftRight(i, x0i , x1i , `) or
QEnc(i, xi, `)}i∈[n]\CS , for any family of inputs {xi ∈ Xρ,i}i∈CS , for any query
QKeyD(f), we define x0i := xi and x1i := xi for any slot i ∈ CS and any slot
queried to QEnc(i, xi, `), and we require that:

f(x0) = f(x1) where xb = (xb1, . . . , x
b
n) for b ∈ {0, 1} .

We insist that if one index i /∈ CS is not queried for the label `, there is no
restriction.

6 We could define a stronger security notion without this restriction. However, in this
paper, as in the prior works on MCFE, we add this restriction. In particular, we
allow the secret key for the slot i to decrypt ciphertexts for the slot i. We leave
achieving stronger security as an interesting open problem.
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– When yy = pos+: for any slot i ∈ [n] and ` ∈ Labels, if Qi,` > 0, then
for any slot j ∈ [n] \ CS, Qj,` > 0. In other words, for any label, either
the adversary makes no left-right encryption query or makes at least one
left-right encryption query for each slot i ∈ [n] \ CS.

We define the advantage of an adversary A in the following way:

Advxx-yy-IND
MCFE,A (λ, n) =

∣∣Pr[xx-yy-INDMCFE
0 (λ, n,A) = 1]

− Pr[xx-yy-INDMCFE
1 (λ, n,A) = 1]

∣∣ .
A multi-client functional encryption scheme MCFE is xx-yy-IND secure, if for
any n, for any polynomial-time adversary A, there exists a negligible function
negl such that: Advxx-yy-IND

MCFE,A (λ, n) ≤ negl(λ).

We omit n when it is clear from the context. We also often omit A from the
parameter of experiments or games when it is clear from the context.

Remark 2.3 (The role of the oracle QEnc). The security definitions we give are
slightly stronger than those given in [2], since the oracle QEnc gives out infor-
mation that is not captured by Condition (*), for pos+, hence the use of the
notation pos+ instead of pos in [2]. For any, this addition of QEnc has no effect,
as QEnc queries can be simulated using QLeftRight. But for pos+/pos, there is
no equivalence in general between the security definition with and without the
encryption oracle. We add this oracle QEnc so that we can reduce the security
with respect to one label to the security with respect to multiple queried labels,
via a simple hybrid argument (which would not be valid without the QEnc ora-
cle), as done in [14]. This will be used in our generic compiler from pos+ to any
security, in Section 4.

Now we define a seemingly weaker security notion than xx-yy-IND, which
we call xx-yy-IND-1-label, since the adversary is restricted to query the oracle
QLeftRight on at most one label, and it cannot query the oracle QEnc oracle on
that label. Using a standard hybrid argument (cf Lemma 2.5), we show that this
is equivalent to the original xx-yy-IND security defined above. These restrictions
will make the proofs easier in the rest of the paper.

Definition 2.4. (1-label Security) Let MCFE be an MCFE scheme, F =
{Fρ}ρ a function family indexed by ρ and Labels a label set. For xx ∈ {sta, adt},
yy ∈ {any, pos+}, and β ∈ {0, 1}, we define the experiment xx-yy-INDMCFE

β

exactly as in Fig. 1, where the oracles are defined as for Definition 2.2, except:

Left-Right oracle QLeftRight(i, x0i , x
1
i , `): Outputs cti,` = Enc(pp, ski, x

β
i , `) on

a query (i, x0i , x
1
i , `). This oracle can be queried at most on one label. Further

queries with distinct labels will be ignored.
Encryption oracle QEnc(i, xi, `): outputs cti,` = Enc(pp,mpk, ski, xi, `) on a

query (i, xi, `). If this oracle is queried on the same label that is queried to
QLeftRight, the game ends and return 0.
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Condition (*) is defined as for Definition 2.2.
We define the advantage of an adversary A in the following way:

Advxx-yy-IND-1-label
MCFE,A (λ, n) =

∣∣Pr[xx-yy-IND-1-labelMCFE
0 (λ, n,A) = 1]

− Pr[xx-yy-IND-1-labelMCFE
1 (λ, n,A) = 1]

∣∣ .
Lemma 2.5 (From one to many labels). Let MCFE be a scheme that is xx-
yy-IND-1-label secure, for xx ∈ {sta, adt} and yy ∈ {pos+, any}. Then it is also
secure against PPT adversaries that query QLeftRight on many distinct labels
(xx-yy-IND security). Namely, for any PPT adversary A, there exists a PPT
adversary B such that:

Advxx-yy-IND
MCFE,A (λ, n) ≤ qEnc · Advxx-yy-IND-1-label

MCFE,B (λ, n),

where Advxx-yy-IND-1-label
MCFE,B (λ, n) denotes the advantage of B against an experiment

defined as above, except QLeftRight can be queried on at most one label and QEnc
must not be queried on that label. By qEnc we denote the number of distinct labels
queried by A to QLeftRight in the original security game.

Proof (Sketch).
First, let us consider the case of yy = any security. The proof uses a hybrid

argument which goes over all the labels `1, ...`Q queried to both the oracles QEnc
and QLeftRight. In the k’th hybrid, the queries for the first k’th labels to the
QLeftRight oracle are answered with the right plaintext, and the the last Q− k
labels are answered with the left plaintext. To go from hybrid k − 1 to k, B
uses its own QEnc oracle to answer A’s queries to QLeftRight for labels `j for
j < k, and j > k (using the right and left plaintext respectively), and uses its
own oracle QLeftRight for label `k. The queries made by A to QEnc and QCor
are answered straightforwardly by B from its own oracles. Note that the queries
made by B satisfy the 1-label restriction, since QLeftRight is only queried on `k,
and QEnc is not queried on `k.

For the case of yy = pos+ security, to go from hybrid k − 1 to k, B uses
the QEnc oracle to answer QLeftRight queries for labels `j for j < k and j > k
(using the right and left plaintext respectively). For the label `k, B uses its own
oracle QLeftRight to answer A’s queries to both QLeftRight and QEnc. So far,
the reduction works as for the case of yy = any security. However, the difference
is yy = pos+ security requires additional conditions on the queries made to
QLeftRight, in particular, if one honest slot is queried to QLeftRight for `k, then
all honest slots should be queried. Thus, we need to distinguish two cases: case
1) `k is queried to QEnc, but never on QLeftRight, in which case B uses its own
QEnc oracle; case 2) `k is queried to QLeftRight at some point (and by definition
of pos+ security, that means it’s queried to all honest slots). In case 2, the queries
of B to QLeftRight will satisfy the condition required by the yy = pos+ security
game, namely, if QLeftRight is queried on `k for some honest input slot, then
it has to be queried on the same label `k for all honest input slots. Note that
this restriction doesn’t apply to the queries made to QEnc. In case 1, we use the
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sta-yy-INDMCFE
β (λ, n,A)

CS ← A(1λ, 1n)

pp← Setup(1λ, 1n)

({ski}i∈[n],mpk,msk)← KeyGen(pp)

α← AQEnc(·,·,·),QLeftRight(·,·,·,·),QKeyD(·)(pp,mpk, {ski}i∈CS)
Output: α if Condition (*) is satisfied, 0 otherwise.

adt-yy-INDMCFE
β (λ, n,A)

pp← Setup(1λ, 1n)

({ski}i∈[n],msk,mpk)← KeyGen(pp)

α← AQCor(·),QEnc(·,·,·),QLeftRight(·,·,·,·),QKeyD(·)(pp,mpk)

Output: α if Condition (*) is satisfied, 0 otherwise.

Fig. 1. Security games for MCFE

sta-pos-IND sta-pos+-IND sta-any-IND

adt-pos-IND adt-pos+-IND adt-any-IND

Fig. 2. Relations between the MCFE security notions (arrows indicate implication or
being “a stronger security notion than”)

fact that the two hybrid games k − 1 and k are exactly the same. Therefore, at
the end of the simulation, B checks whether case 1 occurs, and if it does, simply
outputs 0 to its own experiment, ignoring A’s output. Otherwise, it means it is
case 2, and B forwards the output from A to its own experiment.

ut

We summarize the relations between the six security notions in Fig. 2, where
xx-pos-IND is the notion defined in [2] (i.e., it is like xx-pos+-IND without the
QEnc oracle).

2.2 Decentralized Multi-Client Functional Encryption

Now, we introduce the definition of decentralized multi-client functional encryp-
tion (DMCFE) [13]. As for our definition of MCFE, we separate the algorithm
Setup which generates public parameters defining in particular the set of func-
tions, from the algorithm KeyGen. We do not consider public-key variants of
DMCFE and hence completely omit the master public key mpk.

Definition 2.6. (Decentralized Multi-Client Functional Encryption)
Let F = {Fρ}ρ be a family (indexed by ρ) of sets Fρ of functions f : Xρ,1 ×
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· · · × Xρ,nρ → Yρ.Let Labels = {0, 1}
∗ or {⊥} be a set of labels. A decentralized

multi-client functional encryption scheme (DMCFE) for the function family F
and the label set Labels is a tuple of six algorithms DMCFE = (Setup,KeyGen,
KeyDerShare,KeyDerComb,Enc,Dec):

Setup(1λ, 1n) is defined as for MCFE in Definition 2.1.
KeyGen(pp): Takes as input the public parameters pp and outputs n secret keys
{ski}i∈[n].

KeyDerShare(pp, ski, f): Takes as input the public parameters pp, a secret key
ski from position i and a function f ∈ Fρ, and outputs a partial functional
decryption key ski,f .

KeyDerComb(pp, sk1,f , . . . , skn,f ): Takes as input the public parameters pp, n
partial functional decryption keys sk1,f , . . . , skn,f and outputs the functional
decryption key skf .

Enc(pp, ski, xi, `) is defined as for MCFE in Definition 2.1.
Dec(pp, skf , ct1,`, . . . , ctn,`) is defined as for MCFE in Definition 2.1.

A scheme DMCFE is correct, if for all λ, n ∈ N, pp← Setup(1λ, 1n), f ∈ Fρ, ` ∈
Labels, xi ∈ Xρ,i, when {ski}i∈[n] ← KeyGen(pp), ski,f ← KeyDerShare(ski, f)

for i ∈ [n], and skf ← KeyDerComb(pp, sk1,f , . . . , skn,f ), we have

Pr [Dec(pp, skf ,Enc(pp, sk1, x1, `), . . . ,Enc(pp, skn, xn, `)) = f(x1, . . . , xn)] = 1 .

We remark that there is no master secret key msk. Furthermore, similarly
to [13], our definition does not explicitly ask the setup to be decentralized. Our
DMCFE construction based on DDH (Section 5) however has a setup which can
be easily decentralized.

We consider a similar security definition for the decentralized multi-client
scheme. We point out that contrary to [13], we do not differentiate encryption
keys from secret keys. This is without loss of generality, as corruptions in [13]
only allow to corrupt both keys at the same time.

Definition 2.7. (Security of DMCFE) The xx-yy-IND security notion of
an DMCFE scheme (xx ∈ {sta, adt} and yy ∈ {any,pos+}) is similar to the one
of an MCFE (Definition 2.2), except that there is no master secret key msk and
the key derivation oracle is now defined as:

Key derivation oracle QKeyD(f): Computes ski,f := KeyDerShare(pp, ski, f)
for i ∈ [n] and outputs {ski,f}i∈[n].

2.3 Inner-Product Functionality

We describe the functionalities supported by the constructions in this paper.
The index of the family is defined as ρ = (R, n,m,X, Y ) where R is either Z or
ZL for some integer L, and n,m,X, Y are positive integers. If X,Y are omitted,
then X = Y = L is used (i.e., no constraint).
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This defines F ip
ρ = {fy1,...,yn : (Rm)

n → R} where

fy1,...,yn(x1, . . . ,xn) =

n∑
i=1

〈xi,yi〉 = 〈x,y〉 ,

where the vectors satisfy the following bounds: ‖xi‖∞ < X, ‖yi‖∞ < Y for
i ∈ [n], and where x ∈ Rmn and y ∈ Rmn are the vectors corresponding to the
concatenation of the n vectors x1, . . . ,xn and y1, . . . ,yn respectively.

2.4 Pseudorandom Functions (PRF)

We make use of a pseudorandom function PRFK(`), indexed by a key K ∈ {0, 1}λ,
that takes as input a label ` ∈ Labels, and outputs a value in the output space
Z. For a uniformly random key K ← {0, 1}λ, this function is computationally
indistinguishable from a truly random function from Labels to Z.

We define the advantage of an adversary A in the following way:

AdvPRF,A(λ) =
∣∣Pr[INDPRF

0 (λ,A) = 1]− Pr[INDPRF
1 (λ,A) = 1]

∣∣ ,
where INDPRF

0 (λ,A) is the experiment where A has an oracle access to PRFK(·),
whereas INDPRF

1 (λ,A) is the experiment where A has an oracle access to a truly
random function instead.

A PRF is secure, if for any any polynomial-time adversary A, there exists a
negligible function negl such that: AdvPRF,A(λ) ≤ negl(λ).

2.5 Symmetric-Key Encryption (SE)

A symmetric encryption with key space K consists of the following PPT algo-
rithms:

– Enc(K,m): given a symmetric key K and a message m, outputs a ciphertext.
– Dec(K, ct): given a symmetric key K and a ciphertext ct, outputs a message

(or ⊥ if it fails to decrypt).

For all message in the message space, we have Pr[Dec(k,Enc(k,m)) = m] = 1,
where the probability is taken over the random choice of K ← K. We say a
symmetric-key encryption with key space K is compatible with a PRF with
output space Z if K = Z.

Definition 2.8 (SE). For any SE with key space K, any bit β ∈ {0, 1}, any
security parameter λ, and any adversary A, we define the experiment INDPRF

β

as follows.
We define the advantage of an adversary A in the following way:

AdvSE,A(λ, n) =
∣∣Pr[INDPRF

0 (λ,A) = 1]− Pr[INDSE
1 (λ,A) = 1]

∣∣ .
A SE is secure, if for any any polynomial-time adversary A, there exists a

negligible function negl such that: AdvSE,A(λ) ≤ negl(λ).
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INDSE
β (λ,A)

K← K

α← AOSE(·)(1λ)

Output: α

Fig. 3. Security games for SE. The oracle OSE(m0,m1) returns Enc(K,mβ).

3 MCFE from Public-Key Single-Input FE

In this section, we build a multi-client FE for inner products generically from
any public-key single-input FE and a standard PRF.

3.1 Construction

The construction resembles the multi-input FE from [4], where an inner layer of
information-theoretic one-time FE is combined with an outer layer of single-input
FE. We manage to extend this paradigm to the setting where the encryption
additionally takes a label as input: the one-time pads are replaced by pads which
are pseudorandom for all used labels `, using techniques similar to those used in
[2] to decentralize the generation of functional secret keys.

The underlying single-input FE is required to satisfy simple structural prop-
erties, originally defined in [4] and recalled below (converted to the public-key
setting), which are satisfied by all known existing single-input FE for inner prod-
ucts.

Definition 3.1 (Two-step decryption [4]). A public-key FE scheme FE =
(Setup,KeyGen,KeyDer,Enc,Dec) for the function ensemble F ip

ρ , ρ = (Z, 1,m,X,
Y ) satisfies the two-step decryption property if it admits PPT algorithms Setup?,
Dec1,Dec2 and an encoding function E such that:

1. For all λ ∈ N,Setup?(1λ, 1n) outputs pp where pp includes ρ = (Z, 1,m,X,
Y ) and a bound B ∈ R+, as well as the description of a group G (with
group law ◦) of order L > n ·m ·X · Y , which defines the encoding function
E : ZL × Z→ G.

2. For all (msk,mpk) ← KeyGen(pp),x ∈ Zm, ct ← Enc(pp,mpk,x),y ∈ Zm,
and sk← KeyDer(msk,y), we have

Dec1(pp, sk, ct) = E(〈x,y〉 mod L, noise) ,

for some noise ∈ Z that depends on ct and sk. Furthermore, it holds that
Pr[|noise| < B] = 1−negl(λ), where the probability is taken over the random
coins of KeyGen and KeyDer. Note that there is no restriction on the norm
of 〈x,y〉 here.

3. The encoding E is linear, that is: for all γ, γ′ ∈ ZL, noise, noise′ ∈ Z, we have

E(γ, noise) ◦ E(γ′, noise′) = E(γ + γ′ mod L, noise+ noise′) .
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Setup(1λ, 1n) :

ppipfe ← Setup?ipfe(1
λ, 1n), with L implicitly defined from ppipfe

Return pp = ppipfe

KeyGen(pp) :

(mskipfe,mpkipfe)← KeyGenipfe(ppipfe);msk := mskipfe

For i ∈ [n], j > i : Ki,j = Kj,i ← {0, 1}λ

Return {ski = (mpk, {Ki,j}j∈[n])}i∈[n] and msk

Enc(pp, ski,xi ∈ Rm, ` ∈ Labels) :

Parse ski = (mpkipfe, {Ki,j}j∈[n])

ti,` :=
∑
j 6=i

(−1)j<iPRFKi,j (`) ∈ ZmnL

wi := (0‖ . . . ‖0‖xi‖0‖ . . . ‖0) + ti,` mod L

cti ← Encipfe(ppipfe,mpkipfe,wi)

Return cti

KeyDer(pp,msk,y ∈ Rmn) :

Return sky ← KeyDeripfe(ppipfe,mskipfe,y)

Dec(pp, sky, {cti}i∈[n]) :

For i ∈ [n], E(〈wi,y〉 mod L, noisei)← Decipfe,1(ppipfe, sky, cti)

Return Decipfe,2(ppipfe, E(〈w1,y〉 mod L, noise1)) ◦ · · · ◦ E(〈wn,y〉 mod L, noisen))

Fig. 4. Inner-Product MCFE for Fρ, ρ = (Z, n,m,X, Y ) built from a public-key FE
FE := (Setupipfe,Encipfe,KeyDeripfe,Decipfe) for Fρipfe , ρipfe = (Z, 1, n ·m, 2X,Y ). We as-
sume FE satisfies the two-step decryption property (see Definition 3.1), hence the ex-
istence of PPT algorithms Setup?ipfe, Decipfe,1 and Decipfe,2. Here, for any K ∈ {0, 1}λ,
PRFK : Labels→ ZmnL is a pseudorandom function (see Section 2.4).
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4. For all γ < n ·m ·X · Y , and |noise| < n ·B, Dec2(pp, E(γ, noise)) = γ.

Definition 3.2 (Linear encryption [4]). A secret-key FE
scheme FE = (Setup,KeyGen,KeyDer,Enc,Dec) is said to satisfy the linear en-
cryption property if there exists a deterministic algorithm Add that takes as input
a ciphertext and a message, such that for all x,x′ ∈ Zm, the following are iden-
tically distributed:

Add(Enc(pp,msk,x),x′), and Enc
(
pp,msk, (x+ x′ mod L)

)
.

Recall that the value L ∈ N is defined as part of the output of the algorithm
Setup? (see the two-step decryption property above).

Correctness. The correctness of the scheme in Fig. 4 follows from (i) the
correctness and Definition 3.1 (two-step decryption) of the single-input scheme,
and (ii) the fact that for all ` ∈ Labels,

∑
i∈[n] ti,` = 0, by definition of the

vectors ti,`. Thus, writing wi := (0‖ . . . ‖0‖xi‖0‖ . . . ‖0) + ti,` mod L, we have∑
i∈[n] wi mod L = x mod L ∈ ZmnL , where x ∈ Rnm denotes the concatenation

of the n vectors x1, . . . ,xn.
More precisely, consider any vector x := (x1‖ · · · ‖xn) ∈ (Zm)n, y ∈ Zmn,

such that ‖x‖∞ < X, ‖y‖∞ < Y and let pp ← Setup(1λ), ({ski}i∈[n],msk) ←
KeyGen(pp), sky ← KeyDer(pp,msk,y), and cti ← Enc(pp, ski,xi, `) for all i ∈
[n].

By (2) of Definition 3.1, the decryption algorithm Dec(pp, sky, {cti}i∈[n])
computes E(〈wi,y〉 mod L, noisei) ← Decipfe,1(pp, ski, cti) where for all i ∈ [n],
|noisei| < B with probability 1− negl(λ), where B ∈ R+ is the bound output by
Setup?ipfe.

By (3) of Definition 3.1 (linearity of E) we have:

E(〈w1,y〉 mod L, noise1) ◦ · · · ◦ E(〈wn,y〉 mod L, noisen)

= E

〈∑
i∈[n]

wi,y〉,
∑
i∈[n]

noisei

 = E

〈x,y〉 mod L,
∑
i∈[n]

noisei

 .

Since 〈x,y〉 < n ·m ·X · Y < L and
∣∣∣∑i∈[n] noisei

∣∣∣ < n ·B, we have

Decipfe,2
(
E(〈x,y〉 mod L,

∑
i∈[n]

noisei)
)
= 〈x,y〉,

by (4) of Definition 3.1.

3.2 Static Security

Now we proceed to prove the sta-pos+-IND-security of the scheme, that is, secu-
rity with static corruption, which serves as a warm up to the more complicated
proof of adt-pos+-IND-security, that we give later. Using the generic transforma-
tion in Section 4, we can remove the pos+ restriction, and obtain adt-any-IND
security.
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Theorem 3.3 (sta-pos+-IND-security). If the FE scheme FE = (Setupipfe,
KeyGenipfe,KeyDeripfe,Encipfe,Decipfe) is an any-IND-secure FE scheme for the
inner product functionality defined as F ip

ρipfe
, ρipfe = (Z, 1,m, 2X,Y ), and PRF

is secure, then MCFE from Fig. 4 is sta-pos+-IND-secure for the functionality
defined as F ip

ρ , ρ = (Z, n,m,X, Y ). Namely, for any PPT adversary A, there
exist PPT adversaries B and B′ such that:

Advsta-pos+-IND
MCFE,A (λ, n) ≤ 2qEnc · Advany-IND

FE,B (λ) + 2(n− 1)qEnc · AdvPRF,B′(λ),

where qEnc denotes the number of distinct labels queried to QLeftRight.

Proof. For simplicity, we consider the case where A only queries QLeftRight on
one label `?, and never queries QEnc on `?. We build PPT adversaries B and B′

such that: Advsta-pos+-IND-1-label
MCFE,A (λ, n) ≤ 2 ·Advany-IND

FE,B (λ)+2(n−1) ·AdvPRF,B′(λ),

where Advsta-pos+-IND-1-label
MCFE,A (λ, n) is defined as Advsta-pos+-IND

MCFE,A (λ, n), except with
the limitations mentioned above, namely, A can query QLeftRight on at most
one label, which cannot be queried to QEnc. Then we use Lemma 2.5 to obtain
the theorem.

First, consider the case where there is only one honest user. In this case, the
security follows directly from the any-IND security of FE. Namely, in that case we
build a PPT adversary B such that Advsta-pos+-IND-1-label

MCFE,A (λ, n) ≤ Advany-IND
FE,B (λ).

Given ppipfe, B first samples the keys Ki,j for all i, j ∈ [n], thanks to which
it can compute pp, {ski}i∈[n], and send (pp, {ski}i∈CS) to A. B can answer all
queries to QEnc(i,xji , `), by returning Enc(pp, ski,x

j
i , `), since it know ski for all

i ∈ [n]. Call i? the only honest slot. B can answer all queries to QEnc(i, ·, ·, ·)
and QLeftRight(i, ·, ·, ·) for i 6= i?, using pp and {ski}i∈[n]. Whenever A queries
QLeftRight(i?,xj,0i? ,x

j,1
i? , `

?), B queries its own left right oracle on (0‖ . . . ‖0‖xj,0i? ‖
0‖ . . . ‖0), (0‖ . . . ‖xj,1i? ‖0‖ . . . ‖0), to receive cti := Encipfe(ppipfe,mpkipfe, ski? , (0‖
. . . ‖xj,βi? ‖0‖ . . . ‖0)), where β ∈ {0, 1}, depending on the experiment B is in-
teracting with. Then, B computes ti?,`? as described in Fig. 4, and returns
Add(cti? , ti?,`?) to A, which, according to the property from Definition 3.2 (lin-
ear encryption), is identically distributed to Encipfe(ppipfe,mpkipfe, (0‖ . . . ‖x

j,β
i? ‖

0‖ . . . ‖0) + ti?,`? mod L). Whenever A queries QKeyD on input y, B queries its
own QKeyD on the same input, and forwards the output to A. For all y queried
to QKeyD, we have 〈(0‖ . . . ‖xj,0i? ‖0‖ . . . ‖0),y〉 = 〈(0‖ . . . ‖x

j,1
i? ‖0‖ . . . ‖0),y〉, by

Condition (*). Moreover, for all β ∈ {0, 1}, ‖(0‖ . . . ‖xj,βi? ‖0‖ . . . ‖0)‖∞ < 2X.
Thus, the queries B sends to its left-right oracle are legitimate. This concludes
the case where there is only one honest user.

Second, we consider the case where there is more than one honest user. For
this case, we proceed via a hybrid argument, using the games described in Fig. 5.
Note that G0 corresponds to sta-pos+-INDMCFE

0 (λ, n,A), and G4 corresponds to
sta-pos+-INDMCFE

1 (λ, n,A), with the one label restriction. Thus, we have:

Advsta-pos+-IND-1-label
MCFE,A (λ, n) =

∣∣WinG0

A (λ, n)−WinG4

A (λ, n)
∣∣.
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G0, G1, G2 , G3 , G4 :

CS ← A(1λ, 1n)
({ski}i∈[n],msk)← KeyGen(pp)

α← AQLeftRight(·,·,·,·),QEnc(·,·,·),QKeyD(·)(pp, {ski}i∈CS)
Output: α if Condition (*) is satisfied, or 0 otherwise.

QKeyD(y):
Return sky ← KeyDer(pp,msk,y)

QEnc(i,xji , `):
ti,` ← Gen(i, `)
wi := (0‖ . . . ‖0‖xji‖0‖ . . . ‖0) + ti,` mod L
cti ← Encipfe(ppipfe,mpkipfe,wi)
Return cti

QLeftRight(i,xj,0i ,xj,1i , `?):
ti,`? ← Gen(i, `?)

wi := (0‖ . . . ‖0‖xj,0i + x1,1
i − x1,0

i ‖0‖ . . . ‖0) + ti,`? mod L

wi := (0‖ . . . ‖0‖xj,1i ‖0‖ . . . ‖0) + ti,`? mod L

cti ← Encipfe(ppipfe,mpkipfe,wi)
Return cti

Gen(i, `):
Parse ski = {Ki,j}j∈[n]
ti,` :=

∑
j 6=i(−1)

j<iPRFKi,j (`) ∈ ZmnL
If i ∈ HS := {i1, . . . , ih}, then:
• If i = i1, ti,` :=

∑
j∈CS(−1)

j<iPRFKi,j (`) +
∑h
t=2 RF(t, `).

• If i = it, for t ∈ [2, . . . , h], ti,` :=
∑
j∈[n]\{it,i1}(−1)

j<iPRFKi,j (`)− RF(t, `).

Return ti,`

Fig. 5. Games for the proof of Theorem 3.3. Here, HS := [n] \ CS. Condition (*) is
given in Definition 2.1. Here, RF denotes a random function that is computed on the
fly. WLOG, QLeftRight is only queried on label `?, and QEnc isn’t queried on `?.
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Game G1. In game G1, we change the way the vectors ti,` used by QEnc and
QLeftRight are generated, switching the values PRFKi1,it (`) to RF(t, `), for
all t ∈ [2, h], where we write the set of honest users HS := {i1, . . . , ih},
and RF denotes a random function, computed on the fly (see Fig. 5). The
transition from G0 to G1 is justified by the security of the PRF. Namely, in
Lemma 3.4, we exhibit a PPT adversary B0 such that:∣∣WinG0

A (λ, n)−WinG1

A (λ, n)
∣∣ ≤ (h− 1) · AdvPRF,B0(λ),

where h ≤ n denotes the number of honest users.
Game G2. In game G2, the vectors wi used to generate the challenge cipher-

texts contain an additional vector (0‖ . . . ‖0‖x1,1
i −x

1,0
i ‖0‖ . . . ‖0). The tran-

sition from G1 to G2 is justified by the any-IND security of FE. Namely, in
Lemma 3.5, we exhibit a PPT adversary B1 such that:∣∣WinG1

A (λ, n)−WinG2

A (λ, n)
∣∣ ≤ Advany-IND

FE,B1
(λ).

Game G3. In game G3, the vectors wi used in the challenge ciphertexts are of
the form: wi := (0‖ . . . ‖0‖xj,1i ‖0‖ . . . ‖0). The transition from G2 to G3 is
justified by the any-IND security of FE. Namely, in Lemma 3.6, we exhibit
a PPT adversary B2 such that:∣∣WinG2

A (λ, n)−WinG3

A (λ, n)
∣∣ ≤ Advany-IND

FE,B2
(λ).

Game G4. This game is sta-pos+-INDMCFE
1 (λ, n,A). The transition from G3 to

G4 is symmetric to the transition from G0 to G1, justified by the security of
the PRF. Namely, it can be proven as in Lemma 3.4 that there exists a PPT
adversary B3 such that:∣∣WinG3

A (λ, n)−WinG4

A (λ, n)
∣∣ ≤ (h− 1) · AdvPRF,B3(λ),

where h ≤ n denotes the number of honest users. We defer to the proof of
Lemma 3.4 for further details.

Putting everything together, we obtain the theorem. ut

Lemma 3.4 (Transition from G0 to G1). There exists a PPT adversary B′
such that

∣∣WinG0

A (λ, n)−WinG1

A (λ, n)
∣∣ ≤ (h− 1) · AdvPRF,B′(λ).

Proof. We can use the security of the PRF on all keys Ki,j where i, j ∈ HS, since
these are hidden from the adversary A. We show that using the security of the
PRF on h − 1 carefully chosen such keys is sufficient to transition from G0 to
G1. Namely, if we write HS := {i1, . . . , ih}, where the indices i1 < i2 < · · · < ih
are ordered, we use the security of the PRF on keys of the form Ki1,j for all
j ∈ HS \ {i1}.

We build the adversary B′ as follows. Given CS sent by A, it samples ppipfe ←
Setup?ipfe(1

λ, 1n) and mskipfe ← KeyGenipfe(ppipfe). For all i ∈ [n] \ {i1}, for all
j > i, B′ samples Ki,j = Kj,i ← {0, 1}λ, thanks to which it can compute
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ski := {Ki,j}j∈[n] for all i ∈ CS and send them to A. B′ can simulate the oracle
QKeyD using mskipfe, and answers the queries to QEnc(i,xji , `) for i ∈ CS, and
QLeftRight(i,xj,0i ,xj,1i , `?) for i ∈ CS using ski.

To answer QEnc(i1,x
j
i1
, `) or QLeftRight(i1,x

j,0
i1
,xj,1i1 , `

?), B′ computes

ti1,` :=
∑
j∈CS

(−1)j<i1PRFKi1,j
(`) +

h∑
t=2

RF(t, `).

To answer QEnc(it,x
j
it
, `) or QLeftRight(it,x

j,0
it
,xj,1it , `

?), for t ∈ [2, . . . , h], B′
computes

tit,` :=
∑

j∈[n]\{it,i1}

(−1)j<itPRFKit,j
(`)− RF(t, `).

Here, RF(t, `) is either a truly random function, or PRFKi1,it
(`), depending on

the experiment B′ is interacting with. In fact, we implicitly use a hybrid argument
which goes over all t ∈ [2, . . . , h] here, in order to switch the values PRFKi1,it

(`)

to RF(t, `). Thus, we obtain
∣∣WinG0

A (λ, n)−WinG1

A (λ, n)
∣∣ ≤ (h−1) ·AdvPRF,B′(λ).

ut

Lemma 3.5 (Transition from G1 to G2). There exists a PPT adversary B1
such that

∣∣WinG1

A (λ, n)−WinG2

A (λ, n)
∣∣ ≤ Advany-IND

FE,B1
(λ).

Proof. The adversary B1 works as follows. Given CS sent by A, and ppipfe from
its own experiment, B1 samples Ki,j = Kj,i ← {0, 1}λ for all i < j ∈ [n], thanks
to which it can send the ski for all i ∈ CS, together with ppipfe to A. Since B1
knows the ski for all i ∈ [n], it can answer the oracle QEnc as described in Fig. 5.

Whenever A queries QKeyD on input y, B1 queries its own oracle on the
same input, and forwards the answer to A.

Since we are considering pos+-IND security, we know A queries all honest
slots on QLeftRight(·, ·, ·, `?) and we denote by it? the last honest slot queried on
QLeftRight(·, ·, ·, `?). We call ∆x := (x1,1

1 − x1,0
1 , . . . ,x1,1

n − x1,0
n ), where for all

i ∈ HS, (i,x1,0
i ,x1,1

i , `?) is the first query of the form QLeftRight(i, ·, ·, `?), and
for all i ∈ CS, we define x1,1

i − x1,0
i := 0 ∈ Zm (note that QLeftRight can be

queried on a corrupted slot, but by Condition (*), that means the query is of
the form (i,x1,0

i ,x1,1
i , `?)).

Whenever A queries QLeftRight(i,xj,0i ,xj,1i , `?), B1 computes the vectors ti,`?
for all i ∈ [n], using ski and computing the random function RF on the fly, as de-
scribed in Fig. 5. Then, if i 6= it? , it computes wi := (0‖ . . . ‖0‖xj,0i ‖0‖ . . . ‖0) +
ti,`? mod L, and returns Encipfe(ppipfe,mpkipfe,wi) to A. If i = it? , then B1
queries its left-right oracle on input (0, ∆x) to get cti := Encipfe(ppipfe,mpkipfe,0)
or cti := Encipfe(ppipfe,mpkipfe, ∆x), depending on the experiment B1 is interact-
ing with. Note that at this point, ∆x is entirely known to B1, since it? is the
last honest slot to be queried to QLeftRight(·, ·, ·, `?). Then, B1 computes wi :=
(0‖ . . . ‖0‖xj,0i ‖0‖ . . . ‖0)+ti,`? mod L and returns ct′i := Add(cti,wi), which, ac-
cording to the property from Definition 3.2 (linear encryption), is identically dis-
tributed to Encipfe(ppipfe,mpkipfe,wi mod L) or Encipfe(ppipfe,mpkipfe,wi+∆x mod



20 M. Abdalla, F. Benhamouda, R. Gay

L), (again, depending on which experiment B1 is interacting with). For all y
queried to QKeyD, we have 〈∆x,y〉 = 0, by Condition (*). Moreover, ‖∆x‖∞ <
2X. Thus, the queries B1 sends to its left-right oracle are legitimate. Finally, B1
returns ct′i to A.

To conclude, we show that when B1 is interacting with any-INDFE
0 (λ, 1,A),

then it simulates the game G1, whereas it simulates the game G2 when it is inter-
acting with any-INDFE

1 (λ, 1,A). It is clear for the case any-INDFE
0 (λ, 1,A). For

the case any-INDFE
1 (λ, 1,A), we consider the vectors {ut}t∈[h], where we write

HS := {i1, . . . , ih} and we denote by u1 := −
∑h
t=2 RF(t, `

?) and ut := RF(t, `?),
for all t ∈ [2, . . . , n]. These are shares of a perfect h out of h secret sharing of
0, that is, they are uniformly random conditioned on

∑
t∈[h] ut = 0. Thus,

{ut}t∈[t]\{t?} ∪ {ut? + ∆x} is a set of shares for a secret sharing of the vector
∆x. Thus, the following distributions are identical:

{ut}t∈[h]\{t?} ∪ {ut? +∆x}

and
{ut + (0‖ . . . ‖x1,1

it
− x1,0

it
‖0‖ . . . ‖0)}

t∈[h],

where for all t ∈ [h], ut ← ZmnL such that
∑
t∈[h] ut = 0. The uppermost

distribution corresponds to the simulation by B1 when it is interacting with
any-INDFE

1 (λ, 1,A), while the lowermost distribution corresponds to the game
G1.ρ. This concludes the proof. ut

Lemma 3.6 (Transition from G2 to G3). There exists a PPT adversary B2
such that

∣∣WinG2

A (λ, n)−WinG3

A (λ, n)
∣∣ ≤ Advany-IND

FE,B (λ).

Proof. We build an adversary B2 against the any-IND security of FE as follows.
Given CS sent by A, and ppipfe from its own experiment, B2 samples Ki,j =

Kj,i ← {0, 1}λ for all i < j ∈ [n], thanks to which it can send the ski for all
i ∈ CS, together with ppipfe to A, and answer the oracle queries to QEnc as
described in Fig. 5.

Then, whenever A queries QKeyD on input y, B2 queries its own oracle on the
same input, and forwards the answer toA. WheneverA queries QLeftRight(i,xj,0i ,

xj,1i , `?), B2 computes ti,`? using ski and computing the random function RF on
the fly, as described in Fig. 5. Then, B2 queries its left-right oracle on input
(0‖ . . . ‖0‖xj,0i − x1,0

i ‖0‖ . . . ‖0), (0‖ . . . ‖0‖x
j,1
i − x1,1

i ‖0‖ . . . ‖0) to get

cti := Encipfe(ppipfe,mpkipfe(0‖ . . . ‖0‖x
j,β
i − x1,β

i ‖0‖ . . . ‖0)),

where β ∈ {0, 1}, depending on the experiment B2 is interacting with. Finally,
B2 computes vi := (0‖ . . . ‖0‖x1,1

i ‖0‖ . . . ‖0) + ti,`? mod L, and returns ct′i :=
Add(cti,vi) to A, which, according to the property from Definition 3.2, is identi-
cally distributed to Encipfe(ppipfe,mpkipfe, (0‖ . . . ‖0‖x

j,β
i −x

1,β
i +x1,1

i ‖0‖ . . . ‖0)+
ti,`? mod L). For all y queried to QKeyD, Condition (*) implies that 〈(0‖ . . . ‖0‖
xj,0i − x1,0

i ‖0‖ . . . ‖0),y〉 = 〈(0‖ . . . ‖0‖x
j,1
i − x1,1

i ‖0‖ . . . ‖0),y〉 for all queries
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(i,xj,0i ,xj,1i , `?) to QLeftRight. Moreover, for all β ∈ {0, 1}, we have ‖(0‖ . . . ‖0‖
xj,βi −x1,β

i ‖0‖ . . . ‖0)‖∞ < 2X. Thus, the queries B2 sends to its left-right oracle
are legitimate. ut

3.3 Adaptive Security

Now we proceed to prove the adt-pos+-IND-security of the scheme, that is, se-
curity with adaptive corruption. As before, using the generic transformation in
Section 4, we can remove the pos+ restriction, and obtain adt-any-IND security.

Theorem 3.7 (adt-pos+-IND-security). If the FE scheme FE = (Setupipfe,
KeyGenipfe,KeyDeripfe,Encipfe,Decipfe) is an any-IND-secure FE scheme for the
inner product functionality defined as F ip

ρipfe
, ρipfe = (Z, 1,m, 2X,Y ), and PRF

is secure, then MCFE from Fig. 4 is adt-pos+-IND-secure for the functionality
defined as F ip

ρ , ρ = (Z, n,m,X, Y ). Namely, for any PPT adversary A, there
exist PPT adversaries B and B′ such that:

Advadt-pos+-IND
MCFE,A (λ, n) ≤ 2(n+ 1)n(n− 1)2qEnc · AdvPRF,B(λ)

+ 2(n+ 1)qEnc · Advany-IND
FE,B′ (λ) ,

where qEnc denotes the number of distinct labels queried to QLeftRight.

Proof. WLOG, we can assume that adversary A only queries QLeftRight on one
label `?, that isn’t queried to QEnc. Namely, we show that there exist PPT
adversaries B and B′ such that:

Advadt-pos+-IND-1-label
MCFE,A (λ, n) ≤ 2(n+ 1)n(n− 1)2 · AdvPRF,B(λ)

+ 2(n+ 1) · Advpos+-IND
FE,B′ (λ) .

The theorem then follows from Lemma 2.5.
We proceed via a hybrid argument, using the games described in Fig. 6. The

lemmas from the transitions are provided in the full version [1].

Game G?0: is as xx-yy-IND-1-label0, except the size of Q`? , which denotes the
set of slots queried to QLeftRight(·, ·, ·, `?), is initially guessed by the exper-
iment, by choosing a uniformly random κ? ← {0, . . . , n}. The game behaves
exactly as xx-yy-IND-1-label0, except it ignores the A’s output α, and out-
puts 0 instead, in case the guess κ? was incorrect. Since this guess is correct
with probability 1

n+1 , we have

Win
G?0
A (λ, n) =

1

n+ 1
·Win

xx-yy-IND-1-label0
A (λ, n) .

Game G?1: in this game, we change the distribution of the ciphertexts output
QLeftRight, for the case κ? ≥ 2. For these, the vector (0‖ . . . ‖0‖xj,0i ‖0‖ . . . ‖0)
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G?0, G?1, G?2 , G?3 , G?4 :

κ? ← {0, . . . , n}, β ← {0, 1}, for all t ∈ [2, . . . , κ?], ut ← ZmnL
({ski}i∈[n],msk)← KeyGen(pp)

α← AQEnc(·,·,·,·),QKeyD(·),QCor(·)(pp)
Output α if Condition (*) is satisfied AND the guess κ? is correct; 0 otherwise.

QEnc(i,xji , `):
Return Enc(pp, ski,x

j
i , `)

QKeyD(y):
Return sky ← KeyDer(pp,msk,y)

QCor(i):
Return ski

QLeftRight(i,xj,0i ,xj,1i , `?):
Parse ski := {Ki,j}j∈[n], vi,` :=

∑
j 6=i(−1)

j<iPRFKi,j (`) ∈ ZmnL , ti,` := vi,`.

We write {i1, . . . , iκ} the set of slots queried to QLeftRight, in the order
they are queried (that is, i1 is the first queried, i2 is the second, and so forth).
If κ? ≥ 2, then do the following.
• If i = i1, then ti,` := vi,` +

∑κ?

t=2 ut.
• If i = it, for t ∈ [2, . . . , κ?], then ti,` := vi,` − ut.
• If i = it, for t > κ?, that means κ > κ?, the guess was incorrect.
Ends the game and output 0.

wi := (0‖ . . . ‖0‖xj,0i ‖0‖ · · · ‖0) + ti,` mod L

If κ? ≥ 2: wi := (0‖ . . . ‖0‖xj,0i + x1,1
i − x1,0

i ‖0‖ · · · ‖0) + ti,` mod L

wi := (0‖ . . . ‖0‖xj,1i ‖0‖ . . . ‖0) + ti,` mod L

cti ← Encipfe(ppipfe,wi)
Return cti

Fig. 6. Games for the proof of Theorem 3.7. We say the guess κ? is correct if the size
of Q`? is κ?.
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to be encrypted is added a share of a perfect κ? out of κ? secret sharing of 0.
This game is similar to the game G1 from Fig. 5 for the proof of Theorem 3.3.
We justify this transition using the security of the PRF, as in Lemma 3.5,
with the crucial difference that corruptions are adaptive here. Thus, the set
of slots Q`? queried to QLeftRight is not known in advance by the reduction.
Since guessing the entire set would incur an exponential security loss, we
introduce gradually the shares, starting with a 2 out of 2 perfect secret shar-
ing, then 3 out of 3, and so forth, via a hybrid argument, until we reach the
κ? out of κ? secret sharing among all queried slots. To go from one hybrid to
another, we only require to guess a pair of users (i, j) (as opposed to guessing
the entire set of honest users) to use the security of the PRF on the key Ki,j .
Namely, in the full version [1], we show that there exists a PPT adversary
B0 such that:∣∣Win

G?0
A (λ, n)−Win

G?1
A (λ, n)

∣∣ ≤ n(n− 1)2 · AdvPRF,B0
(λ)

Game G?2: in this game, the vectors wi used to generate the ciphertexts output
by QLeftRight contain an additional vector (0‖ . . . ‖0‖x1,1

i − x1,0
i ‖0‖ . . . ‖0).

The transition from G?1 to G?2 is justified by the any-IND security of FE,
similarly than the transition from G1 to G2 in Fig. 5 for the proof of Theo-
rem 3.3. Namely, in the full version [1], we exhibit a PPT adversary B1 such
that: ∣∣Win

G?1
A (λ, n)−Win

G?2
A (λ, n)

∣∣ ≤ Advany-IND
FE,B1

(λ).

Game G?3: in this game, the vectors wi used in the ciphertexts output by
QLeftRight are of the form: wi := (0‖ . . . ‖0‖xj,1i ‖0‖ . . . ‖0) + ti,`? mod L.
The transition from G?ρ−1.2 to G?ρ−1.3 is justified by the pos+-IND security
of FE, similarly than the transition from G2 to G3 in Fig. 5 for the proof of
Theorem 3.3. Namely, in the full version [1], we build a PPT adversary B2
such that: ∣∣Win

G?2
A (λ, n)−Win

G?3
A (λ, n)

∣∣ ≤ Advany-IND
FE,B2

(λ).

Game G?4. The transition from G?3 to G?4 is symmetric to the transition from
G?0 to G?1, justified by the security of the PRF. Namely, we prove in the full
version [1] that there exists a PPT adversary B3 such that:∣∣Win

G?3
A (λ, n)−Win

G?4
A (λ, n)

∣∣ ≤ n(n− 1)2 · AdvPRF,B3
(λ).

We defer to the full version [1] for further details. Since G?4 is exactly as the
game xx-yy-INDMCFE

0 except it it guesses κ? ← {0, . . . , n}, we have

Win
G?4
A (λ, n) =

1

n+ 1
·Win

xx-yy-IND-1-label1
A (λ, n).

Putting everything together, we obtain the theorem. ut
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4 From pos+-IND to any-IND Security

In this section, we give a compiler that generically transforms any adt-pos+-IND
secure (D)MCFE into an adt-any-IND secure (D)MCFE. Our construction builds
up from the compiler from [2, Section 4.1], which does not support labels. Our
technical contribution is to handle multiple labels, many challenge ciphertexts
per label and input slots, and adaptive corruptions, without resorting to the
random oracle model, as opposed to [2, Section 4.2]. This is the first generic
transformation to support such features, and when combined with our MCFE
from Section 3, it gives the first MCFE for inner products whose adt− any-IND
security is proven in the standard model. Our construction is given in Fig. 7. It
is stated in terms of DMCFE, but a similar transformation works for MCFE.

Setup′(1λ, 1n) :

Return pp← Setup(1λ, 1n)

KeyGen′(pp) :

{ski}i∈[n] ← KeyGen(pp)

For i ∈ [n] : ki,1, . . . , ki,n ← {0, 1}λ

Return {sk′i = (ski, {ki,j , kj,i}j∈[n])}i∈[n]

Enc′(pp, sk′i, xi, `) :

Parse sk′i = (ski, {ki,j , kj,i}j∈[n])

cti ← Enc(pp, ski, xi)

For all j ∈ [n] : ki,j(`) := PRFki,j (`)

Ki(`) := ⊕j∈[n]ki,j(`)
ct′i ← EncSE(Ki(`), cti)

Return (ct′i, {kj,i(`)}j∈[n])

KeyDerShare′(pp, sk′i, f) :

Parse sk′i = (ski, {ki,j , kj,i}j∈[n])

Return sk′i,f ← KeyDerShare(ski, f)

KeyDerComb′(pp, {sk′i,f}i∈[n]) :

skf := KeyDerComb(pp, {sk′i,f}i∈[n])

Return skf

Dec′(pp, skf , ct
′′
1 , . . . , ct

′′
n) :

Parse {ct′′i = (ct′i, {kj,i(`)}j∈[n])}i∈[n]
For i ∈ [n] :

Ki(`) = ⊕j∈[n]ki,j(`)
cti ← DecSE(Ki(`), ct

′
i)

Return Dec(pp, skf , ct1, . . . , ctn).

Fig. 7. Compiler from an xx-pos+-IND DMCFE DMCFE into an xx-any-IND DMCFE
DMCFE′ using an IND-CPA symmetric-key encryption scheme SE.

Theorem 4.1 (Security). Let the tuple DMCFE = (Setup,KeyGen,KeyDerShare,
KeyDerComb,Enc,Dec) be an adt-pos+-IND-secure DMCFE scheme for a fam-
ily of functions F . Let SE = (EncSE,DecSE) be an IND-CPA symmetric-key
encryption scheme. Let PRF be a pseudorandom function. Then the DMCFE
scheme DMCFE′ = (Setup′,KeyGen′,KeyDerShare′,KeyDerComb′,Enc′,Dec′) de-
scribed in Fig. 7 is adt-any-IND secure. Namely, for any PPT adversary A,



From Single-Input to Multi-Client Inner-Product FE 25

there exist PPT adversaries B, B′, and B′′ such that:

Advadt-any-IND
DMCFE′,A (λ, n) ≤ qEnc · Advadt-pos+-IND

DMCFE,B (λ, n)

+ qEncn
2 · AdvIND-CPA

SE,B′ (λ) + 2qEncn
2 · AdvPRF,B′′(λ),

where qEnc denotes the number of distinct labels queried to QLeftRight.

Proof. WLOG, we can consider the security where only one label is queried
to QLeftRight, and that label is not queried to QEnc. Namely, we show there
exist PPT adversaries B, B′ and B′′ such that Advadt-any-IND-1-label

DMCFE′,A (λ, n) ≤
Advadt-pos+-IND

DMCFE,B (λ, n)+n ·AdvIND-CPA
SE,B′ (λ)+2n ·AdvPRF,B′′(λ). The theorem follows

from Lemma 2.5 (from one to many labels). We call `? the unique label queried
to QLeftRight (if QLeftRight is not queried, the security follows trivially).

Intuitively, the proof uses the adt-pos+-IND security of DMCFE for the case
where all honest slots are queried to QLeftRight(·, ·, ·, `?), and the security of
the PRF together witht the IND-CPA security of SE for the case where not all
honest slots are queried to QLeftRight(·, ·, ·, `?).

Formally, for all b ∈ {0, 1}, we define G?b as adt-yy-INDDMCFE′

1 (λ, n,A),
except the game guesses an honest slot that is not going to be queried to
QLeftRight(·, ·, ·, `?), by sampling uniformly at random i? ← {0, ..., n}, where
i? = 0 means that all honest slots are queried to QLeftRight(·, ·, ·, `?). The out-
put of G?b is the same adt-yy-INDDMCFE′

1 (λ, n,A), unless the guess is unsuc-
cessful, in which case, G?b outputs 0. Clearly, we have Pr[G?b(λ, n,A) = 1] =
1

n+1 · Pr[adt-yy-IND
DMCFE′

b (λ, n,A) = 1].
When i? = 0, we can rely on the adt-pos+-IND security of DMCFE. Namely,

we have a PPT adversary B such that:∣∣Pr[G?0(λ, n,A) = 1|i? = 0]

− Pr[G?1(λ, n,A) = 1|i? = 0]
∣∣ ≤ Advadt-pos+-IND

DMCFE,B (λ, n).

For all j ∈ [n], we prove that there exist PPT adversaries B′ and B′′ such
that:∣∣Pr[G?0(λ, n,A) = 1|i? = j]− Pr[G?1(λ, n,A) = 1|i? = j]

∣∣
≤ n · AdvIND-CPA

SE,B′ (λ, n) + 2n · AdvPRF,B′′(λ, n).

To prove the statement above, we use the fact that if there is a query
QLeftRight(i,xj,0i ,xj,1i , `?) with xj,0i 6= xj,1i , then the slot i ∈ [n] cannot be
corrupted without violating the Condition (*) from the security definition given
in Definition 2.2. We call such a slot explicitly honest, and such a query explic-
itly honest. We define hybrid games Hρ for all ρ ∈ {0, . . . , n}, defined as G?0,
except that every explicitly honest query QLeftRight(i,xj,0i ,xj,1i , `?) is answered
by Enc′(pp, sk′i,x

j,1
i , `?) if i ≤ ρ, and is answered by Enc′(pp, sk′i,x

j,0
i , `?) if i > ρ.
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The game H0 is the same as G?0, and Hn is the same as G?1. We prove that for all
j ∈ [n], for all ρ ∈ [n], there exist PPT adversaries Bρ and B′ρ such that:∣∣Pr[Hρ−1(λ, n,A) = 1|i? = j]− Pr[Hρ(λ, n,A) = 1|i? = j]

∣∣
≤ AdvIND-CPA

SE,Bρ (λ, n) + 2 · AdvPRF,B′
ρ
(λ, n).

The transition from H?ρ−1 and H?ρ−1 is justified as follows. If ρ is not an ex-
plicitly honest slot, then the two games are the same by definition. Otherwise,
we use the security of the PRF to switch the key kρ,i?(`

?) to uniformly ran-
dom (note that we can do so since the slots ρ and i? are known beforehand by
the reduction). If the guess i? is correct (i.e i? is honest but never queried to
QLeftRight), then the key kρ,i?(`

?) := PRFkρ,i? (`
?) only appears in the output

QLeftRight(ρ, ·, ·, `?). So, for these challenge ciphertexts, we have a uniformly
random key Kρ(`

?), which allows us to use the IND-CPA security of SE, and
changes encryption of xj,0ρ as in G?ρ−1 into encryption of xj,1ρ , as in G?ρ. Then we
switch back the key kρ,i? from uniformly random to pseudo-random, using the
security of the PRF once again. Summarizing, we have:

Pr[H?ρ−1(λ, n,A) = 1|i? = j]− Pr[H?ρ(λ, n,A) = 1|i? = j]

= AdvIND-CPA
SE,Bρ (λ, n) + 2 · AdvPRF,B′

ρ
(λ, n).

Summing up for all ρ ∈ [n], we obtain the following for all j ∈ [n]:∣∣Pr[G?0(λ, n,A) = 1|i? = j]− Pr[G?1(λ, n,A) = 1|i? = j]
∣∣

≤ n · AdvIND-CPA
SE,B′ (λ, n) + 2n · AdvPRF,B′′(λ, n).

Thus, we have:∣∣Pr[G?0(λ, n,A) = 1]− Pr[G?1(λ, n,A) = 1]
∣∣

≤ 1

n+ 1
Advadt-pos+-IND

DMCFE,B (λ, n)

+
n2

n+ 1
· AdvIND-CPA

SE,B′ (λ, n) +
2n2

n+ 1
· AdvPRF,B′′(λ, n) .

Therefore, we obtain:∣∣Pr[adt-yy-INDDMCFE′

0 (λ, n,A) = 1]− Pr[adt-yy-INDDMCFE′

1 (λ, n,A) = 1]
∣∣

≤ Advadt-pos+-IND
DMCFE,B (λ, n) + n2 · AdvIND-CPA

SE,B′ (λ, n) + 2n2 · AdvPRF,B′′(λ, n) .

ut

5 Decentralized Multi-Client Function Encryption

In this section, we modify the generic construction of Section 3 to make it decen-
tralized. We cannot use directly the transformation from [2], because the master
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secret key msk may be arbitrary, and not necessarily the concatenation of the
parties’ secret keys ski (for i ∈ [n]), as required by [2]. Moreover, the functional
decryption keys skf may not be computed just from ski. Instead, we additively
secret share the master secret key of the underlying single-input FE. For key
derivation to be possible in a decentralized way, we require an extra property on
the single-input FE, that is fulfilled by most known constructions of single-input
inner FE for inner products. This property is called special key derivation, and
is very similar to special key derivation for MCFE defined in [2].

Definition 5.1 (FE with Special Key Derivation). Let FE = (Setup,KeyGen,
KeyDer,Enc,Dec) be a public-key FE scheme for the inner product functionality
F ip
ρ , where ρ = (R, 1, n ·m,X, Y ) where R is either Z or ZL for some integer

L, and n,m,X, Y are positive integers. FE is said to have special key derivation
modulo M if:

– The algorithm KeyGen(pp) generates a master secret key of the form msk :=
U ∈ Zκ×mnM , for some constant κ (which can depend on pp).

– sky ← KeyDer(pp,msk,y) outputs sky = (y,U · y ∈ ZκM ).

For our security proof, we require M to be a prime number.

Instantiations. All the stateless7 IPFE constructions in [7] satisfy the special
key derivation property. More precisely, the DDH construction has special key
derivation modulo p, the prime order of the used cyclic group, and κ = 2 (using
notations from [7], the matrix U is defined by U1,i = si and U2,i = ti). The
Paillier and LWE constructions have special key derivation modulo any large
enough prime number M so that U · y is the same modulo M and over the
integers with overwhelming probability over the generation of msk. For Paillier,
κ = 1 and U1,i = si, while for LWE, κ = m and U = Z (using notations
from [7]).

Construction. The construction is provided in Fig. 8.
When instantiated with the DDH construction from [7], KeyGen can be de-

centralized non-interactively. Let G be the underlying cyclic group of order p
and g and h be two generators of G. Each party i independently generates
Ui ← Z2×mn

p and K′i,j ← {0, 1}
λ, computes

hk,i := gUi,1,k · hUi,2,k for k ∈ [mn] .

It then sends ({hk,i}k∈[mn],K
′
i,j) to party j, for each j ∈ [n]. After receiving all

the messages from the other parties, each party i computes and sets:

mpkipfe := {hk :=
∏n
i=1 hk,i}k∈[mn] ,

Ki,j := Kj,i := K′i,j ⊕ K′j,i for j ∈ [n] ,

ski := (mpkipfe, Ui, {Ki,j}j∈[n]) .

7 In this paper, our definitions do not allow for the encryption to be stateful.
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KeyGen(pp) :

(mskipfe,mpkipfe)← KeyGenipfe(ppipfe);msk := mskipfe := U ∈ Zκ×mnM

For i ∈ [n], j > i : Ki,j = Kj,i ← {0, 1}λ

For i ∈ [n− 1] : Ui ← Zκ×mnM

Un := U−
n−1∑
i=1

Ui ∈ Zκ×mnM

Return {ski = (mpkipfe,Ui, {Ki,j}j∈[n])}i∈[n] and msk

KeyDerShare(pp, ski,y ∈ Rmn) :

Return ski,y := Ui · y ∈ ZκM

KeyDerComb(pp, sk1,y, . . . , skmn,y) :

Return sky :=

n∑
i=1

ski,y ∈ ZκM

Fig. 8. Algorithms KeyGen, KeyDerShare and KeyDerComb making the inner-product
MCFE from Fig. 4 a DMCFE, assuming that FE := (Setupipfe,Encipfe,KeyDeripfe,Decipfe)
has the special key derivation property modulo a prime number M .

When instantiated with the Paillier or DDH construction from [7], we do not
know how to decentralize KeyGen this way. The issue is that in these construc-
tions, U is not uniform in Zκ×mnM but is sampled according to some Gaussian
distribution.

Correctness. The only remaining part of correctness to be proven for the
scheme in Fig. 8 is to show that the key computed by the algorithms KeyDerShare
and KeyDerComb corresponds to the one that would have been computed by
KeyDer. This follows from the following fact:

sky =

n∑
i=1

ski,y =

n∑
i=1

Ui · y = U · y .

Theorem 5.2 (adt-pos+-IND-security). If the FE scheme FE = (Setupipfe,
KeyGenipfe,KeyDeripfe,Encipfe,Decipfe) is an any-IND-secure FE scheme for the
inner product functionality defined as F ip

ρipfe
, ρipfe = (Z, 1,m, 2X,Y ), if FE has

the special key derivation property modulo the prime number M , and if PRF is
secure, then DMCFE from Fig. 8 is adt-pos+-IND-secure for the functionality
defined as F ip

ρ , ρ = (Z, n,m,X, Y ). Namely, for any PPT adversary A, there
exist PPT adversaries B and B′ such that:

Advadt-pos+-IND
MCFE,A (λ, n) ≤ 2n2(n− 1)qEnc · AdvPRF,B(λ) + 2qEnc · Advany-IND

FE,B′ (λ),
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where qEnc denotes the number of distinct labels queried to QLeftRight.

:::
G0, ::

G3:

({ski}i∈[n],msk)← KeyGen(pp)

α← AQCor(·)QEnc(·,·,·,·),QKeyD(·)(pp)
Output: α if Condition (*) is satisfied,

or a 0 otherwise.

QCor(i):
Return ski = (Ui, {Ki,j}j∈[n])

QKeyD(y):
For any i ∈ [n], ski,y := Ui · y ∈ ZκM
Return {ski,y}i∈[n]

:::
G0, :::

G1,:::
G2,:::

G3:

QEnc(i,xj,0i ,xj,1i , `):
xji := xj,0i

xji := xj,1i

Return Enc(pp, ski,x
j
i , `)

:::
G1, ::

G2:

({ski}i∈[n],msk)← KeyGen(pp)
except Ui not generated

α← AQCor(·),QEnc(·,·,·,·),QKeyD(·)(pp)
S := ∅
Output: α if Condition (*) is satisfied,

or 0 otherwise.

QCor(i):
Pick Ui uniformly under the constraint
∀y ∈ S, ski,y = Ui · y

Return ski := (Ui, {Ki,j}j∈[n])

QKeyD(y):
sky := U · y = KeyDeripfe(ppipfe,mskipfe,y)
For any i ∈ CS, ski,y := Ui · y ∈ ZκM
If y ∈ Vect(S),

Pick {ski,y}i/∈CS uniformly under
the constraint

∑
i∈[n] ski,y = sky

Add y to the set S
If y /∈ Vect(S)

Find {µy′}
y′∈S s.t. y =

∑
y′∈S µy′ · y′

Set ski,y :=
∑

y′∈S µy′ · ski,y′

Return {ski,y}i∈[n]

Fig. 9. Games for the proof of Theorem 5.2. Condition (*) is given in Definition 2.1.

Proof. Let A be a PPT adversary against the security of MCFE. We proceed
via a hybrid argument, using the games described in Fig. 9. Note that G0

corresponds to the game adt-pos+-INDDMCFE
0 (λ, n,A), and G3 corresponds to

the game adt-pos+-INDDMCFE
1 (λ, n,A). Thus, we have: Advadt-pos+-IND

DMCFE,A (λ, n) =∣∣WinG0

A (λ, n)−WinG3

A (λ, n)
∣∣.

Game G1. In game G1, we change the way the oracles QCor and QKeyD answer:
instead of using each individual shareUi, they generate their answers on-the-
fly to be consistent with previous answers and KeyDeripfe(ppipfe,mskipfe,y) in
the case of QKeyD. The transition from G0 to G1 is justified by linear algebra:
the two games are perfectly indistinguishable. A formal proof can be derived
from [2, Lemma A.2] (for κ = 1, the lemma applies directly, while for κ ≥ 2,
we just need to apply for each row of U.
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Game G2. In game G2, the challenge ciphertexts encrypts xj,1i instead of xj,0i .
The transition from G1 to G2 is justified by the adt-pos+-IND security of
MCFE proven in Theorem 3.7.

Game G3. In game G3, we change back the way the oracles QCor and QKeyD

answer to match adt-pos+-INDDMCFE
1 (λ, n,A). The transition from G2 to G3

is similar to the one from G1 to G0: G3 and G2 are perfectly indistinguishable.

Putting everything together, we obtain the theorem. ut
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