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Abstract. Two of the most sought-after properties of Multi-party Com-
putation (MPC) protocols are fairness and guaranteed output delivery
(GOD), the latter also referred to as robustness. Achieving both, how-
ever, brings in the necessary requirement of malicious-minority. In a gen-
eralised adversarial setting where the adversary is allowed to corrupt both
actively and passively, the necessary bound for a n-party fair or robust
protocol turns out to be ta+tp < n, where ta, tp denote the threshold for
active and passive corruption with the latter subsuming the former. Sub-
suming the malicious-minority as a boundary special case, this setting,
denoted as dynamic corruption, opens up a range of possible corrup-
tion scenarios for the adversary. While dynamic corruption includes the
entire range of thresholds for (ta, tp) starting from (dn

2
e − 1, bn/2c) to

(0, n − 1), the boundary corruption restricts the adversary only to the
boundary cases of (dn

2
e− 1, bn/2c) and (0, n− 1). Notably, both corrup-

tion settings empower an adversary to control majority of the parties,
yet ensuring the count on active corruption never goes beyond dn

2
e − 1.

We target the round complexity of fair and robust MPC tolerating dy-
namic and boundary adversaries. As it turns out, dn/2e + 1 rounds are
necessary and su�cient for fair as well as robust MPC tolerating dynamic
corruption. The non-constant barrier raised by dynamic corruption can
be sailed through for a boundary adversary. The round complexity of 3
and 4 is necessary and su�cient for fair and GOD protocols respectively,
with the latter having an exception of allowing 3 round protocols in the
presence of a single active corruption. While all our lower bounds assume
pair-wise private and broadcast channels and are resilient to the pres-
ence of both public (CRS) and private (PKI) setup, our upper bounds
are broadcast-only and assume only public setup. The traditional and
popular setting of malicious-minority, being restricted compared to both
dynamic and boundary setting, requires 3 and 2 rounds in the presence
of public and private setup respectively for both fair as well as GOD
protocols.
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1 Introduction

Secure multi-party computation (MPC) [1, 2, 3], which is arguably the most
general problem in cryptography, allows a group of mutually distrustful parties
to compute a joint function on their inputs without revealing any information
beyond the result of the computation. While the distrust amongst the parties is
modelled by a centralized adversary A who can corrupt a subset of the parties,
the security of an MPC protocol is captured by a real-world versus ideal-world
paradigm. According to this paradigm, adversarial attacks in a real execution
of the MPC protocol can be translated to adversarial attacks in the ideal-world
where the parties interact directly with a trusted-third party who accepts private
inputs, computes the desired function and returns the output to the parties;
thereby trivially achieving correctness (function output is correctly computed
on parties' inputs) and privacy (A learns nothing about the private inputs of
honest parties, beyond what is revealed by the output).

Two of the most sought-after properties of MPC protocols are fairness and
robustness (alternately, guaranteed output delivery a.k.a. GOD). The former en-
sures that adversary obtains the output if and only if honest parties do, while
the latter guarantees that the adversary cannot prevent honest parties from ob-
taining the output. Both these properties are trivially attainable in the presence
of any number of passive (semi-honest) corruption where the corrupt parties fol-
low the protocol speci�cations but the adversary learns the internal state of the
corrupt parties. However, in the face of stringent active (malicious) corruption
where the parties controlled by the adversary deviate arbitrarily from the pro-
tocol; fairness and GOD can be achieved only if the adversary corrupts atmost
minority of the parties (referred to as malicious minority) [4]. Opening up the
possibility of corrupting parties in both passive and active style, the general-
ized feasibility condition for a n-party fair or robust protocol turns out to be
ta + tp < n, where ta, tp denote the threshold for active and passive corruption,
with the latter subsuming the former [5]. We emphasize that tp is a measure of
the total number of passive corruptions that includes the actively corrupt par-
ties; therefore the feasibility condition ta + tp < n implies ta ≤ dn/2e − 1. In its
most intense and diverse avatar, referred as dynamic-admissible, the adversary
can take control of the parties in one of the ways drawn from the entire range of
admissible possibilities of (ta, tp) starting from (dn2 e−1, bn/2c) to (0, n−1). In a
milder setting, referred as boundary-admissible, the adversary is restricted only
to the boundary cases, namely (dn/2e− 1, bn/2c) and (0, n− 1). Subsuming the
traditional malicious-minority and passive-majority (majority of the parties con-
trolled by passive adversary) setting for achieving fairness and GOD as special
cases, both dynamic as well as boundary setting give the adversary more free-
dom and consequently more strength to the protocols. Notably, both empower
an adversary to control majority of the parties, yet ensuring the count on active
corruption never goes beyond dn2 e − 1.

The study of protocols in dynamic and boundary setting is well motivated
and driven by theoretical and practical reasons. Theoretically, the study of gen-
eralized adversarial corruptions gives deeper insight into how passive and active
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strategies combine to in�uence complexity parameters of MPC such as e�ciency,
security notion achieved and round complexity. Practically, the protocols in dy-
namic and boundary setting o�er strong defence and are more tolerant and
better-�t in practical scenarios where the attack can come in many unforeseen
ways. Indeed, deploying such protocols in practice is far more safe than tradi-
tional malicious-minority and passive-majority protocols that completely break
down in the face of boundary adversaries, let alone dynamic adversaries. For
instance, consider MPC in server-aided setting where instead of assuming only
actively corrupt clients and honest servers, the collusion of client-server is per-
mitted where some of the servers can be passively monitored. This model is
quite realistic as it does not contradict the reputation of the system (since the
passive servers follow protocol speci�cations and can thereby never be exposed
/ caught). The option of allowing corruption in both passive and active styles
is quite relevant in such scenarios. Driven by the above credible reasons and ex-
tending the study of exact round complexity of fair and robust protocols beyond
the traditional malicious-minority setting [6, 7, 8], in this work, we aim to settle
the same for the regime of dynamic and boundary corruption.

Related Work. We begin with outlining the most relevant literature of round
complexity of fair and robust MPC protocols in the traditional adversarial set-
tings involving only single type of adversary (either passive or active). To begin
with, 2 rounds are known to be necessary to realize any MPC protocol, regard-
less of the type of adversary, no matter whether a setup is assumed or not as
long as the setup (when assumed) is independent of the inputs of the involved
parties [9]. A 1-round protocol is susceptible to �residual function attack" where
an adversary can evaluate the function on multiple inputs by running the com-
putation with di�erent values for his inputs with �xed inputs for the honest
parties. The result of [6] shows necessity of 3 rounds for fairness in the plain and
CRS setting, when the number of malicious corruptions is at least 2 (i.e. t ≥ 2),
irrespective of the number of parties, assuming the parties are connected by
pairwise-private and broadcast channels. Complementing this result, the lower
bound of [8] extends the necessity of 3 rounds for any t (including t = 1) as long
as n/3 < t < n/2. The work of [7] shows 3 to be the lower bound for fairness in
the presence of CRS, assuming broadcast-only channels (no private channels).

In terms of the upper bounds, the works of [10, 11] showed that 2-rounds are
su�cient to achieve robustness in the passive-majority setting. In accordance
with the impossibility of [4] and su�ciency of honest-majority shown by classical
result of [12], the upper bounds in the malicious setting involve t < n/2 parties.
These include the 3-round constructions of [7, 13, 14] based on tools such as Zaps,
multi-key FHE, dense crypto-systems. The protocol of [7] can be collapsed to
two rounds given access to a PKI. In the information-theoretic setting involving
t < n/4 malicious corruptions, the work of [15] presents a 3-round perfectly-
secure robust protocol. In the domain of small-number of parties, round optimal
protocols achieving fairness and robustness appear in [16, 8].

Moving on to the setting of generalized adversary, there are primarily two
adversarial models that are most relevant to us. The �rst model initiated by [17]
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consider a mixed adversary (referred to as graceful degradation of corruptions)
that can simultaneously perform di�erent types of corruptions. Feasibility results
in this model appeared in the works of [18, 19, 20, 21]. The dynamic-admissible
adversary considered in our work is consistent with this model since it involves
simultaneous active and passive corruptions. The second model proposed by [22]
concerns protocols that are secure against an adversary that can either choose to
corrupt a subset of parties with particular corruption type (say, passively) or al-
ternately a di�erent subset (typically smaller) of parties with a second corruption
type (say, actively), but only single type of corruption occurs at a time. Referred
to as graceful degradation of security [22, 23, 24, 25, 26, 27, 28], such protocols
achieve di�erent security guarantees based on the set of corrupted parties; for in-
stance robustness/information-theoretic security against the smaller corruption
set and abort/computational security against the larger corruption set. We note
that the boundary-admissible adversary when n is odd, involves either purely
active (since ta = tp holds when (ta, tp) = (dn/2e − 1, bn/2c)) corruptions or
purely passive corruptions (where (ta, tp) = (0, n−1)); thereby �tting in the sec-
ond model (Infact, boundary-admissible adversary for odd n degenerates to the
adversarial model studied in �best-of-both-worlds" MPC [28]). However, in case
of even n, the boundary-admissible adversary with (ta, tp) = (dn/2e − 1, bn/2c)
would involve simultaneous passive and active corruption as tp = ta + 1 and �t
in the prior model. Lastly, both graceful degradation of security and corruptions
were generalized in the works of [29, 5]. To the best of our knowledge, the inter-
esting and natural question of round complexity has not been studied in these
stronger adversarial models.

1.1 Our Results

In this work, we target and resolve the exact round complexity of fair and robust
MPC protocols in both dynamic and boundary setting. This is achieved via 3
lower bounds that hold assuming both CRS and PKI setup and 5 upper bounds
that assumes CRS alone. In terms of network setting, while our lower bounds hold
assuming both pairwise-private and broadcast channels, all our upper bounds use
broadcast channel alone. All our upper bounds are generic compilers that trans-
form a 2-round protocol achieving unanimous abort (either all honest parties
obtain output or none of them do) or identi�able abort (corrupt parties are
identi�ed in case honest parties do not obtain the output) against malicious
majority to a protocol achieving the stronger guarantees of fairness/robustness
against stronger adversaries (namely, dynamic and boundary adversaries). The
need for CRS in our constructions stems from the underlying 2-round protocol
achieving unanimous or identi�able abort. We leave open the question of con-
structing tight upper bounds or coming up with new lower bounds in the plain
model. We elaborate on the results below.

Dynamic Adversary. We recall that in this challenging setting, the adversary
has the freedom to choose from the entire range of corruption thresholds for
(ta, tp) starting from (dn/2e − 1, bn/2c) to (0, n − 1). Our �rst lower bound
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establishes that dn/2e + 1 rounds are necessary to achieve fairness against
dynamic adversary. Since robustness is a stronger security notion, the same
lower bound holds for GOD as well. This result not only rules out the possibility
of constant-round fair protocols but also gives the exact lower bound. We give
two matching upper bounds, one for fairness and the other for robustness, where
the former is subsumed by and acts as a stepping stone to the latter. These
results completely settle the round complexity of this setting in the CRS model.

Boundary Adversary. The leap in round complexity ebb in the milder bound-
ary adversarial setting where adversary is restricted to the boundary cases of
(dn/2e−1, bn/2c) and (0, n−1). Our two lower bounds of this setting show that 4
and 3 rounds are necessary to achieve robustness and fairness respectively against
the boundary adversary. Our �rst 4-round lower bound is particularly interest-
ing, primarily due to two reasons. (1) As mentioned earlier, when n is odd, the
boundary cases reduce to pure active (ta = tp when (ta, tp) = (dn/2e−1, bn/2c))
and pure passive ((ta, tp) = (0, n−1)) corruptions. We note that security against
malicious-minority and passive-majority are known to be attainable indepen-
dently in just 2 rounds assuming access to CRS and PKI [7, 10, 11]. Hence, our
4-round lower bound encapsulates the di�culty in designing protocols tolerant
against an adversary who can choose among his two boundary corruption types
arbitrarily. (2) This lower bound can be circumvented in case of single malicious
corruption i.e against a special-case boundary adversary restricted to corrup-
tion scenarios (ta, tp) = (1, bn/2c) and (ta, tp) = (0, n − 1). (We refer to such
an adversary as special-case boundary adversary with ta ≤ 1). This observation
augments the rich evidence in literature [30, 31, 16] which show the impact of
single corruption on feasibility results. With respect to our second lower bound
for fairness against boundary adversary, we �rst note that the 3-round lower
bound for fairness in the presence of CRS is trivial given the feasibility results of
[6, 7, 8]. However, they break down assuming access to PKI. Thus, the contribu-
tion of our second lower bound is to show that the 3-round lower bound holds
for boundary adversary even in the presence of PKI. We complement these two
lower bounds by three tight upper bounds. The upper bounds achieving robust-
ness include a 4-round protocol for the general case and a 3-round protocol for
the special-case of one malicious corruption that demonstrates the circumvention
of our �rst lower bound. Lastly, our third upper bound is a 3-round construction
achieving fairness, demonstrating the tightness of our second lower bound.

Our results appear in the table below with comparison to the round com-
plexity in the traditional settings of achieving fairness and robustness. Since
PKI (private) setup subsumes CRS (public) setup which further subsumes plain
model (no setup), the lower and upper bounds are speci�ed with their maximum
tolerance and minimum need respectively amongst these setup assumptions. The
results provide us further insights regarding how disparity in adversarial setting
a�ects round complexity. Note that the round complexity of fair protocols in
the CRS model against an adversary corrupting minority of parties maliciously,
remains una�ected in the setting of boundary adversary; which is a stronger vari-
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ant of the former. On the other hand, this switch of adversarial setting causes
the lower bound of robust protocols in the model assuming both CRS and PKI to
jump from 2 to 4. Lastly, the gravity of dynamic corruption on round complexity
is evident in the leap from constant-rounds of 3, 4 in the boundary corruption
case to dn/2e+ 1.

Adversary Security Rounds Lower bound Upper Bound

Passive-majority Fair, GOD 2 [9] (private) [10, 11] (plain)

Malicious-minority
Fair, GOD 3 [7, 8] (public) [13, 14] (plain)
Fair, GOD 2 [9] (private) [7] (private)

Boundary
Fair 3 [This] (private) [This] (public)
GOD 4 (3 when ta ≤ 1) [This] (private) [This] (public)

Dynamic Fair, GOD dn2 e+ 1 [This] (private) [This] (public)

1.2 Techniques

In this section, we give a glimpse into the techniques used in our lower bounds
and matching upper bound constructions.

Lower Bounds. We present 3 lower bounds, all of which hold assuming access to
both CRS and PKI� (a) dn/2e+1 rounds are necessary to achieve fairness against
dynamic adversary. (b) 4 rounds are necessary to achieve robustness against a
boundary adversary. (c) 3 rounds are necessary to achieve fairness against a
boundary adversary.

The �rst lower bound (a) e�ectively captures the power of dynamic corrup-
tion stemming from the ambiguity caused by the total range of thresholds (ta, tp)
starting from (dn/2e − 1, bn/2c) to (0, n− 1). The proof navigates through this
sequence starting with maximal active corruption and proceeds to scenarios of
lesser active corruptions one at a time. An inductive argument neatly captures
how the value of tp growing alongside decreasing values of ta can be exploited
by adversarial strategies violating fairness, eventually dragging the round com-
plexity all the way upto dn/2e+1. The lower bounds (b) and (c) are shown by
considering a speci�c set of small number of parties and assume the existence of
a 3 (2) round robust (fair) protocol for contradiction respectively. Subsequently,
inferences are drawn based on cleverly-designed strategies exploiting the prop-
erties of GOD and fairness. These inferences and strategies are interconnected
in a manner that builds up to a strategy violating privacy, thereby leading to a
�nal contradiction.

Upper Bounds. We present 5 upper bounds, in the broadcast-only setting
comprising of two upper bounds each for fairness and GOD against dynamic
and boundary adversary respectively and lastly, an additional 3-round upper
bound for GOD against the special case of single malicious corruption by
boundary adversary in order to demonstrate the circumvention of lower bound
(b). Tightness of this upper bound follows from lower bound (c) (that holds
for single malicious corruption) as GOD implies fairness. Our upper bounds
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can be viewed as �compiled" protocols obtained upon plugging in any 2-round
broadcast-only protocols [10, 11] achieving unanimous abort against malicious
majority. While the fair upper-bounds do not require any additional property
from the underlying 2-round protocol, our robust protocols demand the property
of identi�able abort and function-delayed property i.e the �rst round of the pro-
tocol is independent of the function to be computed and the number of parties.
Looking ahead, this enables us to run many parallel instances of the round 1 in
the beginning and run the second round sequentially as and when failure hap-
pens to compute a new function (that gets determined based on the identities of
the corrupt parties). Assumption wise, all our upper bound constructions rely on
2-round maliciously-secure oblivious transfer (OT) in common random/reference
string models. We now give a high-level overview of the speci�c challenges we
encounter in each of our upper bounds and the techniques we use to tackle them.

Dynamic adversary: The two upper bounds against dynamic adversary
show su�ciency of dn/2e + 1 rounds to achieve fairness and robustness against
dynamic admissible adversary. The upper bound for fairness is built upon the
protocol of [5] that introduces a special-kind of sharing, which we refer to as
levelled-sharing where a value is divided into summands (adding upto the value)
and each summand is shared with varying degrees. The heart of the protocol of
[5] lies in its gradual reconstruction of the levelled-shared output (obtained by
running an MPC protocol with unanimous abort), starting with the summand
corresponding to the highest degree down to the lowest. The argument for
fairness banks on the fact that the more the adversary raises its disruptive
power in an attempt to control reconstruction of more number of summands,
the more it looses its eavesdropping capability and consequently learns fewer
number of summands by itself and vice versa. This discourages an adversary
from misbehaving as using maximal disruptive power reduces its eavesdropping
capability such that he falls short of learning the next summand in sequence
without the help of honest parties. The innovation of our fair protocol lies in
delicately �xing the parameters of levelled-sharing in a manner that optimal
round complexity can be attained whilst maintaining fairness.
Next, we point that since the fair protocol consumes the optimal round
complexity of dn/2e+1 even in the case of honest execution, the primary hurdle
in our second upper bound is to be able to carry out re-runs when an adversary
disrupts computation to achieve robustness without consuming extra rounds.
Banking on the player-elimination technique, we use identi�ability to bar the
corrupt parties disrupting computation from participating thereafter. Having
parallel execution of Round 1 of all the required re-reruns helps us get closer
to the optimal bound. While these approaches aid to a great extent, the �nal
saviour comes in the form of a delicate and crucial observation regarding how
the thresholds of the levelled-sharing can be manipulated carefully, accounting
for the cheaters identi�ed so far. This trick exploits the pattern of reduced cor-
ruption scenarios obtained upon cheater identi�cation and helps to compensate
for the rounds consumed in subprotocols that were eventually disrupted by the
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adversary. The analysis of the round complexity of the protocol being subtle, we
use an intricate recursive argument to capture all scenarios and show that the
optimal lower bound is never exceeded. Lastly, we point that both upper bound
constructions against dynamic adversary assume equivocal non-interactive
commitment (such as Pedersen commitment [32]). The GOD upper bound
additionally assumes the existence of Non-Interactive Zero-Knowledge (NIZK)
in the common random/reference string model.

Boundary adversary: The three upper bounds against boundary-admissible
adversary restricted to corruption scenarios either (ta, tp) = (dn/2e − 1, bn/2c)
or (ta, tp) = (0, n − 1) show that (a) 4 rounds are su�cient to achieve ro-
bustness against boundary-admissible adversary (b) 3 rounds are su�cient to
achieve robustness against special-case boundary-admissible adversary when
ta ≤ 1 i.e adversary corrupts with parameters either (ta, tp) = (1, bn/2c) or
(ta, tp) = (0, n − 1) (c) 3 rounds are su�cient to achieve fairness against
boundary-admissible adversary. At a high-level, all the three upper bounds begin
with a 2-round protocol secure against malicious majority that computes thresh-
old sharing of the output. Intuitively, this seems to serve as the only available
option as protocols customized for malicious minority typically breach privacy
when views of majority of the parties are combined (thereby will break down
against tp < n semi-honest corruptions). On the �ip side, protocols customized
for exclusively passive majority may violate correctness/privacy in the presence
of even single malicious corruption. Subsequently, this natural route bifurcates
into two scenarios based on whether the adversary allows the computation of
the threshold sharing of output to succeed or not. In case of success, all the
three upper bounds proceed via the common route of reconstruction which is
guaranteed to be robust by the property of threshold sharing. The distinctness
of the 3 settings (accordingly the upper bounds) crops up in the alternate sce-
nario i.e. when the computation of threshold sharing of output aborts. While in
upper bound (c), parties simply terminate with ⊥ maintaining fairness enabled
by privacy of the threshold sharing; the upper bounds (a) and (b) demanding
stronger guarantee of robustness cannot a�ord to do so. These two upper bounds
exploit the fact that the corruption scenario has now been identi�ed to be the
boundary case having active corruptions, thereby protocols tolerating malicious
minority can now be executed. While the above outline is inspired by the work
of [28], we point that we need to tackle the exact corruption scenarios as that of
the protocols of [28] only when n is odd. On the other hand when n is even, the
extreme case for active corruption accommodates an additional passive corrup-
tion (tp = ta+1). Apart from hitting the optimal round complexity, tackling the
distinct boundary cases for odd and even n in a uni�ed way brings challenge for
our protocol. To overcome these challenges, in addition to techniques of identi-
�cation and elimination of corrupt parties who disrupt computation, we employ
tricks such as parallelizing without compromising on security to achieve the op-
timum round complexity. Assumption wise, while both the robust constructions

8



(a) and (b) rely on NIZKs, the former additionally assumes Zaps (2-round,
public-coin witness-indistinguishable protocols) and public-key encryption.

2 Preliminaries

We consider a set of parties P = {P1, . . . Pn}. Our upper bounds assume the
parties connected by a broadcast channel and a setup where parties have access
to common reference string (CRS). Our lower bounds hold even when the par-
ties are additionally connected by pairwise-secure and authentic channels and
for a stronger setup, namely assuming access to CRS as well as public-key in-
frastructure (PKI). Each party is modelled as a probabilistic polynomial time
Turing (PPT) machine. We assume that there exists a PPT adversary A, who
can corrupt a subset of these parties.

We consider two kinds of adversarial settings in this work. In both settings,
the A is characterised by two thresholds (ta, tp), where he may corrupt upto
tp parties passively, and upto ta of these parties even actively. Note that tp is
the total number of passive corruptions that includes the active corruptions and
additional parties that are exclusively passively corrupt. We now de�ne dynamic
and boundary admissible adversaries.

De�nition 1 (Dynamic-admissible Adversary). An adversary attacking an
n-party MPC protocol with threshold (ta, tp) is called dynamic-admissible as long
as ta + tp < n and ta ≤ tp.

De�nition 2 (Boundary-admissible Adversary). An adversary attacking
an n-party MPC protocol with threshold (ta, tp) is called boundary-admissible as
long as he corrupts either with parameters (a) (ta, tp) = (dn2 e − 1, bn/2c) or (b)
(ta, tp) = (0, n− 1).

In our work, we also consider a special-case of boundary adversary with ta ≤ 1
where the adversary corrupts either with parameters (ta, tp) = (1, bn/2c) or
(ta, tp) = (0, n− 1).

Notation. We denote the cryptographic security parameter by κ. A negligible
function in κ is denoted by negl(κ). A function negl(·) is negligible if for every
polynomial p(·) there exists a value N such that for all m > N it holds that
negl(m) < 1

p(m) . Composition of two functions, f and g (say, h(x) = g(f(x))) is

denoted as g � f . We use [n] to denote the set {1, . . . n} and [a, b] to denote the
set {a, a+ 1 . . . b} when a ≤ b or the set {a, a− 1, . . . b} when a > b. Lastly, for
dynamic-admissible adversary, we denote the set of active and passively corrupt
parties by D and E respectively, where |D| = ta and |E| = tp .

Roadmap. Our lower and upper bounds for dynamic and boundary corruption
appear in Sections 3-4 and in Sections 5-6 respectively. The security de�nitions
and proofs appear in the full version [33].
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3 Lower Bounds for Dynamic Corruption

In this section, we show that dn2 e + 1 rounds are necessary to achieve MPC
with fairness against a dynamic-admissible A with threshold (ta, tp). This result
shows impossibility of constant-round fair and robust protocols in the setting of
dynamic corruption.

Theorem 1. No dn2 e-round n-party MPC protocol can achieve fairness toler-
ating a dynamic-admissible adversary A with threshold (ta, tp) in a setting with
pairwise-private and broadcast channels, and a setup that includes CRS and PKI.

Proof. We prove the theorem by contradiction. Suppose there exists a dn2 e-round
n-party MPC protocol π computing any function f(x1 . . . xn) (where xi denotes
the input of party Pi) that achieves fairness against a dynamic-admissible A with
corruption threshold (ta, tp) and in the presence of a setup with CRS and PKI.
At a high-level, our proof argument de�nes a sequence of hybrid executions of
π, navigating through all the possible admissible corruption scenarios assuming
ta+tp = n−1 and starting with the maximum admissible value of ta = dn/2e−1.
Our �rst hybrid under the spell of a dynamic-admissible adversary, corrupting
dn/2e − 1 parties actively and stopping their communication in the last round,
lets us conclude that the joint view of the honest and passively-corrupted parties
by the end of penultimate round must hold the output in order for π to satisfy
fairness. If not, while ceasing communication in the last round does not prevent
A from getting all the messages in the last round and thereby the output, the
honest parties do fail to compute the output due to the non-cooperation of ta
parties, violating fairness. The views of the passively corrupt parties need to be
taken into account as they follow protocol steps correctly and assist in output
computation. Leveraging the fact that drop of ta leads to rise of tp, we then
propose a new hybrid where ta is demoted by 1 and consequently tp grows big
enough to subsume the list of honest and passive-corruption from the previous
hybrid. As the view of the adversary in this hybrid holds the output by the end
of penultimate round itself, its actively-corrupt parties need not speak in the
penultimate round. Now fairness in the face of current strategy of the actively-
corrupted parties needs the joint view of the honest and passively-corrupted
parties by the end of dn/2e − 2 round to hold the output. This continues with
the set of honest and passively-corrupted parties growing by size one between
every two hybrids. Propagating this pattern to the earlier rounds eventually
lets us conclude that an adversary with threshold (ta, tp) = (0, n− 1) (no active
corruption case) can obtain the output at the end of Round 1 itself. This leads us
to a �nal strategy that violates privacy of π via residual attack. This completes
the proof sketch. We now prove the sequence of lemmas to complete the proof.

Lemma 1. In an execution of π where all parties behave honestly upto (and
including) Round (dn2 e − i) for i ∈ [dn2 e − 1], there exists a set of parties Si

with size (bn2 c+ i) whose combined view at the end of Round dn2 e − i su�ces to
compute the output.
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Proof. We prove the lemma by induction. Let P = {P1, P2, ..., Pn} denote the
set of parties and D(E) denote the set of actively (passively) corrupt parties
where D ⊆ E . Here |D| = ta and |E| = tp.

Base Case (i = 1): We consider an execution of the protocol π with a
dynamic-admissible adversary A corrupting parties with threshold (ta, tp) =
(dn2 e − 1, bn/2c) and an adversarial strategy A1 as follows. The set of actively
corrupt parties D behave honestly upto (and including) Round dn2 e − 1 and
simply remain silent in the last round i.e the dn2 eth round. Since A receives all
the desired communication throughout the protocol, it follows directly from the
correctness of π that A must be able to compute the output. Since π is assumed
to be fair, the honest parties must also be able to compute the output even with-
out the dn2 eth round communication from parties in D. We can now conclude
that the combined view of parties in P \ D at the end of Round dn2 e − 1 must
su�ce to compute the output. Thus, the set S1 = P \ D of parties with size
n − ta = n − (dn2 e − 1) = bn2 c + 1 hold a combined view at the end of Round
dn2 e − 1 that su�ces to compute the output. This completes the base case.

Induction Hypothesis (i = `). Suppose the statement is true for i = ` i.e. if all
parties behave honestly upto (and including) Round (dn2 e− `), then there exists
a set of parties, say S`, with |S`| = (bn2 c + `) whose combined view at the end
of (dn2 e − `)th round, su�ces to compute the output.

Induction Step (i = ` + 1). We consider an execution of the protocol π with
a dynamic-admissible adversary A corrupting parties with threshold (ta, tp) =
(dn2 e − `− 1, bn2 c+ `) and E = S` as de�ned in the induction hypothesis and an
adversarial strategy A`+1 as follows. The set of actively corrupt parties D behave
honestly upto (and including) Round (dn2 e−`−1) and simply remain silent from
Round (dn2 e − `) onwards. Since A receives all the desired communication upto
(and including) Round (dn2 e − `) of π (as per an honest execution) on behalf of
parties in E , it follows directly from the induction hypothesis that the combined
view of the parties in E where |E| = bn2 c+ ` must su�ce to compute the output.
Since π is assumed to be fair, the honest parties must also be able to compute the
output even though the parties in D stop communicating from Round (dn2 e− `)
onwards. We can now conclude that the combined view of parties in P \D at the
end of Round (dn2 e − ` − 1) must su�ce to compute the output. Thus, the set
S`+1 = P \ D of parties with size n− ta = n− (dn2 e − `− 1) = bn2 c+ `+ 1 hold
a combined view at the end of Round (dn2 e− `− 1) that su�ces to compute the
output. This completes the induction hypothesis and the proof of Lemma 1. ut

Lemma 2. There exists an adversary A that is able to compute the output at
the end of Round 1 of π.

Proof. When i = dn2 e − 1, Lemma 1 implies that if all parties behave honestly

in Round 1, then there exists a set Sd
n
2 e−1 of (bn2 c + d

n
2 e − 1) = n − 1 parties

whose combined view su�ces to compute the output at the end of Round 1.
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Consequently, a dynamic-admissible adversary A corrupting the parties with
threshold (ta, tp) = (0, n− 1) and (D = ∅, E = Sd

n
2 e−1) must be able to compute

the output at the end of Round 1 itself. ut

Lemma 3. Protocol π does not achieve privacy.

Proof. It follows directly from Lemma 2 that there exists an adversary A with
threshold (ta, tp) = (0, n − 1) corrupting a set of (n − 1) parties passively, say
E = {P1, . . . Pn−1}, that is able to compute the output at the end of Round
1 itself. Thus, A can obtain multiple evaluations of the function f by locally
plugging in di�erent values for {x1, . . . , xn−1} while honest Pn's input xn remains
�xed. This residual function attack violates privacy of Pn. As a concrete example,
let f be a common output function computing x1 ∧ xn, where xi (i ∈ {1, n})
denotes a single bit. During the execution of π, A behaves honestly with input
x1 = 0 on behalf of P1. However, the passively-corrupt P1 can locally plug-in
x1 = 1 and learn xn (via the output x1 ∧ xn). This is a clear breach of privacy,
as in the ideal world, A participating honestly with input x1 = 0 on behalf of P1

would learn nothing about xn; in contrast to the execution of π where A learns
xn regardless of his input. This completes the proof. ut
We have thus arrived at a contradiction to our assumption that π securely com-
putes f and achieves fairness. This completes the proof of Theorem 1. ut

4 Upper bounds for Dynamic Corruption

In this section, we describe two n-party upper bounds tolerating a dynamic-
admissible adversary A with threshold (ta, tp). The �rst upper bound achieves
fairness and is a stepping stone to the construction of the second upper bound
that achieves guaranteed output delivery. Both the upper bounds comprise of
dn/2e+1 rounds in the presence of CRS, tightly matching our lower bound result
of Section 3. We start with an important building block needed for both the fair
and GOD protocols.

4.1 Levelled-sharing of a secret

Our protocols in the dynamic corruption setting involve a special kind of shar-
ing referred as levelled sharing, which is inspired by and a generalized variant of
the sharing de�ned in [5]. The sharing is parameterized with two thresholds, α
and β with α ≥ β, that dictate the number of levels as α − β + 1. To share a
secret in (α, β)-levelled-shared fashion, α− β + 1 additive shares (levels) of the
secret, indexed from α to β are created and each additive share is then Shamir-
shared [34] using polynomial of degree that is same as its assigned index. Fur-
ther each Shamir-sharing is authenticated using a non-interactive commitment
scheme, to ensure detectably correct reconstruction. For technical reasons in the
simulation-based security proof, we need an instantiation of commitment scheme
that allows equivocation of commitment to any message with the help of trap-
door and provides statistical hiding and computational binding. Denoting such
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a commitment scheme by eNICOM (Equivocal Non-Interactive Commitment),
we present both the formal de�nition and an instantiation based on Pedersen's
commitment scheme [32] in the full version [33]. While the sharing will involve
the entire population P in our fair protocol, it may be restricted to many dif-
ferent subsets of P, each time after curtailing identi�ed actively corrupt parties.
The de�nition therefore is formalized with respect to a set Q ⊆ P.

De�nition 3 ((α, β)-levelled sharing). A value v is said to be (α, β)-levelled-
shared with α ≥ β amongst a set of parties Q ⊆ P if every honest or passively
corrupt party Pi in Q holds Li as produced by fα,βLSh (v) given in Fig.1.

Function fα,βLSh (v)

1. Choose uniformly random summands sα, sα−1, . . . sβ with
∑α
i=β sj = v

2. For j ∈ [α, β], do the following:
- Choose a random polynomial gj(x) of degree j with gj(0) = sj .
- Sample the public parameter for eNICOM as (epp, t) ← eGen(1κ). For
each share sjk = gj(k), run (cjk, ojk) ← eCom(epp, sjk; rjk) (Pk ∈ Q)
where rjk denotes randomness.

3. Set Li =
(
{sji, oji}j∈[α,β], {cjk}j∈[α,β],Pk∈Q

)
for Pi ∈ Q.

Fig. 1: Function fα,βLSh for computing (α, β)-levelled sharing

In our protocols the function fα,βLSh will be realized via an MPC protocol,
whereas, given the (α, β)-levelled-sharing, we will use a levelled-reconstruction
protocol LRecα,β() that enforce reconstruction of the summands one at a time
starting with sα. This levelled reconstruction ensures a remarkable property
tolerating any dynamic-admissible adversary� if the adversary can disrupt re-
construction of si, then it cannot learn si−1 using its eavesdropping power.
This property is instrumental in achieving fairness against the strong dynamic-
admissible adversary. The protocol is presented in Fig. 2. Its properties and
round complexity are stated below. Note that starting with the feasibility con-
dition ta+ tp < n = |P|, expelling a set of actively corrupt parties, say B, makes
the following impact on ta, tp and P: ta = ta − |B|, tp = tp − |B| and P = P \ B.
Consequently, the updated ta, tp and P continue to satisfy ta + tp < |P|. Below,
we will therefore use the fact that ta + tp < |Q|, where Q denotes the relevant
set of parties (i.e the set of parties remaining after possibly expelling a set of
identi�ed actively corrupt parties).

Lemma 4. LRecα,β satis�es the following properties�

i. Correctness. Each honest Pi participating in LRecα,β with input Li as gen-
erated by fα,βLSh (v), outputs either v or ⊥ except with negligible probability.

ii. Fault-Identi�cation. If an adversary disrupts the reconstruction of sj, then
|B| ≥ |Q| − j.

iii. Fairness. If an adversary disrupts the reconstruction of sj, then it does not
learn sj−1.
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Protocol LRecα,β

Inputs: Each Pi (Pi ∈ Q) has input Li =
(
{sji, oji}j∈[α,β], {cjk}j∈[α,β],Pk∈Q

)
.

Output: Secret v or ⊥ with set B constituting indices of the identi�ed actively
corrupt parties.

- For j = α down to β, Pi does the following round-by-round:
- Broadcasts (sji, oji) and receive (sjk, ojk) from all Pk ∈ Q where k 6= i.
- Initialize Zj = i and populate Zj in order to compute sj as follows:

- For each k 6= i, if commitment cjk opens to sjk via opening ojk, then
add k to Zj .

- If |Zj | ≥ j+1, interpolate a j-degree polynomial gj(x) satisfying gj(k) =
sjk for k ∈ Zj and compute sj = gj(0). Else output ⊥, set B = Q\Zj
and terminate.

- Output v = sα + . . . sβ .

Fig. 2: Protocol LRecα,β

iv. Round Complexity. It terminates within α− β + 1 rounds.

Proof.

i. Consider an honest Pi participating with input Li =(
{sji, oji}j∈[α,β], {cjk}j∈[α,β],Pk∈Q

)
. We observe Pi outputs v

′ 6= {v,⊥} only
if at least one of the summands, say sj(j ∈ [α, β]) is incorrectly set. This
can happen only if Pi adds at least one index k to Zj such that Pk sends
an incorrect share s′jk 6= sjk. This occurs when (s′jk, o

′
jk) received from Pk

is such that cjk opens to s′jk via o′jk but s′jk 6= sjk. It now follows directly
from the binding of eNICOM that this violation occurs with negligible
probability. This completes the proof.

ii. Firstly, it follows from the property of Shamir-secret sharing and binding
property of eNICOM that reconstruction of sj would fail only if |Zj | ≤ j.
Next, note that as per the steps in Fig 2, each honest Pi would output
B = Q \ Zj if reconstruction of sj fails. We can thus conclude that |B| =
|Q| − |Zj | ≥ |Q| − j.

iii. To prove fairness, we �rst prove that if an adversary can disrupt the re-
construction of sj , then it cannot learn sj−1 using its eavesdropping power.
Since as per the protocol, the honest parties do not participate in the recon-
struction of sj−1 when they fail to reconstruct sj , the security of sj−1 follows
from the information-theoretic security of Shamir-sharing and the statistical
security (hiding) of eNICOM.
An adversary can disrupt reconstruction of sj only if |Zj | ≤ j. It is easy to
check that Zj would constitute the non-actively corrupt parties (honest and
purely passive parties) i.e Q \ D ⊆ Zj . Thus, |Q \ D| = |Q| − ta ≤ |Zj | ≤ j.
Lastly, to maintain ta+ tp < |Q|, it must hold that tp ≤ |Q|− ta− 1 ≤ j− 1.
Thus, the adversary corrupting tp ≤ j − 1 parties cannot learn sj−1 using
its eavesdropping power.

iv. LRecα,β involves reconstruction of summands sα down to sβ , each of which
consumes one round; totalling upto α− β + 1.

ut
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4.2 Upper bound for Fair MPC

The key insight for this protocol comes from [5] that builds on an MPC protocol
with abort security to compute the function output in (n− 1, 1)-levelled-sharing
form, followed by levelled-reconstruction to tackle dynamic corruption. Fairness
is brought to the system by relying on the fairness of the levelled-reconstruction.
In particular, the adversary is disabled to reconstruct (i − 1)th summand, as
a punitive action, when it disrupts reconstruction of the ith summand for the
honest parties. In the marginal case, if the adversary disrupts the MPC protocol
for computing the levelled-sharing and does not let the honest parties get their
output, we disable it to reconstruct the (n− 1)th summand itself.

In a (α, β)-levelled-reconstruction, the parameters α and β dictate the round
complexity. The closer they are the better round complexity we obtain. The α
and β in [5] are n− 2 apart, shooting the round complexity of reconstruction to
n− 1. We depart from the construction of [5] in two ways to build a (dn2 e+ 1)-
round fair protocol. Firstly and prominently, we bring α and β much closer,
cutting down bn2 c summands from the levelled-secret sharing and bringing down
the number of levels to just n− 1−bn2 c from n− 1 of [5]. Second, we plug in the
round-optimal (2-round) MPC protocol of [10, 11] achieving unanimous abort
against malicious majority in the CRS model for computing the levelled-sharing
of the output, making overall a (dn2 e + 1)-round fair protocol. We discuss the
�rst departure in detail below.

Our innovation lies in �xing the best values of α and β without �outing
fairness. The value of α and β, in essence determines the indispensable sum-
mands that we cannot do without. Every possible non-zero threshold for active
corruption maps to a crucial summand that the adversary using its correspond-
ing admissible passive threshold cannot learn by itself, whilst the pool of non-
disruptive set of parties, i.e. the set of honest and purely passive parties, can.
This unique summand, being the `soft spot' for the adversary, forces him to co-
operate until the reconstruction of the immediate previous summand. As soon
as the adversary does so, the honest parties turn self-reliant to compute the
output, upholding fairness. We care only about the non-zero possibilities for the
threshold of active corruption, as an all-passive adversary holds no power at its
disposal to disrupt, leading to robust output reconstruction by all. For the min-
imum non-zero value of 1 active corruption, the unique summand is sn−2 that
the adversary cannot learn using its admissible eavesdropping capacity of n− 2,
yet the set of non-disruptive parties, which is of size n − 1, can. On the other
extreme, for the maximum value of dn2 e − 1, the unique summand is sbn2 c that
the adversary cannot learn using its admissible eavesdropping capacity of bn2 c,
yet the set of non-disruptive parties, which is of size bn2 c+ 1, can. This sets the
values of α and β as n − 2 and bn2 c respectively, making the number of crucial
summands only dn2 e − 1. The distance between these two parameters captures
the number of possible corruption scenarios with non-zero active corruption.

In the table below, we display for each admissible adversarial corruption (this
set subsumes the crucial summands that we retain), whether the adversary and
the set of non-disruptive parties respectively by themselves, can learn the sum-
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mand, using its maximum eavesdropping capability and putting together their
shares respectively. The pattern clearly displays the following feature: irrespec-
tive of the corruption scenario that the adversary follows, its maximum power
to disrupt and eavesdrop remains one summand apart i.e. if it can disrupt ith
summand with its maximum disruptive capability (and fall short of its power for
failing the (i − 1)th one), then its maximum eavesdropping capability does not

allow it to learn (i − 1)th summand by itself. Our fair protocol πdyn
fair tolerating

dynamic corruption appears in Fig 3. Assumption wise, πdyn
fair relies on 2-round

maliciously-secure OT in the common random/reference string model (when πua
is instantiated with protocols of [10, 11]) and eNICOM (used in LRecα,β() and
instantiated using Pedersen's commitment scheme).

Table 1: Levelled-reconstruction where (a = Y/N, b = Y/N) under si indicates if
A and non-active parties respectively can reconstruct si or not (Y = Yes, N =
No)

(ta = |D|, tp = |E|) |P \ D| sn−2 sn−3 sn−4 sn−i−1 sbn/2c+1 sbn/2c
(0, n− 1) n (Y, Y) (Y, Y) (Y, Y) . . . . . . . . . (Y, Y) (Y, Y)
(1, n− 2) n− 1 (N, Y) (Y, Y) (Y, Y) . . . . . . . . . (Y, Y) (Y, Y)
(2, n− 3) n− 2 (N, N) (N, Y) (Y, Y) . . . . . . . . . (Y, Y) (Y, Y)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(i, n− i− 1) n− i (N, N) (N, N) (N, N) . . . (N, Y) . . . (Y, Y) (Y, Y)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(dn/2e − 1, bn/2c) bn/2c+ 1 (N, N) (N, N) (N, N) . . . . . . . . . (N, N) (N, Y)

Protocol πdyn
fair

Inputs: Party Pj has xj for j ∈ [n]
Building blocks: (a) Protocol πua achieving security with unanimous abort

against malicious majority (b) Protocol LRecα,β for reconstructing a (α, β)-

levelled-shared value (Fig. 2); (c) Function f
n−2,bn

2
c

LSh (Fig 1).
Output: y = f(x1 . . . xn) or ⊥

Round 1 � 2: Every Pj runs protocol πua to compute the function f
n−2,bn

2
c

LSh � f
with input xj to obtain Lj as the output. If Lj = ⊥, it outputs ⊥ and halts.

Round 3 � (dn/2e+ 1): Each Pj participates in LRecn−2,bn
2
c with input Lj and

outputs the outcome of LRecn−2,bn
2
c.

Fig. 3: Fair MPC against dynamic-admissible adversary

We state the formal theorem below.

Theorem 2. Assuming the presence of a 2-round MPC protocol πua achieving
unanimous abort against malicious majority, protocol πdyn

fair with n parties satis�es
correctness, achieves fairness and has a round complexity of dn/2e+ 1 rounds.

Proof. Correctness of πdyn
fair follows directly from correctness of πua and

LRecn−2,b
n
2 c (Lemma 4). The security proof appears in the full version [33].
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Round complexity of πdyn
fair includes 2 rounds of πua and the round complexity of

LRecn−2,b
n
2 c which is

(
n− 2− bn2 c+ 1

)
= dn/2e − 1 (Lemma 4); totalling upto

dn/2e+ 1 rounds. ut

4.3 Upper Bound for GOD MPC

At a broad level, robustness is achieved by rerunning our fair protocol as soon
as failure occurs which can surface either in the underlying MPC or during re-
construction of any of the summands of the output. Taking inspiration from
the player-elimination framework [35, 36], we maintain a history of deviat-
ing/disruptive behaviour across the runs and bar the identi�ed parties from
further participating. Such a paradigm calls for sequential runs and brings great
challenge when round complexity is the concern. We hit the optimal round com-
plexity banking on several ideas and interesting observations. First, we turn the
underlying MPC protocol for computing (α, β)-levelled-sharing of the output to
achieve identi�ability so that any disruptive behaviour can be brought to no-
tice. Slapping NIZK on the 2-round broadcast-only construction of [10] readily
equips it with identi�ability, without in�ating the round complexity. Second, we
leverage the function-delayed property of a modi�ed variant of the protocol of
[10] (proposed by [13]) where the �rst round messages are made independent of
the function to be computed and the number of parties. This enables us to run
many parallel instances (speci�cally dn/2e) of the round 1 in the beginning and
run the second round sequentially as and when failure happens to compute a
new function each time as follows� (a) it hard-cores default input for the parties
detected to be disruptive so far and (b) the output now is levelled-shared with
new thresholds α and β each of which are smaller than the previous run by a
function of the number of fresh catch, say δ. The latter brings the most crucial
impact on the round complexity. Recall that the distance between α and β that
impacts the round complexity, is directly coupled with the number of possible
corruption scenarios with non-zero active corruption. Starting with the initial
value of dn2 e−1, each catch by δ reduces number of possible corruption scenarios
(with non-zero active corruption) and the distance between α and β by δ.

In the protocol, we maintain a number of dynamic variables which are up-
dated during the run� (a) L: the set of parties not identi�ed to be actively corrupt
and thus referred as alive; this set is initialized to P; (b) C: the set of parties
identi�ed as actively corrupt; this set initialized to ∅; (c) n: the parameter that
dictates the number of corruption scenarios as dn2 e and the possible corruption
cases as {(0, n− 1), . . . , (dn/2e − 1, bn/2c)}; this is initialized to n that dictates
the initial number of corruption cases as dn2 e and the possible corruption cases as
{(0, n− 1), . . . , (dn/2e− 1, bn/2c)}. After every failure and a fresh catch of a set
B of active corruptions, the sets L, C and n are updated as L = L\B, C = C ∪B
and n = n− 2|B|. The reduction of n by 2|B| denotes counting the reduction for
active as well as passive corruptions. For every value of n, the formula for the
total number of corruption scenarios, the values for (α, β) (that speaks about
the indispensable summands as discussed in the fair protocol) and the number of
corruption scenarios with non-zero active corruption (which denotes the distance
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between (α, β)) remain the same� namely dn2 e, (n−2, bn/2c) and dn2 e−1. In the
marginal case, n becomes either 1 or 2, the former when n is odd and all active
corruptions are exposed making (ta, tp) = (0, 0) and the latter when n is even
and (ta, tp) = (0, 1). With no active corruption in L, the Round 2 of the MPC
can be run to compute the output itself (instead of its levelled-sharing) robustly
in both the marginal cases.

As the protocol follows an inductive behaviour based on n, to enable better
understanding, we present below a snapshot of how the corruption scenarios
shrinks after every catch of δ active corruptions. The �rst column indicates
a set of possible corruption scenarios, with (ta, tp) varying from (0, n − 1) to
(dn/2e − 1, bn/2c). If δ cheaters are identi�ed, the �rst δ rows can simply be
discarded as it is established that ta ≥ δ. The number of feasible corruptions
is thus slashed by δ. Next, these δ identi�ed cheaters are eliminated, which
reduces each (ta, tp) of the rows that sustained (ta = δ onwards) by δ as shown
by column 2. Finally, the column 3 displays column 2 with n updated as n− 2δ.
The formal description of the protocol πdyn

god appears in Fig 4. Assumption wise,

πdyn
god relies on 2-round maliciously-secure OT in the common random/reference

string model, NIZK (when πidua is instantiated with function-delayed variant of
the protocol of [10] satisfying identi�ability) and eNICOM (instantiated using
Pedersen's commitment scheme).

(ta, tp) (ta, tp) (ta, tp)
after δ cheater identi�cation after updating n = n− 2δ

(0, n− 1) � �
(1, n− 2) � �
. . . . . . . . .
(δ, n− δ − 1) (0, n− 2δ − 1) (0, n− 1)
(δ + 1, n− δ − 2) (1, n− 2δ − 2) (1, n− 2)
. . . . . . . . .
(dn/2e − 1, bn/2c) (dn/2e − 1− δ, bn/2c − δ) (dn/2e − 1, bn/2c)

We now analyze the round-complexity and correctness of πdyn
god below.

Lemma 5. πdyn
god terminates in dn/2e+ 1 rounds.

Proof. Consider an execution of πdyn
god (initialized with n = n). The outline of

the proof is as follows: We give an inductive argument to prove the following
- `If Step 2 is executed with parameter n, then Step 2 terminates within dn2 e
rounds'. Assuming this claim holds, it follows directly that during the execution
with n = n, Step 2 would terminate within dn2 e rounds; thereby implying that

the round complexity of πdyn
god is atmost dn2 e + 1 (adding the round for Step 1).

We now prove the above claim by strong induction on n ≥ 1.

Base Case (n = 1, 2): It follows directly from description in Fig 4 that Step 2
terminates in dn/2e = 1 round when n = 1, 2.

Induction Hypothesis (n ≤ `): Assume Step 2 terminates in dn/2e rounds for
n ≤ `.
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Protocol πdyn
god

Inputs: Party Pi has xi for i ∈ [n]
Building blocks: (a) Protocol πidua achieving identi�able abort against malicious

majority and having function-delayed property; (b) Protocol LRecα,β for re-
constructing a (α, β)-levelled-shared value (Fig. 2); (c) Function fα,βLSh (Fig 1).

Output: y = f(x1 . . . xn)

Step 1: Pi runs dn/2e parallel instances of Round 1 of πidua, each using input
xi and independent randomness. Note that this round is independent of the
function to be computed and number of parties. Initialize k = 1.

Step 2: Initialize, L = P, C = ∅, n = n. Let fC denote the function that is same
as f except that the inputs of parties in C are hardcoded with default inputs.
Pi executes the following steps:
2.1 If n = 1, 2, then run Round 2 of πidua (considering kth instance of Round

1) among parties in L using input xi to compute fC and output the out-
put of πidua and terminate. (This corresponds to the case of no active
corruptions.)

2.2 Run Round 2 of πidua (considering kth instance of Round 1) among parties

in L using input xi to compute f
n−2,bn

2
c

LSh � fC and obtain Li.If Li = ⊥ and
B is set of parties identi�ed to be corrupt, update C = C ∪ B, L = L \ B,
n = n − 2|B|, k = k + 1 and repeat this step using updated value of
n. Otherwise, participate in LRecn−2,bn

2
c with input Li. If (⊥,B) is the

output, then update L, C, n, k as above and repeat this step using updated
value of n. Otherwise, output the output of LRecn−2,bn

2
c and terminate.

Fig. 4: Robust MPC against dynamic-admissible adversary

Induction step (n = ` + 1): Consider an execution of Step 2 with parameter
n = `+1. We analyze the following 3 exhaustive scenarios - (1) Suppose neither

πidua nor LRec
n−2,bn2 c fails. (2) Suppose πidua aborts. (3) Suppose πidua does not

abort but LRecn−2,b
n
2 c fails. We show that in each of them, Step 2 terminates

within dn/2e = d `+1
2 e rounds; thereby completing the induction step.

- Suppose neither πidua nor LRecn−2,b
n
2 c fails. Then Step 2 involves follow-

ing number of rounds� 1 (for Round 2 of πidua) + number of rounds in

LRecn−2,b
n
2 c i.e (n− 2− bn2 c+ 1) = dn2 e = d(`+ 1)/2e in total.

- Suppose πidua aborts. Then B must comprise of at least one active party,
implying that δ ≥ 1, where δ = |B| and subsequently n is updated to
n = (n − 2δ) ≤ (` + 1 − 2) = (` − 1). Note that Step 2 now involves fol-
lowing number of rounds� 1 (for Round 2 of πidua) + number of rounds in
which Step 2 terminates when re-run with updated parameter n i.e dn/2e
by induction hypothesis. Thus, the total number of rounds in Step 2 is
(1 + dn/2e) ≤ (1 + d `−12 e) = d

`+1
2 e.

- Suppose πidua does not abort but reconstruction LRecn−2,b
n
2 c fails. Say adver-

sary disrupts reconstruction of summand sn−r in Round r of Step 2 (Round

r−1 of LRecn−2,bn/2c), where r ∈ [2, dn/2e]. It follows from fault identi�cation
property of Lemma 4 that |B| ≥ |L|−(n−r) ≥ r (since |L| ≥ n always holds).
Consequently, δ = |B| ≥ r and updated parameter n = n− 2δ ≤ `+ 1− 2r.
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We now analyze the round complexity. Note that Step 2 involves following
number of rounds� r (Reconstruction failed in Round r ≥ 2 of Step 2 run
with n = ` + 1) + number of rounds in which Step 2 terminates when re-
run with updated parameter n i.e dn/2e by induction hypothesis. Thus total
number of rounds in Step 2 is (r + dn/2e) ≤ (r + d `+1−2r

2 e) = d `+1
2 e.

We point that induction hypothesis for n = n − 2δ with δ ≥ 1 can be applied
as n ≥ 1 holds always in πdyn

god due to the following: the maximal value of δ is
dn/2e − 1 i.e the maximum possible number of actively corrupt parties. This
completes the proof. ut

Theorem 3. Assuming the presence of a 2-round protocol πidua achieving iden-
ti�able abort against malicious majority and having function-delayed property;
protocol πdyn

god with n parties satis�es correctness, achieves guaranteed output de-
livery and has a round-complexity of dn/2e+ 1 rounds.

Proof. Correctness of πdyn
god follows directly from correctness of πidua and correct-

ness of LRecn−2,b
n
2 c (Lemma 4). The formal security proof appears in the full

version [33]. Round complexity follows from Lemma 5. ut

5 Lower Bounds for Boundary Corruption

In this section, we present two lower bounds for MPC protocol tolerating
boundary-admissible adversaries and in the presence of CRS and PKI setup. Re-
call that such an adversary is restricted to corruption scenarios either (ta, tp) =
(dn/2e − 1, bn/2c) or (ta, tp) = (0, n − 1). We show that three and four rounds
are necessary to achieve fairness and GOD respectively against a boundary-
admissible adversary. It is to be noted that GOD is the de facto notion achieved
in the pure passive corruption setting of (ta, tp) = (0, n− 1).

5.1 Impossibility of 3-round Robust MPC

In this section, we show that it is impossible to design a 3-round robust MPC
protocol against boundary-admissible adversary with threshold (ta, tp) assuming
both CRS and PKI. Notably, this lower bound is indeed surprising as the indi-
vidual security guarantees translate to GOD against malicious-minority [7] and
passive-majority [10, 11] for odd n (as ta = tp wrt (ta, tp) = (dn/2e− 1, bn/2c)),
both of which are known to be attainable in just 2 rounds in the presence of CRS
and PKI. Furthermore, it turns out interestingly that this lower bound does not
hold against a boundary-admissble adversary with ta ≤ 1 (i.e boundary adver-
sary corrupting with either (ta, tp) = (1, bn/2c) or (ta, tp) = (0, n− 1)), and can
be circumvented for this special case. In fact, we demonstrate a 3-round robust
protocol in Section 6.3, against this special-case boundary-admissible adversary.

Theorem 4. Assume parties have access to pairwise-private and broadcast
channels, and a setup that includes CRS and PKI. Then, there exist functions
f for which there is no 3-round protocol computing f that achieves guaranteed
output delivery against boundary-admissible adversary.
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Proof. We prove the theorem for n = 5 parties. Let P = {P1, . . . P5} denote
the set of parties, where the adversary A may corrupt either with parametes
(ta, tp) = (2, 2) or (ta, tp) = (0, 4). Here, the corruption scenarios translate to
upto 2 active corruptions or upto 4 pure passive corruptions. We prove the
theorem by contradiction. Suppose there exists a 3-round protocol π comput-
ing a common output function f that achieves GOD against such a boundary-
admissible adversary.

At a high level, we discuss three adversarial strategies A1,A2 and A3, where
Ai is launched in an execution Σi of protocol π. While A1,A2 involve the case
of active corruption of {P1} and {P1, P2} respectively, A3 deals with the strat-
egy of pure passive corruption of {P1, P3, P4, P5}. The executions are assumed
to be run for the same input tuple (x1, x2, x3, x4, x5) and the same random
inputs (r1, r2, r3, r4, r5) of the parties. Let x̃i denote the default input of Pi.
(Same random inputs are considered for simplicity and without loss of general-
ity. The same arguments hold for distribution ensembles as well.) First, when
A1 is launched in Σ1 we conclude that the output ỹ at the end of the execution
should be based on default input of P1 and actual inputs of the remaining parties
i.e ỹ = f(x̃1, x2, x3, x4, x5). Next, strategy Σ2 involving actively corrupt {P1, P2}
is designed such that corrupt P2 obtains the same view in Σ2 as an honest P2

in Σ1 and therefore computes the output ỹ at the end of Σ2. (Here, view of Pi
includes xi, ri, the messages received during π and the knowledge related to CRS
and PKI setup.) Lastly, a carefully designed strategy A3 by semi-honest parties
{P1, P3, P4, P5} allows A to obtain ỹ = f(x̃1, x2, x3, x4, x5), in addition to the
correct output i.e y = f(x1, x2, x3, x4, x5) at the end of execution Σ3. This is a
contradiction as it violates the security of π and can explicitly breach the privacy
of honest P2. This completes the proof overview.

We assume that the communication done in Round 2 and Round 3 of π
is via broadcast alone. This holds without loss of generality since the parties
can engage in point-to-point communication by exchanging random pads in the
�rst round and then use these random pads to unmask later broadcasts. We
use the following notation: Let p1i→j denote the pairwise communication from
Pi to Pj in round 1 and bri denotes the broadcast by Pi in round r, where
r ∈ [3], {i, j} ∈ [5]. These values may be function of CRS and the PKI setup as
per the protocol speci�cations. Let V`i denotes the view of party Pi at the end
of execution Σ` (` ∈ [3]) of π. Below we describe the strategies A1,A2 and A3.

A1: A corrupts {P1} actively here. P1 behaves honestly in Round 1 and simply
remains silent in Round 2 and Round 3.

A2: A corrupts {P1, P2} actively here. The active misbehavior of P1 is same as in
A1 i.e P1 behaves honestly in Round 1 and stops communicating thereafter.
On the other hand, P2 participates honestly upto Round 2 and remains silent
in Round 3.

A3: A corrupts {P1, P3, P4, P5} passively here. The semi-honest parties behave
as per protocol speci�cation throughout the execution Σ3 to obtain the cor-
rect output. The passive strategy of {P1, P3, P4, P5} is to ignore the Round
3 message from honest P2 and locally compute the output based on the sce-
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nario of execution Σ2 i.e imagining that P1 stopped after Round 1 and P2

stopped after Round 2.

We now present a sequence of lemmas to complete the proof.

Lemma 6. At the end of Σ1, parties compute output ỹ = f(x̃1, x2, x3, x4, x5),
where x̃1 denotes the default input of P1.

Proof. Firstly, since Σ1 involves active behavior only by P1, it follows directly
from correctness and robustness of π that the output computed at the end of
Σ1, say y

′ should be based on actual inputs xi for i ∈ {2, 3, 4, 5}. Now, there are
two possibilities with respect to input of P1 i.e y′ is based on either x1 (i.e the
input used by P1 in Round 1 of Σ1) or x̃1 (default input). In case of the latter,
the lemma holds directly. We now assume the former for contradiction.

Suppose the output y′ is based on x1 rather than x̃1. Since P1 stops communi-
cating after Round 1, we can conclude that the combined views of {P2, P3, P4, P5}
must su�ce to compute the output y′ = f(x1, . . . , x5) at the end of Round 1
itself. If this holds, we argue that π cannot be secure as follows: Suppose π is
such that when all parties participate honestly in Round 1, the combined view
of {P2, P3, P4, P5} su�ces to compute the output at the end of Round 1 itself.
Then, in an execution of π, an adversary corrupting {P2, P3, P4, P5} purely pas-
sively (correponding to (ta, tp) = (0, 4)) can learn the output on various inputs
of its choice, keeping x1 �xed. This residual attack breaches privacy of honest
P1 (A concrete example of such an f appears in the full version [33]). We have
thus arrived at a contradiction. This completes the proof that y′ must be based
on x̃1, rather than x1 and consequently y′ = ỹ = f(x̃1, x2, x3, x4, x5) must be
the output computed at the end of Σ1. ut

Lemma 7. At the end of Σ2, parties compute output ỹ = f(x̃1, x2, x3, x4, x5),
where x̃1 denotes the default input of P1.

Proof. Recall thatA2 is similar toA1 involving active P1, except that P2 is active
as well with the strategy of behaving honestly upto Round 2 and remaining silent
in Round 3. Since executions Σ1 and Σ2 proceed identically upto Round 2, it
is easy to check that the view of corrupt P2 in Σ2 is same as honest P2 in
Σ1. It now follows directly from Lemma 6 that P2 computes the output ỹ =
f(x̃1, x2, x3, x4, x5). By correctness and robustness of π computing the common
output function f , it must hold that all parties output ỹ at the end of Σ2. ut

Lemma 8. The combined view of parties {P3, P4, P5} at the end of Round 2 of
Σ2 su�ces to compute the output of Σ2 i.e ỹ.

Proof. We note that as per A2, both {P1, P2} do not communicate in Round
3; implying that the combined view of honest parties {P3, P4, P5} at the end of
Round 2 of Σ2 must su�ce to compute the output of Σ2 i.e ỹ (Lemma 7). ut

Lemma 9. An adversary executing strategy A3 obtains the value ỹ =
f(x̃1, x2, x3, x4, x5), in addition to the correct output y = f(x1, x2, x3, x4, x5)
at the end of Σ3.
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Proof. Firstly, Σ3 must lead to computation of correct output i.e y =
f(x1, x2, x3, x4, x5) by all parties since A3 involves only semi-honest corrup-
tions. Next, it is easy to check that the combined view of adversary corrupting
{P1, P3, P4, P5} passively at the end of Round 2 of Σ3 subsumes the combined
view of honest parties {P3, P4, P5} at the end of Round 2 of Σ2. It now follows
directly from Lemma 8 that the adversary can obtain the output ỹ as well.

In more detail, A launching A3 in Σ3 can compute the output as per the
scenario of Σ2 as follows- Let b3i for i ∈ {2, 3, 4, 5} denotes the message broadcast
by honest Pi (as per its next-message function) in Round 3 in case P1 behaves

honestly in Round 1 but is silent in Round 2. Locally compute {b33, b34, b35} (b3i is
a function of Pi's (i ∈ {3, 4, 5}) view at the end of Round 2) by imagining that
P1 did not send Round 2 message and compute ỹ by ignoring the message sent
by honest P2 in Round 3. Thus, by following strategy A3, A obtains multiple
evaluations of f i.e both y and ỹ which violates the security of π. (We give a
concrete example of such an f that breaches privacy of honest P2 in the full
version.) This completes the proof of the lemma. ut

Thus, we have arrived at a contradiction to our assumption that π is secure;
completing the proof of Theorem 4. ut
We present a natural extension of the above proof for n > 5, a concrete example
of f and a brief intuition of why the above lower bound argument does not hold
when malicious corruption ta ≤ 1 in the full version [33].

5.2 Impossibility of 2-round Fair MPC

We begin with the observation that the existing 3-round lower bounds of [6, 7, 8]
for fair malicious-minority MPC do not carry over in our setting. The lower
bound of both [6, 7] break down when the parties have access to a PKI (as
acknowledged/demonstrated in their work). The result of [8], assuming access
to pairwise-private and broadcast channels, also breaks down when parties have
access to a PKI (elaborated in the full version [33]). The proof, originally given
without the mention of CRS, seems to withstand a CRS.

We now present our lower bound formally.

Theorem 5. There exist functions f for which there is no 2-round n-party MPC
protocol that achieves fairness against boundary-admissible adversary, in a set-
ting with pairwise-private and broadcast channels, and a setup that includes CRS
and PKI.

Proof. We prove the theorem for n = 3 parties, where boundary-admissible
adversary A chooses corruption parameters either (ta, tp) = (1, 1) or (ta, tp) =
(0, 2). Here, the corruption scenarios translate to either upto 1 active corruption
or upto 2 purely passive corruptions. Let {P1, P2, P3} denote the set of parties
with Pi having input xi. Suppose by contradiction, π is a 2-round MPC protocol
computing f that achieves fairness against A. To be more speci�c, π is fair if
(ta, tp) = (1, 1) and achieves GOD otherwise (as GOD is the de-facto security
guarantee incase of no active corruptions i.e (ta, tp) = (0, 2)). On a high-level,
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we �rst exploit fairness of π to conclude that the combined view of a set of
2 parties su�ces for output computation at the end of Round 1. (Here, view
of Pi includes xi, its randomness ri, the messages received during π and the
knowledge related to CRS and PKI setup.) Next, considering a strategy where
the adversaryA corrupts this set of 2 parties purely passively leads us to conclude
that A can compute the output at the end of Round 1 itself; leading upto a �nal
contradiction. We now present a sequence of claims to complete the formal proof.

Lemma 10. Protocol π must be such that the combined view of {P2, P3} at the
end of Round 1 su�ces for output computation.

Proof. The proof of the lemma is straightforward. Assume A corrupting P1

actively (with (ta, tp) = (1, 1)) with the following strategy: P1 behaves honestly
in Round 1 and simply remains silent in Round 2. It is easy to check that
P1 would obtain the output due to correctness of π, as he receives the entire
protocol communication as per honest execution. Since π is fair, the honest
parties {P2, P3} must also obtain the output at the end of π; even without
P1's communication in Round 2. Thus, we conclude that the combined view of
{P2, P3} at the end of Round 1 su�ces for output computation. ut
Lemma 11. There exists an adversarial strategy such that the adversary obtains
the output at the end of Round 1.

Proof. The proof follows directly from Lemma 10� A corrupting {P2, P3} purely
passively ((ta, tp) = (0, 2)) would obtain the output at the end of Round 1. ut
Lemma 12. Protocol π does not achieve privacy.

Proof. It is implied from Lemma 11 that A corrupting {P2, P3} purely passively
can obtain multiple evaluations of the function f by locally plugging in di�erent
values for {x2, x3} while honest P1's input x1 remains �xed. This `residual func-
tion attack' violates privacy of P1. We refer to the argument in Lemma 3 for a
concrete example. ut

We have arrived at a contradiction, concluding the proof of Theorem 5. It is
easy to check that this argument can be extended for higher values of n. ut

6 Upper bounds for Boundary Corruption

In this section, we describe three upper bounds with respect to the boundary-
admissible adversary A with threshold (ta, tp). We �rst present a robust upper
bound in 4 rounds for the general case. Next, we present a 3-round robust proto-
col for the special case of single active corruption, which circumvents our lower
bound of Section 5.1. Our fair 3-round upper bound can be arrived at by simpli-
fying the robust general-case construction and appears in full version [33]. Note
that even the fair construction is robust in the corruption scenario of no active
corruptions i.e (ta, tp) = (0, n − 1). The security guarantees di�er only in case
of corruption scenario involving malicious corruptions. All the above three con-
structions are round-optimal, following our lower bound results of Section 5.1
and 5.2. We start with a building block commonly used across all our constructs.
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6.1 Authenticated Secret Sharing

We introduce the primitive of Authenticated Secret Sharing [37, 28] used in our
upper bounds against the boundary-admissible A.

De�nition 4 (α-authenticated sharing). A value v is said to be α-
authenticated-shared amongst a set of parties P if every honest or passively
corrupt party Pi in P holds Si as produced by fαASh(v) given in Fig.5.

Function fαASh(v)

1. α shamir-sharing of secret v: Choose random a1, a2 . . . aα ∈ F, where F denotes
a �nite �eld. Build the α-degree polynomial A(x) = a0 + a1x+ a2x

2 + a3x
3 +

· · ·+ aα−1x
α−1 + aαx

α, where a0 = v. Let shi = A(i) for i ∈ [n].
2. Authentication of shares: For all i, j ∈ [n], choose random one-time message-

authentication codes (MAC) [38] keys kij ∈ {0, 1}κ and compute tagij =
Mackij (shi).

3. Output Si =
(
shi, {kji}j∈[n], {tagij}j∈[n]

)
for i ∈ [n].

Fig. 5: Authenticated secret-sharing

In our upper bounds, the function fαASh is realized via MPC protocols. The
reconstruction will be done via protocol ARecα (Fig 6) amongst the parties. We
state the relevant properties below (proof appears in the full version [33]):

Protocol ARecα

Inputs: Pi participates with Si =
(
shi, {kji}j∈[n], {tagij}j∈[n]

)
Output: Secret v′

Each Pi does the following:

1. Broadcast
(
shi, {tagij}j∈[n]

)
and receive

(
sh′j , tag

′
ji

)
from j 6= i.

2. Each Pi outputs v
′ as follows:.

- Initialize Val to {i}. For j 6= i, if Mackji(sh
′
j) = tag′ji, set shj = sh′j and

add j to Val; else set shj = ⊥.
� If |Val| ≥ α+1, interpolate a α degree polynomial A′(x) satisfying A′(γ) =

shγ for γ ∈ Val. Output ⊥ if the above fails, else output v′ = A′(0).

Fig. 6: Protocol for Reconstruction of an authenticated-secret

Lemma 13. The pair (fαASh,ARec
α) satis�es the following:

i. Privacy. For all v ∈ F, the output (S1, . . . , Sn) ← fαASh(v) satis�es the
following� ∀{i1, . . . iα′} ⊂ [n] with α′ ≤ α, the distribution of {Si1 , . . . , Siα′}
is statistically independent of v.
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ii. Correctness. For all v ∈ F, the value v′ output by all honest parties at
the end of ARecα(S′1, . . . S

′
n) satis�es the following� For all (S1, . . . , Sn) ←

fαASh(v) and (S′1, . . . , S
′
n) such that S′i = Si corresponding to atleast α + 1

parties Pi, it holds that Pr[v′ 6= v] ≤ negl(κ) for a computational security
parameter κ.

iii. Round complexity. ARecα terminates in one round.

6.2 Upper bound for Robust MPC: The general case

In a setting where either at most n− 1 passive corruption or at most (dn2 e − 1)
active corruption takes place, [28] presents a protocol relying on two types of
MPC protocol. An actively-secure protocol against malicious majority is used
to compute an authenticated-sharing of the output with threshold (dn2 e − 1).
When this protocol succeeds, the output is computed via reconstruction of the
authenticated-sharing. On the other hand, a failure is tackled via running a
honest-majority (malicious minority) actively-secure protocol, relying on the
conclusion that the protocol is facing a malicious-minority. When n is odd, we
need to tackle the exact corruption scenarios as that of the protocols of [28].
On the other hand when n is even, the extreme case for active corruption ac-
commodates an additional passive corruption. Apart from hitting optimal round
complexity, tackling the distinct boundary cases for odd and even n in a uni�ed
way brings challenge for our protocol.

We make the following e�ective changes to the approach of [28]. First, we
invoke a 2-round actively-secure protocol πidua with identi�able abort against
malicious majority (can be instantiated with protocols of [10, 11] augmented with
NIZKs) to compute bn2 c-authenticated-sharing of the output. When we expel
the identi�ed corrupt parties in case of failure (which may occur in corruption
scenario (ta, tp) = (dn/2e− 1, bn/2c)), the remaining population always displays
honest-majority, no matter whether n is odd or even. (For instance, elimination
of 1 corrupt party results in t′ ≤ (tp − 1) = bn/2c − 1 total corruptions among
n′ = (n− 1) remaining parties which satis�es n′ ≥ 2t′+1.) The honest-majority
protocol πgod is then invoked to compute the function f where the inputs of
the identi�ed parties are hard-coded to default values. The change in the degree
of authenticated sharing ensures that an adversary choosing to corrupt in the
boundary case of dn2 e − 1 active corruption and zero (when n is odd) or one
(when n is even) additional purely passive corruption, cannot learn the output
by itself collating the information it gathers during πidua. Without the change,
the adversary could ensure that πidua leads to a failure for the honest parties and
yet could learn outputs from both πidua and πgod with di�erent set of adversarial-
inputs. Lastly, the function and input independence property of Round 1 of the
3-round honest-majority protocol of [7, 13] allows us to superimpose this round
with the run of πidua. Both these instantations of πgod are also equipped to tackle
the probable change in population for the remaining two rounds (when identi�ed
corrupt parties are expelled) and the change in the function to be computed
(with hard-coded default inputs for the identi�ed corrupt parties). Our protocol
appears in Fig. 7. Assumption wise, πbou

god relies on 2-round maliciously-secure OT
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in the common random/reference string model, NIZK (when πidua is instantiated
with function-delayed variant of the protocol of [10] satisfying identi�ability),
Zaps and public-key encryption (when πgod is instantiated with protocol of [13]).

Protocol πbou
god

Inputs: Party Pi has xi for i ∈ [n]
Building Blocks: (a) 2-round protocol πidua achieving identi�able abort against

malicious majority; (b) 3-round honest-majority actively-secure robust proto-
col πgod with additional property of Round 1 being function and input indepen-
dent; (c) Protocol ARecbn/2c for reconstructing an bn/2c-authenticated-shared
secret (Fig. 6); (d) Function f

bn/2c
ASh (Fig. 5).

Output: y = f(x1 . . . xn)

Round 1�2: The parties run πidua computing the function f
bn/2c
ASh � f with input

xi to obtain output (Si =
(
shi, {kji}j∈[n], {tagij}j∈[n]

)
,B), where B denotes

the set of identi�ed cheaters. Additionally, the parties run (input-independent
and function-independent) Round 1 of πgod.

Round 3�4: If Si = ⊥, the parties in P \B run Round 2 and 3 of πgod computing
fB (f with the inputs of parties in B are hardcoded to default values) and
output y as the outcome of πgod. Else, participate in ARecbn/2c with input Si
and output the outcome of ARecbn/2c.

Fig. 7: Robust MPC against boundary-admissible adversary

We state the formal theorem below.

Theorem 6. Assuming the presence of a 2-round protocol πidua achieving identi-
�able abort against malicious majority and a 3-round robust protocol πgod against
malicious minority (with special property of Round 1 being function and input-
independent), the 4-round MPC protocol πbou

god (Figure 7) satis�es correctness and
achieves guaranteed output delivery against boundary-admissible A.

Proof. Correctness of πbou
god follows directly from that of πidua, πgod and ARecbn/2c

(Lemma 13). We prove its security in the full version [33]. ut
We conclude this section with a simpli�cation to πbou

god that can be adopted
if additional access to PKI is assumed. In such a case, parallelizing Round 1
of πgod with Round 1 of πidua can be avoided and the 2-round robust protocol
of [7] against malicious minority assuming CRS and PKI setup can be used to
instantiate πgod (which would be run in Rounds 3-4 of πbou

god). Both our 4-round
constructions with CRS (Figure 7) and its simpli�ed variant with CRS and PKI
are tight upper bounds, in light of the impossibility of Section 5.1 that holds in
the presence of CRS and PKI.

6.3 Upper bound for Robust MPC: The single corruption case

Building upon the ideas of Section 6.2 and Section 4.3, a 3-round robust MPC
πbou,1
god against the special-case boundary-admissible adversary can be constructed
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as follows. Similar to πbou
god , Round 1 and 2 involve running protocol πidua realizing

bn/2c-authenticated secret-sharing of the function output. When πidua does not

result in abort, πbou,1
god proceeds to reconstruction of output; identical to πbou

god

and thereby terminating in 3 rounds. However, when πidua results in output ⊥,
we exploit the advantage of atmost one malicious corruption by noting that
once the single actively-corrupt party is expelled, the parties involved thereafter
comprise only of the honest and purely passive parties. We adopt the idea of
Section 4.3 and re-run Round 2 of πidua among the remaining parties to compute
the function output directly, with input of the expelled party substituted with
default input. This step demands the function-delayed property of πidua i.e Round
1 is independent of the function to be computed and the number of parties. In
order to accommodate this re-run, two instances of Round 1 of πidua are run in
Round 1 of πbou,1

god . It is easy to see that robustness is ensured as πidua is robust in
the absence of actively-corrupt parties. Lastly, we point that similar to Section
4.3, we use the modi�ed variant of the 2-round protocol of [10] to instantiate πidua
that is function-delayed and achieves identi�ability. The formal description of
πbou,1
god appears in Fig 8. This upper bound is tight, following the impossibility of 2-

round fair MPC (that holds for single malicious corruption) proven in Section 5.2

as GOD implies fairness. Assumption wise, πbou,1
god relies on 2-round maliciously-

secure OT in the common random/reference string model and NIZK (when πidua
is instantiated with above mentioned variant of the protocol of [10]).

Protocol πbou,1
god

Inputs: Party Pi has xi for i ∈ [n]
Building Blocks: (a) 2-round protocol πidua achieving identi�able abort against

malicious majority and having function-delayed property; (b) Protocol
ARecbn/2c for reconstructing an bn/2c-authenticated-shared secret (Fig. 6);

(c) Function f
bn/2c
ASh (Fig. 5).

Output: y = f(x1 . . . xn)

Round 1: Pi does the following: Run 2 instances of Round 1 of πidua, each using
input xi and independent randomness. Note that this round is independent of
the function to be computed and the number of parties.

Round 2: Pi does the following: Run Round 2 of πidua (based on �rst instance of

Round 1 of πidua) among P computing the function f
bn/2c
ASh � f using input xi

to obtain output (Si =
(
shi, {kji}j∈[n], {tagij}j∈[n]

)
,B), where B denotes the

set of identi�ed cheaters.
Round 3: If Si = ⊥, the parties in P \ B run Round 2 of πidua (based on second

instance of Round 1 of πidua) computing fB (where the inputs of the party in
B is hardcoded to default value) and output y as the outcome of this (second)
instance of πidua. Else, participate in ARecbn/2c with input Si and output the
outcome of ARecbn/2c.

Fig. 8: Robust MPC against special-case boundary-admissible adversary

We state the formal theorem below.
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Theorem 7. Assuming the presence of a 2-round protocol πidua achieving iden-
ti�able abort against malicious majority and having function-delayed property,
the 3-round MPC protocol πbou,1

god (Figure 8) satis�es correctness and achieves
guaranteed output delivery against special-case boundary-admissible A with cor-
ruption parameters either (ta, tp) = (1, bn/2c) or (ta, tp) = (0, n− 1).

Proof. Correctness of πbou,1
god follows directly from correctness of πidua, and cor-

rectness of ARecbn/2c (Lemma 13). We prove its security in full version [33]. ut
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