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Abstract. Masking schemes are a prominent countermeasure against
power analysis and work by concealing the values that are produced
during the computation through randomness. The randomness is typ-
ically injected into the masked algorithm using a so-called refreshing
scheme, which is placed after each masked operation, and hence is one of
the main bottlenecks for designing efficient masking schemes. The main
contribution of our work is to investigate the security of a very simple
and efficient refreshing scheme and prove its security in the noisy leak-
age model (EUROCRYPT’13). Compared to earlier constructions our
refreshing is significantly more efficient and uses only n random values
and < 2n operations, where n is the security parameter. In addition we
show how our refreshing can be used in more complex masked compu-
tation in the presence of noisy leakage. Our results are established using
a new methodology for analyzing masking schemes in the noisy leakage
model, which may be of independent interest.

1 Introduction

Over the last decade cryptographic research has made tremendous progress in
developing solid foundations for cryptography in the presence of side-channel
leakage (see, e.g., [19] for a recent overview). The common approach in this
area – often referred to as “leakage resilient cryptography” – is to first extend
the black-box model to incorporate side-channel leakage, and then to propose
countermeasures that are provable secure within this model. The typical leakage
model considered in the literature assumes an adversary that obtains some par-
tial knowledge about the internal state of the device. For instance, the adversary
may learn a few bits of the intermediate values that are produced by the device
during its computation.

One of the countermeasures that significantly benefits from such a formal
treatment are masking schemes (see, e.g., [6, 8, 9, 11, 18, 21] and many more).
Masking is a frequently used countermeasure against power analysis attacks,
which de-correlates the internal computation of a device from the observable
leakage (e.g., the power consumption). A core ingredient of any secure mask-
ing scheme is a refreshing algorithm. At a very high level (we will explain this
in much more detail below) the refreshing algorithm introduces new random-
ness into the masked computation, thereby preventing that an adversary can
exploit correlations between different intermediate values of the computation.



Since refreshing schemes are computationally expensive a large body of work
has explored how to securely improve their efficiency. Unfortunately, one of the
most simple and efficient (in terms of computation and randomness) refreshing
schemes due to Rivain and Prouff [22] cannot be proven secure; even worse, it
was shown in [5] that a simple – though impractical – attack breaks the scheme
in the common threshold probing leakage model [18]. In this work we show –
somewhat surprisingly – that the simple refreshing of Rivain and Prouff [22] is
secure under noisy leakages [21]. Noisy leakages are considered generally to ac-
curately model physical side-channel leakage, and hence our result implies that
the simple refreshing can securely replace more complex and expensive schemes
in practice.

1.1 Masking schemes

Ingredients of a masking scheme. One of the most common countermeasures
against power analysis attacks are masking schemes. Masking schemes work by
randomizing the intermediate values produced during the computation of an
algorithm through secret sharing. To this end each sensitive variable x is repre-
sented by an encoding Enc(x) := (x1, . . . , xn) and the corresponding decoding
function Dec(·) recovers x := Dec(x1, . . . , xn). A simple encoding function uses
the additive encoding function, which works by sampling xi uniformly at random
from some finite field F subject to the constraint that x :=

∑n
i=1 xi. If F is the

binary field, then such a masking scheme is typically called Boolean masking.
In addition to an encoding scheme, we need secure algorithms to compute

with encoded elements. To this end, the algorithm’s computation is typically
modeled as an arithmetic circuit over a finite field F. In such circuits the wires
carry values from F and the gates perform operations from F. At a high-level
the circuit is made out of gates that represent the basic field operations (i.e.,
addition gate denoted “⊕” and multiplication gate denoted “⊗”). Moreover,
it may consist of gates for inversion (i.e., outputting −x on input x), and so-
called randomness gates RND that take no input and produce an output that is
distributed uniformly over F. We often assign unique labels to the wires. Each
label can be interpreted as a variable whose value is equal to the value that the
corresponding wire carries.

Given a circuit built from these gates, a masking scheme then typically works
by replacing each of the above operations by a “masked” version of the gate.
For instance, in case of the aforementioned additive encoding scheme (Enc,Dec)
the masked version of the ⊕ takes as input two encodings Enc(x) and Enc(y)
and outputs an encoding Enc(z), where

∑
i zi :=

∑
i xi +

∑
i yi. Informally, the

masked version of a gate is said to be secure if leakage emitted from the internal
computation of the masked version of the gate does not reveal any sensitive
information.

Refreshing schemes. A key building block to securely compose multiple masked
operations to a complex masked circuit is the refreshing scheme. The refreshing
scheme takes as input an encoding −→x j := (xj1, . . . , x

j
n) = Enc(x) and outputs
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a new encoding (xj+1
1 , . . . , xj+1

n ) = −→x j+1 of x. By “new encoding” we mean
that this procedure should inject new randomness into the encoding, in such
a way that the leakage from the previous encodings should not accumulate.
In other words: if we periodically refresh the encodings of x (which leads to a
sequence of encodings: −→x 0 7→ −→x 1 7→ −→x 2 7→ · · · ) then x should remain secret
even if bounded partial information about each −→x j leaks to the adversary. The
operations of computing −→x j+1 from −→x j is also called a refreshing round, and a
circuit that consists of some number of such rounds (and not other operations)
is called a multi-round refreshing circuit.

A common approach for securely refreshing additive encodings is to exploit
the homomorphism of the underlying encoding with respect to addition:3 one
starts by designing an algorithm that samples (b1, . . . , bn) from the distribu-
tion Enc(0), and then, in order to refresh an encoding (xj1, . . . , x

j
n) one adds

(b1, . . . , bn) to it. Therefore, the refreshed encoding is equal to (xj1 + b1, . . . , x
j
n+

bn). Observe that after Enc(0) is generated, the refreshing can be done without
any further computation, by just adding bi to every xji . Of course in this ap-
proach the whole technical difficulty is to generate the encodings of 0 in a secure
way (without relying on any assumptions on leakage-freeness of the encoding
generation).

The most simple and efficient refreshing scheme originally introduced in [22]
uses the “encoding of 0 approach” mentioned above and works as follows (see
also Fig. 1 on page 8). In order to refresh −→x j = (xj1, . . . , x

j
n), we first sample

bj1, . . . , b
j
n−1 uniformly at random from F and set bjn := −bj1 − . . .− b

j
n−1. Then,

we compute the fresh encoding of x as (xj+1
1 , . . . , xj+1

n ) := (xj1 +bj1, . . . , x
j
n+bjn).

Notice that besides its simplicity the above refreshing enjoys additional beneficial
properties including optimal randomness complexity (only n− 1 random values
are used) and minimal circuit size (only 2n − 1 field operations are required).
Somewhat surprisingly this simple refreshing scheme turns out to be insecure in
the security model of threshold probing attacks introduced in the seminal work
of Ishai, Sahai and Wagner [18].

Insecurity of simple refreshing. The standard model to analyze the security of
masking schemes is the t-probing model [18]. In the t-probing model the adver-
sary can (adaptively) select up to t wires of the internal masked computation
and learn the values carried on these wires during computation. While originally
it was believed that the simple refreshing from above guarantees security for
t = n − 1 [22], Coron et al. [10] showed that when it is combined with certain
other masked operations (e.g., in a masked AES) the resulting construction can
be broken using only ≤ t := n/2 + 1 probes.

An even more devastating attack against this natural refreshing can be shown
in the following setting. Consider a circuit that consists of a sequence of n refresh-
ings of an encoding −→x 0. This may naturally happen in a masked key schedule
of the AES algorithm, where the secret key is encoded and after each use for

3 By this we mean that for every x and y we have Dec(Enc(x) + Enc(y)) = x + y,
where “+” on the left-hand-side denotes the vector addition.
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encrypting/decrypting is refreshed. If for each of these refreshings the adversary
can learn 2 values, then a simple attack allows to recover the secret (we describe
this attack in more detail below). The attack, however, is rather impossible to
carry out in practice. In particular, it requires the adversary to learn for the n
consecutive executions of the refreshing scheme specific (different) intermediate
values.

The noisy leakage model. The attack against the simple refreshing illustrates
that in some sense the probing model is too strong. An alternative model is
the so-called noisy leakage model of Prouff and Rivain [21]. In the noisy leakage
model the leakage is not quantitatively bounded but instead it is assumed that
the adversary obtains a “noisy distribution” of each value carried on a wire. The
noisy leakage model is believed to model real-world physical leakage accurately,
and hence is prominently used in practice to analyze the real-world security of
physical devices [12].

In [11] it was shown that the noisy leakage model of [21] can be reduced to
the p-random probing model. In the p-random probing model we assume that the
value carried on each wire is revealed independently with probability p. Since
in the p-random probing model the adversary looses control over the choice of
wire that he learns, the attack against the simple refreshing ceases to work. This
raises the question if the simple and most natural refreshing scheme is secure in
the p-random probing model. The main contribution of this paper is to answer
this question affirmatively.

1.2 Our contribution

We provide a technical outline of our contributions in Sec. 2 and give in the
following only a high-level summary of our results.

Simple refreshing. Our main contribution is to analyze the security of the sim-
ple refreshing scheme from [22] in the noisy leakage model. In particular, we
show that refreshing an encoding (x1, . . . , xn) is secure even if each wire in the
refreshing circuit is revealed with constant probability p. Our result directly im-
plies that refreshing an encoded secret k times (where k may be much larger
than the security parameter n) remains secure under noisy leakages for constant
noise parameter. Such consecutive use of refreshings naturally appears in many
practical settings such as the key schedule of the AES mentioned above, or in
general for refreshing the secret key between multiple runs of any cryptographic
primitive. Since the simple refreshing is optimal in terms of circuit size and
randomness complexity our result significantly improves the practicality of the
masking countermeasure.

Concretely, the simple refreshing requires n−1 random values and uses 2n−1
addition gates to securely refresh an encoding (x1, . . . , xn) in the random prob-
ing model (and hence implying security in the noisy leakage model of [21]). In
contrast, the most widely used refreshing scheme from Ishai, Sahai and Wag-
ner [18] requires (n − 1)2/2 randoms and 2n2 + n addition gates and has been
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proven secure only for p ≈ 1/n, which is significantly worse than ours.4 Recently,
various works provide asymptotically improved refreshing algorithms. In partic-
ular, in [1, 3] it was shown how to build a secure refreshing with circuit size
O(n), and randomness complexity O(n) for a constant noise parameter p. While
asymptotically these constructions are the same as for the simple refreshing an-
alyzed in our work, from a concrete practical point of view these schemes are
very inefficient as they are based on expander graphs.

New techniques for proving security. At the technical level, our main contribu-
tion is to introduce a new technique for proving security in the random probing
model. Our main observation is that probing security can be translated into a
question of connectivity between nodes in certain graphs. As an example con-
sider the circuit Ĉ executing k times the simple refreshing. It can be represented
as a grid G with k + 1 rows and n + 1 columns, where in each row we have
n + 1 nodes. The edges between the nodes represent intermediate values that
are computed during the execution of the circuit. Leakage of a certain sub-set
of wires then corresponds to a sub-graph of G, which we call leakage diagram.

We then show that if the “leftmost side” and the “rightmost side” of the grid
are connected by a path in the leakage diagram, then this leads to an attack
that allows to recover the encoded secret that is refreshed by the circuit Ĉ. On
the other hand, and more importantly, if the two sides of the diagram are not
connected by a path in the leakage diagram, then we show that the adversary
does not learn any information about the encoded secret from the leakage. The
above can be extended to arbitrary masked arithmetic circuits, in which the
graphs representing the circuit are slightly more involved.

The above allows us to cast security against probing leakage as a question
about connectivity of nodes within a graph. To show security in the p-random
probing model we then need to bound the probability that the random sub-
graph of G representing the leakage contains a path that connects the two sides
of G. The main challenge is that although in the p-random probing model each
wire leaks independently with probability p, in our graph representation certain
edges are more likely to be part of the leakage diagram. Even worse, the events of
particular edges of G ending up in the leakage diagram are not independent. This
significantly complicates our analysis. We believe that the techniques introduced
in our paper are of independent interest and provide a novel tool set for analyzing
security of masked computation in the random probing model.

Extension to any masked computation. As our last contribution we show how
to use the simple refreshing as part of a more complex masked computation. To
this end, we study the security of the masking compiler provided by Ishai, Sahai
and Wagner [18] when using the simple refreshing described above. Notably,
we first show that the simple refreshing can be used to securely compose any
affine masked operations. This result is important because it shows for the first

4 We expect that also the refreshing from [18] is secure for some constant probability
p, but we did not analyze its security.
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time that the most natural and efficient way to carry out affine computation in
the masked domain is secure against noisy leakages. Compared to the standard
construction of [18] we save a factor of n in circuit and randomness complexity.
Moreover, at the concrete level we make huge practical improvements when
compared to the recent works of [1, 3], which use expander graphs and algebraic
geometric codes.

Finally, we show that the simple refreshing can also be securely composed
with the masked multiplication of [18]. Since the masked multiplication of [18]
itself is a composable refreshing [11], this result is maybe not so surprising.
Nevertheless, it shows that combining from a complexity point of view optimal
masked computation with the ISW masked multiplication results into general
masked computation that is secure in the random probing model.5

1.3 Other related work

A large amount of work proves different formal security guarantees of masking
schemes (see, e.g., [1, 7, 18, 20, 21] and many more), and we only discuss the
most relevant work.

Noisy leakage model. As already mentioned most relevant for us is the so-called
noisy leakage model introduced in the work of Prouff and Rivain [21] and further
refined by Duc et al. [11]. In the later it was also shown that the p-random
probing model is closely related to the noisy leakage model. Since both [11,
21] require p ≈ 1/n, one important goal of research is to improve the noise
parameter p. There has recently been significant progress on this. In [1, 3] it
was shown how to securely compute in the random probing model for constant
p. Further improvements are made in [2, 16], where the later achieves security
under a quasi-constant noise for a construction with complexity O(n log(n))
avoiding heavy tools such as expander graphs and AG codes. Another line of
work investigates relations between different noisy leakage models [14, 17] and
provides tight relations between them. A more practical view on noisy leakage –
and in particular a quantitative study of its relation to real-world leakage – was
given by Duc et al. [12].

Refreshing schemes and their usage. Refreshing schemes have always been a core
ingredient of masking schemes. Their randomness consumption is, however, of-
ten the bottleneck for an efficient masked implementation6. Hence, an important
goal of research is to minimize the overheads resulting from the use of refresh-
ing. There are two main directions to achieve this. First, we may improve the

5 Recall that for the ISW scheme it is known that p ≈ 1/n as otherwise there is an
attack against the masked multiplication. Thus, our result requires a similar bound
on p in the general case. It is an interesting open question if we can combine the
simple refreshing with masked multiplications that are secure for constant p, e.g.,
the schemes from [1, 3].

6 Notice that true randomness is hard to generate in practice, and producing securely
pseudorandomness is costly as we need to run, e.g., an AES.
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refreshing algorithm itself. In particular, in [1, 3] it was shown how to build a
secure refreshing with circuits size and randomness complexity O(n) for a con-
stant noise parameter p. While asymptotically optimal from a concrete practical
point of view these schemes are very inefficient as they are based on expander
graphs. A second direction to improve on the costs for refreshing is to reduce the
number of times the refreshing algorithms are used. This approach was taken by
several works [6, 8, 9] which develop tools for placing the refreshing algorithm
in an efficiency optimizing way without compromising on security. It is an inter-
esting question for future research to develop tools and methods that securely
place the simple refreshing within a complex masked circuit.

2 Our approach informally

As a simple example of circuit to present our approach let us consider a circuit
Ĉ (in the following the “hat notation” will denote masked/transformed circuits)
that is a k-round refreshing circuit. This circuit consist of k consecutive subcir-
cuits that we call refreshing gadgets R̂, presented in Fig. 1. Note that in addition
to the notation from Sect. 1.1 we also use terms cji that denote the partial sums:

cji = bj1 + · · · + bji (for consistency define cj0 and cjn to be always equal to 0). It
is a simple fact that the adversary can learn the encoded secret for k = n even
if just 2 wires from each refreshing gadget leak to her (and no additional leak-
age is given), namely xjj+1 and cjj+1. We recall this attack in the full version of
the paper [15]. Similar attacks for different refreshing schemes have been shown
in [5, 13]. This attack strongly relies on the fact that the adversary can choose
which wires she learns. As discussed in the introduction, in the weaker p-random
probing model it is very unlikely that the adversary will be lucky enough to learn
xjj+1 and cjj+1 in each round (unless p is close to 1). Of course, the fact that one
particular attack does not work, does not immediately imply that the scheme is
secure.

Relaxing the leakage model. As already mentioned in Sect. 1.2 our first main
contribution is a formal proof that indeed this simple refreshing procedure is se-
cure in the p-random probing model. Our starting point is the natural question:
can we characterize the leakages which allow the adversary to compute the se-
cret? We answer this question affirmatively by introducing the notion of leakage
diagrams, which we explain below (for formal definitions see Sect. 4.4).

Leakage diagrams. Essentially, the leakage diagrams are graphs that can be
viewed as abstract representations of the leakage that occurred during the eval-
uation of a circuit. For a moment let us focus only on leakage diagrams that
correspond to k-round refreshing circuits Ĉ. Let x01, . . . , x

0
n be some initial en-

coding of the secret x. In this case the leakage diagram will be a subgraph of a
(n+ 1)× (k + 1) grid G with edges labeled xji and cji as on Fig. 2.

To illustrate how the leakage diagrams are constructed take as an example
a 2-round refreshing circuit (with n = 3) that is depicted on Fig. (3a). Note
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(bj1, . . . , b
j
n−1)← Fn−1

cj0 := 0

for i = 1, . . . , n− 1 do

cji := cji−1 + bji

bjn := −cjn−1

for i = 1, . . . , n do

xj+1
i := xji + bji

(a) Pseudocode of the
simple refreshing gadget
R̂.

+ + + +

xj1

xj+1
1

xj2

xj+1
2

xj3

xj+1
3

xj4

xj+1
4

RND

CP

bj1

RND

CP

bj2

RND

CP

bj3

+

+NEG

c
j

1

c
j
2

cj3bj4

(b) Corresponding circuit (for n = 4).

Fig. 1: The refreshing gadget. The “j” superscript is added for the future refer-
ence (e.g. on Fig. (3a)).

x0
1

xk1

x0
n

xkn

c00

ck−1
0

c01

ck−1
1

c0n−1

ck−1
n−1

c0n

ck−1
n

...

· · ·

· · ·

Fig. 2: Graph G corresponding to the k-round refreshing circuit. It has k + 1
rows. In each jth row (for j = 0, . . . , k) it has n + 1 vertices connected with
edges (there is an edge labeled with “xi” between the ith and (i+ 1)st vertex).
It also has an edge between every pair of ith vertices (for i = 0, . . . , n) in the
jth and j + 1st row. This edge is labeled with “cji”.

that this picture omits the part of circuit that is responsible for generating the
bji ’s, and in particular the wires carrying the cji values are missing on it. This
is done in order to save space on the picture. Let L be the wires that leaked in
the refreshing procedure. Suppose the leaking wires are x03, x

1
1, x

3
2, and b12, which

is indicated by double color lines over the corresponding edges on Fig. (3a). We
also have to remember about the cji ’s that were omitted on the figure and can

also leak. Recall that every cji is equal to a sum bj1 + · · ·+ bji . Hence, the leakage

from cji is indicated by a shaded colored region around bj1, . . . , b
j
i . Let us assume

that c02, c
1
1, and c12 are leaking, and therefore the shaded regions on Fig. (3a) are

placed over b11, and the pairs (b01, b
0
2), (b11, b

1
2).

The corresponding leakage diagram is a subgraph of the graph G from Fig. 2
with k := 2 and n := 3. The leakage diagram S(L) has the same vertices as
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+

+

+

+

+

+

x0
1

x1
1

x2
1

x0
2

x1
2

x2
2

x0
3

x1
3

x2
3

b01

b11

b02

b12

b03

b13

(a) A circuit with leaking wires marked
with colored double lines. Additionally
wires c02(= b01 + b02), c11(= b11), and c12(=
b11 + b12) leak, which is indicated by col-
ored shaded areas around “b01 b02”, “b11”,
“b11 b12”.

? ?x0
1

x1
1

x2
1

x0
2

x1
2

x2
2

x0
3

x1
3

x2
3

c00

c10

c01

c11

c02

c12

c03

c13

(b) The corresponding leakage diagram.
We show how the adversary can compute
the sum of edges x0

1, x
0
2, and x0

3. The left-
most and the rightmost vertices of the row
containing these edges are marked with
“ ?©”.

Fig. 3: A leaking circuit and its corresponding leakage diagram.

G, but it has only a subset of its edges. Informally, the labels on the edges of
S(L) are variables that suffice to fully reconstruct the leakage from the circuit.
More precisely: given these values one can compute the same leakage information
that the adversary received. Going back to our example: the leakage diagram
corresponding to the leakage presented on Fig. (3a) is depicted on Fig. (3b), on
which the members of S(L) are marked with double colored lines. The set S(L)
is created according to the following rules. First, we add to S(L) all the edges
labeled xji and cji if the corresponding wires are in L. For this reason S(L) on

Fig. (3b) contains x03, x
1
1, x

2
2, c

0
2, c

1
1, and c12. Handling leaking bji ’s is slightly less

natural, since graph G does not contain edges labeled with the bji ’s. To deal with

this, we make use of the fact that every bji can be computed from cji and cji−1 (as

bji = cji − c
j
i−1). Hence, for every bji from L we simply add cji and cji−1 to S(L).

For this reason we add c11 and c12 to L (as b12 is in L). This approach works, since,
as mentioned above, the edges in S(L) should suffice to fully reconstruct L. Note
that in some sense we are “giving out too much” in the leakage diagram (as cji
and cji−1 cannot be uniquely determined from bji ). Fortunately, this “looseness”
does not cost us much in terms of parameters, while at the same time it greatly
simplifies our proofs. Finally, we add to S(L) all the edges labeled with cj0 and
cjn (i.e.: the leftmost and the rightmost columns in G). We can do it since these
edges are always equal to 0 and hence the adversary knows them “for free”.

What the adversary can learn from a leakage diagram. The ultimate goal of the
adversary is to gain some information about the encoded secret. To achieve this it
is enough that she learns the sum of all the xji ’s from some row of the diagram.
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We now show how in case of leakage from Fig. 3 the adversary can compute
x01 +x02 +x03 from the values that belong to the S(L) (i.e. those that are marked
with double colored lines on Fig. (3b)). Using the facts that xj+1

i = xji + bji and

cji+1 = cji + bji+1 several times we have:

x01 + x02 + x03 = (x11 − b01) + (x12 − b02) + x03 = x11 + x12 − (b01 + b02) + x03 =

x11 + (x22 − b12)− c02 + x03 = x11 + x22 + c11 − c12 − c02 + x03

where all the variables on the right hand side belong to S(L). It is easy to see that
the reason why the adversary is able to compute x01 +x02 +x03 is that the leftmost
and the rightmost nodes in the row containing edges labeled with variables were
connected. These nodes are indicated with the “ ?©” symbol on Fig. (3b).

Since the leftmost and the rightmost columns always belong to the leak-
age diagram, thus in general a similar computation is possible when these two
columns are connected. Our first key observation is that if these columns are
not connected, then the secret x remains secure. We state this fact below in the
form of a following informal lemma.

Informal Lemma 1 Consider a multi-round refreshing circuit. Let L be the
set of leaking wires. Let E denote the event that the leftmost and the rightmost
columns of S(L) are connected. If E did not occur then the adversary gains no
information about the secret.

This informal lemma is formalized as Claim 5 (in the full version of this paper
[15]), where it is also stated in a more general form, covering the case of more
complicated circuits (i.e. those that perform some operations in addition to re-
freshing). The rest of this section is organized as follows. In Sect. 2.1 we outline
the main ideas behind the proof on Informal Lemma 1, in Sect. 2.2 we sketch
the proof of the upper bound on the probability of E. This, together with the
Informal Lemma 1 shows the security of our multi-round refreshing construction.
Then in Sect. 2.3 we describe how these ideas can be generalized to arbitrary
circuits. Besides of presenting the intuitions behind our formal proof, the goal
of this part is also to introduce some more terminology that is useful later (e.g.:
the “modification vectors”). In the sequel we use the following convention: if G
is a labeled graph such that the labels on its edges are unique, then we some-
times say “edge λ” as a shortcut for “edge labeled with λ”. The same convention
applies to circuits and wires.

2.1 Proof sketch of Informal Lemma 1

Here we present the main ideas behind the proof of Informal Lemma 1. Consider
a k-round refreshing circuit Ĉ that takes as input a secret shared over n wires.
For two arbitrary field elements x0, x1 ∈ F consider experiments of applying Ĉ
to their random encodings. In the proof we consider a fixed set L of leaking wires
in Ĉ. Assume that event E did not occur, i.e., the leftmost and the rightmost
columns of the leakage diagram are disconnected. To prove Informal Lemma 1,
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it is enough to show that for the distributions of the values of wires in L are
identical in both experiments (following the standard approach in cryptography
this formally captures the fact that the adversary “gains no information about
the secret”). We do it using a hybrid argument. Namely, we consider a sequence
of experiments denoted Exp0

A,Exp0
B ,ExpC ,Exp1

B , and Exp1
A (see below), such

that: (a) Exp`A (for ` = 0, 1) is equal to the original experiment in which x` is
refreshed k times, and (b) the view of the adversary is identical for each pair of
consecutive experiments on this list (and hence it is identical for all of them).

Exp`A:

Sample −→x 0,` ← Enc(x`).
For j = 0 to k − 1 do:

1. sample
−→
b j,` ← Enc(0),

2. let −→c j,` := f(
−→
b j,`),

3. let −→x j+1,` := −→x j,` +
−→
b j,`,

Exp`B : ExpC :

Sample −→x 0,` ← Enc(x`).
For j = 0 to k − 1 do:
1. sample −→x j+1,` ← Enc(x`),

2. let
−→
b j,` := −→x j+1,` −−→x j,`,

3. let −→c j,` := f(
−→
b j,`).

Sample −→x 0,1 ← Enc(x0) + (x1 − x0) · −→m0.
For j = 0 to k − 1 do:
1. sample −→x j+1,1 ← Enc(x0) + (x1 − x0) · −→mj+1,

2. let
−→
b j,1 := −→x j+1,1 −−→x j,1,

3. let −→c j,1 := f(
−→
b j,1).

Fig. 4: The sequence of experiments.

Extending the notation from the pseudocode given in Fig. (1a), we will add for
future reference to the procedure that refreshes a secret x` (with ` ∈ {0, 1})
a superscript “`” to all the labels, i.e., denote −→x j,` := (xj,`1 , . . . , xj,`n ),

−→
b j,` :=

(bj,`1 , . . . , bj,`n ) and −→c j,` := (cj,`1 , . . . , cj,`n ). Note that all the operations in the
refreshing circuit are linear, and in terms of linear algebra this experiment (re-
peated k times) can be described as Exp`A on Fig. 4, where f is a linear function

defined as f(
−→
b j,`) = (bj,`1 , bj,`1 + bj,`2 , . . . , bj,`1 + · · · + bj,`n ). It is easy to see that

the experiment Exp`B depicted on Fig. 4 (where the −→x j,`’s are chosen first,

and then
−→
b j,` is computed as their difference) has the same distribution of the

variables as Exp`A. To finish the proof of the Informal Lemma 1 we need to con-
struct an experiment ExpC , such that the view of the adversary in experiments
Exp0

B , ExpC and Exp1
B is identical. Our approach to this is as follows. Based on

the leakage diagram S(L) (and independently from the choice of the xj,`i ’s) we
construct carefully crafted vectors −→m0, . . . ,−→mk ∈ {−1, 0, 1}n that we call basic
modification vectors such that for every j we have that mj

1+ · · ·+mj
n = 1 (where

(mj
1, . . . ,m

j
n) = −→mj). These vectors have to satisfy also some other conditions

(that we define in the full version). See Fig. 5 for an example. The modification
of Exp`B is denoted ExpC and presented on Fig 4.
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Two claims (discussed extensively in the full version of this paper [15]) that
allow the proof to go through are that (1) the joint distribution of the variables
−→x j,1,

−→
b j,1, and −→c j,1 in ExpC is the same as in Exp1

B , and (2) the view of the
adversary are distributed identically in ExpC and in Exp0

B . What remains is to
show how the basic modification vectors are constructed. Let LS be the con-
nected component of S(L) that contains its leftmost column. By assumption, E
did not occur so LS does not contain the rightmost column of S(L). This makes
it possible to construct the basic modification vectors with desired properties.
For each j construct −→mj = (mj

1, . . . ,m
j
n) according to the following rules: (i) if

0

x0
1

0

x1
1

0

x2
1

0

x3
1

0

x0
2

0

x1
2

0

x2
2

0

x3
2

0

x0
3

0

x1
3

0

x2
3

0

x3
3

0

x0
4

0

x1
4

0

x2
4

0

x3
4

+1

x0
2

+1

x1
1

−1

x1
2

+1

x1
4

+1

x2
4

+1

x3
2

−1

x3
3

+1

x3
4

c00

c10

c20

c01

c11

c21

c02

c12

c22

c03

c13

c23

c04

c14

c24

−→m0 :=

−→m1 :=

−→m2 :=

−→m3 :=

Fig. 5: The example of the leakage diagram with leakage indicated with double
colored lines. The nodes of the connected component LS (containing the leftmost
column) are indicated with gray color. The modification vectors −→mj and their
coordinates are placed in boxes (e.g.: −→m0 := (0,+1, 0, 0)).

the left node of the edge “xji” does belong to LS and its right node does not

belong to LS, then let mj
i be equal to +1, (ii) if the left node of the edge “xji”

does not belong to LS and its right node does belong to LS , then let mj
i be

equal to −1, and (iii) let all the other mj
i ’s be equal to 0. An example of how the

basic modification vectors are constructed is presented on Fig. 5 (these vectors
and their coordinates are marked there with numbers in boxes). As it turns out
(see Lemma 6 in the full version of this paper [15] for a generalization of this
statement) these rules guarantee that the requirement that “mj

1+ · · ·+mj
n = 1”,

and all other necessary conditions, are satisfied.

2.2 Bounding the probability of E

To show how we derive a bound on the probability of E we take a closer look
at how, from the probabilistic point of view, the leakage diagram is constructed
(see p. 9). By definition, it is a subgraph of a graph G from Fig. (2). Recall that

in our experiment every wire of the circuit Ĉ leaks independently at random

12



with probability p. The leakage diagram S(L) corresponding to leakage L is a
random subgraph of G.

Let us now analyze the distribution of S(L). It is easy to see that every
edge “xji” is added to S(L) independently with probability p. Unfortunately, the

situation is slightly more complicated when it comes to the cji ’s. Recall that cji ’s
can be added to S(L) for three reasons. The first (trivial) reason is that i = 0

or i = n. The second reason is that the wire “cji” leaks in Ĉ (i.e.: it belongs

to L). The third reason is that the wire bji or bji+1 leaks in Ĉ. Because of this,

the events {“cji belongs to S(L)”}i,j are not independent, and the probability of
each of them may not equal to p.7

Let us look at the “non-trivial” edges in S(L), i.e., the xji ’s and the cji ’s such
that i ∈ {1, . . . , n−1}. Let U be the variable equal to the set of non-trivial edges
in S(L). To make the analysis of the leakage diagram simpler it will be very
useful to eliminate the dependencies between the “cji ∈ U” events. We do it by
defining another random variable Q (that takes the same values as U), and that
has the following properties.

1. It is “more generous to the adversary”, i.e., for every set C of the edges we
have that

Pr[C ⊂ Q] ≥ Pr[C ⊂ U ] (1)

(we will also say that the distribution of Q covers the distribution of U , see
Def. 1 on p. 17), and

2. The events {v ∈ Q} (where v is a non-trivial edge) are independent and have
equal probability. Denote this probability q, and say that Q has a standard
distribution (see Def. 2 on p. 17).

Now, consider an experiment ExpQ of constructing a leakage diagram when the
“ci,j” and “xi,j” edges are chosen according to Q. More precisely: let the edges
in the leakage diagram be sampled independently according to the following
rules: the {cj0}’s and {cjn}’s are chosen with probability 1, and the remaining

{cji}’s are chosen with probability q. It is easy to see that, thanks to Eq. (1), the
probability of E in ExpQ is at least as high as in the probability in the original
experiment. Hence, to give a bound on the probability of E it suffices to bound
the probability of this probability in ExpQ. Thanks to the independence of the

events {cji ∈ Q}i,j ∪{x
j
i ∈ Q}i,j bounding the probability of E in ExpQ becomes

a straightforward probability-theoretic exercise. For the details on how it is done
see full version of this paper [15].

2.3 Generalizations to arbitrary circuits

As mentioned in Sect. 1.2, our final main contribution is a circuit compiler
that uses the simple refreshing together with gadgets that perform the field

7 For example: it is easy to see that if we know that cji ∈ S(L) then the event “cji+1

belongs to S(L)” becomes more likely (because leakage of bji+1 is more likely).
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operations. We follow the standard method of constructing compilers in a “gate-
by-gate” fashion (see, e.g., [18], and the follow up work). A compiler takes as
input a circuit C (for simplicity assume it has no randomness gates) and produces

as output a transformed circuit Ĉ (that contains randomness gates RND). More
concretely a wire carrying x in C gets transformed into a bundle of n wires
carrying a random encoding of x. Every gate Γ in C is transformed into a
“masked gate” Γ̂ . For example, an addition gadget will have 2n inputs for n-
share encodings of two values a and b, and n output wires that will carry some
encoding of a+ b. The masked input gates simply encode the secret (they have
one input and n outputs). The masked output gates decode the secret (they
have n inputs and one outputs). These two gadgets are assumed to be leak-free.

They are also called: input encoder Î and output decoder Ô, respectively. For
technical reasons, in our construction we insert the refreshing gadgets between
the connected gadgets.

The main challenge in extending our ideas to such general circuits is that
we need to take into account the leakage from wires of the individual gadgets,
and represent them in the leakage diagram. We do it in such a way that unless
an event E occurs, we are guaranteed that the adversary gained no information
about the secret input. By the “event E” we mean a generalization of the event
E (from the previous sections) to more complicated leakage diagrams. More

concretely (see Sect. 4.1 for details) our approach is to represent each gadget Γ̂

in the graph G with a path N Γ̂
0 – · · · – N Γ̂

n of length n and to “project” the
leaking wires of the given gadget onto the edges of the path. Technically, this is
done be defining, for every gadget Γ̂ , a leakage projection function (see Sect. 4.3)
that describes how a leakage from an internal wire is mapped on the path.

A projection function P , by definition, takes as argument a leaking wire w
in a gadget Γ̂ , and returns a subset of [n] (usually of size 1 except for some
wires in the multiplication gadget). We can refer to a projection of a set of

wires in Γ̂ defined in a natural way as P ({w1, . . . , wl}) := P (w1) ∪ · · · ∪ P (wl).
One of the requirements that we impose on the function P is the following:
every set of probes {w1, . . . , wl} (regardless of its size) from Γ̂ can be simulated
knowing only input shares of indices in the projection P ({w1, . . . , wl}) within
each input bundle. Notice that it makes our definition of the gadget security
similar in spirit to the existing definitions for the t-probing leakage model, like
d-non-interference. One of the differences is that we care not only about the
number of input shares that suffice to simulate the leakage, but also take into
account their indices in a particular input bundle. Having a leakage projection
function P defined for a gadget Γ̂ , we will represent a leakage from that gadget

in the leakage diagram as a subset of the edges from the path in G: N Γ̂
0 – · · · –

N Γ̂
n . The positions (with the edge N Γ̂

0 – N Γ̂
1 being the 1st one) of these edges in

the path are taken from the set P ({w1, . . . , wl}), when the wires w1, . . . , wl are
leaking. This way we can “project” any given leakage from a gadget onto the
path of length n in the leakage diagram.

As an example consider the addition gadget “⊕̂” that computes an encoding
−→z of z = x + y as −→z := −→x + −→y (where −→x and −→y are encodings of x and y,
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respectively). The leakage projection function P⊕̂ for this gadget is defined as
follows. Each input wire that is on ith position in the input bundle is projected
onto the set {i}, i.e., P⊕̂(xi) = {i} and P⊕̂(yi) = {i}. Moreover, projection of
the output wires is defined similarly, namely P⊕̂(zi) = {i}. It is easy to see
that with such projection function the above mentioned simulation requirement
is satisfied. For example, the leakage illustrated on Fig. (6a) can be simulated
knowing 3 input shares from each input bundle, namely x2, x4, x5 and y2, y4, y5.
On the leakage diagram we represent this particular leakage from the addition
gadget with 3 edges, as illustrated on Fig. (6b). Note that the addition gate is
simple, and hence the projection function for it is rather straightforward. The
projection function for a multiplication gadget is more involved (see Sect. 4.2).

+

x1 y1

z1

+

x2 y2

z2

+

x3 y3

z3

+

x4 y4

z4

+

x5 y5

z5

(a) An example of leakage from the addition gadget
“⊕̂” (marked with double colored lines).

N ⊕̂0 N ⊕̂1 N ⊕̂2 N ⊕̂3 N ⊕̂4 N ⊕̂5

(b) The corresponding
“projected” leakage in the
leakage diagram (marked
with double colored lines).

Fig. 6: Leakage from an addition gadget and the corresponding “projected” leak-
age. This is a valid projection, since it is enough to know x2, x4, x5 and y2, y4, y5
to simulate the leakage.

Having the projections of leakages for individual gadgets defined, we can
generalize the idea of a leakage diagram S(L) presented in previous sections
from simple sequential k-round refreshing circuits to arbitrary private circuits
built according to our construction. Recall that we insert a refreshing gadget
between each pair of connected gadgets. The leakage from each individual gadget
is projected onto a respective path in the leakage diagram, and the leakage from
the remaining wires, i.e., wires used to generate encodings Enc(0) between two
gadgets is “projected” onto the edges connecting the respective paths (analogue
of the edges cji ’s from previous sections). See Sect. 4.4 for the details. Overall,
we obtain a graph that is similar to the leakage diagrams from the previous
sections, but it is more general. In case of an example depicted on Fig. (7) the

leakage from the gadget Γ̂1 induces a projection set {3}. This fact is represented

by including the edge N Γ̂1
2 – N Γ̂1

3 into the leakage diagram.
A crucial property of such leakage diagrams is that the generalization of

the Informal Lemma 1 still holds: the notion of the leftmost and the rightmost
column are generalized to the leftmost and the rightmost sides (respectively).
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On Fig. (7) the leftmost side is a graph consisting of nodes N Γ̂1
0 , N Γ̂2

0 , N Γ̂3
0 , N Γ̂4

0 ,

and N Γ̂5
0 , while the rightmost one consists of nodes N Γ̂1

3 , N Γ̂2
3 , N Γ̂3

3 , N Γ̂4
3 , and

N Γ̂5
3 . We now define the event E as: “the leftmost and the rightmost sides are

connected”. For example E does not hold for the diagram on Fig. (7). To make
it easier to verify this fact, we indicate (with gray color) the nodes connected
with the leftmost side.

N Γ̂1
0N Γ̂1
0

N Γ̂2
0N Γ̂2
0

N Γ̂3
0N Γ̂3
0

N Γ̂4
0

N Γ̂5
0

N Γ̂1
1N Γ̂1
1

N Γ̂2
1N Γ̂2
1

N Γ̂3
1N Γ̂3
1

N Γ̂4
1

N Γ̂5
1

N Γ̂1
2N Γ̂1
2

N Γ̂2
2N Γ̂2
2

N Γ̂3
2N Γ̂3
2

N Γ̂4
2

N Γ̂5
2

N Γ̂1
3N Γ̂1
3

N Γ̂2
3N Γ̂2
3

N Γ̂3
3N Γ̂3
3

N Γ̂4
3

N Γ̂5
3

Fig. 7: An example of a leakage diagram for a transformed circuit Ĉ with 5
gadgets. The nodes connected with the leftmost side are marked in gray.

When using the leakage projection functions we encounter the following prob-
lem that is similar to the “lack of independency problem” described in Sect. 2.2.
Namely, it may happen that the events different edges become part of the pro-
jected set are not independent (this is, e.g., the case for the multiplication gadget
in Sect. 4.2). We handle this problem in a similar way as before (see points 1 and
2 on page 13). That is: we define a “more generous” leakage projection distribu-
tion that (1) “covers” the original distribution, and (2) is “standard” (see the
aforementioned points for the definition). Let q be the parameter denoting the
probability in the standard distribution. This parameter, of course, depends on
the probability p with which a wire leaks. A function that describes this depen-
dence is called projection probability function. Every gadget in our construction
comes with such a function. See Sect. 4.1 for a formalization of these notions.

Our construction is modular and works for different implementations of the
addition and multiplication gadgets, assuming that they come with the leakage
projection that satisfies certain conditions (see Thm. 1 on p. 25). We show (see
Sect. 4.2) that the standard gadgets from the literature (including the ISW mul-
tiplication gadget [18]) satisfy this condition. Note that the construction and
reasoning regarding the refreshing circuit presented in previous sections are spe-
cial case of the construction and the security proof for the general arithmetic
circuit. Indeed, we can treat each bundle between refreshing gadgets as an “iden-
tity gadget” (see Sect. 4.2).
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Organization of the rest of the paper. In the next two sections we describe
the technical details of the ideas outlined above. Sect. 3 consists of formal defi-
nitions, and Sect. 4 contains the details of our constructions. Due to the lack of
space, some parts of these sections are moved to the full version of this paper [15].

3 Formal definitions

We start by presenting formal definitions of some notions that were introduced
informally in Sect. 2. Let us start with introducing some standard notation. In
the sequel [n] denotes the set {1, 2, . . . , n}. We write x ← X when the element
x is chosen uniformly at random from the finite set X . A circuit C is affine
if it does not use product gates. A statistical distance between two random
variables X0 and X1 (distributed over some set X ) is defined as ∆(X0;X1) :=
1/2 ·

∑
x∈X |Pr[X0 = x] − Pr[X1 = x]|. If ∆(X0;X1) ≤ ε then we say that X0

and X1 are ε-close. We assume a fixed security parameter n, i.e. every wire in
C will be represented by a bundle of n wires in Ĉ.

Assumptions about the circuit. For syntactic purposes we introduce special
input encoding I gate and output decoding O gate used in original circuit C
that simply implement the identity function, but will be transformed to Î and Ô
gadgets in Ĉ (see Sect. 2.3). Gate I is required at every input wire of the circuit C
that will be a subject to our compiler, and similarly O gate is required at every
output gate of C. We call such circuits satisfying that requirement complete.
However, in our proofs we consider also transformations of circuits that do not
use gates I on the input wires and O on the output wires. Such circuits will be
called incomplete. For incomplete circuit C we denote by its completion a circuit
C with added gates I at every input and O at every output.

We also assume that the original C is deterministic, i.e. it has no randomness
gates. This can be done without loss of generality, as the randomness can be
provided to C as an additional input.

Partial order of the distributions over subsets. We now provide formal
definition of what it means that one probability distribution “covers” another
one. The motivation and the intuition behind this concept were described in
Sect. 2.2.

Definition 1. Consider a fixed finite set A and its power set P (A). Let D1 and
D2 be some probability distributions over P (A). We will say that distribution D2

covers distribution D1 if it is possible to obtain D2 from D1 by a sequence of the
following operations on a distribution D:

1. Pick two subsets satisfying A1 ⊂ A2 ⊂ A.
2. Pick a real value 0 < d < D(A1).
3. Subtract d from D(A1) and add d to D(A2).
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It is clear from the definition above that the relation of covering is indeed a
partial order on the probability distributions. We will write D2 ≥ D1 to denote
the coverage relationship of the distributions (when it is clear from the context
over which power set these distributions are). As already mentioned in Sect. 2.2,
one specific distribution over a power set P (A) that we will consider is a standard
distribution Dp(A) where 0 < p < 1.

Definition 2. Let A be a finite set and let 0 < p < 1. We define a random
subset S of A as follows: any element of A belongs to S with probability p,
independently. We call the distribution over P (A) determined by the random
subset S a standard distribution Dp(A).

For a random variable X with a domain P (A) we denote by D(X) the probabil-
ity distribution over P (A) generated by that variable. For two random variables
X,Y with the same domain P (A) we will say that Y covers X if D(Y ) cov-
ers D(X).

3.1 Security definitions

In this section we present the formal definitions of soundness and privacy of a
circuit transformation. Soundness is defined as follows.

Definition 3. We say that transformation Ĉ of k-input complete circuit C is
sound if it preserves the functionality of C, that is

Ĉ(−→x ) = C(−→x )

for every input −→x of length k. In case of incomplete circuit C, we say that its
transformation is sound if transformation of its completion is sound.

To reason about privacy we consider the following experiment.

Definition 4. For a fixed circuit C with k input wires, its input −→x = (x1, . . . , xk)
and probability p we define an experiment Leak(C,−→x , p) that outputs an adver-
sarial view as follows:

1. Transformed circuit Ĉ is fed with (x1, . . . , xk) resulting with some

assignment of the wires of Ĉ.
In case when C is incomplete, the i-th input wire bundle of trans-
formed circuit Ĉ is fed with an encoding of respective input value
xi, chosen uniformly at random.

2. Each wire of Ĉ leaks independently with probability p. Note that in
case of complete circuit C input and output wires do not leak, as
part of Î and Ô gadgets.

3. Output: (LW : set of leaking wires in Ĉ, A: values assigned to the
leaking wires in LW during the circuit evaluation).

We are now ready to define privacy of a circuit transformation.
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Definition 5. We say that transformation Ĉ of circuit C is (p, ε)-private if
leakage in experiment Leak(C,−→x , p) can be simulated up to ε statistical distance,
for any input −→x . More precisely, there exist a simulation algorithm that, not
knowing input −→x , outputs a random variable that is ε-close to the actual output
of Leak(C,−→x , p).

4 Technical details of the circuit transformation

Let us now present the technical details of the ideas outlined in Sect. 2, i.e., our
construction of the transformed circuit Ĉ together with a proof of the privacy. For
syntactic purposes we introduce a special single-input single-output refreshing
gate R that acts as an identity function, similarly to I and O gates, but can
be placed anywhere in the circuit C. The general transformation of the original
circuit C consists of two phases. We start with the preprocessing phase. In this
phase, if circuit C is incomplete then we add I gate to every input wire and O to
every output wire. Moreover, we add refreshing gate R on every wire of C that
connects any two gates, except for I and O (see Fig. 8). We call the resulting
circuit C ′. We then proceed to the actual transformation phase in which each
wire in C ′ carrying value x is replaced with a bundle of n wires that carry an
encoding of x. Each gate Γ in C ′ is replaced with a respective gadget subcircuit
Γ̂ that operates on the encodings. Below we give a detailed description of the
gadget subcircuits.

+ CP

+

(a) An original circuit C

+ CP

+

I I I

O O

R R

(b) Circuit C′ after preprocessing phase

Fig. 8: Example of the preprocessing phase of the transformation.

We say that two regular gadgets (not refreshing gadgets) Γ̂1 and Γ̂2 in Ĉ are
connected if there is a refreshing gadget between them. More precisely, if there is
a refreshing gadget R̂ that takes as input the output bundle of Γ̂1, and outputs
the input bundle to Γ̂2.
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4.1 General gadget description

In this section we give a general definition of a gadget and the required proper-
ties. Every gadget used in our construction, except for the refreshing gadget R̂,
satisfies the given definition.

Input and output wires of the gadget. Let us consider a gate Γ in circuit C of
0 ≤ i ≤ 2 inputs and 1 ≤ o ≤ 2 outputs excluding the case (i, o) = (2, 2), for

example Γ might be a sum gate ⊕ or a product gate ⊗. A respective gadget Γ̂
will have i input wire bundles and o output wire bundles, that is i · n inputs
and o · n outputs in total. We will denote with IN b

k(Γ̂ ) the k-th wire of its b-th

input bundle and with OUT b
k(Γ̂ ) the k wire of its b-th output bundle. We denote

with IN k(Γ̂ ) all the input wires of index k in its input bundle. More precisely,

IN k(Γ̂ ) := {IN b
k(Γ̂ )|1 ≤ b ≤ i}. Similarly, we define OUT k(Γ̂ ) as OUT k(Γ̂ ) :=

{OUT b
k(Γ̂ )|1 ≤ b ≤ o}. Moreover, we use IN b(Γ̂ ) to denote the b-th input

bundle of Γ̂ and OUT b to denote the b-th output bundle. That is, IN b(Γ̂ ) :=

{IN b
k(Γ̂ )|1 ≤ k ≤ n}, and OUT b(Γ̂ ) = {OUT b

k(Γ̂ )|1 ≤ k ≤ n}. Let g : Fi → Fo

be the function computed by the gate Γ . The gadget Γ̂ should implement the
same functionality as Γ . More precisely, if g(x1, . . . , xi) = (y1, . . . , yo) then for

any encoding (−→x1, . . . ,−→xi) of (x1, . . . , xi) fed to Γ̂ as input, it outputs some
encoding (−→y1, . . . ,−→yo) of (y1, . . . , yo).

Leakage projections. We now define the “leakage projections” already informally
discussed in Sect. 2.3. Every gadget comes with a leakage projection function P
that takes as input a leaking wire w in Γ̂ and outputs an associated subset P (w)
of [n], usually an one-element subset. We can refer to the projection set of a

subset W of wires in Γ̂ defined as P (W ) =
⋃
w∈W P (w). We require the following

properties of the projection P . Firstly, for any subset LG of leaking wires in Γ̂ , it
is enough to know the values carried by wires of the indices ∈ P (LG) from every

input bundle, i.e. the wires in {IN b
k(Γ̂ )|1 ≤ b ≤ i, k ∈ P (LG)} to simulate the

leakage from Γ̂ perfectly (without knowing the values of the other input wires).

Secondly, for every output wire w in Γ̂ that is k-th wire in any output bundle,
i.e. w ∈ OUT k(Γ̂ ), we have P (w) = {k}.

Consider an experiment where each of the wires in the gadget Γ̂ leaks in-
dependently with probability p. Let us call a set of leaking wires LR. Induced
projection of the leakage P (LR) defines a probability distribution over the sub-

sets of [n]. We denote this leakage projection distribution with Dp(Γ̂ ). In the

security proof it will be convenient to consider only the gadgets Γ̂ with the fol-
lowing property: if every wire of Γ̂ leaks independently with probability p then
projection of the leakage contains every number i ∈ [n] with some probability
q independently. However it is not the case, e.g. for the product gadget. For
that reason, we introduce a projection probability function describing a partic-
ular gadget. Essentially, it expresses with what probability do we need to add
every particular number ∈ [n] to the projection in order to make these events

20



independent. More precisely, we will say that a function f : [0, 1]→ R is a pro-

jection probability function for a gadget Γ̂ if the leakage projection distribution
Dp(Γ̂ ) is covered by the standard distribution Df(p)([n]) (as in Def. 1). Note
that the function f may depend on the security parameter n, like in the case of
product gadget ⊗̂.

4.2 The gadgets used in our construction

In this section we present all the gadgets used in our construction.

ISW product gadget. As the product gadget ⊗̂ in our construction we use the
gadget proposed in [18]. Here we recall their scheme and prove that it satisfies
the general gadget definition.

1. Input: 2 bundles −→x = (x1, . . . xn) and −→y = (y1, . . . yn)
2. For 1 ≤ i < j ≤ n sample zi,j ← F
3. For 1 ≤ i < j ≤ n compute zj,i = (zi,j ⊕ xi ⊗ yj)⊕ xj ⊗ yi
4. Compute the output encoding (t1, . . . tn) as ti = xi ⊗ yi ⊕

⊕
j 6=i zi,j

5. Output: a bundle (t1, . . . , tn)

We define the projection function P for this gadget as follows: For every wire w
of the form xi, yi, xi ⊗ yi, zi,j (for any j 6= i) or a sum of values of the above
form (with ti as a special case), P (w) = {i}. For the remaining wires w, which
are of the form xi ⊗ yj or zi,j ⊕ xi ⊗ yj , we define P (w) = {i, j}. The following
lemmas are proven in the full version of this paper [15].

Lemma 1. The ISW product gadget with its projection function satisfies a gen-
eral gadget description (given in the Section 4.1) for the multiplication function
g(x, y) = x · y.

Lemma 2. The function f(p) = n(8p+
√

3p) is a projection probability function
for the ISW product gadget.

Other gadgets. We already described the addition gadget ⊕̂ in Sect. 2.3. Besides
of this, we use a copy gadget ĈP that takes one input bundle −→x = (x1, . . . , xn).
Then it applies the copy gate CP to each wire x1, . . . , xn obtaining n respective
pairs (y1, z1), . . . , (yn, zn). We define two output bundles as −→y = (y1, . . . , yn)

and −→z = (z1, . . . , zn). The negation gadget N̂EG. takes one input bundle −→x =
(x1, . . . , xn) and it applies the negation gate NEG to each of n wires x1, . . . , xn
obtaining wires y1, . . . , yn. We define the output bundle of the gadget as −→y =

(y1, . . . , yn). Constant gadget Ĉonstα has zero input bundles and one output

bundle carrying n constant values: (α, 0, . . . , 0). Finally, the Identity gadget ÎD
is a special gadget has one input and one output bundle, and simply outputs the
input.
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Properties of gadgets other than ISW product gadget. It is clear that all the
gadgets described above correctly implement the desired functions. Also, it is
easy to see that for each gadget the leakage projection function P can be defined
as follows: for any input or output wire w in the gadget, define P (w) = {i},
where i is an index of w in its (input or output) bundle. Clearly for each of
these gadgets the function f(p) = 3p is a projection probability function. For the

gadgets Ĉonstα and ÎD even smaller function f(p) = p is a projection probability
function. We omit the proofs in these cases, as they are very straightforward.

4.3 Refreshing gadget properties

In this section we describe properties of the refreshing gadget R̂. (see Fig. (1a)
on p. 8) that are crucial to the security of the construction, and are used in
the privacy proof. Below, by refreshing bundle BR̂ we mean the wires that are

used to generate the fresh encoding Enc(0) in the refreshing gadget R̂, i.e., wires
carrying bj1, . . . , b

j
n and cj1, . . . , c

j
n−1 on Fig. 1.

Refreshing bundle leakage projection. Consider a refreshing bundle BR̂. Suppose
that LR is a set of leaking wires in BR̂. We define a subset S(LR) of {0, . . . , n}
representing the leakage LR as follows: we start with the set S = {0, n}. For
every wire of the form cjk = bj1 ⊕ b

j
2 ⊕ · · · ⊕ b

j
k in LR, where 1 ≤ k < n, add k to

S. For every wire of the form bjk in LR , where 1 < k ≤ n, add k and k− 1 to S.
One may think of the function S(·) as an analogue of the leakage projection

function (introduced in Section 4.1) in case of a refreshing gadget. The difference
is, however, that S(·) codomain size is n + 1 instead of n, and that 2 elements
(0 and n) belong to S(LR) “by default”.

Leakage projection coverage. Here we show a random subset of {0, . . . , n} that
covers the projection of the refreshing bundle leakage. Let us define a random
subset Rq of {0, . . . , n} as follows: Rq contains 0 and n with probability 1, and for
any other number i ∈ {0, . . . , n} Rq contains i with probability q, independently.
The proof of the following lemma appears in the full version of this paper [15].

Lemma 3. Let LR be a subset of leaking wires of a refreshing bundle BR̂ when
each wire leaks independently with probability p. Then the random subset S(LR) ⊂
{0, . . . , n} is covered by Rp+2

√
3p.

Leakage diagrams. The main technical concept of this work is a leakage diagram
(already introduced informally in Sect. 2). Consider a transformed circuit Ĉ,
as described in previous sections. Suppose that LW is the set of leaking wires
in Ĉ. The leakage diagram is a representation of the set LW . As explained in
Sect. 2, in the security proof the leakage diagram is used to determine whether
the leakage compromises the secret or not. This is because of the property that
if the leftmost and rightmost sides of the leakage diagram are disconnected then
the privacy is preserved.
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We first define the leakage diagram as a subgraph of G = G(Ĉ) - a graph

associated with the transformed circuit Ĉ. The leakage diagram inherits all nodes
of G and some of its edges, depending on the set of leaking wires LW . The
exact construction of graph G(Ĉ) and the leakage diagram are described in the

following paragraphs. Let C be any circuit and Ĉ its transformation as described
in Section 4. We define an associated undirected graph G = G(Ĉ) as follows.

For each general gadget Γ̂ in Ĉ (every gadget except the refreshing gadgets)

G(Ĉ) contains a crosswise path of length n, where n is the security parameter of

the construction. We denote the nodes of this path N Γ̂
0 , . . . , N

Γ̂
n . Moreover, for

every pair Γ̂1, Γ̂2 of connected gadgets in Ĉ, we add to the graph G(Ĉ) a vertical

matching consisting of the following n + 1 edges: (N Γ̂1
0 , N Γ̂2

0 ), . . . , (N Γ̂1
n , N Γ̂2

n ).

We call all the nodes of the form N Γ̂
0 , for some gadget Γ̂ in Ĉ, together with the

edges between these nodes a leftmost of G. Analogically, we define a rightmost

of G as all the nodes of the form N Γ̂
n with all the edges between them. The

construction of G(Ĉ) can be naturally decomposed into separate subsets of edges
- its crosswise paths and vertical matchings. We will call it a decomposition of
G(Ĉ).

While the computation is executed on circuit Ĉ some wires will leak the
carried values. Let LW denote the set of all the leaking wires. We will be rep-
resenting this set with a leakage diagram H - a subgraph of G(Ĉ). The leakage

diagram inherits all the nodes from G(Ĉ) and some of its edges as in the fol-
lowing construction. Each leaking wire w ∈ LW that belongs to some general
gadget Γ̂ is projected onto the respective crosswise path in G. More precisely,
if PΓ̂ is leakage projection function for the gadget Γ̂ then we add to the leak-
age diagram H the edges in the crosswise path of order in PΓ̂ (w), i.e. edges

{(N Γ̂
i−1, N

Γ̂
i )|i ∈ PΓ̂ (w)}.

The rest of the leaking wires in the set LW are part of some refreshing
bundle BR̂, where the refreshing gadget R̂ connects some gadgets Γ̂1 and Γ̂2. Let
LR ⊂ LW be a set of leaking wires in this refreshing bundle. It is represented
in the leakage diagram H by the subset of the vertical matching between two

respective crosswise paths, namely {(N Γ̂1
i , N Γ̂2

i )|i ∈ S(LR)}. An example of a
leakage diagram is illustrated on Fig. 7.

Modification vectors. In the security proof we use a sequence of hybrid exper-
iments that produce exactly the same leakage. One of the hybrids requires to
assign every gadget in Ĉ with a basic modification vector. They were already
informally introduced in Sect. 2. Let us now present their formal definition. A
basic modification vector is a vector −→m = (m1, . . . ,mn) of length n whose co-
ordinates are in the set {−1, 0, 1} and additionally

∑n
i=1mi = 1. We assign a

gadget Γ̂ with the basic modification vector −→mΓ̂
based on the leakage diagram

H. Let LS be the connected component of the leftmost side of H. Let I be the

set of nodes indices from {N Γ̂
0 , . . . , N

Γ̂
n } that belong to LS . Now, based on the

set I we assign the modification vector −→mΓ̂
according to the following rule: the
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i-th coordinate of −→mΓ̂
equals 1 if i− 1 ∈ I and i /∈ I, equals −1 if i− 1 /∈ I and

i ∈ I, and equals 0 in other cases.
We generalize the definition of a basic modification vector to a modification

vector. We will say that a vector −→w is a modification vector if it can be written
in the form −→w = v · −→m for some scalar value v ∈ F and a basic modification
vector −→m. Moreover, we will say that a modification vector −→m = (m1, . . . ,mn)
is disjoint with a set A ⊂ [n] if ma = 0 for all a ∈ A. Let S be a subset of

{0, . . . , n} and let −→m1
,−→m2

be any modification vectors of length n. We will say

that −→m1
and −→m2

are indistinguishable under S if for every k ∈ S we have that∑k
i=1m

1
i =

∑k
i=1m

2
i .

Leakage and extended leakage from a gadget In this section we give the
formal definitions of leakages from a gadget. Here, we consider only gadgets other
than refreshing gadget.

Extended leakage. In order to express the desired property of a gadget we define
a random variable that we call extended leakage. It is a leakage from a subset of
wires in Γ̂ together with values carried by all the output wires of Γ̂ , including
the non-leaking wires (a more restrictive definition that does not include these
wires is given in the full version of this paper [15].

Definition 6. Let Γ̂ be a gadget with i input bundles and o output bundles and
let LG be a subset of its wires. We define a function ExtLeakLG

Γ̂
(−→x1, . . . ,−→xi) as

the output of the following experiment:

1. The gadget Γ̂ is fed with input (−→x1, . . . ,−→xi) resulting with some

assignment of the wires of Γ̂ .
2. Let −→y 1, . . . ,

−→y o be the produced output of Γ̂ .
3. Output: (values assigned to wires in LG, values assigned to all the

output wires −→y1, . . . ,−→yo).

Extended leakage shiftability. Recall that in Sect. 2.1 one of the main technical
tricks was to show that the experiments ExpC and Exp0

B are indistinguishable
from the point of view of the adversary. This was done by showing that the
vectors encoding the secret can be “shifted” (i.e. a certain vector can be added
to it) in way that is not noticeable to the adversary. This idea is formalized and
generalized to gadgets below.

Definition 7. Let −→v1, . . .−→vk and −→m be vectors of the same length. and let T =
(T1, . . . , Tk) be a sequence of k field elements. We define a shiftT−→m(−→v1, . . . ,−→vk) as
follows: it is a sequence of vectors −→w1, . . . ,

−→wk, with −→wj being a modified vector
−→vj :

−→wj = −→vj + Tj · −→m.
Also, when applicable, we treat values v1, . . . , vl as vectors of length 1. Then
we assume a default basic modification vector (1) and write shiftT (v1, . . . , vk)
instead of shiftT(1)(v1, . . . , vk).
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Recall that the informal description in Sect. 2 was simplified, since it was
focusing on the multi-round refreshing circuits only. Making this idea work for
arbitrary circuits requires some extra work. In particular, we need to ensure that
nothing goes wrong in the (non-refreshing) gadgets if their input is shifted. Let

LG denote a fixed subset of leaking wires in the gadget Γ̂ . Informally speaking,
the extended leakage shiftability property says that shifting the value of the wires
of index w /∈ P (LG) in the input bundles of Γ̂ results in shifting the extended
leakage only on the index w in the output bundles. This is formalized below.

Definition 8. Let Γ̂ be a gadget with i input bundles and o output bundles im-
plementing a function g, and let P be its leakage projection function. We say that
a pair (Γ̂ , P ) satisfies an extended leakage shiftability property if the following
holds: Let x1, . . . , xi be any input to g and suppose that g(shiftS(x1, . . . , xi)) =
shiftT (g(x1, . . . , xi)) for some sequences S and T of lengths i and o, respectively.
For any fixed encodings −→x1, . . . ,−→xi of x1, . . . , xi, any subset of leaking wires LG
and any basic modification vector −→m that is disjoint with the set P (LG) we have

ExtLeakLG
Γ̂

(shiftS−→m(−→x1, . . . ,−→xi)) = shiftT−→m(ExtLeakLG
Γ̂

(−→x1, . . . ,−→xi)).

Here, when the function shift is applied to the output of the ExtLeak experiment,
it is applied only to the second part of the experiment output i.e. values assigned
to the output bundles of a Γ̂ .

Based on the following lemma, whose proof appears in the full version of this
paper [15], every gadget used in our construction satisfies the extended leakage
shiftability property.

Lemma 4. Every general gadget Γ̂ with its leakage projection function, as de-
scribed in Section 4.1, satisfies the extended leakage shiftability property.

In the proof of Thm. 1 we also use a concept of refreshed gadget reconstruction
that is presented in the full version of this paper [15].

4.4 Privacy of the construction

Here we present and prove a central theorem of our work.

Theorem 1. Let C be any arithmetic circuit and Ĉ its transformation as de-
scribed in Section 4. Assume that for all gadgets used in Ĉ the projection prob-
ability functions are upper-bounded by a function q : [0, 1] → R, which also

upper-bounds the function f(p) = p + 2
√

3p. Then Ĉ is sound implementation

of C and Ĉ is (p, |C| · (4q(p))n)-private for any probability p.

This theorem is proven along the lines of the intuitions presented in Sect. 2. Due
to space limitation we give only a proof overview. Below we present in a formal
way some tools that are used in the proof (and that were already informally
discussed in Sect. 2). These tools are used in the proof of Thm. 1, which appears
in the full version of this paper [15].
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Proof overview. To prove the privacy of our construction, we will show that
any two inputs X1, X2 to circuit Ĉ induce leakages that are close in terms of
statistical distance. We compare these two leakages conditioned on the set of
leaking wires being some fixed set LW . Let H be a leakage diagram induced by
LW . We show that if the left and right sides of the graph H are not connected
then the two leakages are actually identical. To this end, we use a hybrid argu-
ment, with the set of leaking wires being fixed to LW . We define a sequence of
experiments, called hybrids, and show that every two consecutive experiments
produce identical output. Here we briefly describe them:

Hybrid1 (this corresponds to experiment Exp0
A in Sect. 2.1): simply outputs

the leakage when Ĉ is fed with X1.

Hybrid2 (this corresponds to experiment Exp0
B): in this experiment each gad-

get in Ĉ is evaluated separately, and the assignment of the refreshing bundles
between the gadgets are derived from there. To this end, we consider the eval-
uation of the original circuit C when fed with X1. If a particular wire w in C,
which is an input to a gate Γ , is assigned with a value v then the respective
input bundle in the gadget Γ̂ in Ĉ is fed with a freshly chosen random encoding
−→v ← Enc(v). Then each gadget in Ĉ is evaluated accordingly to the chosen

inputs. This determines the assignment of all the refreshing bundles in Ĉ. The
output of the experiment consists of the values assigned to wires in LW .

Hybrid3 (this corresponds to experiment ExpC): this experiment is the same
as Experiment 2, except for the random vectors that are assigned to the input
bundles of each individual gadget. Here, after choosing a random encoding −→v ←
Enc(v) just as in Experiment 2, we shift it by carefully chosen modification
vector −→m. As a result, we feed the particular input bundle with −→v + −→m. The
modification vector for the input bundles of each gadget is constructed based on
inputs X1 and X2, and the leakage diagram H. At this point we use the fact
that the left and right sides of the leakage diagram H are not connected. The
details of the construction for modification vectors are given in the Sect. 4.3.

Based on the properties of the refreshed gadgets subcircuits in Ĉ and taking
into account the construction of the modification vectors, we argue that shifting
values that are fed to each gadget actually does not change the leakage. Hence
this experiment outputs the same random variable as Experiment 2.

Hybrid4 (this corresponds to experiment Exp1
B): this experiment is analogous

to the Experiment 2, with input X2 instead of X1. We argue that the random
vectors assigned to the input bundles of each individual gadget in are actually
the same in this experiment and in Experiment 3. Hence, the two experiments
produce identical outputs.

Hybrid5 (this corresponds to experiment Exp1
A) : this experiment is analogous

to the Experiment 1, with input X2 instead of X1. Also the transition between
Experiment 4 and this experiment is analogous to the transition for Experiments
1 and 2.

The hybrid argument above essentially shows that unless the left and right
sides of the leakage diagram H are connected, the leakage is the same indepen-
dently of the input X fed to the transformed circuit Ĉ. Now, to complete the
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privacy proof, it is enough to upper-bound the probability of the left and right
sides of H being connected. This is a pure probability theory exercise, given
that q(p) upper-bounds the leakage projection function of used gadgets which
means that each edge will be included to the leakage diagram independently
with probability at most q(p).

4.5 Concrete results

In this section we present the concrete results implied by Theorem 1. These
are immediate consequences of the theorem. For affine circuits we obtain the
following.

Proposition 1. Assume that a circuit C is an affine circuit. Our transforma-
tion Ĉ, as described in Section 4, is (p, |C| · (4p+ 8

√
3p)n)-private for any prob-

ability p.

Proof. As stated in the Section 4.2, for every gadget used in Ĉ its projection
probability function is upper-bounded by 3p and hence by p+ 2

√
3p. Thus, the

Proposition is a consequence of the Theorem 1 for the function q(p) = p+2
√

3p.
ut

For the general circuits we have the following.

Proposition 2. Assume that a circuit C is an arithmetic circuit. Our trans-
formation Ĉ, as described in Section 4, is (p, |C| · (32np+ 4n

√
3p)n)-private for

any probability p.

Proof. From the Section 4.2 we conclude that for every gadget used in Ĉ its
projection probability function is upper-bounded by n(8p +

√
3p). Assuming

n ≥ 2, this function also upper-bounds p + 2
√

3p. Thus, the Proposition is a
consequence of the Theorem 1 for the function q(p) = n(8p+

√
3p). ut

Finally, let us state the result for the multi-round simple refreshing circuits.

Proposition 3. Consider a k-round refreshing circuit (see Sect. 2). This circuit
is (p, k · (4p+ 8

√
3p)n)-private for any probability p.

Proof. As stated in the Section 4.2, the projection probability function of the
identity gadgets ÎD used in the circuit equals p and hence is upper-bounded
by p + 2

√
3p. Thus, the Proposition is a consequence of the Theorem 1 for the

function q(p) = p+ 2
√

3p. ut

5 Conclusion

In this work we introduce a new method to analyze the security of masking
schemes in the noisy leakage model of Prouff and Rivain [21]. Our approach
enables us to show the security of a simple refreshing scheme which is optimal in
terms of randomness complexity (it requires only n−1 random values), and uses
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a small number of arithmetic operations. Our results are achieved by introducing
a new technique for analyzing masked circuits against noisy leakages, which is
of independent interest.

We believe that our results are of practical importance to the analysis of
side-channel resistant masking schemes. The reason for this are twofold. First,
our refreshing scheme is very simple and efficient, and reduces the overheads
of the masking countermeasure significantly – in particular, for certain types
of computation. For example in the case of a secure key update mechanism
as used in any cryptocraphic scheme, we can reduce randomness and circuit
complexity from O(n2) using ISW-like refreshing to O(n), where the asymptotic
in the later is with nearly optimal constants. Second, while in [5] it was shown
how to construct a very simple refreshing scheme (similar to the one used in
our work), the security analysis was in a more restricted model (the bounded
moment model), and carried out only for small n. In our case, the analysis works
for any n and in the standard noisy model that is well accepted in practice.

Interesting questions for future research include to extend our analysis to
other masking schemes [4], to explore the tightness of our bounds and to verify
our results experimentally in practice (e.g., by providing simulations on the
practical resistance of the countermeasure and its efficiency).
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