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Abstract. We propose a generalization of the celebrated Ring Learning
with Errors (RLWE) problem (Lyubashevsky, Peikert and Regev, Euro-
crypt 2010, Eurocrypt 2013), wherein the ambient ring is not the ring
of integers of a number field, but rather an order (a full rank subring).
We show that our Order-LWE problem enjoys worst-case hardness with
respect to short-vector problems in invertible-ideal lattices of the order.
The definition allows us to provide a new analysis for the hardness of the
abundantly used Polynomial-LWE (PLWE) problem (Stehlé et al., Asi-
acrypt 2009), different from the one recently proposed by Rosca, Stehlé
and Wallet (Eurocrypt 2018). This suggests that Order-LWE may be
used to analyze and possibly design useful relaxations of RLWE.
We show that Order-LWE can naturally be harnessed to prove security
for RLWE instances where the “RLWE secret” (which often corresponds
to the secret-key of a cryptosystem) is not sampled uniformly as required
for RLWE hardness. We start by showing worst-case hardness even if the
secret is sampled from a subring of the sample space. Then, we study
the case where the secret is sampled from an ideal of the sample space
or a coset thereof (equivalently, some of its CRT coordinates are fixed
or leaked). In the latter, we show an interesting threshold phenomenon
where the amount of RLWE noise determines whether the problem is
tractable.
Lastly, we address the long standing question of whether high-entropy
secret is sufficient for RLWE to be intractable. Our result on sampling
from ideals shows that simply requiring high entropy is insufficient. We
therefore propose a broad class of distributions where we conjecture that
hardness should hold, and provide evidence via reduction to a concrete
lattice problem.
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1 Introduction

The Learning with Errors (LWE) problem, as introduced by Regev [36], provides
a convenient way to construct cryptographic primitives whose security is based
on the hardness of lattice problems. The assumption that LWE is intractable
was used as a basis for various cryptographic designs, including some cutting
edge primitives such as fully homomorphic encryption (FHE) [13], and attribute
based encryption (ABE) for general policies [23, 9]. Two of the most appealing
properties of the LWE problem are the existence of a reduction from worst-case
lattice problems [36, 32, 11, 34] (which is most relevant to this work), and its
conjectured post-quantum security.

On the other hand, one of the shortcomings of the LWE assumption is the
relatively high computational complexity and large instance size (as a function of
the security parameter) that it induces. This results, for example, in LWE-based
encryption schemes having long keys and ciphertexts, and also high encryption
complexity. It was known since the introduction of the NTRU cryptosystem [27]
and more rigorously in [28, 35] that these aspects can be significantly improved
by relying on lattices that stem from algebraic number theory.3 In[29, 30], Lyuba-
shevsky, Peikert and Regev defined an algebraic number theoretic analog of the
LWE problem, called Ring-LWE (RLWE). Similar to Regev’s original result,
they showed that RLWE is as hard as solving worst-case ideal lattice problems.

Ring-LWE and its extensions quickly became a useful resource for the con-
struction of various cryptographic primitives [8, 12, 10, 21, 19, 3, 24, 7, 2, 14]
(an extremely non-exhaustive list of examples). RLWE is appealing due to its
improved efficiency, and its provable security guarantee based on the hardness
of worst case (ideal) lattice problems. However, in concrete instantiations, pa-
rameters are not set based on provable hardness guarantees, but rather on the
minimal parameters that prevent known and conceivable attacks, in order to
achieve the best possible efficiency. In the case of RLWE, parameters are set
way beyond the regime where we have provable guarantee in terms of choice
of security parameter and, most relevant to this work, in terms of sampling se-
crets from different distributions than those for which provable security applies.4

While a gap between the provable and concrete security properties of a cryp-
tosystem is expected, one would at least like to make sure that changing the
distribution does not make the problem qualitatively easy. In other words, we
would like to show that the problem remains at least asymptotically hard with
the new distributions.

Over the years, it has been shown that the LWE problem is quite robust
to changes in the prescribed distribution, thus providing desired evidence for
the safety of using the assumption in various settings. More precisely, it was
shown that LWE hardness holds even if the secret (a vector that, very roughly,
represents the coordinates of a hidden lattice point) is not sampled uniformly, as

3 This inefficiency is common to cryptographic constructions based on “generic” lat-
tices. Indeed, NTRU was introduced before the LWE assumption was formulated.

4 Sometimes this is done not for efficiency but for functionality purposes, e.g. [14].
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tradition, but is rather leaked [1, 18] or is chosen from a binary distribution of
sufficient entropy [22, 11] (with obvious loss coming from the secret having lower
entropy). It is almost trivial to verify that if the LWE secret is chosen uniformly
from a linear subspace of its prescribed space, then security degrades gracefully
with the dimension of the space of secrets. (We note that there has also been
much work on modifying the noise distribution of LWE, e.g. [6, 31]. However,
the focus of this work is the distribution of secrets.)

Much less is known for RLWE. This is because its algebraic structure (which
is the very reason for efficiency gains) prevents the use of techniques like ran-
domness extraction that are instrumental to the aforementioned LWE robustness
results.

This Work. Motivated by the task to investigate the behavior of the RLWE
problem on non-uniform secret distributions, we present new tools to prove se-
curity in some cases and insecurity in others. The main tool that we introduce
is a generalization of the RLWE problem that we call Order-LWE, and prove
a worst-case hardness result for this problem.5 We show that the Order-LWE
abstraction naturally implies a new proof for a previous result in the literature
[38] with new and comparable parameters.

We justify that the formulation of Order-LWE is quite useful in exploring
variants of RLWE where the distribution of secrets has some algebraic struc-
ture (a special case of secrets from a subfield was studied in [20]). We prove
Order-LWE hardness (and thus worst-case hardness) when the secret is sam-
pled from any subring of the prescribed space. We use this approach to address
the fundamental question of whether any distribution of secrets with sufficiently
high entropy implies RLWE hardness. We show that in some settings, RLWE
with uniform secrets is intractable (under conservative worst-case ideal lattice
assumptions), but a slight decrease in entropy leads to a complete break. This
is the case when the distribution of secrets is supported over an ideal (or a coset
thereof). On the other hand, we show that increasing the noise in the RLWE
instance can compensate for the deficiency in secret entropy in this setting.

Finally, we address the more ambitious goal of proving security for secrets
with no algebraic structure. Since, as we mentioned above, high entropy is in-
sufficient as condition by itself for security, we identify a family of high-entropy
distributions that capture (at least approximately) many of the relaxed variants
of RLWE. We show that a particular (average case) hardness assumption implies
hardness for this class of distributions.

Paper Organization. We provide an overview of our results and techniques
below. Section 2 contains preliminaries and definitions. The Order-LWE problem
is formally defined in Section 3, where the worst case hardness reduction is proved
as well. The new hardness result for PLWE appears in Section 4. We then present
our results on sampling secrets from subrings in Section 5, on sampling secrets

5 As a reader with background in algebraic number theory would speculate, this is a
setting where RLWE is instantiated respective to orders in a number field, rather
than its ring of integers.
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from ideals in Section 6, and finally on sampling secrets from k-wise independent
distributions in Section 7.

Due to space constraints, some material was deferred to the full version. This
material is available as auxiliary appendices in this document, and in addition
we provide our full version in a single file as additional auxiliary material.

1.1 Background

Recall that in the LWE problem, a secret vector s is sampled from Znq for some
modulus q; an adversary gets oracle access to samples of the form (a, b = 〈a, s〉+e
(mod q)) where each a ∈ Znq is uniform and e is a small integer, say sampled from
a discrete Gaussian with parameter � q. The adversary’s goal is to distinguish
this oracle from the one where b ∈ Zq is random.

In the RLWE problem, the sample spaces are also vector spaces over Zq but
with a ring structure. In this high level overview, for the sake of simplicity of
notation and algebraic structure, we restrict to the case where the ring is the
ring of integers in the power-of-two cyclotomic field Q[x]/(xn+1). An interested
reader may see Section 2 for precise definitions in the general case. The cyclo-
tomics is a particularly simple case: the so called ring of integers in this case is
the ring of polynomials R = Z[x]/(xn + 1). In this setting, the RLWE problem
with modulus q is as follows: sample a random secret s ∈ Rq = R/qR, and
provide the adversary with oracle access to samples of the form (a, as+ e) ∈ R2

q ,
where a is uniform and e is sampled from some “small” noise distribution (for
our purposes, think of e as polynomial with Gaussian coefficients � q). The
arithmetics is over Rq, and the goal is to distinguish these samples from uniform
R2
q samples.6 For this overview, we will assume for simplicity that q is a prime,

and focus on the setting (which is most commonly used in cryptography) where
q splits completely as an ideal in R into a product of n distinct prime ideals.
(In the case of the cyclotomics, this condition amounts to q ≡ 1 (mod 2n).) By
the Chinese Remainder Theorem, the quotient Rq := R/qR ' Z[x]/(xn + 1, q)
is isomorphic to Znq and hence an element in Rq can be represented as a vector
of n elements in Zq with pointwise addition and multiplication. This is called
the CRT representation of elements in Rq and for c ∈ Rq, we denote its CRT
coordinates by c[1], . . . , c[n].

1.2 Our Results

The Order-LWE Problem. We formulate a version of R-LWE where R is
replaced by an order O in K. An order in a number field is a subring of R
which has full rank (i.e. can be described as a Z-span of exactly n elements).7

6 An informed reader may notice that in the formal RLWE definition, s needs to be
sampled from the dual of Rq, and e needs to be small in the so called “canonical
embedding”. However, in the cyclotomic setting these distinction makes little differ-
ence and our choice makes the presentation simpler. Another simplifying choice for
the exposition is to only consider discrete noise distributions.

7 The full-rank condition arises naturally in applications as we discuss below.
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We furthermore generalize the modulus of the RLWE equations, and instead of
taking the equations modulo (the ideal generated by) the integer q, we allow to
mod out by any ideal in the order. We call this problem Order-LWE and denote
it as O-LWE. More precisely, we define two variants of the problem O-LWE and
O∨-LWE which have a duality relation between them (and which are equivalent
to each other when O = R). As explained above, R-LWE is a special case of
O-LWE (and, in a different notation, of O∨-LWE).

Recalling that Ring-LWE was shown to be as hard to solve as worst-case lat-
tice problems over ideal lattices from the ring R, we propose an analogous claim
for Order-LWE. Using similar techniques as those used for proving Ring-LWE
hardness, but with some necessary adaptations, we show that solving O-LWE
is at least as hard as solving short-vector problems on a class of lattices that is
defined by the set of invertible ideals in the order O. This result generalizes the
known result on R-LWE (note that in R all ideals are invertible). For O∨-LWE,
worst-case hardness follows for lattices whose dual is an invertibleO-ideal (again,
in R this holds for all ideals). We mention that these sets of lattices coincide in
the case when the dual of the order O is an invertible O-ideal.

We show that using a larger order makes the O∨-LWE problem harder, and
in that sense R-LWE is harder than any other O∨-LWE problem. This is the case
even though formally the set of duals of (invertible) O-ideals is disjoint from the
set of R-ideals. We believe that this is due to the fact that any O-ideal lattice
can be (efficiently) mapped to an R ideal that contains it as a sublattice.

See Section 3 for a formal and general definition of O-LWE, its dual O∨-LWE
and the respective worst-case hardness results.

A Corollary: New Hardness for Polynomial-LWE. Our definition of Order-
LWE gives insight on the hardness of other computational problems underlying
cryptographic constructions; specifically, the Polynomial-LWE problem (PLWE)
[39, 12]. In PLWE, s and a are simply random polynomials with integer coef-
ficients modulo a polynomial f and an integer q, and the noise e is a polyno-
mial with small coefficients. It is evident that the PLWE problem provides the
simplest interface for LWE over polynomial rings. In many useful cases, for ex-
ample the power-of-two cyclotomic case, it is straightforward to relate PLWE
and RLWE. However, for general polynomials f the connection is far from im-
mediate, since the ring of integers of an arbitary number field does not look like
Z[x]/(f). Recently, Rosca, Stehlé and Wallet [38] showed a reduction relating
the hardness of PLWE in the general case from RLWE and thus from worst-case
lattice problems.

We observe that we can straightforwardly address this problem using our
Order-LWE machinery. The ambient space for the PLWE problem is the ring
Z[x]/(f), for a polynomial f ∈ Z[x]. This ring is a subring of full rank of the ring
of integers of K := Q[x]/(f), and hence indeed an order. Therefore translation
between PLWE and O-LWE has two aspects: “reshaping” the noise distribution
(identically to [38]), and syntactic mapping of the secret to the dual domain. The
[38] reduction requires a few additional steps and in this sense our reduction is
more direct.
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Pinpointing the exact relation of our reduction to the one of [38] is not
straightforward. The class of lattices for which we show worst-case hardness is
different (and in fact formally disjoint) from the class of lattices in [38]. This
is because the hardness result of Order-LWE deals with the worst case lattice
problems on invertible O-ideals. However, any O-ideal can be translated into
R-ideal which contains it as a sublattice. It therefore appears that R-lattices as
in [38] may provide stronger evidence of intractability. On the other hand, the
approximation factor achieved by our reduction is never larger and in many cases
should be much smaller than that achieved by [38], depending on the specific
number field.

This result suggests that perhaps it is instructive to think about orders where
objects can be represented and operated on efficiently (more efficiently than
over R), and in those orders O-LWE could be a simple way to argue about
the security of a cryptosystem with simpler interface than RLWE. We did not
explore this avenue further. See Section 4 for the full details of our PLWE proof
and comparison with [38].

Ring-LWE with Secrets From a Subring/Order. We consider the hardness
of the Ring-LWE problem, in the setting where the secret s is sampled from some
subset with algebraic structure. As we described above, the proper distribution
of secrets is uniform over the ring Rq (R modulo q). In this paper we consider
a subring of this ring, but we note that this subring must still contain qR,
since Ring-LWE equations are taken modulo q. This naturally imposes full-
rank condition on the subring and thus orders naturally arise again. Indeed, we
consider distributions that are uniform over Oq = O/qO for an order O.

To motivate the setting of sampling the secret from a subring and illustrate
its importance, we start with an analogy with (standard) LWE. In the LWE
context, if the secret is sampled from a k-dimensional linear subspace of Znq , the
problem easily translates to an LWE instance where n is replaced by k. In the ring
setting, the rich algebraic structure makes the task of defining and analyzing such
straightforward transformations much more involved. Previous works [10, 20, 3]
considered the notion of ring-switching which implies the hardness of RLWE
when the secret is sampled from the ring of integers of a subfield of the field
K. However, such transformations do not apply when K has no subfields of
dimension k or no proper subfields at all. Our proposed setting allows to sample
s from a subring of Rq that is isomorphic to Zkq , for 1 ≤ k ≤ n and thus provides
an algebraic analog of the linear subspace property.

One can view the subring property also in terms of the CRT coordinates
(when q splits over R). A subring of Rq that is isomorphic to Zkq is in one-to-one
correspondence with an onto mapping α : [n]→ [k] as follows; sample k elements
r1, . . . , rk from Zq uniformly, and set the CRT coordinates of an element s ∈ Rq
as s[j] = rα(j), for j ∈ [n]. One can verify that this set forms a subring.

In Section 5, we show that the RLWE problem with secret sampled from an
order O is harder than the O∨-LWE problem, which in turn is harder than the
worst case problems on the duals of (invertible) O-ideal lattices. In fact, given
two orders O′ ⊆ O, we show that O∨-LWE is at least as hard as O′∨-LWE
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(albeit with increase in noise which is comparable to the norm of a minimal
generating set of O∨ over O′∨). Since O ⊆ R, this shows that R-LWE is harder
than O∨-LWE with appropriate noise increase. This result is in a similar flavor
to the one of [20] which shows that R-LWE in a field K is harder than R′-LWE
in a subfield K ′ ⊆ K. Since R′, the ring of integers of K ′, is contained in R as
a subring, our result implies hardness in this setting as well.

Ring-LWE with Secrets From Ideals, and High-Entropy Secrets. As
we already mentioned, understanding the behavior of Ring-LWE in the setting
where the secret is sampled from an arbitrary high-entropy distribution is a
central subject of inquiry in the area. We show that if we sample s from a
“dense” ideal (or equivalently zero-out a few of its CRT coordinates), then we
may end up with a distribution that is high-entropy on one hand but makes Ring-
LWE insecure on the other. More concretely, consider RLWE samples where the
secret s is sampled from Rq such that its j-th CRT coordinate, s[j], is uniformly
chosen from Zq, for all j ∈ T , a randomly chosen subset of [n], and s[j] = 0,
for j /∈ T . This is equivalent to choosing s uniformly from Pq := P/qR, where
P is the ideal of R that contains qR.8 If |T | = k and we denote ε = k

n , then
the distribution of secret will have min-entropy (1 − ε)n log q. A good running
example is ε which is a small constant (e.g. ε = 0.1).

One can view this as a more structured analog of an LWE instance with
a composite modulus q = p1p2, where the secret s is a mutiple of p1. It is
straightforward to see that, in such a LWE instance, if the magnitude of the error
e is sufficiently smaller than p1, this instance can be easily solved by dividing
b by p1 and rounding to the nearest integer, thereby yielding a noiseless set of
equations modulo p2. However, if the noise magnitude is sufficiently larger than
p1, then the instance is secure (intuitively, since one can essentially view it as
scaling up of a mod p2 LWE instance).

Things are more involved in the ring setting as we cannot just round to the
nearest integer. Instead, we can interpret the factors of q as lattices. If the lattice
corresponding to P has a good decoding basis, it means that we can recover e
when small enough. We also provide a ring analog of the complementary result
by showing that if the noise is sufficiently large, then RLWE hardness holds.
The latter is done by viewing the instance, again, as a scaled up RLWE instance
modulo Q, only now Q is not an integer but an ideal. Our O-LWE generalization
of RLWE allows us to derive RLWE hardness in this setting.

Thus, we show that high entropy of secrets alone is insufficient to argue
RLWE security and demonstrate an interplay between the entropy of the secret
and the amplitude of noise. Interestingly, we exhibit a threshold phenomenon
where the RLWE instance with secret sampled from an ideal is insecure if the
error is modestly below the threshold of roughly q−(1−ε), and secure if it is
modestly above this value. The “modest” factors depend on the number field,

8 As we hinted above, s is actually an element of the dual of R which is not a ring
and doesn’t have ideals, however there is a natural translation between the dual and
primal domain that captures the CRT/ideal structure. See Section 6 for the formal
treatment.
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but correspond to a fixed polynomial in the degree n in the cyclotomic case.
The formal and general analysis of these results appears in Section 6.

Ring-LWE with Secrets From a k-Wise Independent Distribution.
Given that a general result for high-entropy distributions cannot be achieved,
we consider in the final section of the paper a subclass of high-entropy distribu-
tions. These distributions do not adhere to uniform sampling from an algebraic
structure but instead have the following property; the marginal distribution over
any subset of k CRT coordinates is jointly (statistically close to) uniform.9 In
terms of entropy, such distributions must have min-entropy at least k log q, and
this entropy is also spread evenly across all k-tuples of CRT coordinates.

We speculate that the k-wise independence condition is sufficient for ob-
taining RLWE hardness. However, we are unable to show this via worst-case
hardness. Instead, we define an average case problem, which we call Decisional
Bounded Distance Decoding on a Hidden Lattice (HLBDD) and show that the
RLWE problem with secret sampled from a k-wise distribution is at least as
hard as this problem. In HLBDD, the adversary needs to distinguish between a
random oracle on Rq and an oracle of the following form. Upon initialization of
the oracle, a set T ⊆ [n] of cardinality k is sampled. For every oracle call, the
oracle generates elements v, e as described next, and returns v+ e (mod q). For
the element v, the CRT coordinate v[j] is random if j ∈ T , and 0 otherwise.
The element e is a small noise element, say Gaussian. This can be viewed as the
decisional version of the bounded distance decoding (BDD) problem on the ideal
lattice I :=

∏
j∈T pj (where {pi}i are the prime factors of the ideal qR), since

the element v is sampled from I. We stress that this is the hidden version as T
is sampled randomly at the invocation of the oracle, causing I to be hidden. As
in the standard BDD problem, we can consider HLBDD with worst-case noise
and also with arbitrary noise distributions. Given the current understanding of
the hardness of lattice problems, discrete Gaussian noise seems natural.

The HLBDD assumption is similar to one made in [26]. However, they only
require k = n/2, whereas we attempt to take k to be very small, e.g. k = n0.1.
We assert that the hardness of the problem relies crucially on the set T being
chosen at random in the beginning of the experiment rather than being fixed
throughout. In other words, we cannot allow preprocessing that depends on T .
This is because computing a good basis for the ideal lattice I, defined by T ,
makes the HLBDD problem easy. It is also important to mention that T itself
does not need to be known to the adversary; in this sense HLBDD resembles
the approximate GCD problem [17]. Lastly, we note that it is sufficient for our
purposes to limit the adversary to only make 2 oracle calls. Namely, the problem
is to distinguish two samples (v1 + e1, v2 + e2) from two uniform elements in
Rq. Despite our efforts, we were unable to find additional corroboration to the
hardness of this problem and we leave it as an interesting open problem to
characterize its hardness.

9 A computational variant is also possible, but needs to carefully define the indistin-
guishability experiment.
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Let us try to motivate and justify our assertion that the class of k-wise in-
dependent distributions is meaningful. Indeed, this class captures the spirit of
some of the heuristic entropic distributions that were considered for RLWE. For
example, consider the representation of the secret s as a formal polynomial mod-
ulo q (recall that Rq ' Z[x]/(f, q) is a ring of polynomials). If each coefficient
of s is sampled from a Gaussian so that the total distribution has sufficient en-
tropy (slightly above the necessary k log q), then this distribution will be k-wise
independent (as follows from a standard “smoothing” argument). This shows
that sampling secrets with very low norm does not violate security under our
new assumption. While it was previously known that sampling the secret from
the noise distribution keeps security intact (also known as RLWE in Hermite
Normal Form [4]), we are not aware of a proof of security when s is chosen
from a narrower distribution than the error. This can be seen as a step in the
direction of matching the robustness of LWE results [22, 11], that show that
LWE remains hard even with high entropy binary secrets. We note that low
norm secrets are of importance in the FHE literature (e.g. [10, 24, 25]). In fact,
in the HElib implementation [24, 25] the secret is chosen to be a random ex-
tremely sparse polynomial. Heuristically, it seems plausible that random sparse
polynomials should translate into k-wise independent distributions but we do
not have a proof for this speculation as yet. (Intuitively, this follows from the
fact that the translation between the coefficient and CRT representation is a
linear transformation defined by a Vandemonde matrix. In order to prove k-wise
independence we need to show that any subset of k rows of the Vandermonde
matrix constitutes a deterministic extractor from a uniform distribution over a
Hamming ball. Analogous theorems exist in other contexts, but we do not have
a proof as of yet.)

Another example of an interesting k-wise independent distribution is the “en-
tropic RLWE” formulation that came up in the obfuscation literature [14]. That
setting consists of a large number of public elements s1, . . . , sm, sampled from the
noise distribution (which is Gaussian in the polynomial coefficient representation
and thus can be shown to be k-wise independent in the CRT representation).
The secret is generated by sampling a binary vector ~z = (z1, . . . , zm) and out-
putting s =

∏
szii . Using the leftover hash lemma, one can show that so long

as ~z has entropy sufficiently larger than k log q, the resulting distribution will
be k-wise independent as well. It is worth noting that in order to achieve the
strongest notion of security for their obfuscator, [14] use ~z with entropy � log q
to which our technique does not directly apply.

See Section 7 for more details on this result.

2 Preliminaries

For a vector x in Cn and p ∈ [1,+∞), we mean by `p norm ‖x‖p = (
∑
i |xi|p|)1/p

and by `∞ norm ‖x‖∞ = maxi |xi|. We refer to `2 norm if p is omitted. Let D be
a distribution. When writing x←D we mean sampling an element x according to

the distribution D. Similarly, for a finite set Ω, we denote by x
$← Ω sampling an
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element x from Ω uniformly at random. For two distributions D1 and D2 over
the same measurable set Ω, we consider their statistical distance as ∆(D1,D2) =
1
2

∫
Ω
|D1(x)−D2(x)|dx. When the support of D is a finite set Ω, we define the

entropy of D to be H(D) :=
∑
ω∈Ω D(Ω) · log2 (1/D(ω)). In a similar way, its

min-entropy is defined by H∞(D) := minω∈Ω log2 (1/D(ω)). It is easy to verify
that H(D), H∞(D) ≤ log2 |Ω| with equality if and only if D is the uniform
distribution over Ω. When discussing computational problems, we consider by
default the standard (nonuniform) polynomial time adversarial model.

We use standard notations and definitions of lattices, Gaussians, and text-
book material in algebraic number theory. See full version for detailed definitions.

Lattice Problems Let L be a lattice in H represented by a basis B and let e+L
be a lattice coset represented by its unique representative e = (e + L) ∩ P(B)
in the fundamental parallelepiped P(B) := B · [−1/2, 1/2)n of B. We state the
standard lattice problems.

Definition 2.1 (Shortest Independent Vectors Problem). For an approx-
imation factor γ = γ(n) ≥ 1 and a family of lattices L, the L-SIVPγ problem is:
given a lattice L ∈ L, output n linearly independent lattice vectors of norm at
most γ · λn(L).

Definition 2.2 (Discrete Gaussian Sampling). For a family of lattices L
and a function γ that maps lattices from L to G := {r ∈ (R+)n : rs1+s2+i =
rs1+i, for 1 ≤ i ≤ s2}, the L-DGSγ problem is: given a lattice L ∈ L and a
parameter r ≥ γ(L), output an independent sample from a distribution that is
within negligible statistical distance of DL,r.

Definition 2.3 (Bounded Distance Decoding). For a family of lattices L
and a function δ that maps lattices from L to positive reals, the L-BDDδ problem
is: given a lattice L ∈ L, a distance bound d ≤ δ(L), and a coset e + L where
‖e‖ ≤ d, output e.

Lemma 2.4 (Babai’s round-off algorithm [5], [30, Claim 2.10]). For ev-
ery family of lattices L, there is an efficient algorithm that given as input a
lattice L ∈ L, a set of linearly independent vectors {v1, v2, . . . , vn} in L∗ and a
coset e+ L such that |〈e, vi〉| ≤ 1

2 , solves L-BDDδ for δ(L) = 1
2λn(L∗) .

Definition 2.5 (Gaussian Decoding Problem [34]). For a lattice L ⊂ H
and a Gaussian parameter g > 0, the GDPL,g problem is: given a coset e + L
where e ∈ H was drawn from Dg, find e.

2.1 Algebraic Number Theory

Cancellation of Ideals The next lemma is a generalization of [29, Lemma
2.15]. It is crucially used to make a BDD instance and a DGS sample into an
Order-LWE instance in the hardness result in Section 3. Generally speaking, the
lemma allows us to cancel invertible factors in the quotient IL/IJL to yield an
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isomorphism onto L/JL by multiplying by an appropriate “tweak” factor. The
proof of the lemma uses a generalization of the Chinese Remainder Theorem
adapted for ideals over orders. A proof is provided in the full version.

Lemma 2.6. Let I,J be integral ideals in an order O and let L be a frac-
tional O-ideal. Assume that I is invertible. Given the associated primes of J ,
p1, p2, · · · , pk, and an element t ∈ I\

⋃k
i=1 piI the map

θt : L/JL → IL/IJL
x 7→ t · x

is well-defined, and induces an isomorphism of O-modules. Moreover, θt is ef-
ficiently inverted given I,J ,L and t. Finally, such t can be computed given I
and p1, p2, · · · , pk.

We present a “counting lemma” whose proof is provided in the full version.

Lemma 2.7. Let K be a degree n number field and O an order, let q be a rational
prime. Let Q be an invertible O-ideal and q1, . . . , qk be the associated primes of

qO. Then there exists u ∈ Q−1 \
⋃
i

Q−1qi of norm ‖u‖∞ ≤ O
(
n
√
logn∆

1/n
O

N(Q)1/n

)
.

2.2 The Ring-LWE Problem

Let q ≥ 2 be a (rational) integer. Let T = KR/R
∨ denote a torus in the

Minkowski space. For any fractional ideal I of R, let Iq := I/qI.

Definition 2.8 (Ring-LWE Distribution). For s ∈ R∨q , referred to as “the
secret”, and an error distribution ψ over KR, a sample from the R-LWE distri-

bution As,ψ over Rq×T is generated by sampling a
$← Rq, e← ψ, and outputting

(a, b = a · s/q + e mod R∨).

Definition 2.9 (Ring-LWE, Average-Case Decision Problem). Let ϕ be
a distribution over R∨q , and let Υ be a distribution over a family of error dis-
tributions, each over KR. The average-case Ring-LWE decision problem, denoted
R-LWEq,ϕ,Υ , is to distinguish between independent samples from As,ψ for a ran-
dom choice of a “secret” s←ϕ, and an error distribution ψ←Υ , and the same
number of uniformly random and independent samples from Rq × T.

Definition 2.10 (Following [34, Definition 6.1]). Fix an arbitrary f(n) =
ω(
√

log n). For a real α > 0, a distribution sampled from Υα is an elliptical
Gaussian Dr, where r ∈ G is sampled as follows: for each 1 ≤ i ≤ s1, sample
xi ← D1 and set r2i = α2(x2i + f2(n))/2. For each s1 + 1 ≤ i ≤ s1 + s2, sample
xi, yi ← D1/

√
2 and set r2i = r2i+s2 = α2(x2i + y2i + f2(n))/2.

Theorem 2.11 ([34, Theorem 6.2]). Let K be an arbitrary field of degree n
and R = OK its ring of integers. Let α = α(n) ∈ (0, 1), and let q = q(n) ≥ 2 be
a (rational) integer such that αq ≥ 2ω(1). There is a polynomial-time quantum
reduction from I(R)-DGSγ to R-LWEq,U(R∨q ),Υα

, where

γ = max
{
η (L) ·

√
2/α · ω(1),

√
2n/λ1 (L∨)

}
.
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3 Order-LWE: Definition, Variants and Worst-Case
Hardness

The ring of integers R of a number field K plays a central role in the definition
and use of the Ring-LWE problem. However, the ring of integers is a special
member of a family of rings in a number field, known as orders. We present a
generalization of Ring-LWE which we call Order-LWE, and show that similar
to Ring-LWE it also enjoys worst-case hardness, but with respect to a different
set of lattices. Generalizing the problem to the setting of orders also exposes
a difference between two variants of Ring-LWE that are indeed identical when
considering the ring of integers, but are distinct for general orders. Some back-
ground on algebraic number theory and particularly on orders can be found in
Section 2.1.

In the original R-LWE definition [29], the secret s was sampled from the dual
of the ring of integers R∨ (modulo q), and the coefficients a were sampled from R
(modulo q). We similarly define O-LWE as a sequence of noisy linear univariate
equations where the secret is sampled from O∨ and the coefficients are sampled
from O. As pointed out in [29], a dual version where s is sampled from R and a
from R∨ can also be defined, and is equivalent to the original one. Indeed some
followup works used the alternative definition (e.g. [20]). In the context of orders,
we show that this distinction can make a difference. We denote the dual version
by O∨-LWE. While we are able to show worst-case hardness reductions for both
O-LWE and O∨-LWE, the classes of lattices for which worst-case hardness holds
is different for the two variants; one is the dual of the other. Our definition also
generalizes R-LWE in another dimension, by allowing to take equations modulo
arbitrary ideals, and not necessarily modulo (an ideal generated by) a rational
integer q. In this section we define the variants of Order-LWE and present the
worst-case hardness results.

To set up the problems, let K be a number field, and let O be an order in
it. Let Q be an integral O-ideal, and let u ∈ (O : Q) := {x ∈ K : xQ ⊆ O}. For
fractional O-ideals J and L, define JL := J /JL, and let TO∨ := KR/O∨.

Definition 3.1 (O-LWE Distribution). For s ∈ O∨Q and an error distribu-
tion ψ over KR, a sample from the O-LWE distribution Os,ψ,u over OQ × TO∨
is generated by sampling a

$← OQ, e ← ψ and outputting (a, b = u · (a · s) + e
mod O∨).

Definition 3.2 (O-LWE, Average-Case Decision Problem). Let ϕ be a
distribution over O∨Q and let Υ be a distribution over a family of error distri-
butions, each over KR. The average-case O-LWE decision problem, denoted O-
LWE(Q,u),ϕ,Υ , is to distinguish between independent samples from Os,ψ,u, for a
random choice of a “secret” s←ϕ, and an error distribution ψ←Υ , and the same
number of uniformly random and independent samples from OQ × TO∨ .

When the secret is sampled from the uniform distribution over O∨Q, we some-
times omit it from the subscript. Observe that when O = OK , Q = qOK and
u = 1/q, the O-LWE problem coincides with the Ring-LWE problem.
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In our definition of an O-LWE distribution, the secret s ∈ O∨Q and a ∈ OQ.
One can also consider a dual variant of O-LWE where a ∈ O∨Q and s ∈ OQ. In
general, these two variants are not equivalent, unlike in the case of Ring-LWE
(see Remark 3.5), but for special orders O they are, namely for orders O such
that their duals O∨ are invertible as O-ideals. For example, if f is the minimal
polynomial of the number field K, then the ring O = Z[x]/(f) is an order in K,
whose dual is invertible.

Definition 3.3 (O∨-LWE Distribution). For s ∈ OQ and an error distribu-
tion ψ over KR, a sample from the O∨-LWE distribution O∨s,ψ,u over O∨Q ×TO∨
is generated by sampling a

$← O∨Q, e ← ψ, and outputting (a, b = u · a · s + e
mod O∨).

Definition 3.4 (O∨-LWE, Average-Case Decision Problem). Let ϕ be a
distribution over OQ, and let Υ be a distribution over a family of error dis-
tributions, each over KR. The average-case O∨-LWE decision problem, denoted
O∨-LWE(Q,u),ϕ,Υ , is to distinguish between independent samples from O∨s,ψ,u,
for a random choice of a “secret” s←ϕ, and an error distribution ψ←Υ , and the
same number of uniformly random and independent samples from O∨Q × TO∨ .

As before, when the secret is sampled from the uniform distribution over OQ,
we sometimes omit it from the subscript. Similar to the case of O-LWE, when
O = OK , Q = qOK and u = 1/q, the O∨-LWE problem coincides with the
variant of the Ring-LWE problem where a is sampled from R∨/qR∨ and s is
sampled from R/qR.

Remark 3.5. The O-LWE problem and the O∨-LWE problem are equivalent
as long as O∨ is an invertible O-ideal. By Lemma 2.6, the invertibility of O∨
yields an isomorphism from O∨Q to OQ induced by multiplication by t ∈ (O∨)−1.
Therefore, the samples of the form (a, b = u · a · s+ e mod O∨) are transformed
to (a′ = a · t, b′ = b = u · a′ · s′ + e mod O∨), where a′ = a · t ∈ OQ and
s′ = s ·t−1 ∈ O∨Q. In the particular case of O being the ring of integers, we obtain
the equivalence between Ring-LWE and the variant of Ring-LWE previously
described.

The O∨-LWE definition is inspired by [20], where the authors show that for
the variant of Ring-LWE with a from the dual and s from the ring, problem
becomes harder as the number field grows. In Section 5, we prove an analogue of
this result for the set of orders under inclusion, i.e., the bigger the order is, the
harder the O∨-LWE problem is. Since the ring of integers is the maximal order
in the field, the Ring-LWE problem is harder than any O∨-LWE problem.

3.1 Worst-Case Hardness for O-LWE and O∨-LWE

We now state the hardness results of the O-LWE and O∨-LWE problems and
derive the hardness of the Ring-LWE problem (see Theorem 2.11) as a special
case. We begin by generalizing Definition 2.10 of the error distribution Υα to be
elliptical according to u.
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Definition 3.6. Fix an arbitrary f(n) = ω(
√

log n). For α > 0 and u ∈ K,
a distribution sampled from Υu,α is an elliptical Gaussian Dr, where r ∈ G is
sampled as follows: for i = 1, . . . , s1, sample xi ← D1 and set r2i = α2(x2i +
(f(n) · |σi(u)| / ‖u‖∞)2)/2. For i = s1 + 1, . . . , s1 + s2, sample xi, yi ← D1/

√
2

and set r2i = r2i+s2 = α2(x2i + y2i + (f(n) · |σi(u)| / ‖u‖∞)2)/2.

Note that when u ∈ K satisfies σ1(u) = . . . = σn(u) (and therefore is rational),
the distribution Υu,α degenerates to Υα. Otherwise, Υu,α is strictly narrower than
Υα.

Let I(O) be the set of invertible fractional ideals over the order O. Our
hardness results for O-LWE and O∨-LWE are as follows.

Theorem 3.7. Let K be an arbitrary number field of degree n and O ⊂ K
an order. Let Q be an integral O-ideal, u ∈ (O : Q) and let α ∈ (0, 1) be such
that α/ ‖u‖∞ ≥ 2 · ω(1). There is a polynomial-time quantum reduction from
I(O)-DGSγ to O-LWE(Q,u),Υu,α , where

γ = max
{
η(QL) ·

√
2 ‖u‖∞ /α · ω(1),

√
2n/λ1 (L∨)

}
. (1)

Theorem 3.8. Let K be an arbitrary number field of degree n and O ⊂ K
an order. Let Q be an integral O-ideal, u ∈ (O : Q) and let α ∈ (0, 1) be such
that α/ ‖u‖∞ ≥ 2 · ω(1). There is a polynomial-time quantum reduction from
I(O) · O∨-DGSγ to O∨-LWE(Q,u),Υu,α , where

γ = max
{
η(QL) ·

√
2 ‖u‖∞ /α · ω(1),

√
2n/λ1 (L∨)

}
. (2)

We note that the class I(O) ·O∨ is exactly the class of all lattices whose dual
is in I(O). Thus we see that the effect of changing the domains of a and s to the
dual of their previous domains is that the class of lattices for which the hardness
result applies is the dual of the previous class. The classes are the same if O∨
itself is an invertible ideal in O. An equivalence between the problems can be
shown in this case directly, similar to the setting in Ring-LWE.

Remark 3.9. Consider the special case where O = R, the ideal Q = qR and
u = 1/q. Then the O∨-LWE(Q,u),Υu,α problem is equivalent to the R-LWEq,Υα
problem as mentioned in Remark 3.5. Moreover, the sets I(R) ·R∨ and I(R) are
equal as all fractional R-ideals are invertible, and finally η(QL) ‖u‖∞ = η(L)
shows that the parameters γ from Theorem 2.11, Theorem 3.8 and Theorem 3.7
coincide. In fact, the expression for γ in Theorem 3.7 is achieved in the latter
two results when Q = qO and u = 1/q, for any order O.

Remark 3.10. Another important special case is the R-LWE distribution with
an ideal modulus Q in place of the integer modulus qR. Formally, we let O be
R, choose u ∈ (R : Q) = Q−1 such that ‖u‖∞ = λ∞1 (Q−1) and α <

√
log n/n.

Then the theorem above implies a reduction from I(R)-DGSγ to R-LWE(Q,u),Υu,α

with γ greater than at most ∆
1/n
K times the γ obtained when Q = qR and
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u = 1/q, as in Theorem 2.11. Making a similar comparison with modulus Q, an
invertible O-ideal, we get reductions from I(O)-DGSγ to O-LWE(Q,u),Υu,α and

from I(O) · O∨-DGSγ to O∨-LWE(Q,u),Υu,α with γ greater than at most ∆
1/n
O

times the γ obtained when Q = qO and u = 1/q in Theorem 3.7 and 3.8.

We present an overview of the proof of Theorem 3.7 here. For a detailed
proof, see the full version of this paper. The proof for Theorem 3.8 is completely
analogous and follows by replacing the point of reference from lattices in I(O)
to their dual. Our proofs are related to ones in previous works and in particular
to the one in [34].

Proof Overview. At the heart of the reduction, we use an iterative step that
transforms discrete Gaussian samples into slightly narrower ones. Initially, we
generate samples from a Gaussian distribution with large enough parameter such
that these samples can be generated efficiently. Then we repeatedly apply the
iterative step to generate narrower and narrower samples until we obtain the
desired parameter.

The proof of the promised iteration has two components. First, we show
how to transform an O-LWE solver into a GDP solver given polynomially many
discrete Gaussian sample. This lemma assumes that we are given an efficient
algorithm that transforms BDD like instances into O-LWE samples. The second
step uses a quantum algorithm to generate narrower discrete Gaussian samples
via a GDP solver.

4 New Worst-Case Hardness for Polynomial-LWE

The Polynomial Learning with Errors problem, or PLWE in short, introduced
by Stehlé et al. [39]10 is closely related to both the Ring-LWE and Order-LWE
problems. PLWE has an advantage of having very simple interface which is
useful for manipulations and thus also for applications and implementations. In
a recent work, Rosca, Stehlé and Wallet [38] showed a reduction from worst-case
ideal-lattice problems to PLWE. In this section, we show that the hardness of O-
LWE that we proved in Section 3 implies a different worst-case hardness result
for PLWE, essentially by relating it to a different class of lattices than those
considered in [29, 34]. In what follows we start with an informal description
of the PLWE problem, the current hardness result of PLWE, our result and a
comparison. This is followed by a more detailed and formal treatment.

4.1 Overview

Consider a number field K defined by an irreducible polynomial f , so that K =
Q[x]/(f). Recall that the Ring-LWE distribution involves elements a and s of the
ring of integers R := OK and its dual R∨, respectively. The O-LWE distribution
is defined similarly, but with a and s coming from an arbitrary order in K and

10 As “ideal-LWE”. The name PLWE was used in [12].
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its dual, respectively. In the PLWE setting, both a and s are elements of the
ring O := Z[x]/(f), i.e. polynomials with integer coefficients in the number field.
There are number fields for which R 6= O, however it is always true that O is an
order of K. We highlight that in PLWE, unlike in Ring-LWE and Order-LWE,
both a and s are elements of the order itself.11

The aforementioned [38] presented a reduction from Ring-LWE to PLWE (see
Theorem 4.2 for the formal statement). Their reduction is based on the so called
“Cancellation Lemma” (Lemma 2.6) which, informally, allows to “reshape” or-
ders and ideals at the cost of increasing the size of the error. As mentioned above,
in PLWE both a and s are elements of O, whereas in Ring-LWE a and s are
elements of R and R∨ respectively. The reduction of [38] applies the Cancellation
Lemma to reshape both R and R∨ into O. We mention that using the Cancel-
lation Lemma to reshape ideals of the ring of integers R is a known technique
(see [33, Section 2.3.2]). The novel contribution of [38] is both in analyzing the
increase of the error and in reshaping ideals of one order into another.

We suggest an alternative reduction from O-LWE to PLWE in Theorem 4.4.
Our reduction is also based on the reshaping procedure, but with a single ap-
plication of the Cancellation Lemma. More specifically, we only need to reshape
O∨ into O. We show below that our reduction increases the error by a smaller
factor than in the reduction of [38] from Ring-LWE. See Proposition 4.8 for the
formal statement.

4.2 Hardness of PLWE

The formal definitions and hardness results follow, along with a more detailed
and formal comparison of the results. We let K be a number field of degree n
defined by a polynomial f . We denote O := Z[x]/(f), and R := OK . The PLWE
distribution and problem are defined as follows.

Definition 4.1 (PLWE Distribution and Problem [39]). For a rational
integer q ≥ 2, a ring element s ∈ Oq, and an error distribution ψ over KR/O, the
PLWE distribution over Oq×KR/O, denoted by Ps,ψ, is sampled by independently

choosing a uniformly random a
$← Oq and an error term e←ψ, and outputting

(a, b = (a · s)/q + e mod O).
For a distribution Υ over a family of error distributions, each over KR/O, the

PLWE decision problem, denoted PLWEq,Υ , is to distinguish between independent

samples from Ps,ψ for a random choice of s
$← Oq, and an error distribution

ψ←Υ , and the same number of uniformly random and independent samples from
Oq ×KR/O.

11 Another difference between Ring/Order-LWE and PLWE is that in the latter, the
error distribution is specified using the so called coefficients embedding, and not the
canonical embedding. For the sake of simplicity, we focus on a variant of PLWE which
uses the canonical embedding, (called PLWEσ in [38]) but we call it likewise, and we
avoid the distinction between the embeddings. Both hardness results in this section
can be further extended to the hardness of PLWE.
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For a distribution ϕ and an element t ∈ K we denote by t ·ϕ the distribution
obtained by sampling an element x←ϕ and outputting t · x. Similarly, for a
family distribution Υ , we denote by t ·Υ the family obtained by multiplying each
distribution by t.

We now turn to present and compare the two worst-case to average-case
reductions. Let CO denote the conductor ideal of O. [38] showed the following
reduction from Ring-LWE to PLWE.

Theorem 4.2 ([33, Section 2.3.2][38, Theorem 4.2]). Let q ≥ 2 be some
rational integer such that qR+CO = R, and let Υ be a distribution over a family
of error distributions, each over KR/O. There exists a probabilistic polynomial
time reduction from R-LWEq,Υ to PLWEq,t1t22·Υ , where t1 ∈ (R : R∨) \

⋃
i pi(R :

R∨) and t2 ∈ CO \
⋃
i piCO, where pi’s are the prime ideals of qR.

Combining the reduction above with the hardness of Ring-LWE stated in
Theorem 2.11 we get the following:

Corollary 4.3 (Worst-Case Hardness of PLWE from Ring-LWE). With
the same notations as above, let α ∈ (0, 1) such that αq ≥ 2

∥∥t1t22∥∥∞ ω(1). There
is a reduction from I(R)-DGSγ to PLWEq,Υα for any

γ = max
{
η (L) ·

√
2/α ·

∥∥t1t22∥∥∞ · ω(1),
√

2n/λ1 (L∨)
}
.

We now state the hardness result based on the hardness of O-LWE. First,
using a reduction similar to the one from [33, Section 2.3.2], we obtain an analo-
gous reduction from O-LWE to PLWE. The proof is provided in the full version.

Theorem 4.4. Let q ≥ 2 be some rational integer, and let Υ be a distribution
over a family of error distributions, each over KR/O. There exists a probabilistic
polynomial time reduction from O-LWEq,Υ to PLWEq,t·Υ , where t ∈ (O : O∨) \⋃
i p̃i(O : O∨), where p̃i’s are the associated primes of qO.

Now, using the hardness of O-LWE from Theorem 3.7 we obtain:

Corollary 4.5 (Worst-Case Hardness of PLWE from Order-LWE). Let
q ≥ 2 be some rational integer, and let α ∈ (0, 1) be such that αq ≥ 2‖t‖∞ω(1).
Then there is a reduction from I(O)-DGSγ to PLWEq,Υα for any

γ = max
{
η (L) ·

√
2/α · ‖t‖∞ · ω(1),

√
2n/λ1 (L∨)

}
.

4.3 On the Existence of Small Multipliers

In the following, we let α be a root of the defining polynomial f of the field K,
so Z[x]/(f) = Z[α]. We also denote by p̃1, . . . , p̃k the associated primes of qO,
where q is a rational prime. We assert that a short element t as in Theorem 4.4
exists and can be found using the combinatorial argument from Lemma 2.7.
Detailed proof of the statements in this section are given in the full version.
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Corollary 4.6. There exists an element t in (O : O∨)\
⋃
i(O : O∨)p̃i whose

norm is bounded by

‖t‖ ≤ O(n ·
√
n log n ·N(f ′(α))1/n ·∆1/n

O ).

A short element t as in Theorem 4.4 can also be obtained by sampling via a
Gaussian distribution over (O : O∨) with an appropriately small parameter, ex-
actly as in [38, Theorem 3.1]. We refer to the full version for the formal statement
and proof.

Corollary 4.7. Assuming q is coprime to the conductor, there exists an element
t in (O : O∨)\

⋃
i(O : O∨)p̃i whose norm is bounded with high probability by

‖t‖ ≤ √q ·
√
n · q2δ ·N(f ′(α))1/n ·∆1/n

O ,where δ ∈
[

4n+ log∆O
n log q

, 1

]
.

The bounds from Corollaries 4.6 and 4.7 do have some common factors,

namely ∆
1/n
O , N(f ′(α))1/n and

√
n. Therefore, it is enough to compare

√
q · q2δ

and M ·n·
√

log n, respectively, where M is the hidden constant from Corollary 4.6
and q = poly(n). An asymptotic comparison shows that Corollary 4.6 yields a
better bound than Corollary 4.7. Also, recall that the latter result assumes q
to be coprime to the conductor, whereas the earlier one is true for all rational
primes q.

4.4 Comparison

Both Corollary 4.3 and Corollary 4.5 relate PLWE to worst-case ideal lattice
problems. The former result involves invertible R-ideals, whereas the family of
lattices in the latter is the set of invertible O-ideals. These two families are
disjoint, as any ideal can be invertible in at most a single order. In this regard,
the two results are incomparable. We note that despite being disjoint, they are
known to be related by the conductor ideal, see [15] for reference. We leave
exploring this connection to future work.

Another parameter for comparison is the increase of the error in both hard-
ness results. In the proposition below we show that the element t from Theo-
rem 4.4 can be chosen to be smaller than the product t1t

2
2 from Theorem 4.2.

Before doing so we give a short description of the elements t, t1 and t2 in the
case where qR is coprime to the conductor. We provide more details in the full
version.

Let q ≥ 2 be some rational integer such that qR + CO = R, and let qR =∏k
i=1 p

ei
i be its factorization into prime ideals in R. In this setting, the elements

t, t1, t2 are any elements satisfying the following conditions:

1. t ∈ (O : O∨) and t /∈ (pi ∩ O)(O : O∨) for all i ∈ [k].
2. t1 ∈ (R : R∨) and t1 /∈ pi(R : R∨) for all i ∈ [k].
3. t2 ∈ CO and t2 /∈ piCO for all i ∈ [k]. Notice that t22 satisfies same properties.
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Proposition 4.8. With the same notations as above, for any t1 and t2 satis-
fying conditions 2 and 3, the product t∗ = t1t

2
2 satisfies condition 1. In partic-

ular, letting t to be the shortest satisfying condition 1, and t1 and t2 satisfying
conditions 2 and 3, respectively, such that t1t

2
2 is the shortest, we have that

‖t‖∞ ≤
∥∥t1t22∥∥∞.

The proof is provided in the full version of the paper.

5 Sampling Secrets from Orders

In this section, we consider a setting where the RLWE secret s is sampled from
a subring of its designated space. For this purpose, it is more convenient to work
with the dual version of R-LWE, which is used interchangeably in the literature
but according to our notation should be denoted R∨-LWE. In this variant a is
sampled from R∨ and the secret s comes from R.

More formally, we assume the following setting. Let q ≥ 2 be a rational
prime that splits completely over R.12 Then Rq ' Znq , as rings, and a subring

S ⊆ Rq isomorphic to Zkq corresponds to an order O satisfying qR ⊆ O ⊆ R. We
show that this version of the Ring-LWE problem is at least as hard as the O∨-
LWE problem, defined in Section 3. In fact, this reduction follows as a corollary
of a stronger result that shows that the O∨-LWE problem becomes harder as
the order becomes bigger. This result can be viewed as an analogue of [20,
Lemma 3.1], for the O∨-LWE problem, instead of the ring variant.

Given two orders O′ ⊆ O, their duals satisfy O∨ ⊆ O′∨, as fractional O′-
ideals, and there exist {v1, v2, . . . , vm} ⊆ O′ s.t. O∨ =

∑
iO′∨vi.13 We will be

interested in finding such set with the smallest possible norm (that is, the `2 of
the concatenation of the canonical embeddings of all vi).

Theorem 5.1. Let O′ ⊆ O ⊂ K be orders, Q′ an integral O′-ideal and Q an
integral O-ideal such that Q = Q′O. Let {v1, v2, . . . , vm} ⊆ O′ be s.t. O∨ =∑
iO′∨vi. Let ϕ be a distribution over O′Q′ , let Υ be a family of distributions,

each over KR/O′∨, and let u ∈ (O′ : Q′). Then there is a probabilistic polynomial
time reduction from O′∨-LWE(Q′,u),ϕ,Υ to O∨-LWE(Q,u),ϕ,〈Υ,~v〉, where 〈Υ,~v〉 is
the distribution (over distributions) that samples ϕ ← Υ , and then outputs the
distribution that e1, . . . , em from ϕ and outputs

∑
i eivi.

Proof. We describe an efficient transformation that takes m elements from O′∨Q′×
KR/O′∨ and outputs an element in O∨Q ×KR/O∨. We show that this transfor-

mation maps uniform samples to uniform ones, and O′∨s,ψ,u samples to O∨s,〈ψ,~v〉,u
samples for any s←ϕ and ψ←Υ .

Givenm samples {(a′i, b′i)}i∈[m], the transformation outputs (a =
∑
i a
′
ivi, b =∑

i b
′
ivi). Since O∨ =

∑
iO′∨vi and QO∨ =

∑
iQ′O′∨vi, this map is well-defined

12 A similar argument can be stated for the general case. However, this leads to a very
cumbersome statement, and we prefer to avoid it.

13 It is even possible to do so with m = 2, but we will be interested in vi with small
norm, in which case it is sometimes beneficial to use larger m.
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over the cosets that arise in the distributions and maps uniform distribution over
O′∨Q′ × TO′∨ to uniform distribution over O∨Q × TO∨ , respectively.

Now, assume that {(a′i, b′i)}i∈[m] are sampled from O′∨s,ψ,u. Then, for i ∈ [m],
the element b′i = u · a′i · s+ e′i, where e′i←ψ. As

b =
∑
i

b′ivi = u ·
∑
i

a′ivi · s+
∑
i

eivi = u · a · s+ e,

where e =
∑
i eivi is sampled from 〈ψ,~v〉, so the tuple (a, b) lies in O∨s,〈ψ,~v〉,u.

This concludes the proof. �

Corollary 5.2. Let O ⊂ R be an order such that qR ⊆ O, and let ~v = {v1, v2, . . . vm} ⊂
O be short elements such that they generate R∨ over O∨, i.e., R∨ =

∑
iO∨vi.

Let Υ be a family of error distributions, each over KR/O∨. Then, there exists a
polynomial time reduction from O∨-LWE(qR,1/q),Υ to R-LWEq,U(O/qR),〈Υ,~v〉.

We note that in this case, the elements v1, v2, . . . , vm are generators of the con-
ductor ideal CO as an R-ideal.

Proof. The proof follows easily as a special case of Theorem 5.1; take O′ = O
and O = R, Q′ = Q = qR, and u = 1/q.

Important Special Cases. We now discuss a family of orders O that give
rise to interesting secret distributions. Assume that q splits completely in R. Let
qR =

∏
pi denote the prime factorization of q in R. Then the Chinese remainder

theorem yields the following isomorphism:

Rq
∼−→
∏
i

(
R

pi

)
' Znq

x 7→ (x mod pi)i∈[n].

Let Ω = (Ω1, . . . , Ωk) be a partition of [n] into k disjoint subsets. Define

S := {x ∈ Znq | xj = xj′ , for j, j′ ∈ Ωi, and i ∈ [k]}.

Then, the set S is isomorphic to Zkq and can be written as O/qR, for an order
O such that qR ⊆ O ⊆ R. Due to Corollary 5.2, we can get hardness of the
Ring-LWE with the secret sampled from O/qR from the hardness of O∨-LWE
and therefore, from the hardness of I(O) · O∨-DGS.

In particular, if we consider K ′ a subfield of K, then its ring of integers
R′ = OK′ is a subring of R. Hence we can consider the following order O =
R′+ qR in R and see that O/qR corresponds to some partition of [n]. Using the
hardness result of Ring-LWE (in K ′) and the comparison result in [20, Lemma
3.1], one gets that the Ring-LWE problem (in K) with the secret sampled from
O = R′ + qR is at least as hard as I(R′)-DGS (in K ′).

On the other hand, using the hardness result of O∨-LWE (Theorem 3.8) and
Corollary 5.2, we get that the Ring-LWE problem (in K) with the secret sampled
from O is at least as hard as I(O) · O∨-DGS (in K). One may wonder about a
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relation between the sets I(R′) and I(O) · O∨. It is not too hard to check that
the set of invertible ideals I(R′) embeds into I(O) · O∨ as follows:

I(R′) ↪→ I(O) · O∨

L′ 7→ L′O · O∨ = (L′ + qL′R) · O∨ .

6 RLWE Secrets From Ideals: High Entropy is Not
Enough

In this section we show, perhaps surprisingly, that sampling Ring-LWE secrets
from a high-entropy distribution is not necessarily sufficient to guarantee secu-
rity. Specifically, we investigate the security of Ring-LWE in the case where the
distribution of secrets is uniform over an ideal. We note that by definition this
ideal must be a factor of the ideal qR (i.e. the ideal generated by the modulus q
in the number field). In many applications of RLWE it is common to choose a
value of q as a prime integer which nevertheless factors (splits completely) as an
ideal over R.14 This means that elements in Rq = R/qR can be represented using
the Chinese Remainder Theorem as tuples of elements in Zq = Z/qZ, and the
factors of qR represent elements where some of the CRT coordinates are fixed to
zero. Indeed, this CRT representation allows for more efficient operations over
Rq and is the reason why such values of q are chosen in the first place. It is
therefore natural to investigate whether setting a subset of the CRT coordinates
to 0 has an effect on security.

We show that, as mentioned above, fixing a very small ε fraction of the
CRT coordinates (thus only eliminating ε fraction of entropy) could result in
complete loss of security. That is, we consider a RLWE instance with uniform
secret, where worst-case to average-case reductions guarantee plausible security
under the current state of the art in algorithms. We then show that by fixing
any ε fraction of the CRT coordinates, the instance becomes insecure. The value
of ε depends on the noise level of the RLWE instance. We complement this
with a positive result, showing that taking ε that is slightly smaller than the
aforementioned prescribed value is insufficient and worst-case hardness can still
be established.

Notation. We use the standard RLWE setting where K is a number field of de-
gree n with R as its ring of integers. We usually omit the asymptotic terminology
to reduce clutter of notation.

Letting P ⊃ qR be an integral ideal in R, we let Q = qP−1 denote its
complement with respect to qR. We note that Q is also an integral ideal in R.
We further note that as per the above exposition, P (or more accurately P/qR)
represents a subset of the CRT coordinates defined by the decomposition of qR
in R. Since, formally RLWE is defined with secrets distributed over R∨/qR∨,
therefore formally we will sample our secret from PR∨/qR∨ rather than P/qR
itself. Note that the two spaces are isomorphic, due to the cancellation lemma

14 Sometimes a product of such primes is used.
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(Lemma 2.6), and this distinction is mere formalism. We would also like to point
out that the dual of 1

qPR
∨ is Q. To see this observe that Q∨ = (qP−1)∨ =

1
q (P−1)∨ = 1

qPR
∨.

Remark 6.1. As stated above, the results in this section capture secret distribu-
tions, or leakage scenarios, where a fixed subset of the CRT coordinates is known
to be 0. We remark that all the results below generalize easily to the case where
an ε fraction of the CRT coordinates is any fixed-value. As one would expect,
fixing to some non-zero value corresponds to sampling the secret from a coset of
an ideal.

6.1 Insecure Instances

Theorem 6.2. Let K, R be a degree n number field and its ring of integers,
respectively. Let P ⊃ qR be an integral R-ideal and Q = qP−1 its complement as
described above. There is a non-uniform algorithm such that for any distribution
ψ satisfying Pre←ψ[‖e‖ < 1/(2λn(Q))] is non-negligible and any distribution ϕ
over PR∨/qR∨, the algorithm solves search R-LWEq,ϕ,{ψ} with non-negligible
probability given a single sample.

We note that the theorem immediately implies that the same holds for
R-LWEq,ϕ,Υ where Υ is a distribution over distributions ψ so long as the prob-
ability to sample ψ as required in the theorem is non-negligible.

Proof. The algorithm will use a non-uniform advice string containing short
vectors in Q that will be used for decoding in the lattice P. Specifically let
V = {v1, . . . , vn} ⊂ Q be a set of Z-linearly independent vectors satisfying
‖vi‖ ≤ λn(Q).

The algorithm executes as follows. Given the input (a, b), we let ā denote the
inverse of a over Rq. This inverse exists with high probability, and is efficiently
computable. It then considers b as an element in KR by taking an arbitrary
representative. It further applies Babai’s BDD algorithm (Lemma 2.4) on input
b with respect to the lattice 1

qPR
∨, and with V as the decoding basis. The

BDD subroutine returns an element b′ in 1
qPR

∨. Finally it returns s′ = qāb′

(mod qR∨) ∈ PR∨/qR∨.
We show that the algorithm succeeds whenever a is invertible and e satis-

fies ‖e‖ < 1/(2λn(Q)). These conditions occur concurrently with non-negligible
probability. We recall that b = as/q+e mod R∨, and note that as/q ∈ 1

qPR
∨/R∨.

Therefore when casting b as an element in KR this element is of the form y + e
where y ∈ 1

qPR
∨ and y = as/q (mod R∨). We furthermore have that, for all i,

|Tr(e · vi)| =
∣∣∣〈σ(e), σ(vi)〉

∣∣∣ ≤ ‖e‖ · ‖vi‖ < 1/2 .

Therefore, recalling that Q is the dual of 1
qPR

∨, we can apply Lemma 2.4 and
deduce that the rounding algorithm recovers the value y.

Finally, the output value will be s′ = qāy (mod qR∨) = qāas/q (mod qR∨) =
s (mod qR∨) and the result follows. �
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6.2 Secure Instances

We now show that the vulnerability exposed in Theorem 6.2 can be mitigated
by increasing the noise rate of the instance. Indeed, we show that sampling the
secret from a distribution with lower entropy preserves worst-case hardness so
long as the noise level is sufficiently high. To this end, we use our definition of
Order-LWE (Definition 3.2), but with the order O being the ring of integers R.
This definition still generalizes the classical R-LWE since it allows us to consider
a “modulus” which is not necessarily an integer q but an ideal Q. In terms of
terminology, O-LWE with O = R will still be denoted R-LWE, so we overload
the notation of the standard RLWE problem.

Theorem 6.3. Let K, R be a degree n number field and its ring of integers
respectively. Let P ⊃ qR be an integral R-ideal and Q = qP−1 its complement
as described above. Let u ∈ Q−1 and Υ be arbitrary. Then there is a polynomial
time reduction from R-LWE(Q,u),Υ to R-LWEq,U(PR∨/qR∨),Υ .

Proof. We prove the theorem by showing a (randomized) transformation T that
takes as input a ∈ RQ and outputs ã = T (a) ∈ Rq such that

1. If a is uniform over its domain, then so is T (a) over its domain.
2. For all s ∈ R∨/QR∨, there exists s̃ ∈ PR∨/qR∨ s.t. uas = ãs̃/q (mod R∨),

for all a ∈ RQ.

If indeed such a transformation exists, then the reduction works as follows. Start
by sampling s0 uniformly from PR∨/qR∨. Then, given a sequence of samples
(a, b) for R-LWE(Q,u),Υ , apply the transformation (a, b) → (ã, b̃) = (T (a), b +
ãs0/q) on each sample and output the resulting samples asR-LWEq,U(PR∨/qR∨),Υ

samples. By the properties of the transformation indeed ã is uniform, and b̃ =
uas+ e+ ãs0/q = ã(s̃+ s0)/q+ e (mod R∨). Since s0 is uniform over PR∨/qR∨
then so is (s̃+ s0) and indeed the output samples are distributed as required.

The transformation T is as follows. Given a as input, sample a random a′

from Q/qR and output ã = a + a′ (mod qR). The first property holds since a
is uniformly distributed over all cosets of a′. As for the second property, define
s̃ = qus (mod qR∨). Since u ∈ Q−1, it holds that qu ∈ P and therefore indeed
s̃ ∈ PR∨/qR∨. We have

ãs̃/q = (a+ a′)qus/q = uas+ ua′s (mod R∨) .

Since a′ ∈ Q/qR, u ∈ Q−1 and s ∈ R∨/QR∨ we have that ua′s = 0 (mod R∨)
and the result follows. �

6.3 A Threshold Phenomenon

Combining the results from Theorems 6.2 and 6.3, we show a (commonly used)
setting where reducing the entropy of the secret results in tractability of the
RLWE instance on one hand, but either using fully uniform secret (with the
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same noise level) or a modest increase in the noise level (with the same imperfect
secret) results in the problem’s intractability being resumed.

We consider the setting where K is a cyclotomic number field (so that we have
a good bound on the discriminant ∆K) and where q is a prime for which the ideal
qR splits completely as an ideal over R. The latter condition is the formal de-
scription of the fact that elements in Rq (and also in R∨q , due to Lemma 2.6) can
be written in CRT form as tuples in Znq . We can thus consider secret distributions
where k out of the n CRT coordinates are set to be 0, and the remaining (n−k)
coordinates are uniform. Naturally, this distribution has entropy (1− k

n )n log q,

i.e. (1 − k
n )-fraction of the full entropy. Formally, this corresponds to sampling

the RLWE secret from an ideal P ⊃ qR with algebraic norm N(P) = qk. The
formal statement follows and we provide its proof in the full version of the paper.

Corollary 6.4. Let K, R be a degree n number field and its ring of integers re-
spectively, and assume furthermore that K is cyclotomic. Then for every integer
k ∈ [0, n], letting ε = k/n, there exist q = qε = nO(1/ε), α = αε = poly(n)/q and
a distribution ϕ over R∨q with entropy (1− ε)n log q s.t. R-LWEq,ϕ,Υα is solvable
in polynomial time.

On the other hand, solving the problems R-LWEq,Υα and R-LWEq,ϕ,Υβ for

any β = α · ω(n5/2) is as hard as solving I(R)-DGSγ for γ = η · poly(n1/ε).

Solving DGS with γ as above corresponds to approximating the Shortest
Independent Vector Problem (SIVP) to within poly(n1/ε) factor. At least for
constant ε, achieving such DGS/SIVP approximation is intractable using current
state of the art algorithmic techniques. Therefore, we show a threshold effect in
two different aspects. First, in terms of entropy, we show a RLWE problem which
is plausibly intractable if the secret is uniformly random, becomes tractable when
the entropy is slightly reduced. Second, even if the entropy is reduced, a relatively
modest increase in the noise level restores intractability.

7 k-Wise Independent Secrets and Hidden Lattice BDD

In this section, we propose a class of high-entropy distributions for RLWE secrets
for which we believe worst-case hardness should hold. As evidence, we show how
to prove hardness based on a new average-case lattice problem. This new problem
is a decision variant of the bounded distance decoding (BDD) problem. In our
variant, BDD is to be solved on an ideal lattice which is sampled from a large
family of ideals. It allows us to prove the hardness for distributions of RLWE
secrets with norm bounded away from q and whose marginal distribution over
this family of ideals (i.e. sampling an element from this distribution and taking
its product with the ideal) is indistinguishable from uniform.

The Setting and Notation. In this section, we choose to use a simpler notation
at the cost of some restriction on the generality of our discussion. This will allow
us to present our results in a more digestible manner. In particular, we limit the
discussion to cyclotomic number fields, our modulus to completely splitting, and
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the regime of the RLWE samples to be over Rq ×Rq, i.e. discrete and integral,
instead of Rq ×KR/R

∨.
Formally, we let K be a cyclotomic number field of degree n, and denote its

ring of integers by R. In this case, the ideal R∨ is just a scalar multiple of R,
R∨ = tR, for t ∈ K [16, Theorem 3.7]. Therefore, we can assume that the RLWE
distribution is obtained by sampling s from Rq instead of from R∨q . Moreover,
we consider that the error e from a discrete Gaussian over R. This setting is
quite commonly used (and is perhaps the most popular use of RLWE) and its
worst case hardness is presented in [30, Lemma 2.23].

Defining k-Wise Independent Distributions. As explained above, we con-
sider the case where q is an integer prime which splits completely, qR =

∏n
i=1 pi,

where each pi ⊆ R is a prime ideal. For k ∈ [n], we define the following family
of ideals

Pk :=

{∏
i∈T

pi | T ⊆ [n], |T | = k

}
.

Our class of (perfect/statistical/computational) k-wise independent distri-
butions are those whose marginals are (perfectly/statistically/computationally)
indistinguishable from uniform modulo any product of k prime ideals from q, so
modulo any P ∈ Pk. Recalling the CRT representation of Rq, this is equivalent
to any k-tuple of CRT coordinates being indistinguishable from uniform.

Definition 7.1. A distribution ϕ over Rq is (perfectly/statistically/computationally)
k-wise independent if the random variables (s mod P) and (z mod P) are (per-
fectly/statistically/computationally) indistinguishable, where s← ϕ, z ← Rq and
P ← Pk. The asymptotics are over the dimension n and k = k(n) is some integer
function.

Lemma 7.2. Let ϕ be k-wise independent, and consider the following probability
space. Sample P ← Pk and let Q = P−1q ∈ Pn−k. Sample x1, x2 ← Q/qR
conditioned on x1 being invertible modulo P, and s

$← ϕ. Then the distributions
(x1, x1 · s) and (x1, x2) are indistinguishable.

Proof. Let s′ be any representative of s (mod P). Then (x1, x1 · s) = (x1, x1 · s′)
since x1 ∈ Q and P + Q = qR. Thus, Definition 7.1 implies that (x1, x1 · s) is
indistinguishable from (x1, x1 · z) where z is uniform in Rq.

Now fix any P, x1, we will show that x1z and x2 are identically distributed.
Since x1 is invertible modulo P, then x1z is uniform modulo P. Since x1 ∈ Q/qR
it follows that x1z = 0 (mod Q). Therefore x1z is uniform in Q/qR.

7.1 Hidden-Lattice Decision Bounded Distance Decoding

We first define the hidden lattice BDD (HLBDD) distribution, and then the
decisional problem associated with it. We use Gaussian noise but other noise
distributions can be considered as well, the property that we use in our proof is
that the distribution is bounded.
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Definition 7.3 (Hidden Lattice BDD Distribution). Let L1 and L2 be two
given lattices, and let L be a finite family of lattices, where each member L′ ∈ L
satisfies L1 ⊆ L′ ⊆ L2. Let r ∈ G be a Gaussian parameter. The Hidden Lattice
BDD Distribution over L2/L1, denoted by CL1,L,DL2,r

, is sampled by choosing

uniformly at random a lattice L′ $← L, an element x
$← L′/L1, and an error

term e←DL2,r and outputting y = x+ e mod L1.

One should think of the lattice L2 as the “ambient space”, i.e. Zn for general
Euclidean setting or the ring of integer R in the algebraic setting. Note that it
is possible to define the distribution with a continuous noise term e. The usual
connection between discrete and continuous distribution from LWE / RLWE
apply here as well (see, e.g., [30, Lemma 2.23]).

Definition 7.4 (HLBDD Problem). Let L1,L2,L, r be as in Definition 7.3.
The HLBDD Problem, denote by HLBDDL1,L,DL2,r

is to distinguish between two
samples from the distribution CL1,L,DL2,r

, and two samples from the uniform
distribution over L2/L.

For the purpose of this section we will set L2 = R (the ring of integers of our
number field) and L = Pk, for k = nΩ(1).

Hardness and Variants. We defined HLBDD as the problem where the distin-
guisher only gets 2 samples from the HLBDD distribution. This is the minimal
definition that is needed for our application. However, we note that we do not
know of polynomial time algorithms even for weaker variants. For example, one
where polynomially many samples are given to the distinguisher instead of only
2, or one where the distinguisher is provided with a (canonical) Z-basis of the
lattice P in addition to the samples. We note that the latter variant is at least
as easy as the former since it is possible to use a hybrid argument to show that
if P is known then indistinguishability for one sample implies indistinguishabil-
ity for polynomially many samples. The connections to other problems in the
literature, e.g. [26], is described in the introduction.

7.2 Stating and Proving Hardness

The reduction from HLBDD to RLWE with s from a k-wise distribution consists
of two main steps. The formal theorem statement and proof are provided in the
full version. We present an outline below.
Step 1. A reduction from RLWE where the adversary gets only one RLWE
sample, to the version with polynomially many samples. This reduction applies
to any distribution of secrets which is bounded (and is the same on both the
initial and final instances). The reduction assumes in addition the hardness of
the standard RLWE problem (with the usual noise distribution).

The reduction follows using a rerandomization technique from [30, Section
8.2], [12, Lemma 4]. This transformation unfortunately also requires “noise
swallowing”, a technique that uses the fact that adding a Gaussian with super-
polynomial Gaussian parameter will mask any random variable with polynomial
amplitude.
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Step 2. A reduction from HLBDD to RLWE with a single sample. For this we
assume that there is an adversary that can distinguish between a single RLWE
sample (a, b = as+ e) and a uniform one.

We begin by replacing a with a decisional hidden-lattice BDD sample (v1 +
e1), where v1 only has k nonzero CRT coordinates (randomly chosen) and e1
is small. The decisional hidden-lattice BDD assumption asserts that this dis-
tribution will be indistinguishable from the original one. Namely, we now have
(v1 + e1, b = (v1 + e1)s+ e). Opening the parenthesis, we have b = v1s+ e1s+ e.

We again use noise swallowing to argue that b is statistically close to b =
v1s + e, i.e. we use e to swallow e1s, which can be done so long as s is small
enough and e is large enough. Now we observe that since v1 is zero on all but
k CRT coordinates, and s is close to uniform in any subset of k coordinates,
it follows that v1s is statistically close to a fresh v2 that is sampled from the
same distribution as v1 (i.e. has the same set of nonzero coordinates, but the
value in each coordinate is randomly chosen). We get b = v2 + e. We now apply
decisional hidden-lattice BDD again to claim that (a, b) = (v1 + e1, v2 + e) is
indistinguishable from uniform, which completes the proof.

Acknowledgments. We thank the anonymous referees for their insightful com-
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cal hardness of learning with errors. In D. Boneh, T. Roughgarden, and
J. Feigenbaum, editors, Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 575–584. ACM, 2013.

[12] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In P. Rogaway, editor,
CRYPTO, volume 6841 of Lecture Notes in Computer Science, pages 501–
521. Springer, 2011.

[13] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryp-
tion from (standard) LWE. In R. Ostrovsky, editor, FOCS, pages 97–106.
IEEE, 2011.

[14] Z. Brakerski, V. Vaikuntanathan, H. Wee, and D. Wichs. Obfuscating con-
junctions under entropic ring LWE. In M. Sudan, editor, Proceedings of the
2016 ACM Conference on Innovations in Theoretical Computer Science,
Cambridge, MA, USA, January 14-16, 2016, pages 147–156. ACM, 2016.

[15] K. Conrad. The conductor ideal. Expository papers/Lecture notes. Avail-
able at: http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/

conductor.pdf.
[16] K. Conrad. The different ideal. Expository papers/Lecture notes. Avail-

able at: http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/

different.pdf.
[17] M. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic

encryption over the integers. In EUROCRYPT, pages 24–43, 2010.
[18] Y. Dodis, S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan.

Public-key encryption schemes with auxiliary inputs. In D. Micciancio,

http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/conductor.pdf
http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/conductor.pdf
http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/different.pdf
http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/different.pdf


Order-LWE and the Hardness of Ring-LWE with Entropic Secrets 29

editor, TCC, volume 5978 of Lecture Notes in Computer Science, pages
361–381. Springer, 2010.

[19] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures
and bimodal gaussians. In R. Canetti and J. A. Garay, editors, Advances in
Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, volume 8042
of Lecture Notes in Computer Science, pages 40–56. Springer, 2013.

[20] C. Gentry, S. Halevi, C. Peikert, and N. P. Smart. Field switching in bgv-
style homomorphic encryption. Journal of Computer Security, 21(5):663–
684, 2013.

[21] C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES
circuit. In R. Safavi-Naini and R. Canetti, editors, CRYPTO, volume 7417
of Lecture Notes in Computer Science, pages 850–867. Springer, 2012.

[22] S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan. Robust-
ness of the learning with errors assumption. In A. C. Yao, editor, Innova-
tions in Computer Science - ICS 2010, Tsinghua University, Beijing, China,
January 5-7, 2010. Proceedings, pages 230–240. Tsinghua University Press,
2010.

[23] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-based encryption
for circuits. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors,
Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA,
USA, June 1-4, 2013, pages 545–554. ACM, 2013.

[24] S. Halevi and V. Shoup. Algorithms in helib. In J. A. Garay and R. Gennaro,
editors, Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings,
Part I, volume 8616 of Lecture Notes in Computer Science, pages 554–571.
Springer, 2014.

[25] S. Halevi and V. Shoup. Bootstrapping for helib. In E. Oswald and M. Fis-
chlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, volume
9056 of Lecture Notes in Computer Science, pages 641–670. Springer, 2015.

[26] J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, and W. Whyte.
Practical signatures from the partial fourier recovery problem. In Inter-
national Conference on Applied Cryptography and Network Security, pages
476–493. Springer, 2014.

[27] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public
key cryptosystem. In ANTS98, pages 267–288, 1998.

[28] V. Lyubashevsky and D. Micciancio. Generalized compact knapsacks are
collision resistant. In M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener,
editors, Automata, Languages and Programming, 33rd International Col-
loquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part
II, volume 4052 of Lecture Notes in Computer Science, pages 144–155.
Springer, 2006.

[29] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning
with errors over rings. In H. Gilbert, editor, Advances in Cryptology - EU-



30 M. Bolboceanu, Z. Brakerski, R. Perlman, D. Sharma

ROCRYPT 2010, 29th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, French Riviera, May 30 - June
3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer Science,
pages 1–23. Springer, 2010.

[30] V. Lyubashevsky, C. Peikert, and O. Regev. A toolkit for ring-lwe cryptog-
raphy. In T. Johansson and P. Q. Nguyen, editors, Advances in Cryptology -
EUROCRYPT 2013, 32nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Athens, Greece, May 26-30,
2013. Proceedings, volume 7881 of Lecture Notes in Computer Science, pages
35–54. Springer, 2013.

[31] D. Micciancio and C. Peikert. Hardness of sis and lwe with small parameters.
In R. Canetti and J. A. Garay, editors, CRYPTO (1), volume 8042 of Lecture
Notes in Computer Science, pages 21–39. Springer, 2013.

[32] C. Peikert. Public-key cryptosystems from the worst-case shortest vector
problem: extended abstract. In M. Mitzenmacher, editor, STOC, pages
333–342. ACM, 2009.

[33] C. Peikert. How (not) to instantiate ring-lwe. In V. Zikas and R. D. Prisco,
editors, Security and Cryptography for Networks - 10th International Con-
ference, SCN 2016, Amalfi, Italy, August 31 - September 2, 2016, Proceed-
ings, volume 9841 of Lecture Notes in Computer Science, pages 411–430.
Springer, 2016.

[34] C. Peikert, O. Regev, and N. Stephens-Davidowitz. Pseudorandomness
of ring-lwe for any ring and modulus. IACR Cryptology ePrint Archive,
2017:258, 2017.

[35] C. Peikert and A. Rosen. Efficient collision-resistant hashing from worst-
case assumptions on cyclic lattices. In S. Halevi and T. Rabin, editors,
Theory of Cryptography, Third Theory of Cryptography Conference, TCC
2006, New York, NY, USA, March 4-7, 2006, Proceedings, volume 3876 of
Lecture Notes in Computer Science, pages 145–166. Springer, 2006.

[36] O. Regev. On lattices, learning with errors, random linear codes, and cryp-
tography. In H. N. Gabow and R. Fagin, editors, STOC, pages 84–93. ACM,
2005. Full version in [37].

[37] O. Regev. On lattices, learning with errors, random linear codes, and cryp-
tography. J. ACM, 56(6), 2009.
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