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Abstract. In this paper we report on a new record class group com-
putation of an imaginary quadratic field having 154-digit discriminant,
surpassing the previous record of 130 digits. This class group is central
to the CSIDH-512 isogeny based cryptosystem, and knowing the class
group structure and relation lattice implies efficient uniform sampling
and a canonical representation of its elements. Both operations were im-
possible before and allow us to instantiate an isogeny based signature
scheme first sketched by Stolbunov. We further optimize the scheme us-
ing multiple public keys and Merkle trees, following an idea by De Feo
and Galbraith. We also show that including quadratic twists allows to
cut the public key size in half for free. Optimizing for signature size, our
implementation takes 390ms to sign/verify and results in signatures of
263 bytes, at the expense of a large public key. This is 300 times faster
and over 3 times smaller than an optimized version of SeaSign for the
same parameter set. Optimizing for public key and signature size com-
bined, results in a total size of 1468 bytes, which is smaller than any
other post-quantum signature scheme at the 128-bit security level.

Keywords: Isogeny based cryptography, digital signature, class group,
group action, Fiat-Shamir.

1 Introduction

Isogeny based cryptography was first proposed in 1997 by Couveignes [9] in a
talk at the “séminaire de complexité et cryptographie” at the ENS, but his ideas
on how class group actions could be used in cryptography were not published at
that time. The same ideas were independently rediscovered in 2006 by Rostovt-
sev and Stolbunov [31]. Both Couveignes as well as Rostovtsev and Stolbunov
described a Diffie-Hellman like key agreement scheme (usually called CRS) using
the class group of the endomorphism ring of ordinary elliptic curves. Rostovtsev
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and Stolbunov also describe an isogeny based identification scheme. However,
none of these schemes can be considered practical.

A different approach was taken by Jao and De Feo who introduced SIDH
(Supersingular Isogeny Diffie–Hellman) [22]. SIDH does not rely on class group
actions as CRS, but exploits the simple fact that dividing out an elliptic curve by
two (large) non-intersecting subgroups is commutative. SIDH uses supersingular
curves, mainly for two reasons: firstly, constructing a supersingular elliptic curve
with given group order is trivial, and secondly, their endomorphism ring is non-
commutative which thwarts attacks by Kuperberg’s algorithm [25]. SIDH forms
the basis of a practical key-exchange protocol called SIKE [21], which is one of
the main contenders in NIST’s post-quantum standardization project [29].

A major improvement of CRS was made by Castryck et. al. [6] by instanti-
ating the scheme for supersingular curves over Fp and by restricting the endo-
morphism ring to Fp-rational endomorphisms. This subring behaves very much
like in the ordinary curve setting, so the CRS approach applies. The main ad-
vantage is that the class group action can be computed very efficiently since by
construction, the supersingular curves have many small rational subgroups. The
resulting cryptosystem is called CSIDH for Commutative Supersingular Isogeny
Diffie-Hellman and is pronounced “sea-side”.

Both SIDH and CSIDH result in efficient key-agreement schemes, but a prac-
tical isogeny based signature scheme is much harder to achieve. The first attempt
was made by Stolbunov in his PhD thesis [35]; the signature scheme consists of
the Fiat-Shamir transform applied to a standard three pass isogeny based identi-
fication scheme. The scheme can be securely instantiated under two assumptions:
firstly, it should be possible to sample uniformly in the class group (this could be
efficiently approximated) and secondly, each element in the class group has an ef-
ficiently computable canonical representation. Especially the second assumption
is a major obstacle to instantiate Stolbunov’s signature scheme.

This problem was partly remedied by De Feo and Galbraith in the signature
scheme SeaSign [11] by employing “Fiat–Shamir with aborts”. The main idea is,
instead of using a canonical representation for each class group element, to use
a majorly redundant representation and to apply rejection sampling to make
the distribution of the class group elements, which are part of the signature,
independent of the secret key. The drawback is that this redundant representa-
tion makes evaluating the class group action much less efficient. Several versions
of SeaSign were presented offering trade-offs between signature size, public-key
size, and secret-key size. Although signature sizes of less than one kilobyte at
the 128-bit security level are possible, the scheme is again not practical taking
several minutes to sign. Decru et al. [12] improved all variants of SeaSign, but
the fastest parameter set still requires 2 minutes to sign a message.

A different approach was taken by Yoo et al. [38] who transform an SIDH-
based zero-knowledge proof proposed by De Feo et al. [15] into a digital signature
scheme. The resulting signatures however are rather large at ∼ 120KB which is
much larger than other post-quantum signature schemes. A similar approach was
described by Galbraith et al. [17] who were able to compress the signatures down
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to roughly 10KB. None of the above signature schemes is therefore practical,
either due to lack of efficiency or due to the large signatures.

It is well known (see for instance Couveignes [9], Stolbunov’s PhD [35] or
Section 9.2 of [11]), that knowing the class group structure would resolve the two
main problems with Stolbunov’s signature scheme. Firstly, uniform sampling is
now trivial, but more importantly, each element has an efficiently computable
canonical representation. This immediately implies that rejection sampling is no
longer necessary, thereby majorly speeding up the resulting signature scheme.

The computation of the class group of a quadratic imaginary number field
is a classical problem in computational number theory, and the current best
algorithms [20, 4, 23] are improvements of an algorithm due to Hafner and Mc-
Curley [18]. These algorithms have complexity L1/2(∆) with ∆ the discriminant
of the number field. The largest publicly known class group computation was for
a 130-digit discriminant by Kleinjung [23].

The main contributions in this paper are as follows:

– We compute the class group structure and a relation lattice of the class
group of the quadratic imaginary field corresponding to the CSIDH-512 pa-
rameter set having a 154-digit discriminant. This computation is described
in Section 3.

– We present an efficient algorithm to compute the class group action of ran-
dom class group elements by solving an approximate CVP-problem in the
relation lattice. This strategy is described in Section 4 and is a combination of
Babai nearest plane algorithm [1] and a random walk approach due to Doul-
gerakis, Laarhoven and de Weger [14]. Compared to native CSIDH which
starts from an efficient representation, our algorithm is only 15% slower.

– In Section 5, we introduce CSI-FiSh (Commutative Supersingular Isogeny
based Fiat-Shamir signatures, pronounce “sea-fish”) which is based on Stol-
bunov’s signature scheme [35] combined with optimisations similar to the
ones described for SeaSign [11]. We also show that the public key size can
be cut in half for free by including not only the curve, but also its quadratic
twist. This implicitly doubles the number of curves in the public key for
free, without affecting the security of the scheme. Finally, we prove that the
resulting signature scheme is secure in the quantum random oracle model.

– We provide an efficient open-source implementation of CSI-FiSh and report
on the implementation results in Section 6. As for SeaSign, CSI-FiSh allows
for various trade-offs: the smallest signatures are 263 bytes and are also the
fastest (∼ 390ms to sign/verify), but require a large public key of 2 MB.
Slightly larger signatures of 461 bytes require a public key of 16KB which
is comparable to multivariate schemes such as LUOV [3], but take ∼ 670ms
to compute. Optimizing for public key and signature size combined, results
in a total size of 1468 bytes which is smaller than any other post-quantum
signature scheme at the 128-bit security level.
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2 Preliminaries

We denote by [a, b] with a, b ∈ Z, a ≤ b the set {a, . . . , b}. When considering
reals instead of integers [a, b] denotes the interval a ≤ r ≤ b with r ∈ R, whereas
[a, b[ denotes a ≤ r < b. The cardinality of a set S is denoted by #S.

2.1 Elliptic curves and isogenies

The go-to general reference on elliptic curves is Silverman [33]. A good intro-
duction to isogeny based cryptography can be found in the lecture notes by
De Feo [10].

Let E be an elliptic curve over a finite field Fp with p a large prime, and
let 0E denote the point at infinity on E. The curve E is called supersingular iff
#E(Fp) = p + 1, and ordinary otherwise. Given two elliptic curves E and E′,
an isogeny φ is a morphism φ : E → E′ (i.e. can be expressed as fractions of
polynomials) such that φ(0E) = 0E′ . An isomorphism is an isogeny that has
an inverse (which is also a morphism), and two elliptic curves are isomorphic
iff they have the same j-invariant, which is a simple algebraic expression in the
coefficients of the curve. Since an isogeny defines a group homomorphism from
E to E′, its kernel is a subgroup of E. Vice-versa, any subgroup S ⊂ E(Fpk)
determines a (separable) isogeny φ : E → E′ with kerφ = S, i.e. E′ = E/S. The
equation for E′ and the isogeny φ can be computed using Vélu’s formulae [36]
using O(#S(k log p)2) bit-operations. As such, it is only practical to handle fairly
small subgroups S defined over small extensions of Fp.

The ring of endomorphisms End(E) consists of all isogenies from E to it-
self, and EndFp(E) denotes the ring of endomorphisms defined over Fp. For an
ordinary curve E/Fp we have End(E) = EndFp(E), but for a supersingular
curve over Fp we have a strict inclusion EndFp(E) ( End(E). In particular, it is
known that for a supersingular curve over Fp its full endomorphism ring End(E)
is an order in a quaternion algebra, whereas EndFp(E) is only an order in the
imaginary quadratic field Q(

√
−p). In the following we will denote this order

O = EndFp(E).
The ideal class group of O is the quotient of the group of fractional invert-

ible ideals in O by the principal fractional invertible ideals, and will be denoted
Cl(O). Given an O-ideal a, we can consider the subgroup defined by the inter-
section of the kernels of the endomorphisms in a, i.e. Sa =

⋂
α∈a kerα. Since

this is a subgroup of E, we can divide out by Sa and denote the isogenous curve
E/Sa by a ? E. This isogeny is well-defined and unique up to Fp-isomorphism
and the group Cl(O) acts via the operator ? on the set E of Fp-isomorphism
classes of elliptic curves with Fp-rational endomorphism ring O. One can show
that Cl(O) acts freely and transitively on E , i.e. E is a principal homogeneous
space for Cl(O).

In what follows we will assume that the class group Cl(O) is cyclic of order
N = #Cl(O) generated by the class of an ideal g. The more general case of non-
cyclic class groups is a trivial extension and is not required in the application
we consider.
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2.2 CSIDH

Castryck et al. [6] proposed an efficient commutative group action ? by crafting
supersingular elliptic curves with many small Fp-rational subgroups. Given that
#E(Fp) = p+1 for a supersingular curve, it is immediate that if p is chosen to be
of the form 4 · `1 · · · `n−1, with `i small distinct odd primes, we have #E(Fp) =
4·`1 · · · `n. Such curves therefore have, for each i ∈ [1, n], an Fp-rational subgroup
of order `i. Since p = −1 mod `i, we have that in Q(

√
−p) the rational prime `i

splits as (`i) = 〈`i, π−1〉〈`i, π+ 1〉, where π =
√
−p represents the Fp-Frobenius

endomorphism. Note that the first ideal factor li = 〈`i, π−1〉 corresponds to the
subgroup of order `i defined over Fp, and that the action of this ideal can be
computed entirely over Fp. Once this subgroup is determined, Vélu’s formulae
require O(`i(log p)2) bit operations. However, for small `i, finding a generator of
this small subgroup requires (at least one) full-size scalar multiplication which
dominates the cost of Vélu’s formulae.

CSIDH considers the action of ideals of the form
∏n
i=1 l

ei
i where the exponents

are chosen uniformly from some interval [−B,B]. This can be done by computing
sequentially the action of li exactly ei times. Since the cost of each such action
is dominated by the cost to determine the correct subgroup, we assume that the
overall cost of computing such action is mostly determined by the `1-norm of its
exponent vector, i.e. |e1|+ · · ·+ |en|.

The base curve is taken to be E0 : y2 = x3 + x over Fp and instead of using
the j-invariant, each isomorphism class of a curve with given endomorphism ring
EndFp(E) = O = Z[π] is represented by a single coefficient A ∈ Fp defining the
curve EA : y2 = x3 + Ax2 + x. Denote A the set of all such coefficients A, then
we obtain a class group action ? : Cl(O)×A → A or equivalently, assuming the
class group is cyclic of order N , a group action [] : ZN × A → A. To simplify
notation in the remainder of the paper, we will identify a curve EA with its
isomorphism class represented by the corresponding coefficient A.

Note however that in CSIDH, the order (and structure) of the class group are
unknown, so only the action of ideals of the form

∏n
i=1 l

ei
i with ei smallish are

computable. This restriction brings up various questions: firstly, given the range
of exponent vectors [−B,B]n, do the ideals

∏n
i=1 l

ei
i cover the whole class group,

and secondly, assuming the exponents are chosen uniformly in [−B,B], is the
resulting distribution of

∏n
i=1 l

ei
i uniform over Cl(O). It is clear that knowing the

class group structure voids both questions as surjectivity and uniformity become
trivial to attain. The only remaining problem then is to efficiently compute
the action [a] given a random exponent a ∈ ZN (see Section 4 for an efficient
solution).

2.3 Computational problems

The main hardness assumption underlying group actions based on isogenies, is
that it is hard to invert the group action:

Definition 1 (Group Action Inverse Problem (GAIP)). Given a curve
E, with End(E) = O, find an ideal a ⊂ O such that E = a ? E0.
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Another advantage of knowing the class group structure and therefore uni-
form sampling, is that the GAIP is random self-reducible: given a problem in-
stance E, we can shift this over a uniformly random b to obtain E′ = b ? E,
which is uniformly distributed in A. Given a solution c for E′, it is easy to see
that cb−1 is then a solution to the original problem.

The CSI-FiSh signature scheme relies on the hardness of random instances of
a multi-target version of the inversion problem, which is shown to reduce tightly
to the normal GAIP by [11] in the case that the class group structure is known.

Definition 2 (Multi-Target GAIP (MT-GAIP)). Given k curves E1, . . . , Ek
with End(E1) = · · · = End(Ek) = O, find an ideal a ⊂ O such that Ei = a ? Ej
for some i, j ∈ {0, · · · , k} with i 6= j.

The best classical algorithm to solve the GAIP problem is a simple meet-
in-the-middle approach, where one finds a collision between two breadth-first
trees starting at E and E′ respectively. The time complexity of this approach is
O(

√
#Cl(O)). The best quantum algorithm for the GAIP problem reformulates

it as a hidden shift problem [7] and then applies Kuperberg’s algorithm [25, 26],

which runs in time 2O(
√
logN). Translating this subexponential complexity to

concrete security estimates is a highly non-trivial endeavour and we refer to [6,
30, 5] for precise details.

In this paper we will only focus on the CSIDH-512 parameter set, which uses
74 small primes `i (so n = 74) and samples the exponents uniformly from the
interval [−5, 5] (so B = 5). The CSIDH authors assume that sampling exponent
vectors in [−5, 5] covers a subset of size ∼ 2256, which, as we will see, is a bit less
than half of the total size of the class group. Class group elements (represented
by their exponent vectors) require roughly 32 bytes, and each isomorphism class
requires 64 bytes (one coefficient in Fp). The average time taken to perform one
such group action [6] is roughly 40 ms on a 3.5GHz processor. This parameter set
aimed to provide 128-bit classical security and to achieve NIST security level 1
quantumly [6]. However, recent works propose quantum attacks and claim that
CSIDH-512 does not reach the NIST security level 1 [30, 5].

3 Class group computation

In order to uniformly sample and canonically represent class group elements,
a class group computation of Hafner-McCurley type [18] was performed which,
besides computing generators of the class group, also expresses the ideal classes
of prime ideals with small norm in terms of these generators. This computation
relied on the programs from [23], which work over the maximal order and thus
we obtain generators for Cl(OQ(

√
−p)), where p is the 512-bit prime used in

CSIDH-512. This class group turns out to be cyclic and the class number is not
divisible by 3. Since the conductor of the suborder O is (2) and 2 does not split
in OQ(

√
−p), we get #Cl(O) = 3#Cl(OQ(

√
−p)) so that Cl(O) is also cyclic. Using

the information from the computation over the maximal order, it is easy to find
a generator of Cl(O) and to express the li as powers of this generator. In total,
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the computation took an estimated effort of 52 core years on an inhomogenous
cluster of number crunchers and desktop machines, consisting of around 800
cores with the “average” core running at around 3.3GHz.

The class group computation consists of the following steps.

Relation collection. Given a bound F (we chose F = 7000000), let F be the
set of prime ideals of degree one with norm less than F and the prime ideal (2);
the latter is only included for technical reasons. A relation is a decomposition
(a+
√
−p) =

∏
p∈F pea,p with a, ea,p ∈ Z. Such relations can be found by factoring

the ideal (a +
√
−p) for random a ∈ Z which essentially amounts to factoring

its norm a2 + p. Since most a do not give rise to a relation, there exist many
methods to speed up the search for relations. We used a sieving approach [23]
and the large prime variation with up to three large primes; these details do not
matter in the following and are suppressed.

The goal of this step is to generate sufficiently many relations such that the
subsequent steps are able to determine the class group. In practice, this usually
means that we can stop collecting relations when the number of relations slightly
exceeds the number of prime ideals contained in their decompositions (which is
at most #F). However, a bigger excess often reduces the running time of the
subsequent steps significantly.

This step is one of the two main steps in terms of computational effort.
Fortunately, it is trivially parallelized and has moderate memory requirements.
In our computation it took an estimated time of 43 core years to collect 319.5
million relations over an extended factor base of size 32.7 million.

Building the matrix. In this step the set of relations is converted into a matrix
over Z with rows corresponding to prime ideals and columns corresponding to
relations; the matrix entry belonging to the prime ideal p ∈ F and relation
(a +

√
−p) is ea,p. This matrix is overdetermined and very sparse. We now

assume that the ideal classes of the prime ideals in F generate the class group.
In practice, it is very likely that this assumption holds; moreover, it follows
from GRH if F is chosen appropriately. Under the assumption above, one has a
surjection Z#F/Λ→ Cl(OQ(

√
−p)) where Λ is the lattice spanned by the columns.

If the matrix has full rank, the covolume of Λ is a multiple of the class number.
By performing elementary column operations as well as removing certain rows
and columns one can reduce this matrix significantly while keeping it slightly
overdetermined and sparse; this is done to reduce the complexity of the next
steps.

In terms of running time this step is negligible but it has higher memory
requirements and is not easily parallelisable. We reduced our set of 319.5 million
relations over a factor base of size 32.7 million to a slightly overdetermined
matrix with roughly 222 thousand rows.

Matrix step. By dropping some columns from the matrix above one can obtain
a square matrix and use the (block) Wiedemann algorithm modulo many small



8 Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren

primes to compute its determinant over Z (cf. [37, 8]). If the determinant is
non-zero, it is a (usually) huge multiple of the class number. By repeating the
determinant calculation for another square matrix obtained by dropping another
set of columns one gets a second huge multiple of the class number. Their greatest
common divisor is much smaller, thus can be factored, and for each of its prime
factors one can check whether it is a divisor of the class number using quadratic
forms.

This is the other main step, it is also easy to parallelize and has moderate
memory requirements. For both determinant computations, we computed the
determinant modulo roughly 7000 different 64-bit primes, which took roughly 4.3
core years per determinant. By taking the gcd of the determinants and removing
an extra factor of 2, we obtained that

#Cl(OQ(
√
−p)) = 37× 1407181× 51593604295295867744293584889

×31599414504681995853008278745587832204909 .

The class group of the order O therefore has cardinality 3 ·#Cl(OQ(
√
−p)) which

is approximately equal to 2257.136.

Final computations. In this step the r-Sylow group of Cl(OQ(
√
−p)) is com-

puted for each r dividing the class number together with the images of all in-
volved prime ideals in this Sylow group. For small r this is easy and for large
r the kernel of one of the square matrices from the previous step can be com-
puted modulo r, e.g., using the Lanczos or Wiedemann algorithm. Finally, tying
everything together a set of generators of the class group and for each involved
prime ideal a representation in terms of these generators is obtained.

This step is negligible in terms of running time and has only moderate mem-
ory requirements. It turns out that the ideal l1 = 〈3, π− 1〉 generates Cl(O), the
discrete logs of the other li are available in our GitHub repository [2].

Remark 3. Notice that all odd primes up to 373 split in Q(
√
−p) thus improving

the probablity that the ideal (a+
√
−p) gives rise to a relation. This facilitates

the class group computation for our choice of p but the gain is much less than a
factor of 2 compared to an average prime of the size of p.

4 Class group action

In this section we discuss how to compute the action of ideals represented as ga,
where g is a generator of the class group. In practice, it will often be the case
that one of the li generates the class group already, and in fact, for the CSIDH-
512 class group we can even take g = l1 = 〈3, π − 1〉. Recall that for isogenies,
there is no analogue of the standard square-and-multiply for exponentiation, so
a different approach is required. Since we can only compute the group action
efficiently for the prime ideals li = 〈li, π− 1〉, our approach is to first use lattice
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reduction algorithms to rewrite ga as a product of the li with small exponents.
After this step, the action can be computed efficiently with Vélu’s Formulae.

More concretely, the ideal la1 corresponds to the exponent vector e = [a, 0, · · · , 0],
that needs to be reduced modulo the relation lattice:

L := {z = (z1, . . . , zn) ∈ Zn :

n∏
i=1

lzii = (1)} .

The lattice L has rank n and volume N = #Cl(O) since by definition it is the
kernel of the surjective group homomorphism that maps Zn → Cl(O) : z =
(z1, . . . , zn) 7→

∏n
i=1 l

zi
i . Note that the relation lattice follows directly from the

class group computation described in Section 3.
Since the complexity of a CSIDH action is mainly determined by the `1-norm

of the exponent vector, we want to solve the Closest Vector Problem (CVP) in
L for the `1-norm given the target vector e. Indeed, any vector z ∈ L which
is close to e for the `1 norm will result in an equivalent vector e − z such that
‖e− z‖1 is small and thus efficiently computable.

A first approximation for solving the CVP for the `1-norm is to use either
Babai’s rounding or nearest plane algorithm [1]. Given a set of basis vectors
B := {b1, . . . ,bn}, denote with B? := {b?1, . . . ,b?n} the corresponding Gram-
Schmidt orthogonalization vectors. Let P(B) denote the parallelepiped

P(B) =

{
n∑
i=1

αibi | αi ∈ [−1/2, 1/2[

}
,

then Babai rounding returns a lattice vector in e + P(B) and Babai’s nearest
plane in e+P(B?). This shows that e−z is either in P(B) or in P(B?) depending
on the choice of algorithm. Given a basis B and corresponding Gram-Schmidt
basis B?, it is therefore easy to bound ‖e− z‖1. This also shows that a basis
with short and almost orthogonal vectors will give better results. In our experi-
ments, we only used Babai’s nearest plane algorithm since it is superior to Babai
rounding.

Several notions of reductions and corresponding algorithms exist such as
LLL [28], BKZ [32] or HKZ [24]. Since the lattice L is fixed for a given class
group, a considerable effort can be spent in reducing the lattice basis during a
precomputation. To analyze the impact of the quality of the basis, we computed
three reductions: BKZ-40, BKZ-50 and HKZ. For each reduced basis, we then
ran Babai nearest plane resulting in Table 1, where the average `1-norm and
standard deviation are given for a sample size of 104 random exponents.

The above table should be compared with the expected `1-norm and standard
deviation of vectors sampled according to the CSIDH distribution, i.e. uniform
random in [−B,B]n. For B = 5 and n = 74, we obtain µ = n2(5 + 4 + 3 + 2 +
1)/11 = 201.81 and σ = 13.76, but note (2B + 1)74 < N/2.2 so less than half of
the class group is covered by CSIDH.

To lower the `1-norm further, we can employ an algorithm due to Doulgerakis,
Laarhoven and de Weger [14] (originally described in [27]). The idea of this
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Table 1. `1-norm and `2-norm of Babai’s nearest plane method and evaluation times
of CSIDH-action on three different bases

BKZ-40 BKZ-50 HKZ

`1-norm
µ = 240.67 µ = 239.35 µ = 237.50
σ = 18.82 σ = 18.35 σ = 18.26

`2-norm
µ = 35.13 µ = 34.93 µ = 34.67
σ = 2.47 σ = 2.43 σ = 2.38

action evaluation time µ = 148.59 µ = 148.41 µ = 147.16
(106 cycles) σ = 12.91 σ = 12.57 σ = 12.46

algorithm is pretty simple: given a list S of short vectors in the lattice L, it tries
to construct a vector that is closer to e than the current vector z by considering
z ± s for all s ∈ S. This procedure is then repeated on small random shifts of
the target vector. The resulting DLW algorithm is described in Algorithm 1.

Algorithm 1 DLW algorithm - randomized slicer for solving CVP

Input: A list S ⊂ L of short vectors, target vector e ∈ Zn, number of iterations M
Output: Approximate closest lattice vector z to e
1: z← 0
2: for i = 0, . . . ,M − 1 do
3: Randomize e with random small lattice vector to obtain e′

4: for s ∈ S do
5: if ‖e′ − s‖1 < ‖e′‖1 then
6: e′ ← e′ − s and restart for loop in line (4)
7: end if
8: end for
9: if ‖e′‖1 < ‖e− z‖1 then

10: z← e− e′

11: end if
12: end for
13: return z

We ran Algorithm 1 for varying sizes of lists of short vectors and varying
number of iterations; the results can be found in Table 2.

Our experiments indicate that (on our setup) the fastest approach is to use
the Babai nearest plane method with 2 iterations of the DLW algorithm, with
a list of 10000 short vectors. In this case, the reduction takes 7.2 · 106 cycles on
average, and evaluating the CSIDH action takes on average 128.1 · 106 cycles. In
comparison, standard CSIDH-512 uses vectors sampled uniformly from [−5, 5]74

(which does not sample uniformly from Cl(O)) and takes on average 117.7 · 106

cycles. Hence, the additional cost of sampling uniformly is only 15%.
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Table 2. `1-norm, `2-norm and evalutation time (reduction + action) of the DLW
algorithm combined with Babai’s nearest plane method on an HKZ basis

List size Iterations `1-norm `2-norm time of reduction + action

1000 1 223.54± 13.29 34.07± 2.45 140.17± 10.32
1000 3 221.38± 11.82 33.79± 2.26 138.02± 10.24
1000 10 216.84± 10.14 33.21± 2.03 137.66± 9.82

3000 1 219.02± 12.02 33.65± 2.34 138.09± 10.25
3000 3 214.96± 10.33 33.03± 2.09 136.78± 9.46
3000 10 208.75± 8.55 32.12± 1.81 136.95± 8.73

10000 1 213.96± 10.92 33.09± 2.30 135.55± 9.53
10000 3 207.97± 9.10 32.08± 1.93 135.41± 8.82
10000 10 201.26± 7.47 31.05± 1.66 144.26± 7.94

5 The signature scheme

In this section we propose CSI-FiSh, an efficient isogeny based signature scheme.
The basis of CSI-FiSh was already sketched by Stolbunov in his thesis [35, 2.B].
He applies the Fiat-Shamir transform [16] to an isogeny based identification
scheme by Couveignes [9] and independently by Stolbunov [34].

E0 E1a?

E

b?
r?

Figure 1. The basic identification scheme for challenge c = 1.

5.1 The basic identification scheme

The identification scheme is illustrated in Figure 1 and works as follows: the
public key of the prover consists of E1 = a ? E0 with a a random element in
Cl(O) and E0 the base curve specified by the system parameters. Assuming that
Cl(O) is cyclic with generator g, we can write a = ga with a random in ZN
and N = #Cl(O). The prover samples a random element b = gb with b ∈R ZN
and commits to the (isomorphism class of the) curve E = gb ? E0 = [b]E0. The
verifier then chooses a random bit c ∈ {0, 1} and sends this to the prover. If
c = 0, the prover responds with r = b, and the verifier checks that E = [r]E0,
if c = 1, the prover responds with r = b− a mod N and the verifier checks that
E = [r]E1. Note that reducing modulo N is required to avoid any leakage on a
and that the check can be written as E = [r]Ec. A detailed description of the
protocol is displayed in Figure 2.
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Prover Verifier

b←R ZN

E ← [b]E0

E−−→
c

$←− {0, 1}

r ← b− c · a mod N

c←−−−−

r−−−−→
return E

?
= [r]Ec

Figure 2. The identification scheme of Couveignes and Stolbunov.

Theorem 4. The Couveignes-Stolbunov protocol (Figure 2) is a complete and
secure Sigma protocol proving knowledge of a solution of a GAIP instance. That
is, it enjoys completeness, special soundness and special Honest-Verifier Zero
Knowledge.

Proof. Completeness. Suppose the protocol is followed honestly, and suppose
E1 = [a]E0. In the case c = 0 the verifier checks if E = [b]E0, which is true by
construction of E. In the case c = 1 the verifier checks if E = [b − a]E1 which
holds because

[b− a]E1 = [b− a][a]E0 = [b]E0 = E .

Special Soundness. Suppose (E, 0, r0) and (E, 1, r1) are two transcripts
that are accepted by the verifier. Then we have

E = [r0]E0 = [r1]E1 ,

from which it follows that [r0−r1]E0 = E1. Hence, it is trivial to extract r0−r1,
which is a solution to the GAIP problem.

Special Honest-Verifier Zero Knowledge. Consider the simulator that,
given a bit c picks a random r ∈ ZN , computes E = [r]Ec and outputs the tran-
script (E, c, r). Then it is clear that the transcripts generated by the simulator
are indistinguishable from transcripts of honest executions of the protocol with
challenge equal to c: both the real transcripts and the simulated transcripts have
uniformly random distributed values of r, and E = [r]Ec. ut

5.2 Optimizing the Sigma protocol

Hashing. To reduce the communication cost (and hence the signature size after
applying the Fiat-Shamir transform) it suffices for the Prover to send H(E)
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rather than E, for some collision resistant hash function H. The verifier then
computes H([r]Ec) and checks that it is equal to the hash value sent by the
prover. If we are doing t rounds of the protocol in parallel to amplify soundness,
it suffices to send a single hash of the concatenation of all the E(i) for i from 1
to t. Clearly the completeness and the Honest-Verifier Zero Knowledge properties
of the scheme are not affected by this change. For special soundness, the collision
resistance of H implies that if

H([r
(1)
1 ]E

c
(1)
1
|| · · · ||[r(t)1 ]E

c
(t)
1

) = H([r
(1)
2 ]E

c
(1)
2
|| · · · ||[r(t)2 ]E

c
(t)
2

)

then [r
(i)
1 ]E

c
(i)
1

= [r
(i)
2 ]E

c
(i)
2

for all i from 1 to t. Hence, if we model H as a

random oracle it is sufficient for H to have output length 2λ, with λ the security
level.

Larger challenge spaces. A well-known approach [11] to lower the soundness
error is to increase the challenge space. To do this we move from the GAIP
problem to the MT-GAIP problem. We now have S − 1 public keys instead of
one, i.e. the public key now consists of the S-tuple (E0, E1 = [a1]E0, . . . , ES−1 =
[aS−1]E0) (note that E0 can be left out, it is just there to illustrate the notation)
and the prover proves to the verifier that he knows an s ∈ ZN such that [s]Ei =
Ej for some pair of curves in the public key (with i 6= j). The prover still chooses
a random exponent b ∈R ZN and computes E(i) = [b]E0. The verifier now sends
a challenge c ∈ [0, S[, and the response consists of r = b − ac mod N . The
verifier then recomputes [r]Ec and verifies that this is equal to E(i). Theorem 4
generalizes to the new identification scheme. In particular, since the challenge
space now contains S elements the soundness error drops to 1/S.

Theorem 5. The adapted identification scheme is a complete and secure Sigma
protocol proving knowledge of a solution of an MT-GAIP instance.

Proof. The proof is completely analogous to the proof of Theorem 4. ut

Doubling the challenge space with twists. To increase the size of the
challenge space even further, we exploit the fact that given a curve E = [a]E0,
its quadratic twist Et (which can be computed very efficiently) is Fp-isomorphic
to [−a]E0 [6]. Therefore, we can almost double the set of public key curves going
from E0, E1, ..., ES−1 to E−S+1, · · · , E0, · · · , ES−1, where E−i = Eti , without
any increase in communication cost. Hence, the soundness error drops to 1

2S−1 .
Theorem 5 still applies, but instead of a reduction from a random MT-GAIP
instance, we now have a reduction from a random MT-GAIP instance subject to
E−i = Eti (we call this twisted MT-GAIP). However, there is a simple reduction
from this problem to MT-GAIP, which shows this optimization does not affect
security.

Theorem 6. Given an adversary A that solves a random instance of twisted
MT-GAIP in time T and with probability ε, there exists an adversary BA that
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solves a random instance of MT-GAIP in time T +O(S) with probability at least
ε/2.

Proof. We describe the adversary BA. Suppose B is given a random MT-GAIP
instance E1, · · · , Ek, then he chooses k random bits b1, · · · , bk and defines curves

Ẽi =

{
Ei if bi = 0

Eti if bi = 1
,

then he sets Ẽ0 = E0 and Ẽ−i = Ẽi
t

for all i in {1, · · · , k}. This is a ran-
dom twisted MT-GAIP instance that B then sends to A. With probability ε, A
responds with (a, i, j) such that i 6= j and Ẽi = [a]Ẽj . Now we consider 2 cases:

◦ i = −j. In this case we have Ẽi = [a]Ẽi
t
, which implies Ẽi = [a/2]E0,

so B outputs ((−1)b|i|a/2, |i|, 0), which is a valid solution to his MT-GAIP
instance (#Cl(O) is known to be odd, so the inverse of 2 always exists).
◦ |i| 6= |j|. In this case we have sign(i)(−1)b|i| = sign(j)(−1)b|j| with prob-

ability 1
2 . In this case we have an equation of the form Ei = [±a]Ej or

Eti = [±a]Etj . Therefore B can output a valid solution to his MT-GAIP
problem (±a, |i|, |j|).

Shorter public keys. The previous section explains how one can improve
the communication cost and the proving and verification time by considering
multiple public key curves Ei = [ai]E0 for i ∈ {1, · · · , S − 1}. The drawback
of this approach is that the public key now consists of S − 1 curves, so its size
blows up as S increases. Note that at most t of these public key curves are
used during each verification (where t is the number of parallel executions of the
protocol to amplify soundness). Therefore, instead of including all the curves
E1, · · · , ES−1 in the public key, the public key can just be a commitment to
those curves. The improvement in total communication cost comes from the fact
that the response of the prover now only has to include the opening of at most
t curves Ec1 , · · · , Ect . If the commitment scheme is binding, then a cheating
prover cannot open the commitment to an incorrect curve, so the security of
the scheme is preserved. We use a Merkle tree construction to implement the
binding commitments, because this allows for the efficient opening of a subset
of the curves.

In particular, suppose for simplicity that S − 1 = 2d and let

hd,i = H(Ei||2d + i||MerkleKey) ,

where MerkleKey ∈ {0, 1}λ is a key which is chosen uniformly at random during
key generation and included in both the secret and public keys. Then we define
each internal node of the Merkle tree as the hash of its children, concatenated
with its position in the tree and the MerkleKey :

hk,i = H(hk+1,2i−1||hk+1,2i||2k + i||MerkleKey) .
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It is an easy exercise to show that if we model H as a random oracle, the root of
the Merkle tree is a binding commitment: An adversary making q queries to the
random oracle has at most probability q+1

2λ
of breaking the binding property. Note

that the MerkleKey is not strictly required to prove soundness, but it prevents
an adversary from attacking multiple public keys at the same time. A similar
approach of reducing the public key size was proposed by [11]. They use the more
complicated and slightly less efficient construction of [19], which is designed to
be provably secure in the standard model. Since the Fiat-Shamir transform relies
on the (Q)ROM anyway, there is no reason to use this approach.

5.3 Signatures

The above identification schemes can be turned into (non-interactive) signature
schemes using the Fiat-Shamir transform [16], where the challenges ci ∈ {−S +
1, · · · , S − 1} are simply obtained by hashing the ephemeral keys E(i) for i =
1, . . . , t together with the message m, i.e. (c1, . . . , ct) = H(E(1)|| . . . ||E(t)||m).
The signature then consists of (r1, . . . , rt, c1, . . . , ct), and the verifier recomputes
the E(i) = [ri]Eci and checks that indeed (c1, . . . , ct) = H(E(1)|| . . . ||E(t)||m).
Figure 3 details the “simple” variant and corresponds to the identification scheme
using multiple public keys. The “Merkle” variant reduces the size of the public
key by using a Merkle tree as described above.

To achieve security level λ, we require t = λ/ log2 S and the resulting sig-
nature size is t(dlog2Ne + dlog2 Se) bits for the simple variant. The “Merkle”
variant needs to include the openings of Merkle paths in the signature, the total
size of these openings depends on the leaves that are opened. For example, in the
extremely unlikely case that all the t challenges are identical only one Merkle
path needs to be opened. Both signing and verification require t CSIDH actions
(including the time to construct a small representant of the ideal).

The results on Fiat-Shamir in the QROM of Don et al. [13] readily apply to
our setting:

Theorem 7. Assume the hash functions used are modeled as quantum random
oracles, then CSI-FiSh is sEUF-CMA secure.

Proof. The basic sigma protocol (without hashing) has special soundness and
unique responses (for each i there exists only one value of ri ∈ ZN such that
[ri]Eci = E(i)). Hence, Theorem 25 of [13] implies that the scheme also has
the Quantum Proof of Knowledge property. The protocol also has more than λ
bits of min entropy and perfect HVZK, so Theorem 22 of [13] implies that the
Fiat-Shamir scheme is sEUF-CMA secure in the QROM.

For the variant with hashing, it is known that Quantum random oracles are
collapsing, so it is immediate that the sigma protocol has quantum computa-
tionally unique responses. Hence, the claim again follows from Theorems 25 and
22 of [13].
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Algorithm 2 KeyGen

Input: E0, class number N = #Cl(O)
Output: sk,pk
1: for i ∈ {1, · · · , S − 1} do
2: ai ←R ZN

3: Ei = [ai]E0

4: end for
5: pk = [Ei : i ∈ {1, · · · , S − 1}]
6: return (sk = a,pk)

Algorithm 3 Sign

Input: msg, sk = a
Output: σ = (r1, . . . , rt, c1, . . . , ct)
1: a0 ← 0
2: for i = 1, . . . , t do
3: bi ←R ZN , E(i) = [bi]E0

4: end for
5: (c1, . . . , ct) = H(E(1)|| . . . ||E(t)||m)
6: for i = 1, . . . , t do
7: ri = bi − sign(ci)a|ci| mod N
8: end for
9: return σ = (r1, . . . , rt, c1, . . . , ct)

Algorithm 4 Verify

Input: msg, E0,pk = [Ei : i ∈ {1, · · · , S − 1}], σ
Output: Valid / invalid
1: Parse σ as (r1, . . . , rt, c1, . . . , ct)
2: Define E−i = Et

i for all i ∈ {1, · · · , S − 1}.
3: for i = 1, . . . , t do
4: E(i) = [ri]Eci

5: end for
6: (c′1, . . . , c

′
t) = H(E(1)|| . . . ||E(t)||m)

7: if (c1, . . . , ct) == (c′1, . . . , c
′
t) then

8: return Valid
9: else

10: return Invalid
11: end if

Figure 3. The “simple” variant of the CSI-FiSh signature scheme.
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6 Implementation results

6.1 Parameter choices

Slow hash functions Because the QROM security proof is very non-tight
it would not be practical to choose parameters in such a way that security is
guaranteed by the proof. Instead, as is customary, we assume that the probablity
of a successful attack is at most Q×E, where Q is the number of hash function
evaluations that an attacker makes, and E is the soundness error of the zero
knowledge proof. So usually one would choose the parameters S and t such that
S−t ≤ 2−λ. In our implementation we choose a hash function that is a factor 2k

slower than a standard hash function (e.g. SHA-3), therefore it suffices to take
our parameters such that S−t ≤ 2−λ+k. We pick k in such a way that the time
spent evaluating the slow hash function is small compared to the total signing
and verification time. Since we can take smaller parameters this optimization
slightly reduces both the signature size and the signing and verification time.

Proposed parameter sets We have implemented several parameter sets for
both the “simple” variant and the “Merkle” variant. For the simple variant the
secret key is always small and the variable S controls a trade-off between on the
one hand small public keys and fast key generation (when S is small), and on the
other hand small signatures and fast signing and verification (when S is large).
When we use the “Merkle” variant the public key is always small, but the secret
key size increases with increasing value of S, because we store the entire Merkle
tree to avoid having to recompute the public keys during signing.

Table 3. Parameter choices and benchmark results for the “simple” variant of CSI-
FiSh .

S t k |sk| |pk| |sig| KeyGen Sign Verify

21 56 16 16 B 128 B 1880 B 100 ms 2.92 s 2.92 s
22 38 14 16 B 256 B 1286 B 200 ms 1.98 s 1.97 s
23 28 16 16 B 512 B 956 B 400 ms 1.48 s 1.48 s
24 23 13 16 B 1 KB 791 B 810 ms 1.20 s 1.19 s
26 16 16 16 B 4 KB 560 B 3.3 s 862 ms 859 ms
28 13 11 16 B 16 KB 461 B 13 s 671 ms 670 ms

210 11 7 16 B 64 KB 395 B 52 s 569 ms 567 ms
212 9 11 16 B 256 KB 329 B 3.5 m 471 ms 469 ms
215 7 16 16 B 2 MB 263 B 28 m 395 ms 393 ms

6.2 Implementation details and Benchmarking results

Our proof-of-concept implementation is available on GitHub [2]. To evaluate the
CSIDH action, we use the 20180826 version of the proof-of-concept implementa-
tion by Castryck et al. [6]. Our implementation depends on the eXtended Keccak
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Table 4. Parameter choices and benchmark results for the “Merkle” variant of CSI-
FiSh .

S t k |sk| |pk| |sig| KeyGen Sign Verify

28 13 11 8 KB 32 B 1995 B 13 s 671 ms 371 ms
210 11 7 32 KB 32 B 2086 B 52 s 567 ms 567 ms
212 9 11 128 KB 32 B 2022 B 3.5 m 467 ms 467 ms
215 7 16 1 MB 32 B 1953 B 28 m 399 ms 402 ms
218 6 14 8 MB 32 B 1990 B 3.8 h 335 ms 326 ms

Code Package for the implementation of SHAKE256, which we have used as hash
function, commitment scheme and to expand randomness. The implementation
of the Babai nearest plane step depends on the GMP library for its high preci-
sion arithmetic. Since we rely on the implementation of Castryck et al. [6], the
implementation is not constant-time. Implementing an optimized constant-time
implementation of CSI-FiSh is outside the scope of this paper and is left for
future work.

All our benchmarking experiments are performed on a Dell OptiPlex 3050
machine with Intel Core i5-7500T CPU @ 2.70GHz. The benchmarking results
are displayed in Tables 3 and 4.

Remark 8. Like most discrete logarithm based signature schemes, it is possible
to precompute the ephemeral keys in CSI-FiSh, i.e. all CSIDH actions can be
computed offline, and the online phase then only consists of t modular subtrac-
tions, which are extremely fast.

7 Conclusions and open problems

We computed the class group of the imaginary quadratic field that is at the heart
of the CSIDH-512 cryptosystem, and exploited the knowledge of the relation
lattice to instantiate the first efficient isogeny based signature scheme called
CSI-FiSh. The scheme is flexible in that it allows trade-offs between signature
sizes, key sizes and the time to sign/verify. One parameter set of CSI-FiSh gives
the smallest combined size of public key and signature, compared to any other
existing post-quantum secure signature scheme at the 128-bit security level.

Should the CSIDH-512 parameters turn out to be insufficiently secure, then
the class group computation in this paper can be repeated for a larger prime.
Even though the computation for the CSIDH-512 parameters already broke pre-
vious records, the effort of 52 core years is relatively small compared to other
record computations such as for factoring and DLP, which often take thousands
of core years. Our computation took less than a month with the resources avail-
able to us. Hence, there is still quite some room to compute class groups for
increased parameters. Moreover, the class group can be computed in quantum
polynomial time. Hence, it seems likely that quantum computers that can com-
pute large class groups will be available well before there are quantum computers
that can break CSIDH-512.
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The main open problem, given that the class group is cyclic of order N , is to
devise an identification scheme where the challenge is taken from ZN , instead of
binary or from the small set ]−S, S[. Note that the prover can simply mimick the
discrete logarithm based constructions since he can now work in the ring ZN , and
thus can create the typical response expressing a combination of the ephemeral
key, secret key and challenge. The major problem however is how the verifier
can verify this combination to be correct, since the group action still only allows
to add a known constant in ZN . The impact of such an identification scheme
would be major: the signature size could possibly be as small as 64 bytes, the
public key also 64 bytes and signing would require only one CSIDH action taking
around 40ms.
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