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Abstract. The ISO standardisation of ‘Testing methods for the mit-
igation of non-invasive attack classes against cryptographic modules’
(ISO/IEC 17825:2016) specifies the use of the Test Vector Leakage As-
sessment (TVLA) framework as the sole measure to assess whether or
not an implementation of (symmetric) cryptography is vulnerable to dif-
ferential side-channel attacks. It is the only publicly available standard
of this kind, and the first side-channel assessment regime to exclusively
rely on a TVLA instantiation.
TVLA essentially specifies statistical leakage detection tests with the aim
of removing the burden of having to test against an ever increasing num-
ber of attack vectors. It offers the tantalising prospect of ‘conformance
testing’: if a device passes TVLA, then, one is led to hope, the device
would be secure against all (first-order) differential side-channel attacks.
In this paper we provide a statistical assessment of the specific instanti-
ation of TVLA in this standard. This task leads us to inquire whether
(or not) it is possible to assess the side-channel security of a device via
leakage detection (TVLA) only. We find a number of grave issues in the
standard and its adaptation of the original TVLA guidelines. We propose
some innovations on existing methodologies and finish by giving recom-
mendations for best practice and the responsible reporting of outcomes.

Keywords: side-channel analysis, leakage detection, security certifica-
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1 Introduction

In the late 1990s, Kocher et al. [23] raised awareness of the fact that ‘provably
secure’ cryptography is potentially vulnerable to attacks exploiting auxiliary
information not accounted for in traditional security models (e.g. power con-
sumption or other measureable characteristics of devices in operation). Since
then, designers and certification bodies have been increasingly concerned with
ensuring and evaluating the physical security of cryptographic implementations.
Adapting theoretical security models to incorporate the full range of realistic
physical threats is difficult (likely infeasible) [36], so that it is typically consid-
ered necessary to subject actual products to experimental testing in a laboratory
setting.



The approach taken by testing regimes within the context of Common Crite-
ria (CC) or EMVCo evaluations is to test ‘all’ of the most effective known attacks
developed in the side-channel literature to date (the JHAS group decides on the
strategies to be considered). But the growing number of such attacks and the
difficulty of determining a priori which are the most pertinent to a particular
scenario (see e.g. [9,35]) makes this unsustainable. An alternative option could
be to rely on leakage detection testing along the lines of the Test Vector Leakage
Assessment (TVLA) framework first proposed by Cryptography Research, Inc.
(now Rambus) [17].

Rather than aim at the successful extraction of sensitive information from
side-channel measurements, as an attack-based evaluation would do, leakage de-
tection simply seeks evidence (or convincing lack of evidence) of sensitive data
dependencies in the measured traces. TVLA does this via a suite of Welch’s
t-tests targeting mean differences in carefully chosen partitions of trace mea-
surements. For example, the fixed-versus-random test looks for a statistically
significant difference between a trace set associated with a fixed plaintext input
and another trace set associated with randomly varying inputs. Alternatively,
the leakage associated with a specific intermediate value (such as an S-box out-
put) can be targeted by comparing a trace set that has been partitioned into
two according to the value of that bit or byte. Both the ‘specific’ and the ‘non-
specific’ type tests are univariate and are performed on each point in a trace
set separately in order to draw conclusions about the overall vulnerability of the
implementation. So-called ‘higher order’ tests exist to target leakage, more com-
plex in its functional form, that does not present via differences in the mean but
can be found in higher order (joint) statistical moments; these typically entail
pre-processing the traces before performing the same univariate point-wise test
procedures [32].

TVLA is the most well-established and widely-adopted suite of leakage de-
tection tests despite the lack of a comprehensive analysis of its performance.
Significantly, the ISO standard ISO/IEC 17825:2016 (‘Testing methods for the
mitigation of non-invasive attack classes against cryptographic modules’; we will
refer to it as ISO 17825) [20] specifies TVLA (in its full first-order form, as we
describe in Section 2) as the sole required measure for testing against differen-
tial side-channel attacks on symmetric key cryptosystems3. ISO 17825 ties in
with ISO 19790, which is the intended replacement/revision of FIPS 140-24 (the
main evaluation scheme in the US). ISO 19790 specifies the much broader goals
of a security evaluation, and ISO 17825 focuses on susceptibility to non-invasive
attacks for devices aiming for security level 3 or 4.

3 Other detection methodologies exist outside of the TVLA framework (including ap-
proaches based on mutual information [6,7,25], correlation [13] and the F -statistic
[3] – all variants on statistical hypothesis tests, with differing degrees of formalism).
These other tests and ‘higher order’ tests are not part of ISO 17825 and therefore
outside the scope of this submission

4 https://csrc.nist.gov/Projects/cryptographic-module-validation-program/

Standards
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Within the cryptographic community, publicly available standards are a key
mechanism to ensure the widespread adoption of good practice, and we would
argue that the same should hold in the area of security evaluations. Yet this is
sadly not the case: high-security evaluations according to (e.g.) CC, or EMVCo,
do not release the list of threats that JHAS has agreed are relevant for evaluation.
Thus ISO 17825 is the only publicly available standard that covers side channel
evaluations. As such it is positioned to become the standard methodology for
side-channel testing outside the existing smart card market (which is dominated
by CC and EMVCo). Much is therefore at stake from a commercial as well as
an academic perspective when we come to consider how good ISO 17825/TVLA
is at the task for which it was designed (conformance testing in the context of
side-channel leakage).

We begin this submission by considering the goal(s) of leakage detection in
the context of external evaluations generally, followed by some background on
TVLA in particular and the relevant ISO standards (see Section 2). We introduce
statistical power analysis5 in Section 3 and, in Sections 4 and 5 use these tools
to examine the false positive and false negative error rates implied by the stan-
dard recommendations, with appropriate consideration for the fact that multiple
tests are performed as part of a single evaluation. We also introduce the notion
of coverage, inspired by that of code coverage in software testing, and use this
to comment on how thoroughly the recommendations take account of realistic
threats. We explore some alternative approaches in Section 6 and conclude with
some recommendations for best practice in Section 7. Our analysis is enabled
by adapting a novel method for complex statistical power simulations by Porter
[27], as well as deriving real-world effect sizes from some actual devices. Inter-
ested readers can find more details about statistical power analysis for leakage
detection, including in relation to the subtly different goals of in-house evalua-
tion, in our companion paper A Cautionary Note Regarding the Usage of Leakage
Detection Tests in Security Evaluation [42].

2 Background: Leakage Detection in a Security
Evaluation

Leakage detection is often carried out as part of an exercise to evaluate the
security of a cryptographic device. It might be performed by an evaluation labo-
ratory in order to provide security certification when the device goes on sale, or
it might be an in-house effort during the development process to highlight and
fix potential problems prior to formal external evaluation. We address both sce-
narios in [42], while here we focus on the context of external evaluations, where
there are two potential end results aimed at by a detection test:

Certifying vulnerability: Find a leak in at least one trace point. In such a
case it is important to control the number of false positives (that is, con-
cluding there is a leak where there isn’t one).

5 ‘Power,’ as we will explain later in the paper, is a statistical concept and should not
be confused with the ‘P’ of DPA which refers to power consumption.
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Certifying security: Find no leaks having tested thoroughly. Here false neg-
atives (failure to find leaks that are really there) become a concern.

As we will see, the statistical methods used for leakage detection cannot
‘prove’ that there is no effect, they can at best conclude that there is evidence
of a leak or that there is no evidence of a leak. Hence it is especially important
to design tests with ‘statistical power’ in mind – that is, to make sure the
sample size is large enough to detect a present effect of a certain size with rea-
sonable probability (see Section 3). Then, in the event that no leak is discovered,
these constructed features of the test form the basis of a reasoned interpreta-
tion. A further, considerable challenge implicit to this goal is the necessity to
be convincingly exhaustive in the range of tests performed – that is, to target
‘all possible’ intermediates and all relevant higher-order combinations of points.
(This suggests analogues with the idea of coverage in code testing, which we
discuss in Section 5.1).

2.1 TVLA and its Adoption Within Standards

The TVLA framework was presented by researchers from Cryptography Re-
search Inc. (now Rambus) at the 2011 Non-Invasive Attack Testing workshop
organised by NIST [17]. It describes a series of statistical hypothesis tests to
reject (or not) the null of ‘no sensitive information leakage’ against various al-
ternative hypotheses designed to capture a large range of possible leakage forms
and sources. In summary form (see the paper for full details) the procedure is
follows:

– An acquisition of size n is taken as the device operates with a fixed key on a
fixed plaintext chosen to induce certain values in one of the middle rounds.
It is then divided into two disjoint sets FIXED1 and FIXED2, each of size
n/2.

– An acquisition of size 2n is taken as the device operates with the same fixed
key on random inputs. It is then divided into two disjoint sets RANDOM1
and RANDOM2, each of size n.

– Welch’s t-tests [41] are performed, with an (implied, for large samples) sig-
nificance level of α ≈ 0.00001, comparing the population means of:
• The fixed-plaintext traces FIXED1 with the random-plaintext traces

RANDOM1.
• The RANDOM1 traces such that a target intermediate takes a certain

value, versus the remainder of the RANDOM1 traces, for the following
targets: each bit of the XOR between round R input and output; each
bit of the Rth round SubBytes output; each bit of the round R output;
each byte of the round R output (repeated for all possible values in a
one-versus-all manner).

– The above is repeated identically for trace sets FIXED2, RANDOM2. The
module is considered to fail the overall test if any pair of repeated individual
tests both conclude that there is a statistically significant difference (in the
same direction) at any trace index.
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The TVLA specification provides no discussion of the statistical power of this
procedure, nor does it explicitly discuss the chosen parameters, nor whether the
multiple comparisons problem was accounted for in the design.

2.2 ISO Standards for Physical Security

ISO/IEC 19790 [21] specifies four increasingly rigorous security levels and the
criteria for achieving them. Levels 3 and 4 require (among other things) that
the modules mitigate successfully (to a specified degree) against non-invasive
physical attacks including simple power analysis (SPA) and differential power
analysis (DPA).

ISO/IEC 17825:2016 [20] specifies the tests that the modules must undergo
and the different parameters (sample size, laboratory time, pass/fail criteria) for
running the tests according to each security level.

Under this latter standard, the DPA resilience of symmetric key cryptosys-
tems is essentially determined by performing the full suite of first-order TVLA
tests as detailed above, with the following main differences:

– Fixed plaintexts are required to have the same special characteristics as the
particular values specified by Goodwill et al., but the method of choosing
suitable candidates is left up to the analyst.

– The specified risk of false positives (a.k.a. the significance level, typically
denoted α) is 0.05, which is considerably higher than the level of 0.00001
implied by Goodwill et al.’s t-value threshold of 4.5.

Security levels 3 and 4 are separated by the resources available to perform
the analysis, and the degree of data pre-processing, as per Tab. 1. These criteria
seem to be directly inherited from FIPS 140-2, which originally was based on
attacks (like CC and EMVCo evaluations).

Level 3 Level 4

Maximum acquisition time per test (hours) 6 24
Maximum overall acquisition time (hours) 72 288
Sample size 10,000 100,000
Synchronisation signal available Yes Yes

Noise reduction
Averaging Spectrum
(over 10) analysis

Static alignment attempted No Yes
Dynamic alignment attempted No Yes?

Table 1. Configuration of the tests to attain security levels 3 and 4. (Note that the
overall acquisition time includes tests not related to DPA vulnerability).

The standard leaves ambiguous whether the sample size specifications ap-
ply per acquisition or for both fixed and random trace sets combined; similarly
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whether they are intended per repetition or for both the first and the confir-
matory analysis combined. We have assumed fixed and random are counted
separately and the two repetitions are counted jointly, so that there are 10,000
or 100,000 each of the fixed input and random input traces, split across the two
‘independent’ evaluations.

The remaining questions of interest are then how well TVLA, when applied
as specified in ISO 17825, succeeds in the goals of certifying vulnerability and/or
certifying security – and whether or not (and how) the recommendations could
be adapted to do so more effectively. To address these questions we first introduce
statistical power analysis, which will give us the tools to analyse (and potentially
improve) the theoretical properties of the tests.

3 Statistical Power Analysis for Leakage Detection Tests

It is impossible to eliminate errors in statistical hypothesis testing; the aim is
rather to understand and minimise them. The decision to reject a null hypothesis
when it is in fact true is called a Type I error, a.k.a. ‘false positive’ (e.g. finding
leakage when in fact there is none). The acceptable rate of false positives is
explicitly set by the analyst at a significance level α. A Type II error, a.k.a. ‘false
negative’ is a failure to reject the null when it is in fact false (e.g. failing to find
leakage when in reality there is some). The Type II error rate of an hypothesis
test is denoted β and the power of the test is 1− β, that is, the probability of
correctly rejecting a false null in favour of a true alternative. The two errors can
be traded-off against one another, and mitigated (but not eliminated) by:

– Increasing the sample size N , intuitively resulting in more evidence from
which to draw a conclusion.

– Increasing the minimum effect size of interest ζ, which in our case implies
increasing the magnitude of leakage that one would be willing to dismiss as
‘negligible’.

– Choosing a different statistical test that is more efficient with respect to the
sample size.

For a given test (i.e. leaving aside the latter option) the techniques of statis-
tical power analysis are concerned with the mutually determined relationship
between α, 1 − β, ζ and N . For the simple case of a t-test with equal sample
sizes and population variances σ1 and σ2

6, the following formula can be derived
(see Appendix A):

N = 2 ·
(zα/2 + zβ)2 · (σ12 + σ2

2)

ζ2
(1)

where ζ = µ1 − µ2 is the true difference in means between the two populations
(this relationship can be found in any standard statistics textbook). Note that

6 We consider these conditions to approximately hold in the case of most of the ISO
standard tests, where the partitions are determined by uniformly distributed inter-
mediates.
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Eq. (1) can be straightforwardly rearranged to alternatively compute any of the
significance level, effect size or power in terms of the other three quantities.

3.1 Configuring Tests via an A Priori Power Analysis

Ideally, a power analysis is performed before a leakage evaluation takes place
as an aid to experimental design; this is known as a priori power analysis and
can help to ensure (e.g.) the collection of a large enough sample to detect data-
dependencies of the expected magnitude with the desired probability of success
[25]. Power analysis can be performed after data collection in order to make
statements about the power to detect a particular effect size of interest, or the
minimum effect size that the test would be able to detect with a certain power.
This can be useful when it comes to responsibly interpreting the non-rejection of
a null hypothesis. However, it is crucial that the effect sizes are chosen indepen-
dently of the test, based on external criteria, as it has been shown that attempts
to estimate ‘true’ effect sizes from the test data produce circular reasoning. In
fact, there is a direct correspondence between the p-value and the power to de-
tect the observed effect, so that ‘post hoc power analysis’ merely re-expresses
the information contained already in the test outcome [18].

Also needed in order to perform statistical power analysis are the population
standard deviations of the partitioned samples, which may or may not be the
same. These are usually assumed to have been obtained from previous exper-
iments and/or already-published results, which can be especially tricky when
approaching a new target for evaluation.

3.2 Effect Size

This requirement for information about the data sample which cannot be esti-
mated from the data sample is the main obstacle to statistical power analysis.
The choice of effect sizes for the computations can be guided by previous exper-
iments (e.g., in our case, leakage evaluation on a similar device with a similar
measurement set up) or (ideally) by some rationale about the practical implica-
tions of a given magnitude (e.g. in terms of loss of security). Note that we always
eventually need some rationale of this latter type: what is ultimately of interest
is not just whether we are able to detect effects but whether the effects that we
detect are of practical concern. With a large enough sample we will always be
able to find ‘arbitrarily small’ differences; the question then remains, at what
threshold do they become ‘arbitrary’?

It is convenient (and bypasses some of the reliance on prior information)
to express effect sizes in standardised form. Cohen’s d is defined as the mean
difference divided by the pooled standard deviation of two samples of (univariate)
random variables A and B:

d =
a− b√

(nA−1)s2A+(nB−1)s2B
nA+nB−2
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where a, b are the sample means, s2A, s2B are the sample variances and nA, nB
are the sample sizes. Notice that this is essentially a measure of signal-to-noise
ratio (SNR), closely related to (and therefore tracking) the various notions that
already appear in the side-channel literature. The formula for the sample size
required for the t-test can be expressed in terms of the standardised effect size
as follows:

N = 4 ·
(zα/2 + zβ)2

d2
(2)

Cohen [8] proposed that effects of 0.2 or less should be considered ‘small’,
effects around 0.5 are ‘medium’, and effects of 0.8 or more are ‘large’. Sawilowsky
[30] expanded the list to incorporate ‘very small’ effects of 0.01 or less, and ‘very
large’ and ‘huge’ effects of over 1.2 or 2.0 respectively. The relative cheapness
of sampling leakage traces (and subsequent large sample sizes) compared with
studies in other fields (such as medicine, psychology and econometrics), as well
as the high security stakes of side-channel analysis, make ‘very small’ effects of
more interest than they typically are in other statistical applications.

Focusing on standardised effects helps to put the analysis on a like-for-like
footing for all implementations, but it doesn’t remove the need for specific knowl-
edge about a device in order for meaningful interpretation.

3.3 The Impact of Multiple Testing

Statistical hypothesis testing is generally introduced under the implicit assump-
tion that a single null/alternative pair is up for consideration. Unfortunately,
controlling error rates becomes even more complicated when multiple tests are
performed as part of the same experiment. Without appropriate modifications,
test conclusions are no longer formally supported. This is because, if each test
has (by design) a probability α of falsely rejecting the null hypothesis, then the
probability of rejecting at least one true null hypothesis across all m tests (that
is, the overall false positive rate as opposed to the per-test rate) might be as
high as αoverall = 1− (1−αper-test)

m if those tests are independent. (Otherwise,
the rate will be lower but will depend on the form of the dependencies).

Multiplicity Corrections In the statistics literature there are two main ap-
proaches to correcting for multiple tests: controlling the family-wise error rate
(FWER) and controlling the false discovery rate (FDR). Both of these were
discussed and evaluated in the context of leakage detection by Mather et al.
[25].

FWER-based methods work by adjusting the per-test significance criteria in
such a way that the overall rate of Type I errors is no greater than the desired
α level. For example:

– Bonferroni correction [12]: per-test significance level obtained by dividing the
desired overall significance level by the number of tests m, i.e. αper-test = α

m .
Controls the FWER for the ‘worst case’ scenario that the tests are indepen-
dent, and is conservative otherwise.
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– Šidák correction [40]: explicitly assumes independence, and that all null hy-

potheses are false, and sets αper-test = 1 − (1 − α)
1
m . These assumptions

potentially gain power but are unlikely to suit a leakage evaluation setting.
– Holm adjustment [19]: a ‘step up’ procedure; tests are ordered according to
p-value (smallest to largest), and criteria set such that αi = α

m−i+1 for the

ith test.

It should be clear that any such downward adjustment to the per-test Type
I error rates (i.e. in order to prevent concluding that there is a leak when there
isn’t) inevitably increases the rate of Type II errors (the probability of missing
a leak which is present). Erring on the “safe side” with respect to the former
criterion may not be at all “safe” in terms of the cost to the latter. The relative
undesirability of the two error types depends heavily on the application and
must be carefully considered.

FDR-based methods take a slightly different approach which is more relaxed
with respect to Type I errors and subsequently less prone to Type II errors.
Rather than minimise the probability of any false positives they instead seek to
bound the proportion of total ‘discoveries’ (i.e. rejected nulls) which are false
positives. The main FDR-controlling method, and the one that we will consider
in the following, is the Benjamini–Hochberg procedure, which (like the Holm
correction) operates in a ‘step up’ manner as follows:

1. For the ordered (small to large) p-values p(1), . . . , p(m), find the largest k

such that p(k) ≤ k
mα.

2. Reject the null hypothesis for all tests i = 1, . . . , k.

A recent proposal in the side-channel literature [11] takes an alternative third
way, using methods developed for the purpose of performing a meta-analysis
based on multiple independent studies: the decision to collectively reject or not
reject a set of null hypotheses is based on the distribution of the p-values. (We
do not analyse this method in the following due to its heavy reliance on the
independence assumption).

In addition to the inevitable loss of power associated with all of the above
adjustments, a substantial obstacle to their use is the difficulty of analysing
(and controlling) the power, which is essential if we want to draw meaningful
and comparable conclusions from test outcomes. In cases where a single per-test
significance level αper-test is derived (e.g. Bonferroni and Šidák), this can simply
be substituted into the power analysis formulae to gain the per-test power. How-
ever, consensus is lacking when it comes to performing equivalent computations
for FDR-controlling procedures (compare, e.g., [4,14,24,28,39]; in Section 6 we
adopt an approach by Porter that operates by simulating test statistics but is
constrained to fully specified test scenarios [27]). Moreover, depending on the
over-arching goal of the analysis, per-test power may not even be the relevant
quantity to consider, as we next discuss.

Different Notions of Power Just as multiple tests raise the notion of an
‘overall’ Type I error rate which is not equal to the per-test error rate, so it is
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worth giving thought to the ‘overall’ Type II error and what precisely we mean
by that. We have seen above that multiplicity corrections reduce the per-test
power – the probability of detecting a true effect wherever one exists. Porter
[27] describes this as ‘individual’ power, and contrasts it with the notion of ‘r-
minimal’ power7 – the probability of detecting at least r true effects. We propose
that the 1-minimal power is the relevant notion in the context of certifying
vulnerability/security, since a single detected leak is sufficient to fail a device.

The probability of detecting all true effects (as might be the goal of an
in-house development-time evaluation) is known as the ‘complete power’. The r-
minimal power is naturally greater than or equal to this quantity. In particular,
the 1-minimal power can actually be higher in a multiple testing scenario than
in a single test – as long as the true number of false positives is greater than 1,
each such test represents an additional opportunity to find an effect.

4 ISO 17825 for Certifying Vulnerability

In this section we examine how reliable ISO 17825 is for certifying vulnerability –
demonstrating a sensitive dependency in the trace measurements. Since a single
significant test outcome is sufficient to fail the device, it is crucial that the
probability of a false positive be kept very low.

Under the standard, the per-test rate is controlled at αper-test = 0.05 (see
Subsection 11.1), and no adjustment is made for the fact that each test is per-
formed against multiple (potentially thousands of) trace points. However, any
discovered vulnerability is required to be confirmed by a second test on a sepa-
rate, identically acquired dataset. In either one of the two sets of tests we would
expect that (on average, under the assumption of independence) 5 in every hun-
dred true null hypotheses will be falsely rejected, so that for long traces the
overall probability of a false detection becomes almost one. The probability of
both sets of tests producing a false positive is (1 − (1 − αper-test)

m)2; the prob-
ability of this happening such that the sign of both the effects is the same is
(1 − (1 − αper-test)

m) × (1 − (1 − αper-test/2)m) (the product of an error of any
direction in the first test and an error of fixed direction in the second; see the red
lines in Fig. 1). However, the probability of observing two false positives (of the

same sign) in the same position is αrepeat = 1 −
(

1− α2
per-test

2

)m
, which grows

much slower as m increases (see the yellow lines in Figure 1). Still, under the
standard-recommended significance criterion of αper-test = 0.05, the probability
of at least one coinciding detection is over a half once the length of the trace
reaches 600. By contrast, under the original TVLA recommendations (which
imply αper-test ≈ 0.00001), the probability of a coinciding detection is close to
zero even for traces that are millions of points long. (Only once the number of
points is on the order of 1010 do coinciding false detections become non-negligibly
probable).

7 Porter uses the terminology d-minimal; we use r instead of d to avoid confusion with
Cohen’s d.
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The standard fails to provide adequate assurance that detected vulnerabilities
are real unless leakage traces are extremely short. Either a stricter per-test sig-
nificance criterion (combined with the repetition step) or an established method
to control the FWER (see the purple lines in Figure 1) would be preferable for
this purpose.

The probability of a false detection under an FDR-controlling procedure de-
pends on the density of true leaks within the trace and is less easy to state in
advance in this way; note however that such methods do not claim to avoid
false detections altogether, rather to ensure that they are few relative to the
number of true effects identified. We provide some analysis in Section 6, essen-
tially confirming that they are ill-suited to the goal of certifying vulnerability,
where a single false positive is enough to fail a device altogether according to
the standard.

The question of how best to handle multiple comparisons depends not just
on the ability of each option to avoid false positives but on the power of each to
detect true positives (i.e. their ability to avoid false negatives). We address this
within the next section, as we turn our attention to the standard’s capabilities
when it comes to certifying security.

5 ISO 17825 for Certifying Security

We have argued so far that the discovery of a leak when the standard recommen-
dations are followed does not reliably certify vulnerability, due to the high risk
of a false positive. We now ask the complementary question: what, if anything,
can be concluded if a leak is not detected? Can non-discovery be interpreted to
‘certify security’?

This question is best separated into two: have all realistic vulnerabilities been
tested for? and can we trust the conclusions of all the tests that were performed?
The first of these is the simpler to answer.

5.1 Have All Realistic Vulnerabilities Been Tested For?

In code testing, the extent to which everything that could be tested has been
tested is referred to as ‘coverage’ [26]. Typical metrics in this setting include
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Fig. 1. Overall probability of a false positive as the length of the trace increases, for
two different per-test significance levels.
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code coverage (have all lines of code been touched by the test procedure?),
function coverage (has each function been reached?), and branch coverage (have
all branches been executed?) [1]. In a hardware setting one might alternatively
(or additionally) test for toggle coverage (have all binary nodes in the circuit
been switched?) [37]. These examples all assume white-box access to the source
code; in black-box testing scenarios, coverage might alternatively be defined in
functional terms.

We suggest that the concept of coverage is a useful one for thinking about
the (in)adequacy of a side-channel evaluation. The types of questions we might
consider include:

– Have all possible intermediates been tested?
– Have all possible leakage forms been taken into account? For example, some

circuits might leak in function of the intermediate values; some in function of
the transitions between certain intermediates; some in combination of both.
Differences might present in distribution means or more subtly, such as in
higher order moments (e.g. in the presence of countermeasures).

– Have all possible locations in the trace been tested (with each intermediate
and leakage form in mind)? This includes all relevant tuples of trace points in
the case where higher order leakage of protected intermediates is of concern.

– What proportion of the input space has been sampled? Some key/input
combinations might be more ‘leaky’ than others; with a total possible input
space of, e.g. (in the case of AES-128) 2128×2128 = 2256 (key, plaintext) pairs,
it is unavoidable that one can only test a tiny fraction, and we are typically
obliged to rely on simplifying assumptions (e.g. ‘Equal Images under different
Subkeys (EIS)’ [31]) in order to interpret outcomes as representative.

– Have all possible side-channels been tested?! With most of the literature
typically focused on power (and sometimes EM radiation [16,29]) it is easy
to forget that other potentially exploitable characteristics (timing [22], tem-
perature [5], light [15,34] and sound [2,33] emissions) can also be observed.

It should be clear from the description in Section 2.2 that the coverage of ISO
17825 is quite limited. It considers first-order univariate leakages only, relies on
one fixed key and (in the case of the fixed-versus-random tests) one fixed input
to be representative of the entire sample space, and is confined to a small number
of target values (although the fixed-versus-random tests do aim at non-specific
leakages). Moreover, by relying solely on the t-test the evaluations are only able
to discover differences that exhibit in the means of the partitioned populations
– more general distributional differences (such as those produced by masking in
parallel) will remain completely undetected.

5.2 How Reliably do the Performed Tests Find Leakage?

Formally, a statistical hypothesis test either rejects the null hypothesis in favour
of the alternative, or it ‘fails to reject’ the null hypothesis. It does not ‘prove’ nor
even ‘accept’ the null hypothesis. Moreover, it does this with a certain probability
of error.
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Whilst the Type I error rate α is provided by the standard (albeit chosen
badly), the Type II error rate (denoted β) – i.e. concluding that there is no leak
when there is – is opaque to the evaluator without further effort. If this rate is
very high (equivalently, we say that the ‘statistical power’ 1−β is low) then the
failure of the test to detect leakage really doesn’t mean very much at all.

So, if a test fails to reject the null of ‘no leakage’ in the context of an evalua-
tion, we must be able to say something about its power. The ability of a device
to withstand a well-designed test which is known to be powerful indicates far
more about its security than its ability to withstand an ad-hoc test which may or
may not be suitable for purpose. In addition, the more the statistical properties
of the applied methodologies are known and managed, the easier it becomes to
compare evaluations across different targets and measurement set-ups, and to
establish criteria for fairness. We therefore turn to the tools of statistical power
analysis.

Recall from Section 3 that the power of a test depends on the sample size,
the standardised effect size of interest (alternatively, the raw effect size and the
variance of the data), and the significance criteria (the pre-chosen rate of Type
I errors). The standard specifies sample sizes of 10,000 and 100,000 for each of
the security levels 3 and 4 respectively, and an (unadjusted) per-test significance
criteria of αper-test = 0.05. The actual effect size (if an effect exists) is necessarily
unknown (if it was known the evaluator wouldn’t need to test for its existence)
and depends on the target implementation even if a perfect measurement set-up
were available. But we can answer the following:

– What is the power of the tests (as specified) to detect the standardised effects
as categorised by Cohen and Sawilowsky?

– What effect sizes can the tests (as specified) detect for a given power (for
example, if the analyst wishes to balance the rates of the two types of error)?

– What effect sizes have been observed in practice, and would the current
specifications need to be revised in order to detect these?

Power of a Single Test The LHS of Tab. 2 shows that, of the standard-
ised effects as categorised by Cohen and Sawilowsky, all but the ‘very small’
are detected with high probability under the sample size criteria defined by
the standard. Meanwhile, level 3 and 4 criteria are both inadequate to detect
standardised effects of 0.01. (Remember though that a single test essentially
corresponds to a leakage trace of unrealistic length 1).

The RHS of the table shows the effect sizes that are detectable; for example,
an analyst who wishes to control Type II errors at the same rate as Type I errors
(β = α = 0.05) is able to detect effects of size 0.072 under the level 3 criteria and
0.023 under the level 4 criteria. By comparison, the minimum detectable effect
sizes for balanced error rates are more than doubled under the original TVLA
significance criterion (which approximates to α = 0.00001): 0.174 with a sample
size of 10,000 and 0.055 with a sample size of 100,000. (See Tab. 6 in App. B).

A natural next question is what size are the effects exhibited in actual trace
acquisitions, and are the criteria laid out in the standard adequate to detect real-
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Cohen’s Power
d Level 3 Level 4

Very small (0.01) 0.072 0.352
Small (0.2) 1.000 1.000
Medium (0.5) 1.000 1.000
Large (0.8) 1.000 1.000
Very large (1.2) 1.000 1.000
Huge (2) 1.000 1.000

Power Cohen’s d
Level 3 Level 4

0.75 0.053 0.017
0.80 0.056 0.018
0.90 0.065 0.021
0.95 0.072 0.023
0.99 0.086 0.027
0.99999 0.124 0.039

Table 2. LHS: Power to detect Cohen’s and Sawilowsky’s standardised effects under
the level 3 (N = 10, 000) and level 4 (N = 100, 000) criteria; RHS: Minimum effect
sizes detectable for increasing power thresholds, under the level 3 (N = 10, 000) and
level 4 (N = 100, 000) criteria.

world vulnerabilities? We seek indicative answers via analysis of some example
scenarios.

Observed Effect Sizes from Realistic Devices It is not straightforward to
‘simply’ observe magnitudes in existing acquisitions; all estimated differences will
be non-zero, and deciding which ones are ‘meaningful’ essentially corresponds
to the task of detection itself. Choosing ‘real’ effects based on the outcomes of
t-tests, and then using the magnitudes of those effects to make claims about ‘de-
tectable’ effect sizes, amounts to circular reasoning, and depends on the choice
of significance criteria. Fortunately the motivation behind leakage detection pro-
vides us with a natural, slightly more objective, criterion for identifying ‘real’
effects, via the outcomes of key recovery attacks. That is, if leakage detection
is geared towards identifying (without having to perform attacks) points in the
trace which are vulnerable to attack, then an effect size which is ‘large enough’
to be of interest is one that can be successfully exploited.

We take this approach, and perform distance-of-means attacks on all 128
bits of the first round SubBytes output for three AES acquisitions, taken on an
ARM-M0 processor, an 8051 microcontroller and an RFID (i.e. custom ASIC)
device. We also compute the sample effects for each of those bits, which enables
us to report estimated effect sizes of interest.

To mitigate for false positives we (adapting from [38]) take measures to con-
firm the stability of an outcome before classifying a point as ‘interesting’: we
repeat the attack on 99% of the full sample and retain only those points where
the correct subkey is ranked first in both instances.

Figure 2 shows the raw (top) and standardised (bottom) observed effect sizes
(i.e. mean differences associated with an S-box bit) of first round AES traces
measured from an ARM-M0 processor, an 8051 microcontroller and an RFID
(custom ASIC) device respectively. As expected, because of the different scales
of the measurements (arising from different pre-processing, etc), the raw effects
are not necessarily useful to compare. The ARM effects range up to about 0.8,
while effects on the 8051 and the RFID implementation range up to 3 and 2
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respectively. The standardised effects are much more comparable (≈ 0.6 and
≈ 1 for ARM and 8051 respectively; ≈ 0.4 for the RFID, although this is for the
second rather than the first S-box as the latter is less ‘leaky’ in this instance). 8
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Fig. 2. Difference of means (top) and standardised equivalent (bottom) associated with
the first bit of the first S-box of two software AES implementations and the first bit of
the second S-box of one hardware implementation. Red circles denote points where a
distance-of-means attack achieves stable key recovery.

Tab. 3 summarises the standardised and raw effect sizes associated with
distance-of-means key recoveries over all bits of all S-boxes. The smallest stan-
dardised effect detected is 0.0413 for the 8051 microcontroller; the ARM and
RFID smallest effects are in a similar ballpark.

Implementation Proportion Standardised Raw
interesting Min Max Median Min Max Median

ARM 0.0226 0.0444 0.9087 0.1155 0.0388 1.0265 0.1073
8051 0.0150 0.0413 1.4265 0.1670 0.0254 5.3808 0.1469
RFID 0.0049 0.0624 0.3935 0.0933 0.2272 3.4075 0.3836

Table 3. Summary of effect magnitudes associated with stable distance-of-means key
recovery attacks.

8 In a non-specific fixed-versus-random experiment (even more so in a fixed-versus-
fixed one) the differences depend on more than a single bit so, depending on the
value of a given intermediate under the fixed input, can potentially be several times
larger (see e.g. [32]) – or they can be smaller (e.g. if the leakage of the fixed in-
termediate coincides with the average case, such as the (decimal) value 15 in an
approximately Hamming weight leakage scenario). It is typically assumed in the
non-specific case that, as the input propagates through the algorithm, at least some
of the intermediates will correspond to large (efficiently detected) class differences
[13].
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Taking 0.04 as an indicative standardised effect size for actual trace mea-
surements would lead us to conclude that the level 4 criterion is adequate if the
full sample of size 100,000 is used in an individual (non-repeated) test, but that
the level 3 criterion of 10,000 is not. Using the sample size formula we obtain
that a minimum of 32,487 traces are needed to detect an effect of size 0.04 in a
single test with balanced error rates α = β = 0.05. (In reality, one type of error
may be deemed more or less of a concern than the other; we state results for
balanced rates merely by way of example).

However, data-intensive research has been carried out into the exploitable
leakage of devices with far less ‘neat’ side-channel characteristics than the (com-
paratively) favourable scenarios exampled above. De Cnudde et al. [10], for ex-
ample, perform successful attacks against masked hardware implementations
with up to 500 million traces, implying both that extremely small effects exist
and that researchers (and, presumably, some ‘worst case’ attackers) have the
resources and determination to detect and exploit them. FIPS 140-2 (and thus
ISO 19790) was conceived to be more economic than CC, but this comes at the
cost of not being adequate for state of the art hardware implementations.

We would argue that effects of real world relevance should be extended to in-
clude a new category: ‘tiny’ effects of standardised size d = 0.001. An evaluation
with α = 0.05 and a sample of size of 10,000 or 100,000 (as per the levels 3 and
4 criteria respectively) would have power of just 0.028 or 0.036 respectively to
detect such an effect. To achieve a power of 0.95 (that is, balanced error rates)
would require a sample of size nearly 52,000,000. Clearly, leakage of this nature
is beyond the scope of the ISO standard to detect, whilst still representing a
demonstrably exploitable vulnerability.

Furthermore, in practice, of course, evaluators are not just checking for a
single effect via a single test, but for a range of different effects all in a series
of separate (possibly correlated) trace points. This adds considerably to the
challenge of rigorous and convincing analysis, due to the problem of multiple
comparisons discussed above – corrections for which inevitably impact on the
power.

‘Overall’ Power in an Example Scenario The per-test power can be com-
puted via the formulae in Section 3, but the r-minimal and the complete power
of a set of tests depends on the total number of tests and the ratio of true to false
null hypotheses, as well as the covariance structure of the test statistics. This
information is not available if an evaluation is set up according to ISO 17825 (it
would need to be determined in preliminary experiments).

By way of illustrative analysis we consider the scenario described above in
Section 5.2, where there appeared to be around 30 true leak points in a (trun-
cated) first round AES software trace of length 1,400, and we make the simpli-
fying assumption that the tests are independent (we will relax this in Section 6
and show that it makes little difference).

Tab. 4 shows the per-test and the 1-minimal power under the standard spec-
ifications to detect two different effect sizes: the empirically observed effect of
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standardised size 0.04, and the ‘worst case adversary’ inspired ‘tiny’ effect of
0.001. The level 3 sample size is just short of that required to achieve an over-
all (i.e. 1-minimal) power of 1 − α to detect at least one effect of the observed
size when the repetition is performed9; the level 4 sample size detects it with
high probability (even at the stricter TVLA-recommended α-level, see Tab. 7 in
App. B); however, to detect the ‘tiny’ effect would require 170 times as many
measurements (1,700 more for α = 0.00001). Thus, for this scenario at least (and
under our simplifying assumptions) we conclude that the standard recommen-
dations are adequate to certify security with respect to modest effect sizes.

Recall, though, that the standard recommendations are inadequate to cer-
tify vulnerability, as the overall false positive rates are considerably higher than
should be tolerated by a procedure that fails a device based on a single rejected
null hypothesis (see Section 4)–this is a prime example that error rates can be
‘traded off’. The question is therefore whether any set of parameters or alterna-
tive method for multiplicity correction is able to make a better trade-off between
the overall false negative and false positive rates.

Effect Repeat Level 3 Level 4 Required sample size
test? Ave 1-min Ave 1-min Ave 1-min

0.04 No 0.516 1.000 1.000 1.000 32,487 1,055
0.04 Yes 0.086 0.932 0.988 1.000 76,615 10,647
0.001 No 0.028 0.574 0.036 0.665 51,978,840 1,687,843
0.001 Yes 0.001 0.022 0.001 0.031 122,584,748 17,034,581

Table 4. Average (‘per-test’) and 1-minimal (‘overall’) power to detect observed and
‘tiny’ effect sizes under the level 3 and 4 criteria, and the sample size required to achieve
balanced errors for a significance criterion of α = 0.05. (30 leak points in a trace set of
length 1,400).

6 Exploring Alternative Test Configurations

We wish to extend the analysis above to a wider range of adjustment methods
in order to see if any emerge as being promising alternatives to the current
recommendations. Porter suggests a way to approximate the different types of
power by simulating large numbers of test statistics under a suitable alternative
hypothesis, performing the multiplicity adjustments and simply counting the
proportion of instances where 1, r, or all the false nulls are rejected (for the 1-,
r-minimal and complete powers) as well as the total proportion of false nulls
rejected (for the average individual power) [27]. An advantage of this approach

9 We compute the per-test power under the repetition step as the square of the power
to detect with half the sample, deriving from the assumption that the two iterations
of the test are independent.
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is that it also allows us to relax the independence assumptions underpinning the
computations in Tab. 4 – but this introduces the considerable limitation that
specific and detailed information about the particular leakage scenario is needed.
In a real evaluation we do not typically have this; however, for the purposes of
illustration we take the dataset analysed in Section 5.2 as an example scenario
from which to construct a realistic set of null and alternative hypotheses, with
the aim of showing how the different notions of power evolve as the sample size
increases.

Suppose the t-statistics corresponding to a trace set of length 1,400 have the
same correlation structure as the observed ARM traces, characterised by the
covariance matrix Σ. The null hypothesis is that none of the points leak; the
alternative is that there are 30 effects of standardised size 0.04, located as per the
analysis presented in Figure 2, where T denotes the set of indices of successful
attacks. Under the null hypothesis, for a large enough trace set (which we need
anyway to detect such a small effect) the joint distribution of the t-statistics
under the alternative hypothesis can be approximated by a multivariate normal
with mean µ = [µ1, . . . , µ1400] such that µt = 0.04 for all t ∈ T and µt = 0 for all
t /∈ T , and covariance matrix Σ. By drawing repeatedly from this distribution
and noting which of the (individual) tests, with and without correction, reject
the null hypothesis and which do not, we can estimate the power and the error
rates for tests in this particular scenario.

We performed the analysis for two different significance levels (αISO = 0.05
and αTV LA = 0.00001) and six different methods: no correction, Bonferroni,
Šidák and Holm corrections to control the FWER, the Benjamini–Hochberg
procedure to control the FDR, and the experiment repetition (for a given overall
sample size) as per ISO and TVLA recommendations. Figure 3 shows, for αISO =
0.05, what we consider to be the most relevant results, based on 5,000 random
draws from the distribution under the alternative hypothesis. (In particular, the
three FWER-controlling corrections perform near-identically, and so we only
display a single representative). Figure 6 in App. B shows the corresponding
results for αTV LA = 0.00001.

It is clear that the different approaches have substantially different character-
istics in practice. The FWER-controlling procedures, represented by Bonferroni,
successfully keep false positives down at only a small cost to the power relative
to the repetition step. The FDR-controlling procedure, meanwhile, has better
power than the repetition step but a comparable false positive rate as the sample
size increases. At the lower α level implied by the TVLA criteria Bonferroni (as
well as the BH procedure) actually has higher power than the repetition step,
and all methods keep false positives low for the (short) trace length in question.
Moreover, they all achieve high probability of detecting at least one of the 30
leaks within the level 4 sample size threshold.

We repeated the experiment assuming independence between the tests, and
found that it made very little difference to either error rate. This is not to say
that taking the dependence structure into account in the tests themselves would
not improve the performance of the tests, but it does imply that (at least in
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Fig. 3. Different types of power and error to detect 30 true effects of size 0.04 in a trace
set of length 1,400, as sample size increases, for an overall significance level of α = 0.05.
(Based on 5,000 random draws from the multivariate test statistic distribution under
the alternative hypothesis).

this instance) a power analysis which assumes independence need not give a
misleading account of the capabilities of the chosen tests.

In this example scenario, then, the FWER controlling procedures (but not
the FDR controlling one) appear favourable to the ISO standard confirmation
requirement, holding all other parameters of the ISO standard fixed. However,
we have not yet fully explored the impact of the length of the trace on their
performance, and many real-world evaluations involve considerably more tests
than the 1,400 we here consider. Porter’s methodology does not readily scale –
and, besides, requires specifying a covariance structure. Instead, then, given the
similarity of our results under the independence assumption, we proceed on that
simplifying basis and take advantage of the fact that the Bonferroni-corrected
tests (by contrast with the BH procedure, which we have already been able to
rule out) are relatively straightforward to examine analytically.

The obstacle remains, though, that overall notions of power – such as 1-
minimal, which we have argued is the relevant quantity for our purposes – will
always be highly dependent on the (a priori unknown) particulars of the evalu-
ation scenario under consideration. In particular, if a longer trace implies more
leakage points, then the increased opportunity to detect leakage might help to
compensate for the stricter criteria enforced by the Bonferroni procedure (and
similar). On the other hand, if the number of leakage points stays fixed as the
trace length increases, there is no compensation for the loss of per-test power.
We therefore consider a range of hypothetical scenarios: fixed leakage density of
1 in 1,000 and 1 in 100 as the trace length increases; fixed number of leaks at 1
and (as per our example scenario) 30 as the trace length increases. (In the latter,
we suppose that the first 30 trace points are the vulnerable ones and all those
subsequently added are random).

Figure 4 presents the FWER and the 1-minimal (‘overall’) power of the
unadjusted, repeated and Bonferroni-corrected tests under the level 3 and level
4 sample size (10,000, 100,000) and significance level (0.05) criteria. It is clear
that the relative effectiveness of the approaches is sensitive to the combinations
of various parameters and scenario configurations.
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Of the three methods only the Bonferroni succeeds in controlling the FWER
at an acceptable level (recall that a device fails to meet the standard if a single
point of leakage is discovered). Under the level 3 criteria it has lower power than
the repetition in all leakage scenarios; however, at the level 4 sample size it is
more powerful in the case that the density of leak points is fixed. In these fixed
density cases the power of all the methods grows as the trace length increases; in
the case that the number is fixed the unadjusted and repeated tests have a fixed
overall probability of detection whilst the Bonferroni tests peak when there are
no non-leaky points and then decrease at a speed which depends on the sample
size. Note that, at level 4, the power to detect at least one of 30 leaks is still
very close to 1 for traces of length up to 10 million; at level 3 it is close to zero
from traces of 1 million or more.

At the TVLA significance level (see Fig. 7 in App. B) the FWER is (as we’ve
already seen) still very low for both adjustment methods, even up to traces
of length 10 million or more (not shown on the graph). The level 3 sample
size is completely inadequate to detect effects of this size regardless of trace
length. Interestingly, for the level 4 sample size the advantage displayed by the
Bonferroni method has widened. We again see a decrease in power to detect a
fixed number of leaks as the total length increases, however it should be pointed
out that the power to detect one of at least 30 leaks is still above 0.999 for a
trace of length 10 million (although it is lower than the power of the repetition
step by this point).
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Fig. 4. FWER and 1-minimal (‘overall’) power of the tests to detect effects of the
‘observed’ size 0.04 for various leakage scenarios as the trace length increases, under
the level 3 and level 4 standard criteria with a significance level of α = 0.05. Note that
some of the axes have been truncated in order to focus on the interesting regions of
the graphs.

We remark that the level 4 standard criteria swapping the repetition step
for the Bonferroni method seems an adequate measure to certify vulnerability
and/or security for effect sizes of 0.04, even as the trace length increases. Swap-
ping the significance level for the original TVLA recommendation of 0.00001 also
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achieves this, although we note that the Bonferroni adjustment is anyway more
powerful than the repetition step in this instance. However, we already know
from Tab. 4 that the level 4 sample size is too small to reliably detect ‘tiny’
effects (repeating the Fig. 4 analysis confirms this and reveals no new insights).
A reasonable question to ask is then what methods/parameter choices would
enable certification with respect to these types of (still realistic) vulnerabilities.

As should be clear by now, appropriate configuration necessarily depends on
the type of leakage scenario that we envisage. For example, a typical software
implementation might produce very long (e.g. 100,000-point) traces; in the case
that it is unprotected (and especially for the non-specific fixed-versus-random
tests) the number of leak points could be high, say, 1 in 100; in the presence of
countermeasures and/or in the case of a specific test the number could be far
lower, say, 10 total, or even just one (which it remains crucial to be able to find).
By contrast, hardware implementations are faster and typically produce shorter
(e.g. 1,000-point) traces, with any leakage concentrated at one or a few indices.

Tab. 5 shows suitable parameter choices for Bonferroni-adjusted tests in each
of these settings. The large sample sizes (especially when we are concerned with
finding very sparse leakage) are something of a reality check on the popular view
that leakage detection is a ‘more efficient’ alternative to performing attacks: the
advantages of the former are best understood in terms of its potential to find a
wider variety of possible sensitive dependencies than an attack-based approach.
Meanwhile, precisely because an adversary is targeting a specific vulnerability
– with a tailored tool, using information (if available) about the form of the
data dependency – we should always expect attacks to be more data efficient
than detection tests. It follows (importantly) that we should never interpret the
sample sizes required for leakage detection as quantitative markers of a device’s
resistance to attack. Reciprocally, attack-based configurations should not be used
to inform the specifications of detection-based approaches: the influence of the
(originally attack-based) FIPS 140-2 on the (detection-based) ISO 17825 likely
explains why the level 3 and 4 sample sizes are as limitingly small as they are.

Scenario type Trace # ISO α = 0.05 TVLA α = 0.00001

length leaks d = 0.04 d = 0.001 d = 0.04 d = 0.001

Software (generic leaks) 100,000 100 2.5× 104 3.9× 107 6.8× 104 1.1× 108

Software (specific leaks) 100,000 10 4.8× 104 7.7× 107 1.2× 105 1.9× 108

Software (protected) 100,000 1 1.1× 105 1.8× 108 2.9× 105 4.6× 108

Hardware (unprotected) 1,000 10 2.9× 104 4.6× 107 9.6× 104 1.5× 108

Hardware (protected) 1,000 1 8.1× 104 1.3× 108 2.5× 105 4.0× 108

Table 5. Parameter combinations for reliably certifying vulnerability/security in dif-
ferent realistic leakage scenarios using the Bonferroni adjustment to control the false
positive rate at an overall level α.
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Remark: At this point it is important to recall that in an actual evaluation
the entire process has to be applied to several/many intermediate values as
part of the specific detection tests. These further tests are synonymous with
considering longer traces and an extended analysis would be possible given a
specified number of tests.

7 Conclusions and Recommendations

TVLA was originally conceived as a structured set of leakage detection tests to
overcome the issue of having to test against an ever increasing number of at-
tack vectors (thus the concern was coverage of an evaluation rather than trace
efficiency). An in-dept statistical analysis was never carried out yet these recom-
mendations became the basis for leakage evaluations as specified in ISO 17825.

We have shown that following the ISO 17825 recommendations to the
letter would result in the failure of all target devices (at security levels 3
and 4) with extremely high probability. This is because of the inflation of Type I
errors (false positives) as the number of jointly performed statistical hypothesis
tests increases.

The problem can be mitigated by replacing the (somewhat ad hoc) test
repetition step (inherited from TVLA) with an established statistical
method to control the overall error rate, such as the Bonferroni adjustment,
and/or by replacing the threshold for significance with the stricter one originally
implied by the TVLA standard. In the latter case, the repetition step is anyway
shown to be less efficient than Bonferroni-style adjustments, so we recommend
against adhering to that part of TVLA.

There are some ambiguities in ISO 17825 about how to interpret the ac-
quisition criterion. Even opting for the most generous interpretation, the level
3 sample size specification is shown to be inadequate to certify vul-
nerability/security against effects of the size and frequency that we
observe in a range of typical ‘easy to attack’ implementations. The
level 4 specification is able to detect these with high probability, even with the
stricter TVLA-based significance threshold provided the leakages are of sufficient
density as the length of the trace increases. However, neither are sufficient
to detect the types of ‘tiny’ effects that have been shown to exist (and
to be exploitable) by larger-scale academic studies.

We therefore recommend the necessity for larger acquisitions than those
specified by the standard. A difficulty here is that, although statistical power
analysis provides tools to derive the appropriate sample sizes for a particular
test scenario, it requires considerable a priori information about that scenario
to do so (even more so in the case of multiple tests and their corresponding
adjustment procedures). Whilst it is possible to broadly identify common ex-
pected features across classes of scenario, a preferable approach would be
to develop a two-stage evaluation procedure combining an exploratory
phase with a pared-down confirmatory analysis in which information about the
covariance structure and likely location/nature of the leaks is used to inform
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the acquisition process and to chose a (reduced set) of carefully-formulated hy-
pothesis tests to perform. We leave the precise details of such a strategy as an
interesting avenue for further work.

However the standard procedures (or adaptations therefore) are applied it is
important that outcomes are presented responsibly. An evaluator needs
to decide – and to give a justification for – the false positive and false negative
rates that are acceptable. For example, even if a multiplicity adjustment is used
to successfully control the overall false positive rate at the level specified by the
standard, this still implies that 5 in every 100 secure devices will fail the test at
random. If this is considered too high, then a stricter significance criterion will
need to be chosen, inevitably implying greater data complexity. Either way, the
error rates must be made transparent – as should the effect size the test
is able to detect, the coverage limitations that we identified in Section 5.1,
and the fact that the sample size needed for a successful attack may be much
smaller than that required for detection.

Acknowledgements Our work has been funded by the European Commission
through the H2020 project 731591 (acronym REASSURE). A fuller report on
this aspect of the project can be found in A Cautionary Note Regarding the
Usage of Leakage Detection Tests in Security Evaluation [42].
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A Sample Size for the t-Test

We begin with a simple visual example that illustrates the concepts of α and β
values and their relationship to the sample size.

Consider the following two-sided hypothesis test for the mean of a Gaussian-
distributed variable A ∼ N (µ, σ), where µ and σ are the (unknown) parameters:

H0 : µ = µ0 vs. Halt : µ 6= µ0. (3)
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Note that, in the leakage detection setting, where one typically wishes to test
for a non-zero difference in means between two Gaussian distributions Y1 and
Y2, this can be achieved by defining A = Y1 − Y2 and (via the properties of the
Gaussian distribution) performing the above test with µ0 = 0.

Suppose the alternative hypothesis is true and that µ = µalt. This is called
a ‘specific alternative’10, in recognition of the fact that it is not usually possible
to compute power for all the alternatives when Halt defines a set or range. In
the leakage detection setting one typically chooses µalt > 0 to be the smallest
difference |µ1 − µ2| that is considered of practical relevance; this is called the
effect size. Without loss of generality, we suppose that µalt > µ0.

Figure 5 illustrates the test procedure when the risk of a Type I error is set
to α and the sample size is presumed large enough (typically n > 30) that the
distributions of the test statistic under the null and alternative hypotheses can
be approximated by Gaussian distributions. The red areas together sum to α;
the blue area indicates the overlap of H0 and Halt and corresponds to β (the risk
of a Type II error). The power of the test – that is, the probability of correctly
rejecting the null hypothesis when the alternative in true – is then 1 − β, as
depicted by the shaded area.

There are essentially three ways to raise the power of the test. One is to
increase the effect size of interest which, as should be clear from Figure 5, serves
to push the distributions apart, thereby diminishing the overlap between them.
Another is to increase α – that is, to make a trade-off between Type II and
Type I errors – or (if appropriate) to perform a one-sided test, either of which
has the effect (in this case) of shifting the critical value to the left so that the
shaded region becomes larger. (In the leakage detection case the one-sided test
is unlikely to be suitable as differences in either direction are equally important
and neither can be ruled out a priori). The third way to increase the power is
to increase the sample size for the experiment. This reduces the standard error
on the sample means, which again pushes the alternative distribution of the
test statistic further away from null (note from Figure 5 that it features in the
denominator of the distance).

Suppose you have an effect size in mind – based either on observations made
during similar previous experiments, or on a subjective value judgement about
how large an effect needs to be before it is practically relevant (e.g. the level of
leakage which is deemed intolerable) – and you want your test to have a given
confidence level α and power 1−β. The relationship between confidence, power,
effect size and sample size can then be used to derive the minimum sample size
necessary to achieve this.

The details of the argumentation that now follows are specific to a two-
tailed t-test, but the general procedure can be adapted to any test for which
the distribution of the test statistic is known under the null and alternative
hypotheses.

10 The overloading of terminology between ‘specific alternatives’ and ‘specific’ TVLA
tests is unfortunate but unavoidable.
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Fig. 5. Figure showing the Type I and II error probabilities, α and β as well as the
effect size µalt − µ0 for a specific alternative such that µalt > µ0.

For the sake of simplicity (i.e. to avoid calculating effectively irrelevant de-
grees of freedom) we will assume that our test will in any case require the ac-
quisition of more than 30 observations, so that the Gaussian approximations
for the test statistics hold as in Figure 5. Without loss of generality we also
assume that the difference of means is positive (otherwise the sets can be easily
swapped). Finally, we assume that we seek to populate both sets with equal
numbers n = |Y |/2 of observed traces.

Theorem 1. Let Y1 be a set of traces of size N/2 drawn via repeat sampling
from a normal distribution N (µ1, σ

2
1) and Y2 be a set of traces of size N/2 drawn

via repeat sampling from a normal distribution N (µ2, σ
2
2). Then, in a two-tailed

test for a difference between the sample means:

H0: µ1 = µ2 vs. Halt: µ1 6= µ2, (4)

in order to achieve significance level α and power 1 − β, the overall number of
traces N needs to be chosen such that:

N ≥ 2 ·
(zα/2 + zβ)2 · (σ12 + σ2

2)

(µ1 − µ2)2
. (5)

Note that Equation 5 can be straightforwardly rearranged to alternatively
compute any of the significance level, effect size or power in terms of the other
three quantities.

B Results for Original TVLA-Recommended Threshold
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Cohen’s d Power
Level 3 Level 4

Very small (0.01) 0.000 0.002
Small (0.2) 1.000 1.000
Medium (0.5) 1.000 1.000
Large (0.8) 1.000 1.000
Very large (1.2) 1.000 1.000
Huge (2) 1.000 1.000

Power Cohen’s d
N = 10, 000 N = 100, 000

0.75 0.102 0.032
0.80 0.105 0.033
0.90 0.114 0.036
0.95 0.121 0.038
0.99 0.135 0.043
0.99999 0.174 0.055

Table 6. LHS: Power to achieve Cohen’s and Sawilowsky’s standardised effects under
the TVLA significance criteria (which approximates to α = 0.00001) and the standard
level 3 (N = 10, 000) and level 4 (N = 100, 000) sample size criteria; RHS: Minimum
effect sizes detectable for increasing power thresholds.

Effect Repeat Level 3 Level 4 Required sample size
test? Ave 1-min Ave 1-min Ave 1-min

0.04 No 0.008 0.210 0.972 1.000 188,446 38,924
0.04 Yes 0.000 0.000 0.272 1.000 390,228 104,867
0.001 No 0.000 0.000 0.000 0.000 301,512,956 62,279,197
0.001 Yes 0.000 0.000 0.000 0.000 624,365,394 167,786,951

Table 7. Average (‘per-test’) and 1-minimal (‘overall’) power to detect observed and
‘tiny’ effect sizes under the level 3 and 4 criteria, and the sample size required to achieve
balanced errors for a significance criterion of α = 0.00001. (30 leak points in a trace
set of length 1,400).
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Fig. 6. Different types of power and error to detect 30 true effects of size 0.04 in
a trace set of length 1,400, as sample size increases, for an overall significance level
of α = 0.00001. (Based on 5,000 random draws from the multivariate test statistic
distribution under the alternative hypothesis).
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Correction Level 3 Level 4
strategy 1-min power FWER 1-min power FWER

None 0.1912 0.0156 1.0000 0.0134
Bonferroni 0.0020 0.0000 1.0000 0.0000
Šidák 0.0020 0.0000 1.0000 0.0000
Holm 0.0020 0.0000 1.0000 0.0000
Benjamini-Hochberg 0.0020 0.0000 1.0000 0.0000
Repetition 0.0000 0.0000 0.9986 0.0000

Table 8. Different types of power and error to detect 30 true effects of size 0.04 in a
trace set of length 1,400, under the level 3 and level 4 sample size criteria and with
an overall significance level of α = 0.00001. (Based on 5,000 random draws from the
multivariate test statistic distribution under the alternative hypothesis).
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Fig. 7. FWER and 1-minimal (‘overall’) power of the tests to detect effects of the
‘observed’ size 0.04 for various leakage scenarios as the trace length increases, under
the level 3 and level 4 standard criteria with an overall significance level of α = 0.00001.
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