
Algebraic Cryptanalysis of STARK-Friendly
Designs: Application to MARVELlous and

MiMC

Martin R. Albrecht1, Carlos Cid1,2, Lorenzo Grassi5,6, Dmitry
Khovratovich3,4,7, Reinhard Lüftenegger5, Christian Rechberger5, and Markus

Schofnegger5

1 Information Security Group, Royal Holloway, University of London
2 Simula UiB

3 Dusk Network
4 ABDK Consulting

5 IAIK, Graz University of Technology
6 Know-Center
7 Evernym Inc.

firstname.lastname@rhul.ac.uk, khovratovich@gmail.com,
firstname.lastname@iaik.tugraz.at

Abstract. The block cipher Jarvis and the hash function Friday,
both members of the MARVELlous family of cryptographic primi-
tives, are among the first proposed solutions to the problem of designing
symmetric-key algorithms suitable for transparent, post-quantum secure
zero-knowledge proof systems such as ZK-STARKs. In this paper we de-
scribe an algebraic cryptanalysis of Jarvis and Friday and show that
the proposed number of rounds is not sufficient to provide adequate se-
curity. In Jarvis, the round function is obtained by combining a finite
field inversion, a full-degree affine permutation polynomial and a key
addition. Yet we show that even though the high degree of the affine
polynomial may prevent some algebraic attacks (as claimed by the de-
signers), the particular algebraic properties of the round function make
both Jarvis and Friday vulnerable to Gröbner basis attacks. We also
consider MiMC, a block cipher similar in structure to Jarvis. However,
this cipher proves to be resistant against our proposed attack strategy.
Still, our successful cryptanalysis of Jarvis and Friday does illustrate
that block cipher designs for “algebraic platforms” such as STARKs, FHE
or MPC may be particularly vulnerable to algebraic attacks.

Keywords: Gröbner Basis, MARVELlous, Jarvis, Friday, MiMC, ZK-STARKs,
Algebraic Cryptanalysis, Arithmetic Circuits

1 Introduction

Background. Whenever a computation on sensitive data is outsourced to an
untrusted machine, one has to ensure that the result is correct. Examples are

database updates, user authentications, and elections. The underlying problem,
formally called computational integrity, has been theoretically solved since the
1990s with the emergence of the PCP theorem. But the performance of actual
implementations was too poor to handle any computation of practical interest.
Only recently a few proof systems have appeared where the proving time is
quasi-linear in the computation length (which is typically represented as an
arithmetic circuit), e.g. ZK-SNARKs [PHG+13], Bulletproofs [BBB+18], and
ZK-STARKs [BBH+18]. While they all share the overall structure, these proof
systems differ in details such as the need of a trusted setup, proof size, verifier
scalability, and post-quantum resistance.

The cryptographic protocols that make use of such systems for zero-
knowledge proofs often face the problem that whenever a hash function is
involved, the associated circuit is typically long and complex, and thus the hash
computation becomes a bottleneck in the proof. An example is the Zerocash
cryptocurrency protocol [BCG+14]: in order to spend a coin anonymously, one
has to present a zero-knowledge proof that the coin is in the set of all valid
coins, represented by a Merkle tree with coins as leaves. When a traditional hash
function such as SHA-256 is used in the Merkle tree, the proof generation takes
almost a minute for 28-level trees such as in Zcash [HBH+19], which represents
a real obstacle to the widespread use of privacy-oriented cryptocurrencies.

The demand for symmetric-key primitives addressing the needs of specific
proof systems has been high, but only a few candidates have been proposed so
far: a hash function based on Pedersen commitments [HBH+19], MPC-oriented
LowMC [ARS+15], and big-field MiMC [AGR+16; AGP+19]. Even worse, dif-
ferent ZK proof systems use distinct computation representations. Concretely,
ZK-SNARKs prefer pairing-friendly curves over prime scalar fields, Bulletproofs
uses a fast curve over a scalar field, whereas ZK-STARKs are most comfortable
operating over binary fields. Hence, the issue of different representations further
limits the design space of ZK-friendly primitives.

STARKs. ZK-STARKs [BBH+18] is a novel proof system which, in contrast
to SNARKs, does not need a trusted setup phase and whose security relies
only on the existence of collision-resistant hash functions. The computation is
represented as an execution trace, with polynomial relations among the trace
elements. Concretely, the trace registers must be elements of some large binary
field, and the polynomials should have low degree. The proof generation time is
approximately8 O(S logS), where

S ≈ (Maximum polynomial degree× Trace length) .

The STARK paper came with a proposal to use Rijndael-based hash functions,
but as these have been shown to be insecure [KBN09], custom designs are clearly
needed.

8 We omit optimisations related to the trace layout.

2

Jarvis and Friday. Ashur and Dhooghe recently addressed this need with the
proposal of the block cipher Jarvis and the hash function Friday [AD18]. The
primitives were immediately endorsed by the ZK-STARK authors as possible
solutions to reduce the STARK generation cost in many applications9. The new
hash function was claimed to offer up to a 20-fold advantage over Pedersen hashes
and an advantage by a factor of 2.5 over MiMC-based hash functions, regarding
the STARK proof generation time [BS18].

Albeit similar in spirit to MiMC, Jarvis comes with novel design elements
in order to considerably reduce the number of rounds, while still aiming to
provide adequate security. In the original proposal several types of algebraic
attacks were initially ruled out, and security arguments from Rijndael/AES
were used to inform the choice of the number of rounds, leading to a statement
that attacks were expected to cover up to three rounds only. An extra security
margin was added, leading to a recommendation of 10 rounds for the variant
with an expected security of 128 bits. Variants with higher claims of security
were also specified.

Algebraic Attacks. This class of attacks aims to utilise the algebraic proper-
ties of a construction. One example is the Gröbner basis attack, which proceeds
by modelling the underlying primitive as a multivariate system of equations
which is then solved using off-the-shelf Gröbner basis algorithms [Buc65; CLO97;
Fau99; Fau02]. After some initial success against certain stream cipher construc-
tions [Cou03b; Cou03a], algebraic attacks were also considered against block
ciphers [MR02; CB07], albeit with limited success. Even approaches combining
algebraic and statistical techniques [AC09] were later shown not to outperform
known cryptanalytic techniques [WSM+11]. As a result algebraic attacks are
typically not considered a major concern for new block ciphers. We note how-
ever that Gröbner basis methods have proven fruitful for attacking a number of
public-key schemes [FGO+10; AG11; ACF+14; FPP14; FGP+15].

Contribution. In this paper we show that, while the overall design approach of
Jarvis and Friday seems sound, the choice for the number of rounds is not
sufficient to offer adequate security. We do this by mounting algebraic attacks
on the full-round versions of the primitives with the help of Gröbner bases. Our
results show that designers of symmetric-key constructions targeting “algebraic
platforms” – such as STARKs, FHE and MPC – must pay particular attention to
the algebraic structure of their ciphers, and that algebraic attacks should receive
renewed attention from the cryptographic community.

Organisation. The remainder of this work is organised as follows. In Section 2 we
briefly describe the block cipher Jarvis and the hash function Friday. Follow-
ing, we discuss various algebraic attacks in Section 3, including higher-order dif-
ferential attacks, interpolation attacks, and in particular attacks using Gröbner

9 The ciphers were announced among high anticipation of the audience at the prime
Ethereum conference DevCon4, held in November 2018 [BS18].

3

bases. In the following sections, we describe our attacks, including key-recovery
attacks on Jarvis in Section 4 and preimage attacks on Friday in Section 5.
In Section 6, we describe our experimental results from running the attacks and
discuss our findings. Finally, in Section 7 we analyse the S-box layer of Jarvis
and compare it to the AES.

2 MARVELlous

MARVELlous [AD18; AABS+19] is a family of cryptographic primitives specif-
ically designed for STARK applications. It includes the block cipher Jarvis as
well as Friday, a hash function based on this block cipher. We briefly describe
the two primitives in this section.

As usual, we identify functions on F2n with elements in the quotient ring

R := F2n [X] /〈X2n −X〉.

Whenever it is clear from the context, we refer to the corresponding polynomial
representation in the above quotient ring when we speak of a function on F2n

and use the notation F (X), or just F , for the coset F (X) + 〈X2n −X〉 ∈ R.

2.1 Jarvis

Jarvis is a family of block ciphers operating on a state and a key of n bits, thus
working entirely over the finite field F2n . The construction is based on ideas used
by the AES, most prominently the wide-trail design strategy, which guarantees
security against differential and linear (statistical) attacks. However, where AES
uses multiple small S-boxes in every round, Jarvis applies a single nonlinear
transformation to the whole state, essentially using one large n-bit S-box. The
S-box of Jarvis is defined as the generalised inverse function S :F2n → F2n with

S(x) :=

{
x−1 x 6= 0

0 x = 0,

which corresponds to the element

S(X) := X2n−2 ∈ R.

We note that this specific S-box makes the construction efficient in the STARK
setting, because verifying it uses only one quadratic constraint (note that for
non-zero x ∈ F2n the equality 1

x = y is equivalent to the equality x · y = 1,
and the constraint for the full S-box can be written as x2 · y + x = 0). We refer
to [BBH+18; AD18] for more details.

The linear layer of Jarvis is composed by evaluating a high-degree affine
polynomial

A(X) := L(X) + ĉ ∈ R,

4

where ĉ ∈ F2n is a constant and

L(X) :=

n−1∑
i=0

l2i ·X2i ∈ R

is a linearised permutation polynomial. Note that the set of all linearised per-
mutation polynomials in R forms a group under composition modulo X2n −X,
also known as the Betti-Mathieu group [LN96].

In Jarvis, the polynomial A is built from two affine monic permutation
polynomials B,C of degree 4, that is

B(X) := LB(X) + b0 := X4 + b2X
2 + b1X + b0 ∈ R

and
C(X) := LC(X) + c0 := X4 + c2X

2 + c1X + c0 ∈ R

satisfying the equation
A = C ◦B−1.

The operator ◦ indicates composition modulo X2n − X and B−1 denotes the
compositional inverse of B (with respect to the operator ◦) given by

B−1(X) := LB
−1(X) + LB

−1(b0).

Here, LB
−1 denotes the inverse of LB under composition modulo X2n −X, or

in other words, the inverse of LB in the Betti-Mathieu group. We highlight that
the inverse B−1 shares the same affine structure with B, i.e. it is composed of a
linearised permutation polynomial LB

−1 and a constant term in F2n , but has a
much higher degree.

One round of Jarvis is shown in Figure 1. Additionally, a whitening key k0
is applied before the first round.

si si+1

ki

S B−1 C

Fig. 1: One round of the Jarvis block cipher. For simplicity, the addition of the
whitening key is omitted.

Key Schedule The key schedule of Jarvis shares similarities with the round
function itself, the main difference being that the affine transformations are
omitted. In the key schedule, the first key k0 is the master key and the next
round key ki+1 is calculated by adding a round constant ci to the (generalised)
inverse S(ki) of the previous round key ki. One round of the key schedule is
depicted in Figure 2.

5

ki ki+1

ci

S

Fig. 2: The key schedule used by the Jarvis block cipher.

The first round constant c0 is randomly selected from F2n , while subsequent
round constants ci, 1 ≤ i ≤ r, are calculated using the relation

ci := a · ci−1 + b

for random elements a, b ∈ F2n .

Instantiations The authors of [AD18] propose four instances of Jarvis-n,
where n ∈ {128, 160, 192, 256}. For each of these instances the values c1, a, b,
and the polynomials B and C are specified. Table 1 presents the recommended
number of rounds r for each instance, where the claimed security level is equal
to the key size (and state size) n. We will use r ∈ N throughout this paper to
denote the number of rounds of a specific instance.

Table 1: Instances of the Jarvis block cipher [AD18].
Instance n # of rounds r

Jarvis-128 128 10
Jarvis-160 160 11
Jarvis-192 192 12
Jarvis-256 256 14

2.2 Friday

Friday is a hash function based on a Merkle-Damgård construction, where
the block cipher Jarvis is transformed into a compression function using the
Miyaguchi-Preneel scheme. In this scheme, a (padded) message block mi, 1 ≤
i ≤ t, serves as input m to a block cipher E(m, k) and the respective previous
hash value hi−1 serves as key k. The output of the block cipher is then added
to the sum of mi and hi−1, resulting in the new hash value hi. The first hash
value h0 is an initialization vector and taken to be the zero element in F2n in
the case of Friday. The final state ht is the output of the hash function. The
hash function Friday is thus defined by the following iterative formula

h0 := IV := 0,

hi := E(mi, hi−1) + hi−1 +mi,

for 1 ≤ i ≤ t, as illustrated in Figure 3.

6

Jarvis

m1

h0 h1 Jarvis

m2

h2
. . . Jarvis

mt

ht−1 ht

Fig. 3: The Friday hash function.

3 Overview of Algebraic Attacks on Jarvis and Friday

From an algebraic point of view, Jarvis offers security mainly by delivering a
high degree for its linear transformations and for the S-box. In the original pro-
posal, the authors analyse the security against various algebraic attack vectors,
such as higher-order differential attacks and interpolation attacks.

3.1 Higher-Order Differential Attacks

Higher-order differential attacks [Knu95] can be regarded as algebraic attacks
that exploit the low algebraic degree of a nonlinear transformation. If this de-
gree is low enough, an attack using multiple plaintexts and their corresponding
ciphertexts can be mounted. In more detail, if the algebraic degree of a Boolean
function f is d, then when applying f to all elements of an affine vector space
V ⊕ c of dimension > d and taking the sum of these values, the result is 0, i.e.⊕

v∈V⊕c
v =

⊕
v∈V⊕c

f(v) = 0.

Finding such a distinguisher possibly allows the attacker to recover the secret
key.

However, higher-order differential attacks pose no threat to Jarvis. Indeed,
the algebraic degree of S(X) = X2n−2 is the Hamming weight of 2n − 2, which
is equal to n− 1 and thus maximal (note that the S-box is a permutation). This
makes higher-order differential attacks and zero-sum distinguishers infeasible
after only one round of Jarvis.

3.2 Interpolation Attacks

Interpolation attacks were introduced in 1997 [JK97] and are another type of
algebraic attack where the attacker constructs the polynomial corresponding to
the encryption (or decryption) function without knowing the secret key. The
basis of interpolation attacks is a consequence of the Fundamental Theorem of
Algebra: given d + 1 pairs (x0, y0), . . . , (xd, yd) of elements in a certain field F,
there is a unique polynomial P (X) ∈ F[X] of degree at most d which satisfies

P (xi) = yi

7

for all 0 ≤ i ≤ d. To put it another way, the polynomial P (X) interpolates
the given pairs (xi, yi), which is why it deserves the denotation interpolation
polynomial. There are several approaches for calculating all the coefficients of
the interpolation polynomial. A classical technique is to choose Lagrange’s basis
(L0, L1, . . . , Ld), with

Li(X) :=

d∏
j=0
j 6=i

X − xj
xi − xj

∈ F[X] ,

as a basis for the F-vector space F[X] and read off the solution (p0, . . . , pd) from
the resulting system of equations

yi = P (xi) = p0L0(xi) + p1L1(xi) + . . .+ pdLd(xi), 0 ≤ i ≤ d.

Lagrange’s basis leads to a complexity of O(d2) field operations and so does
Newton’s basis {N0, N1, . . . , Nd} with

Ni(X) :=

i−1∏
j=0

(X − xj) ∈ F[X] .

A different approach uses the fact that polynomial interpolation can be re-
duced to polynomial evaluation, as discussed by Horowitz [Hor72] and
Kung [Kun73], leading to a complexity of O(d log2 d) field operations. In
essence, this approach relies on the Fast Fourier Transform for polynomial
multiplication.

From the above complexity estimates, it is thus desirable that the polyno-
mial representation of the encryption function reaches a high degree and forces
all possible monomials to appear. In Jarvis, a high word-level degree is already
reached after only one round; additionally the polynomial expression of the en-
cryption function is also dense after only two rounds. It follows that interpolation
attacks pose no threat to Jarvis.

3.3 Gröbner Basis Attacks

The first step in a Gröbner basis attack is to describe the primitive by a system
of polynomial equations. Subsequently, a Gröbner basis [Buc65; CLO97] for the
ideal defined by the corresponding polynomials is calculated and finally used
to solve for specified variables. In more detail, Gröbner basis attacks consist of
three phases:

1. Set up an equation system and compute a Gröbner basis (typically for the
degrevlex term order for performance reasons) using an algorithm such as
Buchberger’s algorithm [Buc65], F4 [Fau99], or F5 [Fau02].

2. Perform a change of term ordering for the computed Gröbner basis (typi-
cally going from the degrevlex term order to the lex one, which facilitates

8

computing elimination ideals and hence eliminating variables) using an al-
gorithm such as FGLM [FGL+93]. Note that in our applications all systems
of algebraic equations result in zero-dimensional ideals, i.e. the systems have
only finitely many solutions.

3. Solve the univariate equation for the last variable using a polynomial factor-
ing algorithm, and substitute into other equations to obtain the full solution
of the system.

Cost of Gröbner Basis Computation. For a generic system of ne polynomial
equations

F1(x1, . . . , xnv
) = F2(x1, . . . , xnv

) = · · · = Fne
(x1, . . . , xnv

) = 0

in nv variables x1, . . . , xnv
, the complexity of computing a Gröbner basis [BFP12]

is

CGB ∈ O
((

nv +Dreg

Dreg

)ω)
, (1)

where 2 ≤ ω < 3 is the linear algebra exponent representing the complexity of
matrix multiplication and Dreg is the degree of regularity. The constants hidden
by O(·) are relatively small, which is why

(
nv+Dreg

Dreg

)ω
is typically used directly.

In general, computing the degree of regularity is a hard problem. However, the
degree of regularity for “regular sequences” [BFS+05] is given by

Dreg = 1 +

ne∑
i=1

(di − 1), (2)

where di is the degree of Fi. Regular sequences have ne = nv. More generally,
for “semi-regular sequences” (the generalisation of regular sequences to ne > nv)
the degree of regularity can be computed as the index of the first non-positive
coefficient in

H(z) =
1

(1− z)nv
×

ne∏
i=1

(1− zdi).

It is conjectured that most sequences are semi-regular [Frö85]. Indeed, experi-
mental evidence suggests random systems behave like semi-regular systems with
high probability. Hence, assuming our target systems of equations behave like
semi-regular sequences, i.e. they have no additional structure, the complexity
of computing a Gröbner basis depends on (a) the number of equations ne, (b)
the degrees d1, d2, . . . , dne

of the equations, and (c) the number of variables nv.
Crucially, our experiments described later in the paper indicate that the systems
considered in this work do not behave like regular sequences.

Cost of Gröbner Basis Conversion. The complexity of the FGLM algorithm
[FGL+93] is

CFGLM ∈ O
(
nv · deg(I)3

)
, (3)

9

where deg(I) is called the degree of the ideal and defined as the dimension of
the quotient ring F[X1, X2, . . . , Xn]/I as an F-vector space. For the systems we
are considering in this paper – which are expected to have a unique solution in
F – the dimension of R/I corresponds to the degree of the unique univariate
polynomial equation in the reduced Gröbner basis with respect to the canonical
lexicographic order [KR00, Theorem 3.7.25]. Again, the hidden constants are
small, permitting to use nv · deg(I)3 directly. A sparse variant of the algorithm
also exists [FM11] with complexity O (deg(I)(N1 + nv log deg(I))), where N1 is
the number of nonzero entries of a multiplication matrix, which is sparse even
if the input system spanning I is dense. Thus, the key datum to establish for
estimating the cost of this step is deg(I).

Cost of Factoring. Finally, we need to solve for the last variable using the re-
maining univariate polynomial equation obtained by computing all necessary
elimination ideals. This can be done by using a factorisation algorithm. For ex-
ample, the complexity of a modified version of the Berlekamp algorithm [Gen07]
to factorise a polynomial P of degree D over F2n is

CSol ∈ O
(
D3n2 +Dn3

)
. (4)

In our context, we can however reduce the cost of this step by performing
the first and second steps of the attack for two (or more) (plaintext, ciphertext)
pairs and then considering the GCD of the resulting univariate polynomials,
which are univariate in the secret key variable k0. Computing polynomial GCDs
is quasi-linear in the degree of the input polynomials. In particular, we expect

CSol ∈ O
(
D(log(D))

2
)
. (5)

We will again drop the O(·) and use the expressions directly.

Our Algebraic Attacks on MARVELlous. All attacks on MARVELlous pre-
sented in this paper are inherently Gröbner basis attacks which, on the one hand,
are based on the fact that the S-box S(X) = X2n−2 of Jarvis can be regarded
as the function S :F2n → F2n , where

S(x) = x−1

for all elements except the zero element in F2n . As a consequence, the relation

y = S(x) = x−1

can be rewritten as an equation of degree 2 in two variables, namely

x · y = 1,

which holds everywhere except for the zero element in F2n . We will use this rela-
tion in our attacks, noting that x = 0 occurs with a negligibly small probability
for n ≥ 128.

10

On the other hand, we exploit the fact that the decomposition of the affine
polynomial A originates from two low-degree polynomialsB and C. When setting
up the associated equations for Jarvis, we introduce intermediate variables in
such a way that the low degree of B and C comes into effect, and then show that
the particular combination of the inverse S-box S(X) = X2n−2 with the affine
layer in Jarvis is vulnerable to Gröbner basis attacks.

Based on the above observations, we describe in the next sections:

– a key-recovery attack on reduced-round Jarvis and an optimised key-
recovery attack on full-round Jarvis;

– its extension to a (two-block) preimage attack on full-round Friday;
– a more efficient direct preimage attack on full-round Friday.

4 Gröbner Basis Computation for Jarvis

We first describe a straightforward approach, followed by various optimisations
which are necessary to extend the attack to all rounds.

4.1 Reduced-Round Jarvis

Let B,C ∈ R be the polynomials of the affine layer in Jarvis. Furthermore, in
round i of Jarvis let us denote the intermediate state between the application
of B−1 and C as xi, for 1 ≤ i ≤ r (see Figure 4).

si si+1

ki

S B−1 C
xi

Fig. 4: Intermediate state xi in one round of the encryption path.

As a result, two consecutive rounds of Jarvis can be related by the equation

(C(xi) + ki) ·B(xi+1) = 1 (6)

for 1 ≤ i ≤ r − 1. As both polynomials B and C have degree 4, equation (6)
yields a system of r− 1 polynomial equations, each of degree 8, in the variables
x1, . . . , xr and k0, . . . , kr. To make the system dependent on the plaintext p and
the ciphertext c, we add the two equations

B(x1) · (p+ k0) = 1, (7)
C(xr) = c+ kr (8)

to this system. Additionally, two successive round keys are connected through
the equation

(ki+1 + ci) · ki = 1 (9)

11

for 0 ≤ i ≤ r − 1. In total, the above description of Jarvis amounts to 2 · r + 1
equations in 2 · r + 1 variables, namely:

– r − 1 equations of degree 8 (equation (6)),
– one equation of degree 5 (equation (7)),
– one equation of degree 4 (equation (8)),
– r equations of degree 2 (equation (9)),

in the 2 · r+1 variables x1, . . . , xr and k0, . . . , kr. Since the number of equations
is equal to the number of variables, we can estimate the complexity of a Gröbner
basis attack by using Equation (2). According to this estimate, the computation
of a Gröbner basis for the above system of equations is prohibitively expensive
for full-round Jarvis. For example, Equation (2) predicts a complexity of ≈ 120
bits (when setting ω = 2.8) for computing a Gröbner basis for r = 6. However,
we note that we were able to compute such a basis in practice (Section 6), which
indicates that the above estimate is too pessimistic.

4.2 Optimisations for an attack on Full-Round Jarvis

In order to optimise the computation from the previous section and extend it
to full-round Jarvis, we introduce two main improvements. First, we reduce
the number of variables and equations used for intermediate states. Secondly,
we relate all round keys to the master key, which helps to further reduce the
number of variables.

A More Efficient Description of Intermediate States The main idea is
to reduce the number of equations and variables for intermediate states at the
expense of an increased degree in some of the remaining equations. By relating
a fixed intermediate state xi to the respective preceding and succeeding inter-
mediate states xi−1 and xi+1, we obtain the equations

B(xi) =
1

C(xi−1) + ki−1
, (10)

C(xi) =
1

B(xi+1)
+ ki (11)

for 2 ≤ i ≤ r− 1. Since both B and C are monic affine polynomials of degree 4,
we claim that it is possible to find monic affine polynomials

D(X) := X4 + d2X
2 + d1X + d0

and
E(X) := X4 + e2X

2 + e1X + e0,

also of degree 4, such that
D(B) = E(C).

12

Indeed, comparing corresponding coefficients of D(B) and E(C) yields a system
of 5 linear equations in the 6 unknown coefficients d0, d1, d2, e0, e1, e2, which
can then be solved. We explain the construction of D and E in more detail in
Appendix A.

From now on let us assume we have already found appropriate polynomials D
and E. After applyingD and E to Equation (10) and Equation (11), respectively,
we equate the right-hand side parts of the resulting equations and get

D

(
1

C(xi−1) + ki−1

)
= E

(
1

B(xi+1)
+ ki

)
(12)

for 2 ≤ i ≤ r − 1. Eventually we obtain a system of polynomial equations of
degree 36 by clearing denominators in Equation (12).

The crucial point is that variables for every second intermediate state may
now be dropped out of the description of Jarvis. This is because we can consider
either only evenly indexed states or only odd ones, and by doing so, we have
essentially halved the number of equations and variables needed to describe
intermediate states. We note that in all optimised versions of our attacks we
only work with evenly indexed intermediate states, as this choice allows for a
more efficient description of Jarvis compared to working with odd ones.

Finally we relate the plaintext p and the ciphertext c to the appropriate
intermediate state x2 and xr, respectively, and set

D

(
1

p+ k0

)
= E

(
1

B(x2)
+ k1

)
, (13)

C(xr) + kr = c. (14)

Here, the degree of Equation (13) is 24, while Equation (14) has degree 4.

Remarks. It is worth pointing out that the above description uses several im-
plicit assumptions. First, it may happen that some intermediate states become
zero, with the consequence that our approach will not find a solution. How-
ever, this case only occurs with a negligibly small probability, in particular when
considering instances with n ≥ 128. If this event occurs we can use another
plaintext-ciphertext pair. Secondly, when we solve the optimised system of equa-
tions (i.e. the system we obtain after applying D and E), not all of the solutions
we find for this system are guaranteed to be valid solutions for the original sys-
tem of equations. Lastly, Equation (14) implicitly assumes an even number of
rounds. If we wanted to attack an odd number of rounds instead, this equation
had to be adjusted accordingly.

Relating Round Keys to the Master Key Two consecutive round keys in
Jarvis are connected by the relation

ki+1 =
1

ki
+ ci

13

if ki 6= 0, which is true with high probability for large state sizes n. As a conse-
quence, each round key is a rational function of the master key k0 of degree 1,
i.e.

ki+1 =
αi · k0 + βi
γi · k0 + δi

.

We provide the exact values for αi, βi, γi, and δi in Appendix B. Expressing
ki as a rational function of k0 in Equation (12) and Equation (14) raises the
total degree of these equations to 40 and 5, respectively. On the other hand, the
degree of Equation (13) remains unchanged.

4.3 Complexity Estimates of Gröbner Basis Computation for
Jarvis

Assuming the number of rounds r to be even, the aforementioned two improve-
ments yield

– r
2 − 1 equations of degree 40 (equation (12)),

– one equation of degree 24 (equation (13)),
– one equation of degree 5 (equation (14)),

in r
2 +1 variables (the intermediate states x2, x4, . . . , xr and the master key k0).

Since the number of equations equals the number of variables, we may calculate
the degree of regularity using Equation (2), again assuming the system behaves
like a regular sequence.

Our results for the degree of regularity, and thus also for the complexity of
computing a Gröbner basis, are listed in Table 2. Note that we assume ω = 2.8.
However, this is possibly a pessimistic choice, as the regarded systems are sparse.
We therefore also give the complexities for ω = 2 in parentheses.

Table 2: Complexity estimates of Gröbner basis computations for r-round
Jarvis.

r nv Dreg Complexity in bits

6 4 106 63 (45)
8 5 145 82 (58)
10 (Jarvis-128) 6 184 100 (72)
12 (Jarvis-192) 7 223 119 (85)
14 (Jarvis-256) 8 262 138 (98)

16 9 301 156 (112)
18 10 340 175 (125)
20 11 379 194 (138)

These values show that we are able to compute Gröbner bases for, and there-
fore successfully attack, all full-round versions of Jarvis. We note that, even

14

when pessimistically assuming that the memory complexity of a Gröbner basis
computation is asymptotically the same as its time complexity (the memory
complexity of any algorithm is bounded by its time complexity) and when con-
sidering the time-memory product (which is highly pessimistic from an attacker’s
point of view), our attacks against Jarvis-256 are still valid.

5 Gröbner Basis Computation for Friday

In this section, we let F :F2n × F2n → F2n indicate the application of one block
of Friday.

5.1 Extending the Key-Recovery Attack on Jarvis to a Preimage
Attack on Friday

Using the same equations as for Jarvis described in Section 4, a preimage attack
on Friday may also be mounted. At its heart, the attack on Friday with r
rounds is an attack on Jarvis with r − 1 rounds.

Jarvis

m1

IV h1 Jarvis

m2

h2

Fig. 5: Two blocks of Friday.

We work with two blocks of Friday, hence a message m is the concatenation

m = m1 || m2

of two message blocks m1,m2 ∈ F2n . The output of the first block is denoted by
h1 and the known (final) hash value of the second block is denoted by h2. The
hash values h1 and h2 can be expressed as

h1 = F (m1, IV)

and
h2 = F (m2, h1).

The initialization vector IV is just the zero element in F2n . We refer to Figure 5
for an illustration of the introduced notation.

Our preimage attack proceeds as follows: in the first part, we use random
values m̂1 for the input to the first block to populate a table T1 in which each

15

entry contains a pair (m̂1, ĥ1), where ĥ1 denotes the corresponding intermediate
hash value

ĥ1 := F (m̂1, IV).

In the second part, we find pairs (m′2, h′1) with

F (m′2, h
′
1) = h2,

or in other words, pseudo preimages for the known hash value h2. To find such a
pseudo preimage, we fix the sum m2 + h1 to an arbitrary value v0 ∈ F2n , i.e. we
set

v0 := m2 + h1.

This has two effects:

1. In the second block, the value v1 entering the first round of Jarvis is fixed
and known until the application of the second round key. Essentially, this
means that one round of Jarvis can be skipped.

2. Since v0 = m2 + h1 is fixed and known, the final output v2 of Jarvis is
defined by

v2 := v0 + h2

and thus also known.

In the current scenario, the intermediate hash value h1 serves as master
key for the r round keys k1, k2, . . . , kr applied in the second block. Using v1 as
plaintext and v2 as ciphertext, an attack on Jarvis with r−1 rounds is sufficient
to reveal these round keys. Once one of the round keys is recovered, we calculate
the second part h′1 of a pseudo preimage (m′2, h

′
1) by applying the inverse key

schedule to the recovered key. Finally, we set

m′2 := h′1 + v0

and thereby obtain the remaining part of a pseudo preimage. How the presented
pseudo preimage attack on r-round Friday reduces to a key-recovery attack on
(r − 1)-round Jarvis is outlined in Figure 6.

Conceptually, we repeat the pseudo preimage attack many times (for different
values of v0) and store the resulting pairs (m′2, h′1) in a table T2. The aim is to
produce matching entries (m̂1, ĥ1) and (m′2, h

′
1) in T1 and T2 such that

ĥ1 = h′1,

which implies

F (m′2, F (m̂1, IV)) = F (m′2, ĥ1) = F (m′2, h
′
1) = h2,

giving us the preimage (m̂1,m
′
2) we are looking for.

16

m2

h1

h2

k1 kr

· · ·
v0 v1 v2

S B−1 C

Fig. 6: Internals of the second block of Friday. The values v0, v1 and v2 are
known.

Remark. The (input, output) pairs (v1, v2) we use for the underlying key-
recovery attack on Jarvis are not proper pairs provided by, e.g., an encryption
oracle for Jarvis. Thus, it may happen that for some pairs (v1, v2) the key-
recovery attack does not succeed, i.e. there is no key h′1 which maps v1 to v2.
The probability for such an event is

Pfail =

(
2n − 1

2n

)2n

=

(
1− 1

2n

)2n

≈ lim
k→∞

(
1− 1

k

)k

=
1

e

for large n.

5.2 Complexity of Generating Pseudo Preimages

The cost of generating pseudo preimages is not negligible. Hence, we cannot
afford to generate tables T1 and T2, each with 2

n
2 entries, and then look for a

collision. However, given the attack complexities for Jarvis in Table 2, an attack
on 9-round Jarvis has a complexity of around 83 bits (assuming ω = 2.8).
Considering Jarvis-128, for example, this means we can generate up to 245

pseudo preimages.
Let us assume we calculate 210 pseudo preimages (m̂1,m

′
1) and 2

n
2 intermedi-

ate pairs (m̂1, ĥ1), in both cases for Friday instantiated with Jarvis-128. This
leaves us with a table T1 containing 2

n
2 (m̂1, ĥ1) pairs and a table T2 containing

210 (m′2, h
′
1) pairs.

Assuming that all hash values in T1 are pairwise distinct and that also all
hash values in T2 are pairwise distinct, the probability that we find at least one
hash collision between a pair in T1 and a pair in T2 is

P = 1−
|T2|−1∏
i=0

(
1− |T1|

2128 − i

)
, (15)

which is, unfortunately, too low for |T1| = 2
n
2 . However, we can increase this

probability by generating more entries for T1. Targeting a total complexity of,
e.g., ≈ 120 bits, we can generate 2118 such entries. Note that the number of

17

expected collisions in a table of m random n-bit entries is

Nc = m− 2n + 2n ·
(
2n − 1

2n

)m

.

Therefore, the expected number of unique values in such a table is

Nu =

(
1− Nc

m

)
·m = m−Nc = 2n − 2n ·

(
2n − 1

2n

)m

.

We want that Nu ≥ 2118, and by simple computation it turns out that 2119

hash evaluations are sufficient with high probability. Using these values in Equa-
tion (15) yields a success probability of around 63 percent.

5.3 Direct Preimage Attack on Friday

The preimage attack we present in this section works with one block of Friday,
as shown in Figure 7.

Jarvis

m1

h0

h1

Fig. 7: Preimage attack on Friday using one message block.

The description of the intermediate states x1, . . . , xr yields the same system
of equations as before; however, in contrast to the optimised attack on Jarvis
described in Section 4.2, in the current preimage attack on Friday the master
key k0 and thus all subsequent round keys k1, . . . , kr are known. As an effect, we
do not need to express round keys as a rational function of k0 anymore. For the
sake of completeness, we give Equation (12) once more and note that the degree
now decreases to 32 (from formerly 40). It holds that

D

(
1

C(xi−1) + ki−1

)
= E

(
1

B(xi+1)
+ ki

)
for 2 ≤ i ≤ r − 1. Moreover, an additional equation is needed to describe the
structure of the Miyaguchi-Preneel compression function (see Figure 6), namely

B(x1) · (C(xr) + kr + h1) = 1.

18

Again, we assume an even number of rounds r and work with intermediate states
x2, x4, . . . , xr, which is why we need to apply the transformations D and E to
cancel out the state x1 in the above equation. Thus, eventually we have

D

(
1

C(xr) + kr + h1

)
= E

(
1

B(x2)
+ k1

)
. (16)

Here, h1 denotes the hash value for which we want to find a preimage m′1 such
that

F (m′1, h0) = h1.

To obtain m′1 we solve for the intermediate state xr and calculate

m′1 := C(xr) + kr + h1 + h0.

The value h0 = k0 can be regarded as the initialisation vector and is the zero
element in F2n . The above attack results in:

– r
2 − 1 equations of degree 32 coming from Equations (12) when considering
even intermediate states, and

– one equation of degree 32 coming from Equation (16),

in the r
2 variables x2, x4, . . . , xr. The number of equations is the same as the num-

ber of variables, and we can again use Equation (2) to estimate the degree of
regularity. The complexities of the Gröbner basis computations are summarised
in Table 3, where we pessimistically assume ω = 2.8, but also give the complex-
ities for ω = 2 in parentheses.

Table 3: Complexity estimates for the Gröbner basis step in preimage attacks
on Friday using r-round Jarvis.

r nv Dreg Complexity in bits

6 3 94 48 (34)
8 4 125 65 (47)
10 (Jarvis-128) 5 156 83 (59)
12 (Jarvis-192) 6 187 101 (72)
14 (Jarvis-256) 7 218 118 (85)

16 8 249 136 (97)
18 9 280 154 (110)
20 10 311 172 (123)

6 Behaviour of the Attacks against Jarvis and Friday

Recall that our attack has three steps:

19

1. Set up an equation system and compute a Gröbner basis using, e.g., the F4
algorithm [Fau99], with cost CGB.

2. Perform a change of term ordering for the computed Gröbner basis using
the FGLM algorithm [FGL+93], with cost CFGLM.

3. Solve the remaining univariate equation for the last variable using a polyno-
mial factoring algorithm, substitute into other equations, with cost CSol.

For the overall cost of the attack we have10:

C := 2 CGB + 2 CFGLM + CSol,

C := 2

((
nv +D

D

)ω)
+ 2

(
nv ·Du

3
)
+
(
Du log

2Du

)
.

We can estimate CGB if we assume that our systems behave like regular se-
quences. For the CFGLM and CSol we need to establish the degree Du of the
univariate polynomial recovered, for which however we do not have an esti-
mate. We have therefore implemented our attacks on Jarvis and Friday using
Sage v8.6 [Ste+19] with Magma v2.20–5 [BCP97] as the Gröbner basis engine.
In particular, we implemented both the unoptimised and the optimised variants
of the attacks from Sections 4.2 and 5.3.

We observed that our attacks performed significantly better in our experi-
ments than predicted. On the one hand, our Gröbner basis computations reached
significantly lower degrees D than the (theoretically) expected Dreg. Further-
more, the degrees of the univariate polynomials seem to grow as ≈ 2 ·5r (Jarvis)
and as ≈ 2 · 4r (Friday), respectively, suggesting the second and third steps of
our attack are relatively cheap.

We therefore conclude that the complexities given in Tables 2 and 3 are
conservative upper bounds for our attacks on Jarvis and Friday. We summarise
our findings in Table 4, and the source code of our attacks on MARVELlous
is available on GitHub11.

6.1 Comparison with MiMC

We note that the same attack strategy – direct Gröbner basis computation to
recover the secret key – also applies, in principle, to MiMC, as pointed out
by [Ash19]. In particular, it is easy to construct a multivariate system of equa-
tions for MiMC with degree 3 that is already a Gröbner basis by introducing
a new state variable per round12. This makes the first step of a Gröbner basis
attack free.13 However, then the change of ordering has to essentially undo the
10 As suggested in Section 3.3, our attack proceeds by running steps 1 and 2 twice, and

recovering the last variable via the GCD computation, thus reducing the complexity
of step 3.

11 https://github.com/IAIK/marvellous-attacks
12 This property was observed by Tomer Ashur and Alan Szepieniec and shared with

us during personal communication.
13 We note that this situation is somewhat analogous to the one described in [BPW06].

20

https://github.com/IAIK/marvellous-attacks

Table 4: Experimental results using Sage.
Jarvis (optimised)

r nv Dreg 2 log2
(
nv+Dreg

Dreg

)
D 2 log2

(
nv+D

D

)
Du = deg(I) Time

3 2 47 20 26 17 256 0.3s
4 3 67 31 40 27 1280 9.4s
5 3 86 34 40 27 6144 891.4s
6 4 106 45 41 34 28672 99989.0s

Jarvis (unoptimised)

3 4 25 29 10 20 256 0.5s
4 5 33 38 11 24 1280 23.9s
5 6 41 47 13 29 6144 2559.8s
6 7 47 55 14 34 28672 358228.6s

Friday

3 2 39 19 32 18 128 3.6s
4 2 63 22 36 19 512 0.5s
5 3 70 32 36 26 2048 36.5s
6 3 94 34 48 29 8192 2095.2s

In the table, r denotes the number of rounds, Dreg is the expected degree of regularity
under the assumption that the input system is regular, nv is the number of variables, 2·
log2

(
nv+Dreg

Dreg

)
is the expected bit security for ω = 2 under the regularity assumption, D

is the highest degree reached during the Gröbner basis computation, and 2·log2
(
nv+D

D

)
is the expected bit security for ω = 2 based on our experiments. The degree of the
recovered univariate polynomial used for solving the system is denoted as Du.

21

construction to recover a univariate polynomial of degree Du ≈ 3r. Performing
this step twice produces two such polynomials from which we can recover the
key by applying the GCD algorithm with complexity Õ (3r). In [AGR+16], the
security analysis implicitly assumes that steps 1 and 2 of our attack are free by
constructing the univariate polynomial directly and costing only the third and
final step of computing the GCD.

The reason our Gröbner basis attacks are so effective against Friday and
Jarvis is that the particular operations used in the ciphers – finite field inversion
and low-degree linearised polynomials – allow us to construct a polynomial sys-
tem with a relatively small number of variables, which can in turn be efficiently
solved using our three-step attack strategy. We have not been able to construct
such amenable systems for MiMC.

7 Comparing the S-Boxes of Jarvis and the AES

The non-linear operation in Jarvis shows similarities with the AES S-box
SAES(X). In particular, SAES(X) is the composition of an F2-affine function
AAES and the multiplicative inverse of the input in F28 , i.e.

SAES(X) = AAES(X
254),

where

AAES(X) = 0x8F ·X128 + 0xB5 ·X64 + 0x01 ·X32 + 0xF4 ·X16+

0x25 ·X8 + 0xF9 ·X4 + 0x09 ·X2 + 0x05 ·X + 0x63.

In Jarvis, we can also view the S-box as

S(X) = A(X254),

where
A(X) = (C ◦B−1)(X)

and both B and C are of degree 4. In this section we show that AAES cannot
be split into

AAES(X) = (Ĉ ◦ B̂−1)(X),

with both B̂ and Ĉ of low degree. To see this, first note that above decomposition
implies

B̂(X) = A−1AES(Ĉ(X)),

where

A−1AES(X) = 0x6E ·X128 + 0xDB ·X64 + 0x59 ·X32 + 0x78 ·X16+

0x5A ·X8 + 0x7F ·X4 + 0xFE ·X2 + 0x5 ·X + 0x5

is the compositional inverse polynomial of AAES satisfying the relation

A−1AES(AAES(x)) = x,

for every x ∈ F28 . Hence, to show that at least one of B̂, Ĉ is of degree > 4, it
suffices to compute A−1AES(Ĉ) assuming a degree 4 for Ĉ, and to show that then
the corresponding B̂ has degree > 4.

22

Remark. First of all, note that since AAES has degree 128, it is always possible
to find polynomials Ĉ and B̂ of degree 8 such that the equality AAES(X) =
Ĉ(B̂−1(X)) is satisfied. Indeed, if both Ĉ and B̂ have degree 8, then each one
of them have all monomials of degrees 1, 2, 4 and 8. The equality AAES(X) =
Ĉ(B̂−1(X)) is then satisfied if 8 equations (one for each monomial of AAES) in 8
variables (both Ĉ and B̂ have 4 monomials each) are satisfied. Hence, a random
polynomial AAES satisfies the equality AAES(x) = Ĉ(B̂−1(x)) with negligible
probability if both Ĉ and B̂ have degree at most 4.

Property of AAES. Let us assume a degree-4 polynomial

Ĉ(X) = ĉ4X
4 + ĉ2X

2 + ĉ1X + ĉ0.

We can now write down A−1AES(Ĉ(X)), which results in B̂(X). However, we
want B̂ to be of degree at most 4, so we set all coefficients for the degrees
8, 16, 32, 64, 128 to 0. This results in a system of five equations in the three vari-
ables ĉ1, ĉ2, ĉ4, given in Appendix C. We tried to solve this system and confirmed
that no solutions exist. Thus, the affine part of the AES S-box cannot be split
into Ĉ(B̂−1(X)) such that both B̂ and Ĉ are of degree at most 4, whereas in
Jarvis this is possible.

As a result, from this point of view, the main difference between AES and
Jarvis/Friday is that the linear polynomial used to construct the AES S-box
does not have the splitting property used in our attacks, while the same is not
true for the case of Jarvis/Friday. In this latter case, even if B(C−1) has high
degree, it depends only on 9 variables instead of n+1 as expected by a linearised
polynomial of degree 2n (where n ≥ 128). Thus, a natural question to ask is what
happens if we replace B and C with other polynomials of higher degree.

8 Conclusion and Future Work

We have demonstrated that Jarvis and Friday are insecure against Gröbner
basis attacks, mainly due to the algebraic properties of concatenating the fi-
nite field inversion with a function that is defined by composing two low-degree
affine polynomials. In our attacks we modelled both designs as a system of poly-
nomial equations in several variables. Additionally, we bridged equations over
two rounds, with the effect of significantly reducing the number of variables
needed to describe the designs.

Following our analysis, the area sees a dynamic development. Authors
of Jarvis and Friday have abandoned their design. Their new construc-
tion [AABS+19] is substantially different, although it still uses basic compo-
nents which we were able to exploit in our analysis. Whether our particular
method of bridging internal state equations can be applied to the new hash
functions is subject to future work. A broader effort is currently underway
to identify designs practically useful for a range of modern proof systems. A
noteable competition compares three new designs (Marvelous [AABS+19], Po-
seidon/Starkad [GKK+19], and GMiMC [AGP+19]) with the more established
MiMC.

23

Acknowledgements

We thank Tomer Ashur for fruitful discussions about Jarvis, Friday, and a
preliminary version of our analysis. The research described in this paper was
supported by the Royal Society International Exchanges grant “Domain Specific
Ciphers” (IES\R2\170211).

References

[AABS+19] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe,
and Alan Szepieniec. Design of Symmetric-Key Primitives for
Advanced Cryptographic Protocols. Cryptology ePrint Archive,
Report 2019/426. https://eprint.iacr.org/2019/426. 2019
(cit. on pp. 4, 23).

[AC09] Martin Albrecht and Carlos Cid. “Algebraic Techniques in Dif-
ferential Cryptanalysis”. In: FSE 2009. Ed. by Orr Dunkelman.
Vol. 5665. LNCS. Springer, Heidelberg, Feb. 2009, pp. 193–208.
doi: 10.1007/978-3-642-03317-9_12 (cit. on p. 3).

[ACF+14] Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, and Lu-
dovic Perret. Algebraic Algorithms for LWE. Cryptology ePrint
Archive, Report 2014/1018. http://eprint.iacr.org/2014/
1018. 2014 (cit. on p. 3).

[AD18] Tomer Ashur and Siemen Dhooghe. MARVELlous: a STARK-
Friendly Family of Cryptographic Primitives. Cryptology ePrint
Archive, Report 2018/1098. https://eprint.iacr.org/2018/
1098. 2018 (cit. on pp. 3, 4, 6).

[AG11] Sanjeev Arora and Rong Ge. “New Algorithms for Learning in
Presence of Errors”. In: ICALP 2011, Part I. Ed. by Luca Aceto,
Monika Henzinger, and Jiri Sgall. Vol. 6755. LNCS. Springer, Hei-
delberg, July 2011, pp. 403–415. doi: 10 . 1007 / 978 - 3 - 642 -
22006-7_34 (cit. on p. 3).

[AGP+19] Martin R. Albrecht, Lorenzo Grassi, Leo Perrin, Sebastian Ra-
macher, Christian Rechberger, Dragos Rotaru, et al. Feistel Struc-
tures for MPC, and More. Cryptology ePrint Archive, Report
2019/397, to appear in ESORICS 2019. https://eprint.iacr.
org/2019/397. 2019 (cit. on pp. 2, 23).

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab
Roy, and Tyge Tiessen. “MiMC: Efficient Encryption and Cryp-
tographic Hashing with Minimal Multiplicative Complexity”.
In: ASIACRYPT 2016, Part I. Ed. by Jung Hee Cheon and
Tsuyoshi Takagi. Vol. 10031. LNCS. Springer, Heidelberg, Dec.
2016, pp. 191–219. doi: 10.1007/978-3-662-53887-6_7 (cit. on
pp. 2, 22).

24

https://eprint.iacr.org/2019/426
https://doi.org/10.1007/978-3-642-03317-9_12
http://eprint.iacr.org/2014/1018
http://eprint.iacr.org/2014/1018
https://eprint.iacr.org/2018/1098
https://eprint.iacr.org/2018/1098
https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1007/978-3-642-22006-7_34
https://eprint.iacr.org/2019/397
https://eprint.iacr.org/2019/397
https://doi.org/10.1007/978-3-662-53887-6_7

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider,
Tyge Tiessen, and Michael Zohner. “Ciphers for MPC and FHE”.
In: EUROCRYPT 2015, Part I. Ed. by Elisabeth Oswald and
Marc Fischlin. Vol. 9056. LNCS. Springer, Heidelberg, Apr. 2015,
pp. 430–454. doi: 10.1007/978- 3- 662- 46800- 5_17 (cit. on
p. 2).

[Ash19] Tomer Ashur. Private Communication. Mar. 2019 (cit. on p. 20).
[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra,

Pieter Wuille, and Greg Maxwell. “Bulletproofs: Short Proofs for
Confidential Transactions and More”. In: 2018 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, May 2018,
pp. 315–334. doi: 10.1109/SP.2018.00020 (cit. on p. 2).

[BBH+18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev.
Scalable, transparent, and post-quantum secure computational in-
tegrity. Cryptology ePrint Archive, Report 2018/046. https://
eprint.iacr.org/2018/046. 2018 (cit. on pp. 2, 4).

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew
Green, Ian Miers, Eran Tromer, et al. Zerocash: Decentralized
Anonymous Payments from Bitcoin. Cryptology ePrint Archive,
Report 2014/349. http://eprint.iacr.org/2014/349. 2014
(cit. on p. 2).

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. “The
MAGMA Algebra System I: The User Language”. In: Journal
of Symbolic Computation 24. Academic Press, 1997, pp. 235–265
(cit. on p. 20).

[BFP12] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. “Solv-
ing polynomial systems over finite fields: improved analysis of the
hybrid approach”. In: International Symposium on Symbolic and
Algebraic Computation, ISSAC’12. ACM, 2012, pp. 67–74 (cit. on
p. 9).

[BFS+05] M Bardet, JC Faugere, B Salvy, and BY Yang. “Asymptotic be-
haviour of the index of regularity of quadratic semi-regular poly-
nomial systems”. In: The Effective Methods in Algebraic Geometry
Conference (MEGA). 2005, pp. 1–14 (cit. on p. 9).

[BPW06] Johannes Buchmann, Andrei Pyshkin, and Ralf-Philipp Wein-
mann. “A Zero-Dimensional Gröbner Basis for AES-128”. In:
FSE 2006. Ed. by Matthew J. B. Robshaw. Vol. 4047. LNCS.
Springer, Heidelberg, Mar. 2006, pp. 78–88. doi: 10 . 1007 /
11799313_6 (cit. on p. 20).

[BS18] Eli Ben-Sasson. State of the STARK. available at https://drive.
google.com/file/d/1Osa0MXu-04dfwn1YOSgN6CXOgWnsp-Tu/
view. Nov. 2018 (cit. on p. 3).

[Buc65] Bruno Buchberger. “Ein Algorithmus zum Auffinden der Basisele-
mente des Restklassenringes nach einem nulldimensionalen Poly-

25

https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1109/SP.2018.00020
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046
http://eprint.iacr.org/2014/349
https://doi.org/10.1007/11799313_6
https://doi.org/10.1007/11799313_6
https://drive.google.com/file/d/1Osa0MXu-04dfwn1YOSgN6CXOgWnsp-Tu/view
https://drive.google.com/file/d/1Osa0MXu-04dfwn1YOSgN6CXOgWnsp-Tu/view
https://drive.google.com/file/d/1Osa0MXu-04dfwn1YOSgN6CXOgWnsp-Tu/view

nomideal”. PhD thesis. University of Innsbruck, 1965 (cit. on pp. 3,
8).

[CB07] Nicolas Courtois and Gregory V. Bard. “Algebraic Cryptanaly-
sis of the Data Encryption Standard”. In: 11th IMA International
Conference on Cryptography and Coding. Ed. by Steven D. Gal-
braith. Vol. 4887. LNCS. Springer, Heidelberg, Dec. 2007, pp. 152–
169 (cit. on p. 3).

[CLO97] David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties,
and Algorithms – An Introduction to Computational Algebraic Ge-
ometry and Commutative Algebra. 2nd ed. Undergraduate Texts
in Mathematics. Springer, 1997 (cit. on pp. 3, 8).

[Cou03a] Nicolas Courtois. “Fast Algebraic Attacks on Stream Ciphers
with Linear Feedback”. In: CRYPTO 2003. Ed. by Dan Boneh.
Vol. 2729. LNCS. Springer, Heidelberg, Aug. 2003, pp. 176–194.
doi: 10.1007/978-3-540-45146-4_11 (cit. on p. 3).

[Cou03b] Nicolas Courtois. “Higher Order Correlation Attacks, XL Algo-
rithm and Cryptanalysis of Toyocrypt”. In: ICISC 02. Ed. by Pil
Joong Lee and Chae Hoon Lim. Vol. 2587. LNCS. Springer, Hei-
delberg, Nov. 2003, pp. 182–199 (cit. on p. 3).

[Fau02] Jean-Charles Faugère. “A new efficient algorithm for computing
Gröbner bases without reduction to zero (F5)”. In: Proceedings
of the 2002 International Symposium on Symbolic and Algebraic
Computation ISSAC. Ed. by T. Mora. isbn: 1-58113-484-3. ACM
Press, July 2002, pp. 75–83 (cit. on pp. 3, 8).

[Fau99] Jean-Charles Faugere. “A new efficient algorithm for computing
Gröbner bases (F4)”. In: Journal of Pure and Applied Algebra
139.1-3 (1999), pp. 61–88 (cit. on pp. 3, 8, 20).

[FGL+93] Jean-Charles Faugère, Patrizia M. Gianni, Daniel Lazard, and
Teo Mora. “Efficient Computation of Zero-Dimensional Gröbner
Bases by Change of Ordering”. In: J. Symb. Comput. 16.4 (1993),
pp. 329–344 (cit. on pp. 9, 20).

[FGO+10] Jean-Charles Faugère, Valérie Gauthier, Ayoub Otmani, Ludovic
Perret, and Jean-Pierre Tillich. A Distinguisher for High Rate
McEliece Cryptosystems. Cryptology ePrint Archive, Report
2010/331. http : / / eprint . iacr . org / 2010 / 331. 2010 (cit.
on p. 3).

[FGP+15] Jean-Charles Faugère, Danilo Gligoroski, Ludovic Perret, Simona
Samardjiska, and Enrico Thomae. “A Polynomial-Time Key-
Recovery Attack on MQQ Cryptosystems”. In: PKC 2015. Ed. by
Jonathan Katz. Vol. 9020. LNCS. Springer, Heidelberg, 2015,
pp. 150–174. doi: 10.1007/978-3-662-46447-2_7 (cit. on p. 3).

[FM11] Jean-Charles Faugère and Chenqi Mou. “Fast algorithm for change
of ordering of zero-dimensional Gröbner bases with sparse multi-
plication matrices”. In: Symbolic and Algebraic Computation, In-
ternational Symposium, ISSAC 2011. Ed. by Éric Schost and Ioan-

26

https://doi.org/10.1007/978-3-540-45146-4_11
http://eprint.iacr.org/2010/331
https://doi.org/10.1007/978-3-662-46447-2_7

nis Z. Emiris. ACM, 2011, pp. 115–122. doi: 10.1145/1993886.
1993908 (cit. on p. 10).

[FPP14] Jean-Charles Faugère, Ludovic Perret, and Frédéric de Portzam-
parc. “Algebraic Attack against Variants of McEliece with Goppa
Polynomial of a Special Form”. In: ASIACRYPT 2014, Part I. Ed.
by Palash Sarkar and Tetsu Iwata. Vol. 8873. LNCS. Springer, Hei-
delberg, Dec. 2014, pp. 21–41. doi: 10.1007/978-3-662-45611-
8_2 (cit. on p. 3).

[Frö85] Ralf Fröberg. “An inequality for Hilbert series of graded algebras”.
In:Mathematica Scandinavica 56 (1985), pp. 117–144 (cit. on p. 9).

[Gen07] Giulio Genovese. “Improving the algorithms of Berlekamp and
Niederreiter for factoring polynomials over finite fields”. In: J.
Symb. Comput. 42.1-2 (2007), pp. 159–177 (cit. on p. 10).

[GKK+19] Lorenzo Grassi, Daniel Kales, Dmitry Khovratovich, Arnab Roy,
Christian Rechberger, and Markus Schofnegger. Starkad and Po-
seidon: New Hash Functions for Zero Knowledge Proof Systems.
Cryptology ePrint Archive, Report 2019/458. https://eprint.
iacr.org/2019/458. 2019 (cit. on p. 23).

[HBH+19] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox.
Zcash protocol specification: Version 2019.0-beta-37 [Overwin-
ter+Sapling]. Tech. rep. available at https : / / github . com /
zcash/zips/blob/master/protocol/protocol.pdf. Zerocoin
Electric Coin Company, 2019 (cit. on p. 2).

[Hor72] Ellis Horowitz. “A Fast Method for Interpolation Using Precondi-
tioning”. In: Information Processing Letters (IPL). Vol. 1. 4. June
1972, pp. 157–163 (cit. on p. 8).

[JK97] Thomas Jakobsen and Lars R. Knudsen. “The Interpolation At-
tack on Block Ciphers”. In: FSE’97. Ed. by Eli Biham. Vol. 1267.
LNCS. Springer, Heidelberg, Jan. 1997, pp. 28–40. doi: 10.1007/
BFb0052332 (cit. on p. 7).

[KBN09] Dmitry Khovratovich, Alex Biryukov, and Ivica Nikolic. “Speed-
ing up Collision Search for Byte-Oriented Hash Functions”. In:
CT-RSA 2009. Ed. by Marc Fischlin. Vol. 5473. LNCS. Springer,
Heidelberg, Apr. 2009, pp. 164–181. doi: 10.1007/978-3-642-
00862-7_11 (cit. on p. 2).

[Knu95] Lars R. Knudsen. “Truncated and Higher Order Differentials”. In:
FSE’94. Ed. by Bart Preneel. Vol. 1008. LNCS. Springer, Heidel-
berg, Dec. 1995, pp. 196–211. doi: 10.1007/3-540-60590-8_16
(cit. on p. 7).

[KR00] Martin Kreuzer and Lorenzo Robbiano. Computational Commu-
tative Algebra 1. New York: Springer, 2000 (cit. on p. 10).

[Kun73] Hsiang-Tsung Kung. Fast Evaluation and Interpolation. Tech. rep.
Department of Computer Science, Carnegie-Mellon University,
Jan. 1973 (cit. on p. 8).

27

https://doi.org/10.1145/1993886.1993908
https://doi.org/10.1145/1993886.1993908
https://doi.org/10.1007/978-3-662-45611-8_2
https://doi.org/10.1007/978-3-662-45611-8_2
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2019/458
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://doi.org/10.1007/BFb0052332
https://doi.org/10.1007/BFb0052332
https://doi.org/10.1007/978-3-642-00862-7_11
https://doi.org/10.1007/978-3-642-00862-7_11
https://doi.org/10.1007/3-540-60590-8_16

[LN96] Rudolf Lidl and Harald Niederreiter. Finite Fields. 2nd ed. Ency-
clopedia of Mathematics and its Applications. Cambridge Univer-
sity Press, 1996 (cit. on p. 5).

[MR02] Sean Murphy and Matthew J. B. Robshaw. “Essential Algebraic
Structure within the AES”. In: CRYPTO 2002. Ed. by Moti Yung.
Vol. 2442. LNCS. Springer, Heidelberg, Aug. 2002, pp. 1–16. doi:
10.1007/3-540-45708-9_1 (cit. on p. 3).

[PHG+13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova.
“Pinocchio: Nearly Practical Verifiable Computation”. In: 2013
IEEE Symposium on Security and Privacy. IEEE Computer So-
ciety Press, May 2013, pp. 238–252. doi: 10.1109/SP.2013.47
(cit. on p. 2).

[Ste+19] William Stein et al. Sage Mathematics Software Version 8.6. Avail-
able at http://www.sagemath.org. The Sage Development Team.
2019 (cit. on p. 20).

[WSM+11] Meiqin Wang, Yue Sun, Nicky Mouha, and Bart Preneel. “Al-
gebraic Techniques in Differential Cryptanalysis Revisited”. In:
ACISP 11. Ed. by Udaya Parampalli and Philip Hawkes. Vol. 6812.
LNCS. Springer, Heidelberg, July 2011, pp. 120–141 (cit. on p. 3).

28

https://doi.org/10.1007/3-540-45708-9_1
https://doi.org/10.1109/SP.2013.47
http://www.sagemath.org

A Polynomials of Section 4.2

In Section 4.2, we search for monic affine polynomialsD,E such that the equality

D(B) = E(C)

is satisfied, where B,C are monic affine polynomials of degree 4. In particular,
given

B(X) = X4 + b2X
2 + b1X + b0 and C(X) = X4 + c2X

2 + c1X + c0

the goal is to find

D(X) = X4 + d2X
2 + d1X

1 + d0 and E(X) = X4 + e2X
2 + e1X + e0

such that D(B) = E(C).
By comparing the corresponding coefficients of D(B) and E(C), we obtain

a system of 5 linear equations in the 6 variables d0, d1, d2, e0, e1, e2:

d2 + e2 = b42 + c42,

d1 + b22 · d2 + e1 + c22 · e2 = b41 + c41,

b2 · d1 + b21 · d2 + c2 · e1 + c21 · e2 = 0,

b1 · d1 + c1 · e1 = 0,

d0 + b0 · d1 + b20 · d2 + e0 + c0 · e1 + c20 · e2 = b40 + c40.

This system can be solved to recover D and E.

B Constants αi, βi, γi, and δi for the Round Keys

Each round key ki+1 = 1
ki

+ ci in Jarvis can be written as

ki+1 =
αi · k0 + βi
γi · k0 + δi

,

where αi, βi, γi, and δi are constants. By simple computation, note that:

– i = 0:
k1 =

1

k0
+ c0 =

c0k0 + 1

k0
,

and α0 = c0, β0 = 1, γ0 = 1, δ0 = 0;
– i = 1:

k2 =
1

k1
+ c1 =

(c0c1 + 1)k0 + c1
c0k0 + 1

,

and α1 = 1 + c0c1, β1 = c1, γ1 = c0, δ1 = 1;
– i = 2:

k3 =
1

k2
+ c2 =

(c0c1c2 + c0 + c2)k0 + c1c2 + 1

(c0c1 + 1)k0 + c1
,

and α2 = c0c1c2 + c0 + c2, β2 = c1c2 + 1, γ2 = c0c1 + 1, δ2 = c1;

29

and so on. Thus, we can derive recursive formulas to calculate the remaining
values for generic i ≥ 0:

αi+1 = αi · ci+1 + γi,

βi+1 = βi · ci+1 + δi,

γi+1 = αi,

δi+1 = βi.

C System of Equations from Section 7

The system of equations is constructed by symbolically computing A−1AES(Ĉ(x)),
as described in Section 7, and setting all coefficients for degrees 8, 16, 32, 64, 128
to 0. These are five possible degrees and the following equations are the sum of
all coefficients belonging to each of these degrees:

0x5a · ĉ81 + 0x7f · ĉ42 + 0xfe · ĉ24 = 0,

0x78 · ĉ161 + 0x5a · ĉ82 + 0x7f · ĉ44 = 0,

0x59 · ĉ321 + 0x78 · ĉ162 + 0x5a · ĉ84 = 0,

0xdb · ĉ641 + 0x59 · ĉ322 + 0x78 · ĉ164 = 0,

0x6e · ĉ1281 + 0xdb · ĉ642 + 0x59 · ĉ324 = 0.

By practical tests we found that no (nontrivial) coefficients ĉ1, ĉ2, ĉ4 satisfy all
previous equalities, which means that there are no polynomials B̂ and Ĉ both
of degree 4 that satisfy AAES(X) = (Ĉ ◦ B̂−1)(X).

30

	Algebraic Cryptanalysis of STARK-Friendly Designs: Application to MARVELlous and MiMC

