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Abstract. The random oracle model (ROM) is an idealized model where
hash functions are modeled as random functions that are only accessible
as oracles. Although the ROM has been used for proving many crypto-
graphic schemes, it has (at least) two problems. First, the ROM does not
capture quantum adversaries. Second, it does not capture non-uniform
adversaries that perform preprocessings. To deal with these problems,
Boneh et al. (Asiacrypt’11) proposed using the quantum ROM (QROM)
to argue post-quantum security, and Unruh (CRYPTO’07) proposed the
ROM with auxiliary input (ROM-AI) to argue security against prepro-
cessing attacks. However, to the best of our knowledge, no work has dealt
with the above two problems simultaneously.
In this paper, we consider a model that we call the QROM with (clas-
sical) auxiliary input (QROM-AI) that deals with the above two prob-
lems simultaneously and study security of cryptographic primitives in the
model. That is, we give security bounds for one-way functions, pseudo-
random generators, (post-quantum) pseudorandom functions, and (post-
quantum) message authentication codes in the QROM-AI.
We also study security bounds in the presence of quantum auxiliary
inputs. In other words, we show a security bound for one-wayness of
random permutations (instead of random functions) in the presence
of quantum auxiliary inputs. This resolves an open problem posed by
Nayebi et al. (QIC’15). In a context of complexity theory, this implies
NP∩coNP 6⊆ BQP/qpoly relative to a random permutation oracle, which
also answers an open problem posed by Aaronson (ToC’05).

1 Introduction

1.1 Background

Random Oracle Model with Auxiliary Input. The random oracle model (ROM)
introduced by Bellare and Rogaway [BR93] is a remarkably useful tool for an-
alyzing security of practical cryptographic schemes. In the ROM, we model a
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hash function as a truly random function that is only accessible as an oracle and
assume that an adversary has no a priori knowledge about the function. This
means that the traditional definition of the ROM does not capture non-uniform
adversaries who perform heavy offline preprocessings to generate auxiliary infor-
mation (also called advice) of the random function. Indeed, a non-uniform attack
is effective in some cases [Hel80, FN99, DTT10]. For example, Hellman [Hel80]
showed that one can speed up an inversion of a permutation by using the power
of preprocessing. Bernstein and Lange [BL13] pointed out that non-uniform at-
tacks are a potential threat in the real world by exhibiting some examples of
(unrealistic) non-uniform attacks. To deal with such non-uniform attacks, Un-
ruh [Unr07] introduced the random oracle model with auxiliary input (ROM-AI)
where an adversary can perform arbitrarily heavy preprocessing to generate aux-
iliary information of the random function. He gave a generic tool for analyzing
security in the ROM-AI by introducing another model called the bit-fixing ROM
and showed that a random oracle is one-way and that RSA-OAEP [BR95] re-
mains secure in the ROM-AI. Subsequently, Dodis, Guo, and Katz [DGK17], and
Coretti, Dodis, Guo, and Steinberger [CDGS18] further studied the ROM-AI to
show (tighter) security bounds for several natural applications including one-way
functions (OWFs), collision resistant hash functions (CRHFs), pseudorandom
generators (PRGs), pseudorandom functions (PRFs), message authentication
codes (MACs), and more.

Quantum Random Oracle Model. The ROM has been strengthened in another
direction called the quantum ROM (QROM) [BDF+11], where an adversary
can access the random oracle quantumly. This is a natural model when con-
sidering post-quantum security since a random oracle is an idealization of a
hash function that can be quantumly evaluated by an adversary once quantum
computers are available. Since many proof techniques in the ROM cannot be
directly translated into ones in the QROM, many studies have given security
proofs in the QROM for schemes that are originally proven secure in the ROM
(e.g., [Zha12b, Unr15, ES15, TU16, HRS16, CBH+18, KLS18, SXY18, JZC+18,
KYY18, AHU19, DFMS19, LZ19]).

Quantum Random Oracle Model with (Quantum) Auxiliary Input. Although
both the ROM-AI and QROM have been studied thoroughly, to the best of our
knowledge, no work has considered both these extensions simultaneously. In this
work, we consider a mix of them and initiate the study of the QROM with aux-
iliary input. In particular, we consider both the QROM with classical auxiliary
input (QROM-AI) and the QROM with quantum auxiliary input (QROM-QAI).
Both these models reasonably extend the QROM to capture adversaries with pre-
processing in some sense. The QROM-AI captures an adversary that performs
a long classical preprocessing to prepare classical auxiliary information that will
be used in the future when quantum computers become available. This model is
reasonable in the current situation in which quantum computers are not avail-
able yet and in a future situation in which quantum computers are available, but
are far less efficient than classical computers. On the other hand, the QROM-
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QAI would be more reasonable in the situation where a highly efficient quantum
computer is available at the time of preprocessing. The motivation of this work
is to study security of natural applications of random oracles in these models.

The work most relevant to the above problem is that of Nayebi, Aaronson,
Belovs, and Trevisan [NABT15], which showed a lower bound for the number of
queries to invert a random permutation with classical auxiliary input. However,
their result is not sufficient for our purpose in several aspects. First, they only
considered a random permutation whereas we consider a random function. Since
a hash function in the real world is not a permutation, we need to consider a
random function instead of a random permutation to derive implications in the
real world. Second, they only considered a lower bound for one-wayness whereas
we are also interested in other applications such as CRHFs, PRGs, PRFs, and
MACs. Third, they did not consider the effect of salting, which is a technique to
use a random string that is chosen after the preprocessing as a public parameter.
Salting is widely deployed in the real world, and sufficiently long salt defeats non-
uniform attacks in the ROM-AI [DGK17, CDGS18]. Finally, they only considered
settings where auxiliary inputs are classical, and their result seems difficult to
directly extend to the setting where auxiliary inputs are quantum. Indeed, they
left it extending their result to the quantum auxiliary input setting as an open
problem. Thus it remains unknown if we can obtain security bounds for the
security of OWFs, CRHFs, PRGs, PRFs, and MACs and if salting is effective
in the QROM-AI and QROM-QAI.

1.2 Our Results

In this work, we initiate the study of the QROM-AI and the QROM-QAI, and
give security bounds for several cryptographic applications in the QROM-AI.
However, we do not know if we can extend them to ones in the QROM-QAI.
Nonetheless, we make a step toward the goal by proving that a random permu-
tation (instead of a random function) is hard to invert even with a quantum aux-
iliary input. This answers the open problem raised by Nayebi et al. [NABT15].
We describe more details of our results below.

Security Bounds in QROM-AI. We prove security bounds for natural “salted”
constructions of OWFs, PRGs, PRFs, and MACs in the QROM-AI. A caveat
of our results for PRFs and MACs is that we only consider classical queries for
PRF and MAC oracles whereas queries to the random oracle can be quantum. To
clarify this limitation, we denote them as pqPRFs and pqMACs. 3 On the other
hand, we denote quantum-accessible PRFs and MACs as qPRFs and qMACs.
We note that the attack models of pqPRFs and pqMACs make sense as post-
quantum security models a setting where honest parties are all classical and only
adversaries are quantum.

Our results are summarized in Table 1. (An extended table that includes
security bounds and attacks in the ROM-AI can be found in the full version.)

3 “pq” stands for “post-quantum”.
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Table 1. Security bounds and best known attacks using an S-bit auxiliary input and
T queries to the random oracle for “salted” constructions of primitives in the QROM-
AI. The first two primitives (unkeyed primitives) are constructed from a random oracle
O : [K]× [N ]→ [M ] where [K] is the domain of the salt, [N ] is the domain of the input
(or the seed for PRGs), [M ] is the domain of the outputs, and we let α := min(N,M).
The latter two primitives (keyed primitives) are constructed from a random oracle
O : [K] × [N ] × [L] → [M ] where [K] is the domain of the salt, [N ] is the domain
of the key, [L] is the domain of the inputs, and [M ] is the domain of the outputs (or
authenticators for MACs). Qprf denotes the number of queries to the PRF oracle in
the security bound for pqPRFs. We omit constant factors and logarithmic terms for
simplicity.

The notations used in the table are the same as those used in [DGK17]. The
“Security bounds in QROM-AI” column indicates upper bounds of advantages
to break these primitives by an adversary that makes T quantum queries to
the random oracle and is given a classical auxiliary input of size at most S
bits. The “Best known attacks in QROM-AI” column indicates advantages that
are achieved by the best known attacks. (the full version briefly explains how
we filled this column.) Though our bounds in the QROM-AI are much less tight
than those in the ROM-AI and far from matching the best known attacks, we can
derive some meaningful implications from them. For example, our bounds imply
the computational hardness of these primitives if the size of domain and ranges
are sufficiently large4. Moreover, our bounds imply that if we use a large enough
salt, these primitives remain secure even if an adversary prepares a very long
auxiliary input. That is, if the size K of the domain of the salt is exponentially
larger than the auxiliary input size S, then terms that depend on S are negligible.
This extends similar results in the ROM-AI [DGK17, CDGS18] to the QROM-
AI.

On Quantum Auxiliary Input. Unfortunately, we could not obtain any mean-
ingful security bound in the QROM-QAI where quantum auxiliary inputs are
available. Nonetheless, we give a security bound for a closely related problem:

4 More precisely, if both S and T are polynomial in the security parameter and (ap-
propriate parts of) domains and ranges of the random oracle are exponentially large
then our bounds become negligibly small.
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one-wayness of a random permutation (instead of a random function) with quan-
tum auxiliary input. That is, we show that the probability of inverting a ran-
dom function O : [K] × [N ] → [N ] such that O(a, ·) is a permutation over
[N ] for all a ∈ [K] with an S-qubit quantum auxiliary input and T quan-

tum queries is Õ

((
ST 2

KN + T 2

N

)1/3
)

. This answers the open problem raised by

Nayebi et al. [NABT15]. Before our work, such a result was known in the setting
where an auxiliary input is classical and K = 1 [NABT15], which gave a security

bound Õ(
√
ST 2/N). 5

Our result also has an implication in complexity theory. Specifically, it implies
an oracle separation of NP∩coNP and BQP/qpoly which is the class of problems
solvable by a polynomial-size quantum algorithm with a polynomial-size quan-
tum advice [NY04, Aar05]. That is, we have NP∩coNP 6⊆ BQP/qpoly relative to
a random permutation oracle. This affirmatively answers the open problem left
by Aaronson [Aar05], who showed the existence of an oracle relative to which
NP 6⊆ BQP/qpoly and left it open to show the existence of an oracle relative to
which NP ∩ coNP 6⊆ BQP/qpoly.

1.3 Technical Overview

Our main tool is the compression technique developed by Genarro, Gertner,
Katz, and Trevisan [GT00, GGKT05]. The basic idea behind the technique is
a very simple information theoretic argument: For sets M, C, if there exist an
encoding algorithm E : M → C and a decoding algorithm D : C → M such
that D(E(m)) = m holds with high probability (over the uniformly random
choice of m), then the cardinality of C cannot be much smaller than that ofM.
More precisely, if the decoding succeeds with probability δ, then we must have
|C| ≥ δ|M|. This holds even if the encoder and the decoder share a randomness of
any length [DTT10]. We call this information theoretical bound the compression
lemma. In the following, we explain how to apply this to derive security bounds
in the QROM-AI. We omit salting for simplicity since similar methods still work
with salting.

OWFs in QROM-AI. Here, we explain how to obtain a security bound for OWFs
in the QROM-AI. First, we review the case of random permutations, which is
shown by Nayebi et al. [NABT15] because this is much simpler. Suppose that
we have a random permutation f : [N ]→ [N ] and an adversary A that succeeds
in inverting f with high probability, say 2/3, for ε-fraction of x ∈ [N ] by using
S-bit classical auxiliary information of f and T quantum queries to f . We want
to give an upper bound for ε.

The idea is to construct an encoder that compresses the truth table of the
random oracle by using the power of the adversary A and then invoke the com-
pression lemma. Specifically, we choose a random subset R ⊂ [N ] by putting

5 They claim that their security bound is Õ(ST 2/N). However, their definition of one-
wayness is weaker than ours, and if we use our definition, then the quadratic security
loss naturally occurs. See the full version for more detailed discussion.
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each element x ∈ [N ] into R with a certain probability, which will be used as
the shared randomness between the encoder and the decoder. Then we define
the set G ⊂ R of good elements where we say that x ∈ R is good if A succeeds
in inverting f(x) with high probability and A’s total query magnitude on any
x′ ∈ R \ {x} is “small” when it runs on the input f(x). By appropriately setting
parameters, we can show that G is “not too small” with high probability. Then
the encoder generates an encoding that consists of a “partial truth table” of
f on [N ] \ G, the description of the set f(G) and the auxiliary input that is
used by A. The decoder recovers the whole truth table of f by inverting f on
each element of f(G) by running A. Here, we have to be careful about the fact
that the decoder is not given the whole truth table of f and cannot correctly
simulate the oracle f for A. Thus, when the decoder tries to invert y ∈ f(G) in
f , it defines a function gy by

gy(x) :=

{
f(x) if x /∈ R
y if x ∈ R,

and uses gy instead of f . Though f and gy do not match on R \ {x}, by the
definition of the good elements, A’s query magnitude on R \ {x} is “small,” and
thus A still succeeds in inverting y with high probability with the oracle access
to gy instead of f . Then the decoder can recover x = f−1(y) by computing the
output distribution of A and taking the value that is output with the highest
probability.6 By repeating this for every y ∈ f(G), the decoder can recover the
whole truth table of f . On the other hand, the encoding is smaller than the
original truth table of f since it “forgets” the truth table on the subset G that is
“not too small.” By setting parameters appropriately, we can derive the security
bound.

For random functions instead of random permutations, the difference is that
a preimage of y may not be unique, and we have to bound the probability that
an adversary finds any of them. In that case, even if an adversary succeeds
in inverting the random function with high probability, there may not be any
particular value that is output with constant probability. Thus the decoder has
to use a value that is output by the adversary with sub-constant probability for
recovering the truth table. This only gives a somewhat bad bound related to this
probability, even if we resolve other technical difficulties.

To deal with this problem, we include a randomness used in the measurement
of the final state of A as a part of the shared randomness between the encoder
and decoder. With a fixed randomness for the measurement, the decoder can
deterministically simulate A7 and decide the value that is supposed to be used
for recovering the table. With this idea (among others), we extend the above
result to the case of random functions.
6 Since the compression lemma works for unbounded-time encoders and decoders, we

can assume that the decoder has an unbounded computational power to simulate
quantum computations.

7 Since the decoder has unbounded computational power, it can control the random-
ness for measurements in executions of the quantum algorithm A.
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PRGs in QROM-AI. For obtaining security bounds for PRGs, we first consider
(an average case version of) Yao’s box problem [Yao90] similarly to the classical
case [DTT10, DGK17]. In Yao’s box problem, we consider a random oracle O :
[N ] → {0, 1} and an adversary that tries to compute O(x) for uniform x ∈ [N ]
by using an S-bit classical auxiliary input and T quantum queries to O without
querying x itself (i.e., A’s query magnitude on x is 0 in the quantum case). If we
obtain a proper bound for Yao’s box problem, then a bound for PRGs follows as
discussed below. To construct PRGs, we consider a random oracle O : [N ]→ [M ]
and want to bound the advantage of A to distinguish O(x) for x← [N ] from a
truly random string y ← [M ] by using an S-bit classical auxiliary input and T
quantum queries to O.

First, we argue that A’s total query magnitude on x is “small.” This holds
because if it is “not small,” then we can use A to invert O with “non-small”
probability by measuring one of its queries, which contradicts the bound for
the one-wayness of O. Then we can convert A to an algorithm A′ whose query
magnitude on x is 0 while only slightly degrading its distinguishing advantage.8

Now, A′ distinguishes O(x) from a random string without querying x at all. By
Yao’s equivalence of distinguishability and predictability [Yao82], there exists an
algorithm B such that for some i ∈ [logM ], it predicts the i-th bit of O(x) given
an advice stO of S-bit, x, and the first i − 1 bits of O(x) making T quantum
queries to O without querying x to O. This is exactly an algorithm that solves
Yao’s box problem by also considering the first i − 1 bits of O(x) as a part of
the auxiliary input.9 Therefore we can apply the bound for Yao’s box problem
to derive a security bound for PRGs in the QROM-AI.

What is left is how to derive a security bound for Yao’s box problem.10 Ba-
sically, we follow the classical counterpart that was shown by De et al. [DTT10],
which is roughly described as follows. First, we choose a random subset R ⊂ [N ]
by putting each element of x ∈ [N ] into R with a certain probability, which will
be used as the shared randomness between the encoder and the decoder. Then
we define the set G of good elements where we say that x ∈ [N ] is good if (A):
x ∈ R, and (B): for any query x′ made by A with input x, we have x′ /∈ R.11

Then we partition G into two subsets G0 that consists of all x ∈ G such that
A correctly guesses O(x) on input x, and G1 := G \ G0. By some analyses of
probabilities, they showed that |G| is “not too small” and |G0|− |G1| = Ω(ε|G|)
with “non-small” probability where ε is A’s advantage (i.e., A returns the correct
answer with probability 1/2 + ε). Then they construct an encoder that outputs
the partial truth table of O on [N ] \ G, the description of the set G0, and the

8 In the actual proof, we rely on the semi-classical one-way to hiding theorem recently
given by Ambainis, Hamburg, and Unruh [AHU19].

9 More precisely, since an auxiliary input cannot depend on x, we consider the partial
truth table of O that gives the first i − 1 bits of O(x) for all x as a part of the
auxiliary input.

10 Nayebi et al. [NABT15] also studied Yao’s box problem. However, they only consid-
ered the worst case, so their result is not applicable for our purpose.

11 Recall that this is a review of the classical case, and thus this condition is well-
defined.
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auxiliary input used by A. The decoder can recover the whole truth table of
O by running A on each x ∈ G and negating it if x ∈ G1.12 We note that
the decoder never gets stuck in simulating the oracle since all of A’s queries
are outside R where the decoder knows the value of O. They showed that the
encoding size is much smaller than the whole truth table when |G0| − |G1| is
“large”. (Note that the needed number of bits to represent the set G0 is smaller
when |G0| − |G1| is larger since the number of possible choices of G0 and G1 is
smaller when |G0| − |G1| is larger assuming |G0| > |G1|.) More specifically, they
showed that we can obtain a meaningful bound when |G| is “not too small” and
we have |G0| − |G1| = Ω(ε|G|), which occurs with “non-small” probability.

When generalizing this strategy to the quantum setting, there are several
obstacles.

First, the condition (B) is not well-defined in the quantum setting. This can
be easily adapted by requiring that A’s query magnitudes on elements of R are
“small” instead of requiring A to not query any of them.

Second, the sets G0 and G1 are not well-defined in the quantum setting since
we cannot assume A is deterministic in the quantum setting. This can be re-
solved by including the randomness for measurements in the shared randomness
between the encoder and decoder similarly to the case of OWFs.

Third, in the classical setting, for proving that |G| is “not too small” and
we have |G0| − |G1| = Ω(ε|G|) with “non-small” probability, we use the fact
that the probability that x is good (i.e., Pr[x ∈ G]) is constant for all x ∈ [N ].
In the classical setting, this can be assumed without loss of generality since we
can force an adversary to not make the same queries twice. On the other hand,
this cannot be assumed in the quantum setting, and Pr[x ∈ G] may depend on
x. Fortunately, we can still show that if we choose parameters appropriately,
then Pr[x ∈ G] are well-balanced, i.e., maximal and minimal values of Pr[x ∈ G]
are very close. By using this, we can still prove that |G| is “not too small” and
we have |G0| − |G1| = Ω(ε|G|) with “non-small” probability though the proof
becomes more involved.

With these ideas, we obtain a security bound for Yao’s box problem in the
quantum setting.

pqPRFs and pqMACs in QROM-AI. With ideas used for OWFs and PRGs as ex-
plained above, the results for pqPRFs and pqMACs in the ROM-AI in [DGK17]
can be naturally translated into ones in the QROM-AI. Since the original bounds
in [DGK17] only considered classical accesses to PRF/MAC oracles, our results
inherit this. One thing we have to care about here is that classical PRF and MAC
oracles are not unitary, and we cannot assume that measurements are deferred to
the end of the computation by the adversary. Thus for applying our technique
of deterministic simulation of quantum computations, we include randomness
for all measurements that are possibly done in the middle of the computation
by the adversary in the shared randomness between the encoder and decoder.

12 Though the encoding does not contain the description of G, the decoder can recover
it from R.
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We note that the size of shared randomness does not affect the limitation of a
compression, and this does not make our bounds worse.

Bound for Inverting Permutations with Quantum Advice. Next, we move on
to discussing quantum auxiliary inputs. Our strategy is to use the compres-
sion technique similarly to the case of the classical auxiliary inputs. However, if
we consider quantum auxiliary inputs, we first have to extend the compression
lemma to the setting where encodings are quantum. Fortunately, such an exten-
sion is already known [Nay99, NS06], and both papers showed that the bound
is almost the same as the classical case.

Given this, one may think that security bounds in the QROM-AI are quite
easy to extend to ones in the QROM-QAI. However, this is not the case. Recall
that decoders in these proofs run an adversary A many times. On the other
hand, we cannot reuse a quantum auxiliary input since it may be broken in
each running of A. Thus, an encoding has to contain as many copies of the
auxiliary input as the number of executions of A by the decoder, in which case
the encoding is no longer small. Indeed, Nayebi et al. [NABT15] mentioned that
their result is difficult to extend to the quantum auxiliary input setting for this
reason.

We overcome this issue by using a general principle of quantum information,
often called the gentle measurement lemma [Win99, AR19], which states that if
we can predict the outcome of a measurement with probability almost 1, then
the measurement barely damages the quantum state. To apply the lemma, we
amplify the success probability of an adversary A to almost 1 by running it many
times.13 Especially, if the correct solution of a problem in question is unique (as
in the inversion problem of a permutation), then A outputs a certain value with
probability almost 1. In this case, the quantum auxiliary input is not damaged
much in each running of A due to the gentle measurement lemma and can be
reused many times in the decoding procedure. We note that the decoder still
needs a certain number of copies of the auxiliary input since it has to run the
adversary many times to amplify the success probability. However, the number
of copies needed is not too large since the adversary’s error probability decreases
exponentially in the number of repetitions. Thus, the encoding does not become
too large, and we can obtain a meaningful bound. This is how we obtain a
security bound for inverting a random permutation with quantum advice.

We note that the above method crucially relies on the solution of the problem
being unique. Otherwise, even if an adversary’s success probability is almost 1, its
output may still have high entropy, in which case the gentle measurement lemma
is not applicable. This is why we limit our attention to random permutations
instead of random functions.

13 A similar idea was used by Aaronson [Aar05] to show limitations of quantum one-way
communication and algorithms with quantum advice.
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1.4 Limitations and Open Problems

Though we made progress in understanding the power of non-uniform attacks
in the quantum setting, our results contain many limitations.

1. We do not have any result for CRHFs in the QROM-AI/QROM-QAI.

2. Our results on PRFs and MACs in the QROM-AI are limited to pqMACs
and pqPRFs where oracles (except for the random oracle) are classical.

3. All security bounds shown in this paper are much less tight than the counter-
parts in the classical setting, and far from matching the best known attacks.
We note that known security bounds of many primitives including OWFs,
PRGs, PRFs, and MACs in the ROM-AI do not match the best known
attacks even in the classical setting [DGK17, CDGS18].

4. Our techniques cannot be used for analyzing schemes on the basis of compu-
tational assumptions since it would be difficult to capture these assumptions
with the compression technique. We note that this limitation is overcome
by using another technique called the pre-sampling technique instead of a
compression technique in the classical setting [Unr07, CDGS18].

5. We have no security bound in the QROM-QAI. A possible approach toward
that is to extend our result on one-wayness of a random permutation with
quantum auxiliary input.

We leave the above limitations as open problems to be overcome.

Also, we are not aware of any non-trivial attack in the QROM-AI or QROM-
QAI that outperforms ones in the ROM-AI except for attacks that just ignore
auxiliary inputs (e.g., Grover’s algorithm [Gro96] and BHT [BHT97] algorithm).
We leave it as an interesting open problem to give a non-trivial attack that
utilizes auxiliary inputs against any primitive in the QROM-AI or QROM-QAI.

1.5 Related Work

Security Bounds against Non-Uniform Attacks in Other Models. Corrigan-Gibbs
and Kogan [CK18] studied non-uniform attacks in the generic group model
(GGM), showed security bounds for several problems including the discrete log-
arithm problem that matches the best known attack. Their results are based
on the compression technique. Coretti, Dodis, and Guo [CDG18] studied non-
uniform attacks in the random permutation model (RPM), ideal-cipher model
(IPM), and GGM, and showed security bounds for many applications in these
models by developing a general tool to analyze them. Their results are based
on the pre-sampling technique. We note that both above works only consider
classical attacks.

Quantum-Accessible PRFs and MACs. Zhandry [Zha12a] gave the first construc-
tions of qPRFs from OWFs or learning with errors (LWE) assumption in the
standard model as well as a separation between pqPRFs and qPRFs.
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Boneh and Zhandry [BZ13] formally defined qMACs and showed that qPRFs
are sufficient to construct them. A stronger and the best current security notion
for qMACs was proposed by Garg, Yuen, and Zhandry [GYZ17].

We note that these works focus on constructions in the standard model,
whereas this work focuses on hash-based constructions in the QROM-AI or
QROM-QAI that are much more efficient.

Compression Technique in Quantum Setting. Besides Nayebi et al. [NABT15],
Hosoyamada and Yamakawa [HY18] also used the compression technique in the
quantum setting to show a black-box separation of CRHFs from one-way per-
mutations. Their technique is incomparable with ours as they showed bounds for
inverting random permutations in the presence of a specific quantum oracle that
finds collisions whereas we show bounds for several applications of a random
oracle in the presence of any bounded-length auxiliary inputs.

2 Preliminaries

Notations. We say a function ε(n) is negligible if ε(n) < 1/|p(n)| for any poly-
nomial p for sufficiently large n. For a positive integer n, we write [n] = {1, . . . , n}
to denote the set of positive integers less than or equal to n. In tilde notations
Õ(f(A,B, · · · )) or Ω̃(f(A,B, · · · )), we ignore non-negative degree polylogarith-
mic factors with respect to all capital variables which appear in the context.For
example, we write (T 2/N) · logM = Õ(T 2/N). To denote the event that a prob-
abilistic or quantum algorithm A with input z outputs x, we write A(z)→ x.

Quantum algorithms have intrinsic randomness when they perform measure-
ments. The probability that a quantum algorithm A outputs x on an input z is
denoted by PrA[A(z)→ x]. To denote quantum objects such as quantum states
or a quantum-accessible oracle, we use the ket notation |·〉. For example, |φ〉
denotes a quantum state, while x is a classical string. For basics of quantum
computing, we refer readers to [NC00].

2.1 Oracle-Aided Quantum Algorithm

An oracle-aided quantum algorithm is a quantum algorithm that can perform
quantum computations and can access oracles. In this paper, we consider three
types of oracles: quantum-accessible oracle, classical-accessible oracle, and semi-
classical oracle [AHU19], which is explained in the next subsection. A quantum-
accessible oracle that computes a function f : X → Y applies a unitary that
transforms a query |x, y〉 to |x, y ⊕ f(x)〉, and returns the resulting state. A
classical-accessible oracle that computes a function f : X → Y , given a query
|x, y〉, first measures the input register |x〉, and then returns |x, y ⊕ f(x)〉. Note
that a classical-accessible oracle is not unitary. We often use A|f〉 to mean that
A accesses a quantum-accessible oracle that computes f and Af to mean that
A accesses classical-accessible oracle that computes f . We allow an oracle-aided
quantum algorithm to make queries in parallel. Its query depth d is defined to
be the number of oracle calls counting parallel queries as one query.
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2.2 Semi-Classical Oracle

In this section, we review semi-classical oracles introduced in [AHU19]. Here,
we only define a semi-classical oracle for the indicator function of a set S since
we only need it in this paper. A semi-classical oracle OSC

S for a set S ⊆ X is
queried with two registers, an input register Q with CX and an output register
R with space C2. When queried with a value |x〉 in Q, the oracle returns whether
x ∈ S in the output register R. More formally, it performs a measurement with
projectors M0 and M1, where M0 :=

∑
x∈X\S |x〉 〈x| and M1 :=

∑
x∈S |x〉 〈x|,

and initializes R to |0〉 or |1〉 corresponding to the measurement result.

In the execution of a quantum algorithm AOSC
S , Find denotes the event that

OSC
S returns |1〉. This event is well-defined, since OSC

S measures its outputs.

Punctured oracle. If H is an oracle with domain X and codomain Y , we define
|H〉 \ S as an oracle which, on input x, first queries OSC

S (x) and then queries
H(x). The lemma ([AHU19, Lemma 1]) states that the outcome of A|H〉\S is
independent of H(x) for all x ∈ S when Find does not occur. We review the
semi-classical oneway-to-hiding lemma (the SC-O2H lemma in short):

Lemma 1 (The SC-O2H lemma [AHU19, Theorem 1]). Let S ⊆ X be
random. Let G,H : X → Y be random functions satisfying ∀x 6∈ S [G(x) =
H(x)]. Let z be a random bit string. (S,G,H, z may have an arbitrary joint
distribution.)

Let A be an oracle-aided quantum algorithm of query depth d (not necessarily
unitary). Let

Pleft := Pr[b = 1 : b← A|H〉(z)],
Pright := Pr[b = 1 : b← A|G〉(z)],
Pfind := Pr[Find : A|G〉\S(z)] = Pr[Find : A|H〉\S(z)].

Then we have

|Pleft − Pright| ≤ 2
√

(d+ 1) · Pfind and |
√
Pleft −

√
Pright| ≤ 2

√
(d+ 1) · Pfind.

The lemma also holds with bound
√

(d+ 1) · Pfind for the following alternative
definition of Pright:

Pright := Pr[b = 1 ∧ ¬Find : b← A|G〉\S(z)].

We often denote the above probability by Pr[¬Find : A|G〉\S(z)→ 1] for notational
simplicity.

Lemma 2 (Search in semi-classical oracle [AHU19, Theorem 2 and
Corollary 1]). Let A be any oracle-aided quantum algorithm making at most
q queries (depth d) to a semi-classical oracle with domain X. Let S ⊆ X and
z ∈ {0, 1}∗. (S, z may have an arbitrary joint distribution.)
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Let B be an algorithm that on input z chooses i← {1, . . . , d}; runs AOSC
∅ (z)

until (just before) the i-th query; then measures all query input registers in the
computational basis and outputs the set T of measurement outcomes.

Then we have

Pr[Find : AO
SC
S (z)] ≤ 4d · Pr[S ∩ T 6= ∅ : T ← B(z)].

In particular, if S and z are independent, A makes at most q queries, and we
let Pmax := maxx∈X Pr[x ∈ S], then we have

d · Pr[S ∩ T 6= ∅ : T ← B(z)] ≤ q · Pmax.

Remark 1. In the above lemmas, the input z is assumed to be a classical string.
However, we can obtain exactly the same bound even if z is a quantum state.
This is because any quantum state can be described by a classical string with
an exponential blowup of the size, and the above lemmas are only about query-
complexities and the size of z does not matter.

3 Quantum ROM with Classical AI

In this section, we show security bounds for primitives in the QROM-AI.

3.1 Preparations

First, we prepare some lemmas and notations that are used in our proofs.

Compression Lemma The following lemma states that there exists an information-
theoretic lower bound for a compression algorithm.

Lemma 3 ([DTT10, Fact 8.1]). Let M,C,R be sets. Let E : M × R → C
and D : C ×R→M be deterministic algorithms. For δ ∈ [0, 1], if we have

Pr
r←R

[D(E(m, r), r) = m] ≥ δ

for all m ∈ M , then we have |C| ≥ δ|M |, which can be rephrased as log |C| ≥
log |M | − log 1/δ.

We use the above lemma (which we call the compression lemma) to derive
security bounds for various primitives in the QROM-AI by constructing a pair
of encoding and decoding algorithms that compress the truth table of a random
function by using the power of an adversary against the primitive. Note that we
encode a function into a classical bit string while we use a quantum adversary.
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Simulating Measurement Quantum algorithms are inherently randomized
due to the intrinsic randomness of measurements. However, if we do not care
about the running-time, we can fix the randomness in the measurement by clas-
sically simulating the execution of the algorithm.

More precisely, we can classically simulate an execution of any quantum
algorithm A(z) with a randomness r ∈ [0, 1]14 by first computing the final state,
which is known to be possible in classical exponential time, and then choosing a
measurement result in accordance with the randomness r, where we assume that
A performs only one measurement at the end of its execution without loss of
generality. We denote this procedure by Simr(A(z)). If we consider many inputs
z ∈ Z and a corresponding random coin R = {rz} ∈ [0, 1]|Z|, we just denote
Simrz (A(z)) by SimR(A(z)) for notational simplicity. We note that exactly the
same procedure is possible for an oracle-aided quantum algorithm A|f〉 that
accesses a quantum oracle |f〉 that computes a function f if the simulator knows
the whole truth table of f since we can think of the combination of A and |f〉
as a single quantum algorithm. We also note that almost the same procedure
is possible for an oracle-aided quantum algorithm A|f〉,g that accesses both a
quantum oracle |f〉 and a classical oracle g if the simulator knows the whole
truth table of f and g with the following modification. The difference from the
case of a quantum oracle is that the oracle may not be unitary and we are no
longer able to assume that the algorithm performs a measurement once, and
it may perform a measurement in the middle of the computation. This can be
dealt with by augmenting the amount of randomness used by the simulator so
that fresh randomness is available in the simulation of each measurement.

Since the compression lemma (Lemma 3) holds even for an unbounded-time
encoder and decoder that may share unbounded-size randomness, we can allow
them to simulate a (oracle-aided) quantum algorithm classically in the above
way.

Notations. In this section, we consider a random oracle with the domain [K]×
[N ] (or [K]× [N ]× [L] for the case of pqPRFs and pqMACs) and the codomain
[M ]. We omit to state a distribution of a random oracle O if that is uniformly
chosen from the set of functions with the corresponding domain and codomain.
We use a and x (or k for the case of pqPRFs and pqMACs) to represent elements
of [K] and [N ] respectively throughout the section, and often omit to state
distributions when they are uniform. For example, we write Pra,x[f(a, x) = y]
instead of Pra←[K],x←[N ][f(a, x) = y].

3.2 Function Inversion

The following theorem is the main result of this section.

14 In an actual simulation, the randomness should be approximated by a rational num-
ber up to a sufficient precision. We just think of the randomness as a real number
for simplicity.
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Theorem 1. Let O ∈ Func([K] × [N ], [M ]) be a random oracle. Suppose that
A is an oracle-aided quantum algorithm that takes an S-bit classical advice stO
(that may depend on O) as input, makes at most T oracle queries, and satisfies

Pr
A,O,a,x

[
O(a, x) = O(a, x′) : A|O〉(stO, a,O(a, x))→ x′

]
= ε.

Then it holds that

ε2 = Õ

(
ST 2

K min(M,N)
+

T 2N

min(M,N)2

)
.

The main idea of the proof of this theorem is to compress the truth table of
the random function into a smaller encoding by using an algorithm that inverts
the function. Then by applying Lemma 3, we obtain a bound for the advantage
to invert the function. Specifically, we encode a function into an encoding that
consists of a partial truth table and information to recover the remaining part
of the truth table similarly to [DGK17].

We also introduce another lemma, which can be seen as a variant of the
above theorem. This lemma is used for proving lower bounds for other problems
in the next sections. In this lemma, we give an upper bound for the probability
that the event Find occurs when an adversary is given a punctured oracle on the
correct answer. (See Section 2.2 for the definitions of Find and the punctured
oracle.) This corresponds to [DGK17, Corollary 1], which gives a bound for the
probability that an adversary ever queries the correct answer to the oracle in
the classical case.

Lemma 4. Let O ∈ Func([K]× [N ], [M ]) be a random oracle. Suppose that A is
an oracle-aided quantum algorithm that takes an S-bit classical advice stO (that
may depend on O) as input, and makes at most T oracle queries. Then it holds
that

Pr
A,O,a,x

[
Find : A|O〉\{(a,x)}(stO, a,O(a, x))

]
= O

(
ST 2

KN
+
T 2 logN

N

)
.

Proof of Theorem 1. First, we consider an adversary A (which we call a biased
adversary) that breaks the one-wayness in a slightly stronger sense. Namely, we
assume that we have

Pr
O,a,x

[
Pr
A

[A|O〉(stO, a,O(a, x))→ x′ ∧ O(a, x) = O(a, x′)] ≥ c]
]
≥ ε

for a fixed constant c. We will later show that we have

ε = Õ

(
ST 2

K min(M,N)
+

T 2N

min(M,N)2

)
in this setting. For the time being, we assume that the above statement is true
and prove the theorem. Suppose that there exists an algorithm A such that

Pr
A,O,a,x

[
O(a, x) = O(a, x′) : A|O〉(stO, a,O(a, x))→ x′

]
= ε′.
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By an averaging argument, at least an (ε′/2)-fraction of (O, a, x) satisfies

Pr
A

[
O(a, x) = O(a, x′) : A|O〉(stO, a,O(a, x))→ x′

]
≥ ε′/2.

Applying the amplitude amplification [BHMT02] , we obtain another algorithm
A′ that uses A, A−1 and O as sub-routines O(ε′−1/2) times and satisfies

Pr
A′

[
O(a, x) = O(a, x′) : A′|O〉(stO, a,O(a, x))→ x′

]
= Ω(1),

where we abuse the notation to use A and A−1 to mean the unitary part of
A and its inverse, respectively. By the bound for the biased adversary, we have

ε′ = Õ
(

ST 2/ε′

Kmin(M,N) + T 2N/ε′

min(M,N)2

)
, which implies

ε′2 = Õ

(
ST 2

K min(M,N)
+

T 2N

min(M,N)2

)
as desired.

Now it suffices to prove the bound for the biased adversary. For the sake of
contradiction, we assume that we have

ε = Ω̃(ST 2/K min(M,N) + T 2N/min(M,N)2). (1)

Note that it particularly implies CT 2 ≤ εKN for a sufficiently large C since the
tilde notation hides a non-negative degree polylogarithmic factor and T 2/KN =
O(ST 2/K min(M,N)) holds.15 Here, to apply Lemma 1, we consider another
adversary B that takes a list L of classical strings as an additional input and
works as follows:

B|f〉(stO, a, y, L): It runs A|f〉(stO, a, y). Then B outputs 1 if the answer z of
the algorithm A satisfies (a, z) ∈ L, and outputs 0 otherwise.

Note that the assumption on the biased adversary A can be rephrased as

Pr
O,a,x

[
Pr
B

[B|O〉(stO, a,O(a, x),O−1
a (O(a, x)))→ 1] ≥ c]

]
≥ ε

where Oa(x) := O(a, x) and O−1
a (y) := {(a, x) : O(a, x) = y}. Here, we state a

claim about the size of O−1
a (y) whose proof can be found in the full version.

Claim 1. Except for an (ε/4)-fraction of O ∈ Func([K]× [N ], [M ]), we have

|O−1
a (y)| = |{x : Oa(x) = y}| = Õ(N/min(N,M))

for all (a, y) ∈ [K]× [M ].

15 Looking ahead, this is used in the proof of Claim 2.
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By an averaging argument, at least an (ε/2)-fraction of f ∈ Func([K] ×
[N ], [M ]) satisfies

Pr
a,x

[
Pr
B

[B|f〉(stf , a, f(a, x), f−1
a (f(a, x)))→ 1] ≥ c]

]
≥ ε/2.

Combining this with Claim 1, at least an (ε/4)-fraction of Func([K]× [N ], [M ]),
denoted by F , simultaneously satisfies PrB[B|f〉(stf , a, f(a, x), f−1

a (f(a, x))) →
1] ≥ c and |f−1

a (y)| = Õ(N/min(N,M)) for all (a, y) ∈ [K] × [M ]. We define

β = Õ(N/min(M,N)) so that we have |f−1
a (y)| ≤ β for all (a, y).

We fix an arbitrary function f ∈ F and write L to denote the set f−1
a (f(a, x)).

We will describe an encoder that compresses the truth table of f to generate
an encoding that consists of a partial truth table of f and other information to
recover the remaining part of the truth table by using the algorithm A. What
is non-trivial is that the decoder has to simulate the algorithm A that makes
queries to f though it is given only a partial truth table of f as a part of the
encoding. We will show that this is actually possible by using the SC-O2H lemma
(Lemma 1) below.

A public randomness r shared by the encoder and decoder (in Lemma 3)
specifies R1 and R2 as explained below. A set R1 ⊂ [K]× [M ] is chosen so that
each (a, y) ∈ [K]× [M ] is included in R1 with probability d/T (T + 1) for a fixed
constant d ≤ c2/1280. Let R(a,x) := R1 \ {(a, f(a, x))}. For a set S ⊂ [K]× [M ],
we define Sa := {y ∈ [M ] : (a, y) ∈ S} and f−1(S) := ∪a∈[K]f

−1
a (Sa).

We say that (a, x) ∈ I is good if both

(A) (a, f(a, x)) ∈ R1,

(B) Pr[Find : B|f〉\f
−1(R(a,x))(stf , a, f(a, x), L)] ≤ c2

16(T + 1)

hold. We denote the set of good elements by G. Note that if we have f(a, x) =
f(a, x′), then we have (a, x) ∈ G if and only if (a, x′) ∈ G.

Here, we state a claim that states that G is “not too small” with high prob-
ability whose proof is given in the full version.

Claim 2. PrR1
[|G| ≥ δεKN/T 2] ≥ 0.8 for some constant δ > 0.

For y ∈ [M ], we define a function gy : [K]× [N ]→ [M ] by

gy(z) =

{
f(z), if z ∈ ([K]× [N ]) \ f−1(R1),

y, otherwise.

By the SC-O2H lemma (Lemma 1), for any (a, x) ∈ G, it holds that∣∣∣Pr
B

[B|f〉(stf , a, f(a, x), L)→ 1]− Pr
B

[B|gf(a,x)〉(stf , a, f(a, x), L)→ 1]
∣∣∣

≤ 2

√
(T + 1) · Pr[Find : B|f〉\f−1(R(a,x))(stf , a, f(a, x), L)] ≤ c/2,
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where we used the condition (B) for deriving the last inequality. Since we have
PrB[B|f〉(stf , a, f(a, x), L)→ 1] ≥ c, we have

Pr
B

[B|gf(a,x)〉(stf , a, f(a, x), L)→ 1] ≥ c

2

for any (a, x) ∈ G. It is easy to see that this can be rephrased as

Pr
A

[A|gf(a,x)〉(stf , a, f(a, x))→ x′ ∧ f(a, x) = f(a, x′)] ≥ c/2.

The randomness R2, which is another random coin specified by r, is used for
the simulation

SimR2

(
A|gf(a,x)〉(stf , a, f(a, x))

)
of A|gf(a,x)〉(stf , a, f(a, x)).16 It outputs x′ such that f(a, x) = f(a, x′) with
probability at least c/2 over the choice of R2. Then for at least a (c/4)-fraction
of R2, the simulation of A with oracle access to |gf(a,x)〉 instead of |f〉 outputs
a correct preimage for at least a (c/4)-fraction of (a, x). More precisely, for at
least a (c/4)-fraction of R2, the following condition is satisfied:

(∗) There exists at least a (c/4)-fraction of good elements (a, x), which we
denote by X, such that we have

SimR2

(
A|gf(a,x)〉(stf , a, f(a, x))

)
→ x′ such that f(a, x) = f(a, x′)

for all (a, x) ∈ X.

We again remark that (a, x) ∈ X and (a, x′) ∈ X are equivalent if f(a, x) =
f(a, x′). We say that (R1, R2) is good if the following three conditions all hold:

1) |G| ≥ δεKN/T 2, 2) the condition (∗), 3) |R1| = Θ(εKM/T 2).

By Claim 2, the first statement holds with probability at least 0.8 (over the
choice of R1), and the second holds with probability at least c/4 (over the choice
of R2 for any fixed R1) as discussed above, and the last holds with probability
1− o(1) by the Chernoff bound. Therefore, the probability that (R1, R2) is good
is Ω(1). When (R1, R2) is good, we clearly have |X| = Ω(εKN/T 2) by definition.

Now we are ready to explicitly describe the encoder and decoder for f . Note
that the decoder will correctly recover f as long as (R1, R2) is good. The encoder
induces R1, R2 from the given public randomness. The encoder computes Xa :=
{x : (a, x) ∈ X}, Ya := {y : y = f(a, x) for x ∈ Xa}, Y := ∪a∈[K]{(a, y) : y ∈
Ya}, and Ra = R1 ∩ ({a}× [M ]) for all a ∈ [K]. Then, |Y | ≥ |X|/β holds by the
definition of β.

For each a ∈ [K], the encoder computes a set Za ⊂ [N ] as the set consisting
of outputs of simulations SimR2

(
A|gy〉(stf , a, y)

)
for all y ∈ Ya. We note that

Za is well-defined since the simulation is deterministic once R2 is fixed. Let
Z := ∪a∈[K]{(a, z) : z ∈ Za}. Clearly, we have |Za| = |Ya| and |Z| = |Y |. Now
the function f ∈ F is encoded as follows, given the public randomness R1, R2.

16 Specifically, R2 consists of independent random coins r2(a, y) for each (a, y) ∈ [K]×
[M ] to simulate A|gy〉(stf , a, y).
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• The advice string stf : S bits.

• The description of Za with its size for each a ∈ [K]: logN + log
(
N
|Za|
)

bits.

• The description of Ya with its size for each a ∈ [K]: logM + log
(|Ra|
|Ya|
)

bits.

• The values of f on ([K]× [N ]) \ Z: (KN − |Z|) logM bits.

The values are encoded in the lexicographic order of their inputs. The size of
the third component is derived by observing Ya ⊂ Ra. Given this encoding and
random sets R1, R2, the decoder fills the truth table of f as follows:

1. Reconstruct stf , Ya, Za, Y , and Z.
2. Fill the truth table of f on ([K]× [N ]) \ Z.
3. Recover the set f−1(R1) ⊂ [K]×[N ]: this is done by 1) including all elements

of Z (which are definitely in f−1(R1) since they are good) and 2) including
all (a, x) /∈ Z such that f(a, x) ∈ R1, which can be checked by using the
partial truth table on ([K]× [N ]) \ Z.

4. Recover the function values on Z. This step is done by simulating the al-
gorithm A. More precisely, for each (a, y) ∈ Ya, the decoder executes the
simulation SimR2

(
A|gy〉(stf , a, y)

)
to obtain an output z and set the value

of f on (a, z) to be y. By the definition of Z, this simulation correctly recov-
ers the function values if the randomness (R1, R2) is good. Note that since
the decoder has already recovered f−1(R1), the decoder can simulate the
function gy.

The decoder successfully recovers f as long as (R1, R2) is good, which hap-
pens with probability Ω(1). The overall encoding size is

S +K logN +K logM +
∑
a∈[K]

(
log

(
N

|Za|

)
+ log

(
|Ra|
|Ya|

))
+ (KN − |Z|) logM

≥ log(εMKN ) +O(1) = KN logM + log ε+O(1),

(2)

by the compression lemma (Lemma 3). Since we have log
(
a
b

)
≤ b log(ea/b),

|Za| = |Ya|, and |Z| = |Y |, we obtain∑
a∈[K]

log

(
N

|Ya|

)
+
∑
a∈[K]

log

(
|Ra|
|Ya|

)
− |Y | logM

≤
∑
a∈[K]

|Ya| log

(
eN

|Ya|

)
+
∑
a∈[K]

|Ya| log

(
e|Ra|
|Ya|

)
− |Y | logM

≤ |Y | log

(
eKN

|Y |

)
+ |Y | log

(
e|R1|
|Y |

)
− |Y | logM

= |Y | log

(
e2KN |R1|
M |Y |2

)
,

where the second inequality is obtained by using log-concavity (or Jensen’s in-
equality for log with weights |Ya| and |Ra|.) Combining this bound with the
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inequality (2), we obtain

S +K log(MN) ≥ |Y | log

(
M |Y |2

e2KN |R1|

)
+ Õ(1), (3)

where we used (1) to remove the log ε term in the right-hand side. Using |X| =
Ω(εKN/T 2), |Y | ≥ |X|/β, and |R1| = Θ(εKM/T 2), we obtain |Y |2/|R1| =
Ω(εKN2/MT 2β2). This implies |Y |2/|R1| ≥ DεKN2/MT 2β2 for some con-
stant D. If DεN/T 2β2 ≤ e3 holds, then we have ε ≤ (e3T 2N/D) · (β/N)2 =

Õ(T 2N/min(M,N)2) since β/N = Õ(1/min(M,N)). Otherwise, we have M |Y |2
e2KN |R1| ≥

M
e2KN ·

DεKN2

MT 2β2 ≥ e. Putting this bound and the bound |Y | ≥ |X|/β = Ω(εKN/T 2β)

into (3), we obtain

O (S +K log max(M,N)) ≥ |Y |+ Õ(1) = Ω

(
εKN

βT 2

)
,

which implies ε = Õ
(

ST 2

Kmin(M,N) + T 2

min(M,N)

)
. Combining the two cases, we

obtain

ε = Õ

(
ST 2

K min(M,N)
+

T 2N

min(M,N)2

)
.

Proof sketch of Lemma 4. The proof is very similar to the proof of Theorem 1
except some parts. The main differences are

1. the algorithm does not output an element in [N ], and
2. we cannot apply the amplitude amplification since it uses a semi-classical

oracle that is not unitary.

The first problem is resolved by considering another algorithm B that outputs
the query register of the semi-classical oracle whenever Find occurs, and the
second problem is circumvented by amplifying the success probability just by a
parallel repetition. We note that there are two technical differences that make
the proof easier: we choose the random coin R as a subset of [K]× [N ] instead
of [K]× [M ] and need not consider a counterpart of Claim 1. The detailed proof
can be found in the full version.

3.3 Pseudorandom Generators

In this section, we prove that a random function is a secure PRG even if we allow
an adversary to make quantum queries to the function and to obtain a classical
advice string. Our result is stated as follows.

Theorem 2. Let O ∈ Func([K] × [N ], [M ]) be a random oracle. Suppose that
A is an oracle-aided quantum algorithm that takes an S-bit classical advice stO
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(that may depend on O) as input, and makes at most T oracle queries. Then it
holds that∣∣∣∣ Pr

A,O,a,x

[
A|O〉(stO, a,O(a, x))→ 1

]∣∣∣∣− ∣∣∣∣ Pr
A,O,a,y

[
A|O〉(stO, a, y)→ 1

]∣∣∣∣
= Õ

(
6

√
ST 4

KN
+
T 4

N

)
,

where y is uniform in [M ].

For proving Theorem 2, we need the following lemma, which can be seen as a
security bound for a quantum average case version of Yao’s box problem [Yao90].
We note that the classical average case version was proven in [DTT10, Lemma
8.4] and quantum worst-case version was proven in [NABT15, Theorem 1], nei-
ther of which suffices for our purpose.

Lemma 5. Let F ⊂ Func([N ], {0, 1}) be a set of functions. Suppose that A is
an oracle-aided quantum algorithm that takes an S-bit classical advice stf (that
may depend on f ∈ F) as input, makes at most T oracle queries, has query
magnitudes 0 on its second input (i.e. x) for all queries, and satisfies

Pr
A,x

[A|f〉(stf , x)→ f(x)] ≥ 1

2
+ ε

for all f ∈ F . Then there is a pair of an encoder and decoder for the truth
tables of functions in F with recovery probability Ω(ε5/T 2) and encoding length
at most S + N − Ω(ε6N/T 2). In particular, this implies ε6 = O(ST 2/N) for
F = Func([N ], {0, 1}).

This lemma can be proven similarly to its classical counterpart in [DTT10,
Lemma 8.4] except for some technical issues as discussed in Section 1.3. The
proof of this lemma can be found in the full version. Now, we are ready to prove
Theorem 2.

Proof of Theorem 2. We first sketch the outline of the proof by the following
diagram:

p0 := Pr
A,O,a,x

[A|O〉(stO, a,O(a, x))→ 1]

O2H+Lemma 4
≈ p1 := Pr

A,O,a,x
[¬Find : A|O〉\{(a,x)}(stO, a,O(a, x))→ 1]

Lemma 5
≈ p2 := Pr

A,O,a,x
[¬Find : A|O〉\{(a,x)}(stO, a, y)→ 1]

O2H+Lemma 4
≈ p3 := Pr

A,O,a,x
[A|O〉(stO, a, y)→ 1].

We assume that M is a power of 2 for simplicity.

Step 1. |p0 − p1| = Õ

(
4

√
ST 4

KN + T 4

N

)
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This is simply proven by using the SC-O2H lemma. More precisely, by Lemma 1,

|p0 − p1| ≤
√

(T + 1) Pr
A,O,a,x

[
Find : A|O〉\{(a,x)}(stO, a,O(a, x))

]
holds, which is bounded by Õ

(
4

√
ST 4

KN + T 4

N

)
by Lemma 4.

Step 2. |p2 − p3| = Õ

(
4

√
ST 4

KN + T 4

N

)
This is exactly the same as Step 1.

Step 3. |p1 − p2| = Õ

(
6

√
ST 2

KN

)
First, we consider an oracle-aided quantum algorithm B that uses A as a

sub-routine as follows.

B|O〉(stO, a, x, y): It runs A|O〉\{(a,x)}(stO, a, y). If the event Find occurs w.r.t.
the running of A, B immediately halts and returns 0. Otherwise, B returns
what A outputs.

We note that B can simulate the oracle |O〉 \ {(a, x)} for A since it knows the
punctured point (a, x). Moreover, B’s query magnitude on (a, x) is 0 since before
making a query to O, it performs a partial measurement to check if the query is
equal to (a, x) and immediately aborts if so by the definition of the punctured
oracle. By the construction of B, it is easy to see that

p1 = Pr
B,O,a,x

[B|O〉(stO, a, x,O(a, x))→ 1],

p2 = Pr
B,O,a,x

[B|O〉(stO, a, x, y)→ 1].

Let |p1 − p2| = ε. By Yao’s equivalence of pseudorandomness to unpredictabil-
ity [Yao82], there exists an i ∈ [logM ], an oracle-aided quantum algorithm C
whose query magnitude at (a, x) is 0, and an advice string s̃tO that have at most
S + 1 bits such that

Pr
C,O,a,x

[C|O〉(s̃tO, a, x,O1(a, x), · · · ,Oi−1(a, x))→ Oi(a, x)] ≥ 1

2
+

ε

logM
,

where Oi(a, x) denotes the i-th bit of O(a, x).
If we define TO as a partial truth table of O that specifies the first i− 1 bits

of O(a, x) for all (a, x) ∈ [K]× [N ], then there is another algorithm D (that just
runs C once) whose query magnitude on (a, x) is 0 that satisfies

Pr
D,O,a,x

[D|O〉(s̃tO, TO, a, x)→ Oi(a, x)] ≥ 1

2
+

ε

logM
.

Then at least an (ε/ logM)-fraction of O satisfies

Pr
D,a,x

[D|O〉(s̃tO, TO, a, x)→ Oi(a, x)] ≥ 1

2
+

ε

2 logM
.
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By Lemma 5, there exists a pair of an encoder and decoder for this fraction of
functions with the success probability Ω(ε5/T 2 log5M) and encoding size

KN +KN · (logM − 1) + S +O(1)−Ω
(

ε5KN

T 2 log6M

)
.

By Lemma 3, it holds that

KN logM + S +O(1)−Ω
(

ε6KN

T 2 log6M

)
≥ log

(
εMKN

logM

)
+ log(ε5/T 2 log5M)

or O
(
S + log

(
T 2 log6M

ε6

))
≥ Ω

(
ε6KN

T 2 log6M

)
, which implies ε = Õ

(
6

√
ST 2

KN

)
as

desired.17

Overall, we obtain |p0 − p3| = Õ

(
6

√
ST 4

KN + T 4

N

)
.

3.4 Post-Quantum Pseudorandom Functions

The main theorem of this subsection is that random oracles are secure pqPRFs
in the QROM-AI, which is formally stated as follows.

Theorem 3. Let O ∈ Func([K]× [N ]× [L], {0, 1}) be a random oracle. Suppose
that A is an oracle-aided quantum algorithm that takes an S-bit classical advice
stO (that may depend on O) as input, and makes at most T (quantum) queries
to the oracle O and at most Q classical queries to the other oracle. Then it holds
that∣∣∣∣ Pr
A,O,a,k

[
A|O〉,O(a,k,·)(stO, a)→ 1

]
− Pr
A,O,a,F

[
A|O〉,F (stO, a)→ 1

]∣∣∣∣
= Õ

(
4

√
ST 4

KN
+
T 4

N
+Q

6

√
ST 2

KN

)
,

where F is uniform in Func([L], {0, 1}).

The proof can be done similarly to Theorem 2 except that we need an ex-
tended variant of Lemma 5. The proof of Theorem 3 can be found in the full
version.

3.5 Post-Quantum MACs

The main theorem of this subsection is that random oracles are secure pqMACs
in the QROM-AI, which is formally stated as follows.

17 More concretely, ε6 > CST 2 log6M(1+logKN)/KN for sufficiently large C implies
contradiction.
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Theorem 4. Let O ∈ Func([K] × [N ] × [L], [M ]) be a random oracle. Suppose
that A is an oracle-aided quantum algorithm that takes an S-bit classical advice
stO (that may depend on O) as input, and makes at most T oracle queries to
the oracle O. Then it holds that

Pr
A,O,a,k

[
A|O〉,O(a,k,·)(stO, a)→ (m, t) ∧ O(a, k,m) = t

]
= Õ

(
3

√
ST 4

KN
+
T 4

N
+

1

M

)

where A never queries m to its second oracle.

The proof can be found in the full version.

4 Random Permutation with Quantum AI

In this section, we give a security bound for inverting random permutations with
quantum auxiliary input.

4.1 Preparations

First, we prepare some lemmas that are needed for proving our results.

Quantum Compression Lemma Nayak [Nay99] generalized the seminal re-
sult of Holevo [Hol73] to relate the number of qubits that is needed to transmit
n-bit classical information and the success probability of it.

Theorem 5. [Nay99, NS06, adapted] Suppose that Alice holds an n-bit string
x and wants to convey it to Bob via a (noiseless) quantum channel. If, for any
x, the probability that Bob successfully recovers x is p ∈ (0, 1], then the number
of qubits m transmitted by Alice is at least n− log 1/p.

Note that the above statement is very similar to the compression argument in
the classical setting. Using this Theorem 5, we can obtain the following quantum
compression lemma. The proof is postponed to the full version.

Lemma 6 (Quantum compression lemma). Let M,R be a set. Let E be a
procedure that takes (x, r) ∈ M × R and outputs a m-qubit quantum state and
D a procedure that takes a quantum state along with string r ∈ R. If we have

Pr
r

[D(E(x, r), r) = x] ≥ p

for all x ∈M , then it holds that m ≥ log |M | − 2 log 1/p+ 1.
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Rewinding Quantum Advice Here, we describe a way to reuse a quantum
advice for quantum algorithms when the outputs of the algorithms are fixed
values with very high probability. We note that a similar idea has been used in
several works [Aar05, AR19].

Specifically, Aaronson [Aar05] implicitly proved the following lemma by using
the gentle measurement lemma [Win99], whose proof can be found in the full
version for completeness.

Lemma 7 (Implicit in [Aar05]). Let ρ be any (mixed) quantum state, n be
any positive integer, and for i ∈ [n], let Ai be a unitary quantum algorithm
(i.e., Ai is unitary except for the final measurement) such that Pr[Ai(ρ) = xi] >
1− 1

9n4 for some classical string xi. Then there exists an algorithm B such that
Pr[B(ρ) = {xi}i∈[n]] > 2/3.

4.2 Bound for Inverting Random Permutations

Theorem 6. Let O ∈ Func([K] × [N ], [N ]) be a random permutation with salt
(i.e., O(a, ·) is a random permutation). Suppose that A is an oracle-aided quan-
tum algorithm that takes an S-bit quantum advice |stO〉 (that may depend on O)
as input, makes at most T oracle queries, and satisfies

Pr
A,O,a,x

[
A|O〉(|stO〉, a,O(a, x))→ x

]
= ε,

Then it holds that ε3 = Õ
(
ST 2

KN + T 2

N

)
.

Remark 2. In the above, we assumed the advice |stO〉 is a pure state. This does
not lose generality since any S-qubit mixed state can be realized as half of a
2S-qubit pure state by purification.

Proof of Theorem 6. By an averaging argument, there exists a set of functions
F that is an ε/2-fraction of random oracles such that

Pr
A,a,x

[A|f〉(|stf 〉, a, f(a, x))→ x] ≥ ε/2

for all f ∈ F . Fix f ∈ F . Again, by an averaging argument, there are at least
ε/4 ·KN elements (a, x) satisfying

Pr
A

[A|f〉(|stf 〉, a, f(a, x))→ x] ≥ ε/4.

We denote the set of such (a, x) by I and call it semi-good.
Now we consider an algorithm B that is an “amplified version” of A that

satisfies
Pr
B

[B|f〉(|s̃tf 〉, a, f(a, x))→ x] ≥ 3/4

for all (a, x) ∈ I. More precisely, B runs Θ(1/ε) copies of A in parallel except
measurements, checks the correctness of outputs of A (before measurements) by
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querying them to f , and then outputs x if any of them is the correct answer x
and ⊥ otherwise. The number and depth of queries of B are T ′ = Θ(T/ε) and
D′ = T + 1, respectively, and the quantum advice |s̃tf 〉 is Θ(S/ε)-qubit.

Then a random set R ⊂ [K] × [N ] is chosen that will serve as a random
public coin for encoding, so that (a, x) ∈ R with probability p = d/T ′(T + 2)
(independently for each (a, x)) for some constant d (d < 1/46080 suffices). Here,
we may assume that p|I| ≥ C for a sufficiently large constant C (C ≥ 16 ln 10
suffices) since otherwise we have ε2KN/T 2 = O(1) in which case the statement
of Theorem 6 trivially holds.18

We say that (a, x) ∈ I is good if both

(A) (a, x) ∈ R, (B) Pr
B

[Find : B|f〉\(R\{(a,x)})(|s̃tf 〉 , a, f(a, x))] ≤ 1

576(T + 2)

hold. A set of good elements is denoted by G.
Then the following claim can be proven similarly to Claim 2. The proof can

be found in the full version.

Claim 3. PrR[|G| ≥ δε2KN/T 2] > 0.8 for some constant δ.

We say that R is good if |G| ≥ δε2KN/T 2. We now fix a good R. For y ∈ [N ],
we define a function gy : [K]× [N ]→ [N ] by

gy(a, z) =

{
f(a, z) if (a, z) /∈ R,

y otherwise.

We note that gy agrees with f on R \ {(a, x)} where (a, x) is any preimage of y
in f (i.e., f(a, x) = y). Here, we consider an algorithm C that works similarly to
B except that it takes x as an additional input and returns 1 if B’s output is x
and 0 otherwise. By Lemma 1 and Remark 1, for any (a, x) ∈ G, we have∣∣∣Pr

C
[C|gf(a,x)〉(|s̃tf 〉, a, x, f(a, x))→ 1]− Pr

C
[C|f〉(|s̃tf 〉, a, x, f(a, x))→ 1]

∣∣∣
≤ 2
√

(T + 2) Pr
C

[Find : C|f〉\(R\{(a,x)})(|s̃tf 〉 , a, x, f(a, x))]

which is clearly equivalent to∣∣∣Pr
B

[B|gf(a,x)〉(|s̃tf 〉, a, f(a, x))→ x]− Pr
B

[B|f〉(|s̃tf 〉, a, f(a, x))→ x]
∣∣∣

≤ 2
√

(T + 2) Pr
B

[Find : B|f〉\(R\{(a,x)})(|s̃tf 〉 , a, f(a, x))] ≤ 1

12
.

Thus we have

Pr
B

[B|gf(a,x)〉(|s̃tf 〉, a, f(a, x))→ x] ≥ 3

4
− 1

12
=

2

3
.

18 Looking ahead, this is used in the proof of Claim 3.
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Note that the algorithm B outputs one particular answer x or ⊥, so we can
amplify the success probability by running O(log(KN)) copies of B in parallel
and taking an output of any execution of B that is not ⊥ as its final output if
any (before the measurement). We call this algorithm B̃, which satisfies

Pr
B̃

[B̃|gf(a,x)〉(|stf 〉, a, f(a, x))→ x] ≥ 1− 1

9(KN)4
,

where |stf 〉 is O(S log(KN)/ε) qubits.

Now we are ready to encode the function f for good R. Let Ra := R ∩
({a}× [N ]) and Ga = G∩ ({a}× [N ]). The encoding of f includes the following
information:

• The advice string |stf 〉: O(S log(KN)/ε) qubits.

• The set f(Ra) for each a ∈ [K]:
∑
a log

(
N
|Ra|
)

bits.

• The values of f on ({a}× [N ])\Ra for each a ∈ [K]:
∑
a log(N −|Ra|)! bits.

• The cardinality of Ga for each a ∈ [K]: K logN bits.

• The set f(Ga) for each a ∈ [K]:
∑
a log

(|Ra|
|Ga|
)

bits.

• The values of f on Ra \Ga :
∑
a log(|Ra| − |Ga|)! bits.

The decoding procedure initializes an empty table to store the values of f
and then fills the table as follows:

1. Recover |stf 〉, Ga, and G.

2. Fill the values of f on inputs in ([K]× [N ]) \R. This can be done since the
decoder knows R as a shared random string.

3. Fill the table of f for G by the following procedures. For each (a, y) ∈ f(Ga),
let x ∈ [N ] be the inversion of y at a, i.e., y = f(a, x) (which is unknown
to the decoder so far). Note that the function gy can be evaluated by the
decoder since it only needs values of f on ([K] × [N ]) \ R which is already
recovered. As discussed above, we have

Pr
B̃

[B̃|gf(a,x)〉(|stf 〉, a, f(a, x))→ x] ≥ 1− 1

9(KN)4
.

Then the decoder uses the procedure in Lemma 7 to recover x for all (a, y) ∈
f(G). Noting that |f(G)| ≤ KN , by Lemma 7, the decoder succeeds in
correctly recovering x for all (a, y) ∈ f(G) with probability at least 2/3. We
note that the set G is also recovered at this point.

4. The decoder fills the values of f on inputs in R\G by using the partial truth
table and the description of G that is recovered in the previous step.

The decoding procedure succeeds with a constant probability (over the choice
of R and the randomness of measurements) since a constant fraction of R is good
and the decoding succeeds with a constant probability for good R.

27



The overall encoding size except the size of advice string and the size of Ga
is∑
a∈[K]

(
log

(
N

|Ra|

)
+ log(N − |Ra|)! + log

(
|Ra|
|Ga|

)
+ log(|Ra| − |Ga|)!

)

=
∑
a∈[K]

log

(
N !

(N − |Ra|)!|Ra|!
· (N − |Ra|)! ·

|Ra|!
(|Ra| − |Ga|)!|Ga|!

· (|Ra| − |Ga|)!
)

= K logN !−
∑
a∈[K]

log |Ga|!

≤ K logN !−
∑
a∈[K]

|Ga| log(|Ga|/e) ≤ K logN !− |G| log

(
|G|
eK

)
,

where we used the fact that n! ≥ (n/e)n and x log x is convex in the last two
inequalities. Then by Lemma 6, we obtain the inequality

O

(
S log(KN)

ε
+K logN

)
≥ |G| log

(
|G|
eK

)
+Θ(1).

Then we have either |G|/eK < 2, which implies ε2 = O(T 2/N), or

O

(
S log(KN)

ε
+K logN

)
≥ |G| ≥ δε2KN/T 2.

Combining them, we obtain ε3 = Õ
(
ST 2

KN + T 2

N

)
.

4.3 Implication in Complexity Theory

Here, we discuss an implication of the result of the previous section in complexity
theory. We denote by BQP/qpoly the class of languages that can be decided in
quantum polynomial time with a polynomial-size quantum advice.19 Then the
following theorem follows from Theorem 6. The proof is postponed to the full
version.

Theorem 7. NP∩ coNP 6⊆ BQP/qpoly relative to a random permutation oracle
with probability 1.
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