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Abstract. Structure-preserving signatures on equivalence classes (SPS-
EQ) introduced at ASIACRYPT 2014 are a variant of SPS where a mes-
sage is considered as a projective equivalence class, and a new representa-
tive of the same class can be obtained by multiplying a vector by a scalar.
Given a message and corresponding signature, anyone can produce an
updated and randomized signature on an arbitrary representative from
the same equivalence class. SPS-EQ have proven to be a very versatile
building block for many cryptographic applications.
In this paper, we present the first EUF-CMA secure SPS-EQ scheme
under standard assumptions. So far only constructions in the generic
group model are known. One recent candidate under standard assump-
tions are the weakly secure equivalence class signatures by Fuchsbauer
and Gay (PKC’18), a variant of SPS-EQ satisfying only a weaker un-
forgeability and adaption notion. Fuchsbauer and Gay show that this
weaker unforgeability notion is sufficient for many known applications of
SPS-EQ. Unfortunately, the weaker adaption notion is only proper for a
semi-honest (passive) model and as we show in this paper, makes their
scheme unusable in the current models for almost all of their advertised
applications of SPS-EQ from the literature.
We then present a new EUF-CMA secure SPS-EQ scheme with a tight
security reduction under the SXDH assumption providing the notion of
perfect adaption (under malicious keys). To achieve the strongest notion
of perfect adaption under malicious keys, we require a common reference
string (CRS), which seems inherent for constructions under standard
assumptions. However, for most known applications of SPS-EQ we do
not require a trusted CRS (as the CRS can be generated by the signer
during key generation). Technically, our construction is inspired by a
recent work of Gay et al. (EUROCRYPT’18), who construct a tightly
secure message authentication code and translate it to an SPS scheme
adapting techniques due to Bellare and Goldwasser (CRYPTO’89).

1 Introduction

Structure-preserving signatures (SPS) [4] are signatures where the messages,
public keys and signatures only consists of elements of groups equipped with an
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efficient bilinear map, and the verification algorithm just consists of group mem-
bership checks and evaluation of pairing product equations (PPEs). SPS schemes
[4, 5, 2, 6, 64, 44, 63, 45, 7, 60, 43, 8] are compatible with efficient pairing-based
NIZK proofs [50], and are a useful building-block for many cryptographic ap-
plications, such as blind signatures [4, 39], group signatures [4, 68], traceable
signatures [3], group encryption [23], homomorphic signatures [66], delegatable
anonymous credentials [34], compact verifiable shuffles [24], network coding [10],
oblivious transfer [48], tightly secure encryption [56] and anonymous e-cash [17].
SPS schemes come in various different flavors such as being able to sign ele-
ments in either one or both source groups of the bilinear group or requiring
certain conditions for messages (e.g., messages need to be Diffie-Hellman tuples
[33, 45]). They come with different provable security guarantees, ranging from
ones that are directly analyzed in the generic group model (GGM) to ones that
can be constructed from standard assumptions such as SXDH or SXDLin (typ-
ically within the Matrix-Diffie-Hellman assumption framework [31]) and under
different qualities of the reduction (from very loose to tight reductions). A de-
sirable goal is to construct schemes with tight security reductions from standard
assumptions which are at the same time highly efficient. Some SPS schemes are
also randomizable (e.g., [4, 6]), meaning that a signature can be randomized to
another unlinkable valid signature on the same message.

Structure-preserving signatures on equivalence classes (SPS-EQ) [52, 38, 40]
are a variant of SPS where anyone can randomize not only signatures, but a
message-signature pair publicly, i.e., in addition to randomizing the signature
also the message can be randomized. They have proven to be useful in many
applications such as attribute-based anonymous credentials [52, 29, 40], del-
egatable anonymous credentials [27], self-blindable certificates [11], blind sig-
natures [39, 37], group signatures [30, 11, 26, 12], sanitizable signatures [22],
verifiably encrypted signatures [51], access control encryption [36] or proving
the correctness of a shuffle in mix-nets (i.e., for anonymous communication or
electronic voting) [59]. In many of these applications, the idea of randomizing
signatures and messages offers the same functionality as when using SPS schemes
combined with a NIZK proof, but without the need for any NIZK. Consequently,
this allows for the design of more efficient constructions.

More concretely, in an SPS-EQ scheme, given a signature on an equivalence
class defined over the message space, anyone can update the signature to another
representative of the same class. Defined on (G∗)` (where G is of prime order
p), this equivalence relation ∼R is as follows (` > 1):

M ∈ (G∗)` ∼R N ∈ (G∗)` ⇔ ∃µ ∈ Z∗p : M = µN

An SPS-EQ scheme signs an equivalence class [M]R for M ∈ (G∗i )` by signing
a representative M of [M]R. It then allows for switching to other representa-
tives of [M]R and updating the signature without access to the secret key. Two
important properties of SPS-EQ are unforgeability (EUF-CMA security) defined
on equivalence classes and perfect adaption (potentially even under malicious
signing keys), where the latter requires that updated signatures (output by the



algorithm ChgRep) are distributed identically to new signatures on the respective
representative (if signatures or even if signing keys are computed maliciously).
Latter together with the DDH assumption on the message space then yields a
notion of unlinkability, i.e., that original signatures and those output by ChgRep
cannot be linked. As it turns out, coming up with constructions that achieve
both notions simultaneously is a challenging task.

We note that, as observed in [39], every SPS-EQ yields a (randomizable) SPS
scheme by appending some fixed group element to the message vector before sign-
ing and which is checked on verification, to allow only one single representative
of each class. Recently, the concept of SPS-EQ has even been further extended
to consider also equivalence classes on the public keys, denoted as signatures
with flexible public key [11] and equivalence classes on messages and public keys
simultaneously, denoted as mercurial signatures [27]. This further extends the
scope of applications.

Prior approaches to construct SPS-EQ. The first instantiation of SPS-EQ
in [52] was secure only against random message attacks, and later Fuchsbauer et
al. [38, 40] presented a revised scheme that achieves EUF-CMA security in the
generic group model (GGM). In [39], Fuchsbauer et al. present another EUF-
CMA secure scheme under a q-type assumption, which by construction does not
provide the perfect adaption notion and thus is not interesting for existing ap-
plications of SPS-EQ. Recently, Fuchsbauer and Gay [35], presented a version
of SPS-EQ (called equivalence class signatures or EQS) which can be proven
secure under standard assumptions, i.e., in the Matrix-Diffie-Hellman assump-
tion framework [31]. In order to prove their scheme secure, they have introduced
a weakened unforgeability notion called existential unforgeability under chosen
open message attacks (EUF-CoMA), in which the adversary does not send group
element vectors to the signing oracle but vectors of Z∗p elements. Moreover, in
contrast to the original definition of SPS-EQ in [52] and the scheme of Fuchs-
bauer et al. [38, 40], which allows to randomize a given signature (change the
representative) an arbitrary number of times, the scheme of Fuchsbauer and
Gay [35] distinguishes two types of signatures. The first type comes from the
signing algorithm and when randomized yields a signature of the second type,
which cannot be randomized any further. As argued by Fuchsbauer and Gay
in [35], for most of the known applications of SPS-EQ the combination of EUF-
CoMA notion and the one-time randomizability is sufficient. Actually, as argued
in [35], it is sufficient for all applications in the literature, except for the one to
round-optimal blind signatures from SPS-EQ [39].

The construction of Fuchsbauer and Gay in [35] does also rely on a weakened
notion of adaption (weaker than the original one from [39] in that it only con-
siders honestly generated keys and honestly computed signatures). We will show
that even though their weaker unforgeability notion is sufficient for applications,
the weaker adaption notion makes the scheme suitable only for restricted ap-
plications, i.e., access control encryption (ACE) or attribute-based credentials
(ABCs) with an honest credential issuer. Moreover, the application to verifiably
encrypted signatures in [51] requires another notion called perfect composition,



which [35] seem to assume implicitly. Unfortunately, their scheme does not sat-
isfy this notion. Consequently, for the interesting schemes providing the perfect
adaption notion from [39], the current state of affairs is that there is only the
EUF-CMA secure scheme from [38, 40] secure in the GGM.

Tight security for SPS-EQ schemes. Tight security allows to choose cryp-
tographic parameters of a scheme in a way that is supported by a security proof,
without the need to sacrifice efficiency by compensating the security loss of a
reduction with larger parameters. Latter can be significant if the reduction is
very loose. In case of SPS, quite some progress has been made in recent years
on constructing tightly-secure SPS [55, 7, 60, 8, 43], though the state-of-the-art
tightly-secure schemes under standard assumptions are still less efficient than for
instance schemes proven secure in the generic group model (GGM). While tight
security is quite well studied within SPS (and other primitives such as encryp-
tion [55, 41, 54], signatures [55, 25, 54, 46], identity-based encryption [25, 58, 57],
key exchange [13, 46, 53], or zero-knowledge proofs [55, 41]), there are no such
results for SPS-EQ schemes so far.

1.1 Our Contributions

Our contributions in this paper can be summarized as follows:

Analysis of FG18: Firstly, we revisit the concrete approach to construct EUF-
CoMA secure EQS from Fuchsbauer and Gay in [35], representing the only known
candidate towards perfectly adapting SPS-EQ under standard assumptions so
far. Thereby, we identify various problems with the applications of the scheme
presented in [35]. We stress that we do not present attacks on the scheme it-
self (which is secure in their model), but show that their adaption notion is too
weak for most applications claimed in [35] (apart from access control encryp-
tion (ACE) [36]). Briefly summarizing, we first show that their scheme cannot
be used for the application to attribute-based credentials (ABCs) [38, 40]. We
demonstrate an attack based on a trapdoor in the signing key that invalidates
the anonymity proof for ABCs. Secondly, we show an attack that demonstrates
that the scheme in [35] cannot be used even for applications that assume honest
generation of signing keys and in particular for ABCs under honest-keys [52]
and dynamic group signatures [30]. We stress that due to this too weak adap-
tion notion concrete instantiations presented in follow up works by Backes et
al. [11, 12], that rely on the FG18 scheme from [35], are invalidated and need
to be reconsidered. Our results allow to repair their now broken claims in part.3

Thirdly, we show that the FG18 scheme does not satisfy another notion called
perfect composition [51], invalidating the use of their scheme for application to
verifiably encrypted signatures as discussed in [35]. Consequently, this means
that contrary to their claim, the EQS framework and scheme in [35] can only
be used for the construction of access control encryption (ACE) in [36] and for

3 For the group signatures in [12] it will only work with our construction when relying
on a CRS, or by using the construction secure in the GGM in [38].



all other applications no instantiations under standard assumptions remain. We
stress that one could relax the security models of the applications to make [35]
usable again, but such models where signatures and keys are assumed to be gen-
erated honestly, i.e., that only guarantee semi-honest (passive) security, limits the
practical applications. For example, one could consider ABCs with anonymity
against honest credential issuers and use the EQS from [35].

SPS-EQ from standard assumptions and applications: As our main con-
tribution, we provide the first construction of SPS-EQ under standard assump-
tions and in particular the Matrix-Diffie-Hellman assumption framework. We
therefore have to revise the model of SPS-EQ in some aspects: (1) we introduce
tags, where the signing algorithm outputs a signature and a tag, randomization
(i.e., ChgRep) requires a signature and a tag, whereas for verification only the
signature is required; signatures that have been randomized using a tag can not
further be randomized, i.e., only a single randomization is possible. This defini-
tion is comparable to the one in [35], apart that FG18 does not use tags. We
stress that as demonstrated in [35], this restriction does not affect existing appli-
cations of SPS-EQ. (2) we require that signers generate their signing keys with
respect to a common reference string (CRS) for achieving the perfect adaption
notion in the malicious setting (prior works on SPS-EQ did not consider having
a CRS). We will show that this does not impact the applications discussed in [35]
with the exception of anonymous credentials in the malicious key model, as the
security models in all other applications assume honest generation of the signing
keys and thus every signer can produce its own CRS as part of the signing key.
As we, however, cannot avoid a CRS in the malicious key setting, we are not
able to instantiate round-optimal blind signatures in the standard model from
SPS-EQ [39] under standard assumptions, which [35] could not achieve either.
On the positive side, however, it allows us to obtain the most efficient round-
optimal blind signatures in the CRS model from standard assumptions.

On the use of a CRS. Although our scheme does not require a CRS for nearly
all of the applications of SPS-EQ, avoiding a CRS in the malicious setting would
be good. The use of a CRS in general seems to be debatable, as it needs to be
generated by some trusted third party that is hard to find in the real world.
Within recent years, we have seen a number of deployed real-world applications
that require a CRS when using zk-SNARKS (e.g., Zcash4 being probably the
most prominent one) and which have used multi-party computation ceremonies
to construct the CRS in a way that no entity provably knows the trapdoor.
A number of such ceremonies has been run in real-world5 and various works
discuss approaches to achieve it [16, 21, 20]. In the light of this, we do not con-
sider it unrealistic to generate a CRS for the use within practical applications
of SPS-EQ that require security under malicious keys, especially since the CRS
does not depend on the message length ` and so a single CRS can be used for

4 https://z.cash/
5 see e.g., https://z.cash/blog/the-design-of-the-ceremony/ or https://www.

zfnd.org/blog/conclusion-of-powers-of-tau/.
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all types of SPS-EQ keys for different applications. Furthermore, it seems in-
teresting to investigate the application of recent approaches towards subversion
resistant (QA)-NIZK [14, 1] or updatable CRS [49, 69], though this typically
comes at the cost of rather strong knowledge assumptions. Clearly, ultimately
it would be good to find SPS-EQ in the malicious key model without a CRS,
which we leave as a challenging open problem.

1.2 Outline of our Construction

Fuchsbauer and Gay [35] modify an affine MAC of Blazy et al. [18] to obtain a
linear structure-preserving MAC. Then, they make the scheme publicly verifiable
using a known technique from Kiltz and Wee [65] already used previously in con-
text of SPS [64]. Unfortunately, the structure-preserving MAC has an inherent
problem in the security game, where both messages and Matrix Decision Diffie-
Hellman (MDDH) challenges belong to the same source group of the bilinear
group. This forces them to use the weaker EUF-CoMA instead of EUF-CMA se-
curity. Consequently, as we are interested in EUF-CMA security, we need to look
for a different framework when trying to construct EUF-CMA secure SPS-EQ
schemes.

Therefore, we borrow a central idea from the recent work of Gay et al. [43].
In particular, they use a specific OR-proof [71] to then construct tightly secure
structure-preserving MACs based on the key encapsulation mechanism of Gay
et al. in [42]. More precisely, they make use of adaptive partitioning [54] to
randomize all tags in their MAC. Their work is based on the observation (core

lemma in [43]) that for all [t]1 = [A0]1r with r
R←− Zkp chosen freshly for each

instance, fixed matrices A0,A1
R←− D2k,k, and a NIZK proof π for t ∈ span(A0)∪

span(A1), the following values

k0
>[t]1 , (k0

> + s>)[t]1 (1)

are indistinguishable under the MDDH assumption, where k0 ← Z2k
p is a key,

and s ∈ Z2k
p is a fresh random value for each instance. Actually, they show that

[k0
>t]1 is pseudorandom.
In this paper, we are going to present an approach to obtain malleability

for this pseudorandom function, which we use as one part of our signature,
and the NIZK proof as another part. Therefore, we first add a tag (to allow a
homomorphism on the pseudorandom part) to our signature, such that everyone
who knows it can re-randomize the pseudorandom part. Second, we revise the
NIZK proof and give a proof for well-formedness of both the pseudorandom part
and the tag, such that it can be re-randomized and that we finally get a fresh
signature, including fresh pseudorandom part and a proof for it. More precisely,

we first show that for all [t]1 = [A0]1r1 and [w]1 = [A0]1r2 for r1, r2
R←− Zkp

chosen freshly for each instance, and a NIZK proof π for t,w ∈ span(A0) ∪
span(A1) (to be discussed later), the following tuples are indistinguishable under
the MDDH assumption

(k0
>[t]1,k0

>[w]1) , ((k0
> + s>)[t]1,k0

>[w]1). (2)



We then use this MAC (for k = 1)6 to construct an SPS-EQ scheme on a message
[m]1 ∈ (G∗1)`. Our signature has a basic form like σ = k0

>[t]1 + k>[m]1, with

a tag τ = k>0 [w]1 (which is only required for randomization), where k0
R←− Z2

p

and k
R←− Z`p. We can use (2) to add some randomness to the signature as

σ = k0
>[t]1 + k>[m]1 + ζ for ζ

R←− Zp. At a high level, by adding randomness
to each signature, we can make every signature independent of each other. So,
we completely hide the values k, and an adversary has negligible chance to
compute a valid forgery. On the other hand, everyone can obtain a fresh tag,
using previous tag τ , and add it to the signature to obtain a fresh pseudorandom
part. From a high level perspective, we have a basic MAC which is additively
homomorphic and our signatures and tags are two instances of it, one on message
[m]1 and another one on message zero. This allows deriving a signature on µ[m]1

for µ
R←− Z∗p, i.e., to adapt the signature part to representative µ[m]1, using a

multiplication of the signature part with µ and then add it to the fresh tag. Note
that, in our scheme we do not need to have access to the tag τ in the verification
algorithm, but it is required for randomizing messages and signatures (changing
representatives in the language of SPS-EQ). We note that in the EUF-CMA
game, we model it in a way that on a signature query the challenger returns
both the signature and the tag, while the adversary only needs to output a
signature without the tag as its forgery attempt.

Now, we will discuss how to randomize the NIZK proof. At this point, there
is an obvious problem with the OR-proof used in [43] and we need to revise their
approach such that the proof is randomizable (proofs can be re-randomized
to look like fresh proofs) and malleable (statements for given proofs can be
updated), where latter is required to switch between representatives of a class.
In particular, to obtain these properties we change a part of the OR-proof and
replace it with a QA-NIZK. In the NIZK proof of [43], we have a permanent
CRS including [D]2 ∈ G2

2 and [z]2 ∈ G2
2, where z /∈ span(D) be parameters of

the system. On the other hand, their scheme has an updatable CRS including
[z0]2 and [z1]2. Now, given the permanent CRS, the complements of the parts
of the updatable CRS are computed in each instance. The idea is that exactly
these CRS generate a sound system (i.e., one of the parts of the updatable CRS
is outside the span of [D]2) and in the other case we have a simulatable system
(i.e., both parts of the updatable CRS are in the span of [D]2). As the public
parameter [z]2 is not in the span of [D]2, we can obtain soundness by letting

[z0]2 = [D]2v and [z1]2 = [z]2 − [z0]2, for v
R←− Zp, where the sum of them is

equal to the value [z]2, i.e., [z0]2 + [z1]2 = [z]2. So, it proves that at least one of
[z0]2 and [z1]2 has a part in the span(z). The fact that this sum of the updatable
CRS is a fixed value is of course not good to enable the randomization of the
updatable CRS. To circumvent this state of affairs and obtain malleability, we
need to compute a NIZK proof π for t,w ∈ span(A0) ∪ span(A1) with the

6 We note that we can only instantiate our construction for k = 1, i.e., under the
SXDH assumption, and leave the construction of SPS-EQ under the more general
Matrix Decision Diffie-Hellman assumption as an interesting open problem.



shared updatable CRS, for t and w, and adapt other proof parts, while we
remain sound. Our approach is to set [z0]2 = [D]2v and [z1]2 = [z]2v, and give a
proof using a one-time homomorphic QA-NIZK due to Jutla and Roy [62] that
z0 + z1 is in the linear subspace of D + z. This means that at least one of [z0]2
and [z1]2 has a part in span(z). Fortunately, after this change other parts of the
proof adapt properly, and only moving to using a QA-NIZK comes at the cost
of having computationally soundness instead of perfect soundness.7

For realizing the change representative algorithm ChgRep, our Prove algo-
rithm of the OR-proof computes two proofs with shared randomness and QA-
NIZK (where the second proof is part of the tag), which allows to randomize
the first proof and update its word. This yields to have randomized signatures
output by ChgRep to be distributed identical to a fresh signature for the new
representative, i.e., we obtain perfect adaption. As explained above, we use a
NIZK OR-proof and a QA-NIZK proof in the construction of the SPS-EQ. In
order to guarantee perfect adaption even in front of a signer that generates the
keys in a potentially malicious way (i.e., remembers a trapdoor), we need to
have a CRS for these proof systems.8 Consequently, the perfect adaption of our
SPS-EQ is guaranteed in the common parameter model where the parameters
include a common reference string. However, we stress again that for most ap-
plications the CRS generation can simply be part of the key generation and no
trusted setup is required.

Comparison with other schemes. In the following Table 1 we provide a

Scheme |Signature| |PK| Model Ass. Loss A

[38] 2|G1|+ 1|G2| `|G2| EUF-CMA
(strong)

GGM – XX

[35] (4`+ 2)|G1|+ 4|G2| (4`+ 2)|G2| EUF-CoMA
(weak)

D4,2-MDDH,
D1-KerMDH

O(Q) ≈

Section 5 8|G1|+ 9|G2| 3`|G2| EUF-CMA
(strong)

SXDH O(logQ) X

Table 1. Comparison of SPS-EQ and EQS Schemes when signing vectors of length `
and Q is the number of queries to the signing oracle. A means adaption. XX means
perfect adaption under honest and malicious keys; X means perfect adaption under
honest keys and under malicious keys in the honest parameters model (i.e., using a
CRS); ≈ means adaption under honest keys and honest signatures.

7 Thus, we will formally have a NIZK argument, but in the text we will usually not
make a distinction between NIZK proofs and arguments.

8 Even if all involved proof systems provide zero-knowledge definitions in the style of
composable zero-knowledge [50], i.e., even if the adversary knows the trapdoor and
still simulated and honestly computed proofs cannot be distinguished, we still have
the problem of maliciously generated proofs and thus we cannot avoid a CRS.



comparison of previous SPS-EQ schemes with the one proposed in this paper.
We only consider schemes satisfying some reasonable adaption notion, i.e., we
exclude the one under q-type assumptions in [39]. We note that while for [38]
original and randomized signatures are identical, for [35] and our scheme pre-
sented in this paper we only consider sizes of randomized signatures, i.e., those
output by ChgRep and signatures without the tag respectively. For [35] we con-
sider a concrete setting where U4,2-MDDH reduces to the SXDLin assumption [2],
i.e., assuming DLin in G1 and G2, and D1-KerMDH in G2 reduces to the DDH
assumption in G2. For our scheme k = 1 and thus we have the L1-MDDH as-
sumption in G1 and the L1-KerMDH assumption in G2. Latter representing the
1-KerLin assumption which by Lemma 1 is implied by DDH. Consequently, our
scheme is secure under SXDH, i.e., assuming DDH in G1 and G2.

2 Preliminaries

Notation. Let GGen be a probabilistic polynomial time (PPT) algorithm that
on input 1λ returns a description G = (G, p, P ) of an additive cyclic group G of
order p for a λ-bit prime p, whose generator is P . We use implicit representation
of group elements as introduced in [31]. For a ∈ Zp, define [a] = aP ∈ G as the
implicit representation of a in G. We will always use this implicit notation of
elements in G, i.e., we let [a] ∈ G be an element in G, and note that from [a] ∈ G
it is generally hard to compute the value a (discrete logarithm problem in G).

Let BGGen be a PPT algorithm that returns a description BG =
(G1,G2,GT , p, P1, P2, e) of an asymmetric bilinear group where G1,G2,GT are
cyclic groups of order p , P1 and P2 are generators of G1 and G2, respectively,
and e : G1×G2 → GT is an efficiently computable (non-degenerate) bilinear map
and for s ∈ {1, 2, T} and a ∈ Zp, analogous to above, we write [a]s = aPs ∈ Gs
as the implicit representation of a in Gs. For two matrices (vectors) A,B define
e([A]1, [B]2) := [AB]T ∈ GT . With B we denote the upper square matrix of B.

Let r
R←− S denotes sampling r from set S uniformly at random. We denote by

λ the security parameter, and by ε any negligible function of λ.

Assumptions. We recall the definition of the Matrix Decision Diffie-Hellman
assumption [31] and a natural computational analogue of it, called the Kernel-
Diffie-Hellman assumption [70].

Definition 1 (Matrix Distribution). Let k ∈ N. We call Dk a matrix distri-

bution if it outputs matrices in Z(k+1)×k
q of full rank k in polynomial time.

Definition 2 (Dk-Matrix Decision Diffie-Hellman Assumption). Let Dk
be a matrix distribution. We say that the Dk-Matrix Diffie-Hellman (Dk-MDDH)
Assumption holds relative to BGGen in group Gs if for all PPT adversaries A,
we have:

AdvMDDH
Dk,Gs

(A) := |Pr
[
A(BG, [A]s, [Aw]s) = 1

]
− Pr

[
A(BG, [A]s, [u]s) = 1

]
| ≤ ε(λ)



where the probability is taken over BG← BGGen(1λ),A← Dk,w← Zkq ,u←
Zk+1
q

Definition 3 (Kernel Matrix Diffie-Hellman Assumption). Let Dk be a
matrix distribution and s ∈ {1, 2}. We say that the Dk-Kernel Diffie-Hellman
Assumption (Dk-KerMDH) holds relative to BGGen in group Gs if for all PPT
adversaries A,

AdvKerMDH
Dk,Gs

(A) = Pr
[
[c]3−s ← A(BG, [A]s) : c>A = 0 ∧ c 6= 0

]
≤ ε(λ)

where A
R←− Dk.

Lemma 1 (Dk-MDDH =⇒ Dk-KerMDH [70]). Let k ∈ N and let Dk be a
matrix distribution. For any PPT adversary A, there exists a PPT adversary B
such that AdvKerMDH

Dk,Gs
(A) ≤ AdvMDDH

Dk,Gs
(B).

2.1 Structure-Preserving Signatures on Equivalence Classes

In this section, we recall the definition and the security model of SPS-EQ scheme,
as introduced in [52]. We note that in order to cover a broader range of potential
constructions, we rename the algorithm BGGen that generates the bilinear group
BG to ParGen generating public parameters par, i.e., now the parameters par
can potentially include additional values such as a common reference string.
Moreover, our construction is tag-based where the tag output by Sign is just used
as input to ChgRep, where no new tag is output, and required for randomization
(for normal SPS-EQ, every occurrence of the tag τ is just ignored).

Definition 4 (SPS-EQ). A SPS-EQ scheme is tuple of PPT algorithms:

– ParGen(1λ). On security parameter λ and returns par including an asymmet-
ric bilinear group BG. par is implicitly used as input by all of the algorithms.

– KeyGen(par, `): This algorithm takes pp and vector length ` > 1 as input and
outputs a key pair (sk, pk).

– Sign([m]i, sk): This algorithm given a representative [m]i ∈ (G∗i )` for class
[m]R and a secret key sk outputs a signature σ′ = (σ, τ) (potentially including
a tag τ).

– ChgRep([m]i, (σ, τ), µ, pk): This algorithm on input a representative [m]i ∈
(G∗i )` and signature σ (and potentially a tag τ), a scalar µ and pk as public
key, computes an updated signature σ′ on new representative [m′]i = [µm]i
and returns ([m′]i, σ

′).
– Verify([m]i, (σ, τ), pk): This verification algorithm when given a representa-

tive [m]i, a signature σ (potentially including a tag τ) and public key pk,
outputs 1 if it accepts and 0 otherwise.

– VKey(sk, pk): This algorithm on input key pair (sk, pk) outputs 1 if secret key
and public key are consistent and 0 otherwise.



We recall correctness, EUF-CMA security and the notion of perfect adaption
(latter being a stronger notion than the original class-hiding notion which we
omit here).

Definition 5 (Correctness). An SPS-EQ over (G∗i )` correct if for any λ ∈ N ,
any ` > 1, any par ← ParGen(1λ), any pair (sk, pk) ← KeyGen(par, `), any
message [m]i ∈ (G∗i )` and any µ ∈ Zp the following holds:

VKey(sk, pk) = 1, and

Pr[Verify([m]i,Sign([m]i, sk), pk) = 1] = 1, and

Pr[Verify(ChgRep([m]i,Sign([m]i, sk), µ, pk), pk) = 1] = 1.

Definition 6 (EU-CMA). An SPS-EQ over (G∗i )` is existentially unforgeable
under adaptively chosen-message attacks, if for all ` > 1 and PPT adversaries
A with access to a signing oracle OSign, there is a negligible function ε(·):

Pr

par← ParGen(1λ),
(sk, pk)← KeyGen(par, `),

([m]∗i , σ
∗)← AOSign(sk,·)

(pk)

:
[m∗]R 6= [m]R ∀[m]i ∈ QSign ∧

Verify([m]∗i , σ
∗, pk) = 1

 ≤ ε(λ),

where QSignR is the set of queries that A has issued to the signing oracle OSign.
Note that in the tag-based case this oracle returns (σi, τi).

Perfect adaption introduced in [39] by Fuchsbauer et al. requires signatures
output by ChgRep are distributed like fresh signatures on the new representative.
We present both variants here, as we will require them later. We do not yet adapt
them to the tag-based variant of SPS-EQ (this is done afterwards). Note that in
the following variant signatures are only required to verify (so may be maliciously
computed) while we only consider keys need to satisfy VKey.

Definition 7 (Perfect adaption of signatures). An SPS-EQ over (G∗i )` per-
fectly adapts signatures if for all tuples (sk, pk, [m]i, σ, µ) with:

VKey(sk, pk) = 1 Verify([m]i, σ, pk) = 1 [m]i ∈ (G∗i )` µ ∈ Z∗p

we have that ChgRep([m]i, σ, µ, pk) and ([µ ·m]i,Sign([µ ·m]i, sk)) are iden-
tically distributed.

In the subsequent definition, the strongest adaption notion, one in addition to
potentially maliciously generated signatures one also considers maliciously gen-
erated keys (i.e., does not require that VKey needs to hold).

Definition 8 (Perfect adaption of signatures under malicious keys).
An SPS-EQ over (G∗i )` perfectly adapts signatures under malicious keys if for
all tuples (pk, [m]i, σ, µ) with:

[m]i ∈ (G∗i )` Verify([m]i, σ, pk) = 1 µ ∈ Z∗p

we have that ChgRep outputs ([µ ·m]i, σ
′) such that σ′ is a random element

in the space of signatures, conditioned on Verify([µ ·m]i, σ
′, pk) = 1.



Perfect adaption in context of a CRS and for tag-based SPS-EQ. If
par contains a CRS (as in the case of our construction), we need to consider
this in the adaption notion. For Definition 7 we just replace (sk, pk, [m]i, σ, µ)
with (par, sk, pk, [m]i, σ, µ) where par ← ParGen(1λ) is honestly generated. We
introduce it subsequently, for completeness.

Definition 9 (Perfect adaption in the honest parameter model). An
SPS-EQ scheme (ParGen,Sign,ChgRep,Verify,VKey) perfectly adapts signatures
if for all (par, sk, pk, [m]i, σ, τ, µ) with

VKey(sk, pk) = 1 Verify([m]i, (σ, τ), pk) = 1 [m]i ∈ (G∗i )` µ ∈ Z∗p
par← ParGen(1λ)

the following are identically distributed:

(σ,ChgRep([m]i, σ, τ, µ, pk)) and

((σ′, ·)← Sign(sk, [m]i),ChgRep([m]i,Sign(sk, [µ ·m]i), 1, pk))

Definition 8 does not change and also considers a potentially malicious genera-
tion of the parameters which may include a CRS (which is not satisfied by our
construction). Moreover, we introduce an intermediate notion, where keys may
be generated maliciously, but par is generated honestly. We formally define it in
the following for completeness (this is satisfied by our construction).

Definition 10 (Perfect adaption of signatures under malicious keys in
the honest parameters model). An SPS-EQ over (G∗i )` perfectly adapts sig-
natures under malicious keys in the honest parameter model if for all tuples
(par, pk, [m]i, σ, τ, µ) with:

[m]i ∈ (G∗i )` Verify([m]i, (σ, τ), pk) = 1 µ ∈ Z∗p par← ParGen(1λ)

we have that ChgRep outputs ([µ ·m]i, σ
′) such that σ′ is a random element

in the space of signatures, conditioned on Verify([µ ·m]i, σ
′, pk) = 1.

2.2 Non-Interactive Zero-Knowledge Proofs

Let RL be an efficiently computable relation of pairs (x,w) of words and wit-
nesses. Let L be the language defined as L = {x|∃w : RL(x,w) = 1}. We recall
the definition of a NIZK proof system [19] for a relation RL, where we use the
formalization in [43] (based on [50]) for the sake of consistency. We note that we
focus on NIZK argument systems, where soundness only holds for computation-
ally bounded adversaries.

– PGen(1λ, par): On input a security parameter λ and parameters par outputs
a common reference string crs.

– PTGen(1λ, par): On input a security parameter λ and parameters par outputs
a common reference string crs and a trapdoor td.



– PPro(crs, x, w): On input a common reference string crs, a statement x, and
a witness w such that RL(x,w) = 1, returns a proof Ω.

– PVer(crs, x,Ω): On input a reference string crs and a proof Ω, Returns accept
if Ω is valid and reject otherwise.

– PSim(crs, td, x): On input common reference string crs, and the trapdoor td
and word x and outputs a simulated proof Ω.

A NIZK argument system needs to satisfy the following properties:

– Perfect Completeness: For all possible public parameters par, all λ ∈ N,
all words x ∈ L, and all witnesses w such that RL(x,w) = 1, we have

Pr

[
crs← PGen(1κ, par),
Ω ← PPro(crs, x, w)

: PVer(crs, x,Ω) = 1

]
= 1.

– Computational Soundness: For all PPT adversaries A and for all words
x /∈ L we have:

Pr

[
crs← PGen(1κ, par),
Ω ← A(crs, x)

: PVer(crs, x,Ω) = 0

]
≈ 1.

– Composable Zero-Knowledge: For all PPT adversaries A, we have

Pr
[
crs← PGen(1λ, par) : A(1λ, crs) = 1

]
≈

Pr
[

(crs, td)← PTGen(1λ, par) : A(1λ, crs) = 1
]
.

Furthermore, for all for all x ∈ L with witness w such that RL(x,w) = 1,
the following are identically distributed:

PPro(crs, x, w) and PSim(crs, td, x)

where (crs, td)← PTGen(1λ, par). Note that the composable zero knowledge
requires indistinguishability even for adversaries that get access to (crs, trap).

Quasi-Adaptive NIZK proofs. Quasi-Adaptive NIZK (QA-NIZK) proofs [61,
67, 62, 65, 47, 8, 28] are NIZK proofs where the generation of the common
reference string (CRS), for a class of languages Lρ, parametrized by ρ, is allowed
to depend on the language parameter ρ. Moreover the common CRS includes a
fixed part par, generated by an algorithm pargen. Here, we recall the definitions
QA-NIZK proofs, as presented in [65].

Definition 11 (QA-NIZK). A non-interactive proof system (pargen, crsgen,
prove, verify, sim) is said to be a QA-NIZK proof system for an ensemble of dis-
tributions {Dpar} on collection of witness-relations R = {Rρ} with associated
language parameter ρ if the following holds (cf. [65]):

Perfect Completeness: For all λ, all par output by pargen(1λ), all ρ output
by Dpar, all (x, y) with Rρ(x, y) = 1, we have

Pr

[
(crs, trap)← crsgen(par, ρ),
π ← prove(crs, x, w)

: verify(crs, x, π) = 1

]
= 1



Computational Adaptive Soundness: For all PPT adversaries A,

Pr

ρ← Dpar, par← pargen(1λ),
crs← crsgen(par, ρ),
(x, π)← A1(crs, par, ρ)

:
verify(crs, x, π) = 1 ∧

x /∈ Lρ

 ≤ ε(λ)

Perfect Zero-Knowledge: For all λ, all par output by pargen(1λ), all ρ
output byDpar, all (crs, trap) output by crsgen(par, ρ), all (x, y) withRρ(x, y) = 1,
the distributions

prove(crs, x, w) and sim(crs, td, x)

are identical. Note that the formalization of perfect zero-knowledge is similar to
that of composable zero knowledge in [50] and requires indistinguishability even
for adversaries that get access to (crs, trap).

2.3 Malleable Proof Systems

Let RL be the witness relation associated to language L, then a con-
trolled malleable proof system [24] is accompanied by a family of efficiently
computable n-ary transformations T = (Tx, Tw) such that for any n-tuple
{(x1, w1), . . . , (xn, wn)} ∈ RnL it holds that (Tx(x1, . . . , xn), Tw(w1, . . . , wn)) ∈
RL (the family of admissible transformations is denoted by T ). Intuitively, such
a proof system allows when given valid proofs {Ωi}i∈[n] for words {xi}i∈[n] with
associated witnesses {wi}i∈[n] to publicly compute a valid proof Ω for word
x := Tx(x1, . . . , xn) corresponding to witness w := Tw(w1, . . . , wn) using an ad-
ditional algorithm denoted as ZKEval. More formally, the additional algorithms
is defined as follows:

– ZKEval(crs, T, (xi, Ωi)i∈[n]): takes as input common reference string crs, a
transformation T ∈ T , words x1, . . . xn and corresponding proofs Ω1, . . . , Ω2,
and outputs a new word x′ := Tx(x1, . . . , xn) and proof Ω′.

It is desirable that proofs computed by applying ZKEval are indistinguishable
from freshly computed proofs for the resulting word x′ := Tx(x1, . . . , xn) and
corresponding witness w′ := Tw(w1, . . . , wn) (this property is called (strong)
derivation privacy). We recall the weaker notion of derivation privacy below.

Definition 12 (Derivation Privacy [24]). A NIZK proof system
{PGen,PTGen,PPro,PVer,PSim,ZKEval} being malleable with respect to a
set of transformations T defined on some relation R is derivation private, if for
all PPT adversaries A,

Pr



crs← PGen(1κ), b
R←− {0, 1},

(st, ((xi, wi), Ωi)i∈[q], T )← A(crs),
Return ⊥ if (T 6∈ T ∨ ∃i ∈ [q] : (PVer(crs, xi, Ωi) = 0 ∨
(xi, wi) /∈ R),
Else if b = 0 : Ω ← PPro(crs, Tx((xi)i∈[q]), Tw((wi)i∈[q]), : b = b∗

Else if b = 1 : Ω ← ZKEval(crs, T, (xi, πi)i∈[q]),
b∗ ← A(st, Ω)


≤ ε(λ)



3 Revisiting the FG18 Model and Applications

In this section we recall the construction in [35] (denoted FG18 henceforth) and
point out some issues regarding their signature adaption notion and the implic-
itly assumed notion of perfect composition from [51] for concrete applications.
We again stress that FG18 scheme is secure in FG18 model (honestly signature
and key generation or semi-honest), but we are going to show its problems in
the stronger model, which is current acceptable model. In order to make it more
convenient for the reader we adapt the notion used in [35] to the original SPS-EQ
notion (but keep their name EQS).

First, we recall that their scheme has a one-time randomizability property
and therefore FG18 need to modify the perfect adaption notion from [39] (Defi-
nition 7 in Section 2.1) to exclude trivial distinguishers, i.e., they always consider
the pairs of original and adapted signatures in their distributions. We recall their
version in Definition 13. The most important difference9 is that while the original
notion in Definition 7 considers maliciously generated signatures, the definition
in [35] is restricted to honestly generated signatures.

Definition 13 (Signature Adaption [35]). An EQS scheme (ParGen,Sign,
ChgRep,Verify,VKey) perfectly adapts signatures if for all (sk, pk, [m]i, µ) with

VKey(sk, pk) = 1 [m]i ∈ (G∗i )` µ ∈ Z∗p

the following are identically distributed:

(ρ := Sign(sk, [m]i),ChgRep(pk, ρ, µ)) and

(ρ := Sign(sk, [m]i),ChgRep(pk,Sign(sk, [µ ·m]i), 1))

In Figure 1 we recall the FG18 scheme and then proceed to discuss problems of
Definition 13 and their scheme in context of applications.

3.1 Problem With Key Verification and the Need for a CRS

Fuchsbauer and Gay require for signature adaption that the respective EQS
scheme provides a VKey algorithm that checks consistency of keys sk and pk.
When looking at their keys pk := ([B]2, {[KiB]2}i∈[`]) and sk := (A, {Ki}i∈`),
a potential VKey algorithm can check the consistency of pk with the part of the
secret key {Ki}i∈`. They did not specify the VKey algorithm, but any reasonable
VKey would check if sk contains the trapdoor B, as honest keys would not contain
it. Now an interesting aspect is that this does not per se present a problem in
their definition, as they do not consider perfect adaption under malicious keys (in
the vein of Definition 8; cf. Section 2.1). However, the existence of the potential
trapdoor B and no means to proving the absence of it represents a problem with

9 One syntactical difference is that for EQS they do not input the message [m]i in
their ChgRep algorithm, but this does not matter for our discussion.



Setup(PG) :

A
R←− D2k,k,B

R←− Dk′
for i ∈ [`] do

Ki
R←− Z2k×(k′+1)

p

endfor
pk := ([B]2, {[KiB]2}i∈[`])
sk := (A, {Ki}i∈[`])

return (pk,sk)

ChgRep(pk, ρ = ({[Si]1}i∈[`+1], [S]2), µ) :

r
R←− (Zkp)∗, [s]2 = [S]2r

for i ∈ [`+ 1] do
[si]1 = µ[Si]1r

endfor
return σ = ({[si]1}i∈[`+1], [s]2)

Sign(sk, [m]1 ∈ (G`1)∗) :

U
R←− GLk,S = AU

for i ∈ [`] do
[Si]1 = [mi]1S

endfor

[S`+1]1 =
∑̀
i=1

[mi]1K
>
i S

return ρ = ({[Si]1}i∈[`+1], [S]2)

Ver(pk, [m]1, σ = ({[si]1}i∈[`+1], [s]2) :

if [s]2 6= [0]2
and ∀i ∈ [`] : [si]1 · [1]2 = [mi]1 · [s]2

and
∑̀
i=1

[s>i ]1 · [KiB]2 = [s>`+1]1 · [B]2

return 1
else return 0

Fig. 1. EQS Scheme from [35].

the application of the FG18 scheme to attribute-based credentials (ABCs) (cf.
Section 5 in [35]).

In the ABC construction from [40], the issuer generates an SPS-EQ key
pair and in the Issue protocol, the issuer needs to provide a ZKPoK that
VKey(sk, pk) = 1. Note that for FG18 no realization of this ZKPoK can prove
the absence of B (as the issuer could simply pretend to not knowing it and the
ZKPoK cannot cover this) and a malicious issuer may remember B. Now in the
anonymity proof of the ABC scheme (Theorem 8 in [40]), the reduction can ex-
tract the signing key sk from the ZKPoK and in the transition from Game1 to
Game2, for all calls to the oracle OLoR the computation of ChgRep is replaced
with Sign of the SPS-EQ, i.e., instead of adapting existing signatures fresh signa-
tures are computed. Now, this is argued under their signature adaption notion.
However, without additional means, by the strategy we discuss below (i.e., a way
to construct malicious signatures that verify), an adversary can detect with over-
whelming probability that the simulation deviates from the original anonymity
game and thus this proof breaks down when instantiated with EQS in [35]. The
reason is, that their adaption notion in Definition 13 is too weak to be useful to
constructing ABCs following the approach in [40].

Attack strategy. Let us assume that the adversary who generates the key-
pair pk = ([B]2, {[KiB]2}i∈[`]) and sk = (A, {Ki}i∈[`]) remembers the trap-
door B. For simplicity we set k = 2 and k′ = 1 in Scheme 1 and so we

have B =

(
b1
b2

)
. Let us for the sake of exposition assume that the signer

(credential issuer) wants to track a specific instance of signing (issuing) and



generates all signatures honestly, except for the one instance (lets say Alice’s
credential). Latter signature is computed differently by the issuer, but in a
way that it is indistinguishable for verifiers, i.e., it still verifies correctly. Ac-

tually, instead of computing S`+1 =

(
S1 S2

S3 S4

)
as dictated by the Sign algorithm

(cf. Figure 1), he uses S`+1 (as in Sign) but also his trapdoor B to compute

S′`+1 =

(
S1 − b2 S2 + b2
S3 + b1 S4 − b1

)
. Then, he includes S′`+1 instead of S`+1 in the first

part of the signature ρ. Note that we have S>`+1B = S′>`+1B, and for a verifier
this alternative signature computation is not noticeable. When Alice wants to

randomize ρ (i.e., run ChgRep in Figure 1), she chooses r
R←− Z2

p and obtains

s′`+1 = µS′`+1r = µ

(
(S1 − b2)r1 + (S2 + b2)r2
(S3 + b1)r1 + (S4 − b1)r2

)
. Note that the signer knows

Ki, and so he can check for any given randomized signature the following:

∑̀
i=1

[s>i ]1Ki = [s>`+1]1 (3)

which does not use pairing evaluations and thus does not eliminate B. Now it is
easy to see that all randomized signatures including the randomized signature
issued for Alice pass the original verification using Ver. However, the randomized
signature of Alice has an additional part (i.e., B) and so Equation (3) cannot be
satisfied. So, the signer can easily distinguish the signature issued to Alice from
all other honestly computed signatures.

Trying to fix the problem. A modification of the FG18 scheme to prevent
this attack would be to put [B]2 in a common reference string (CRS) used by
all signers when generating their keys so that no signer knows B. As we show
subsequently, however, the adaption notion in Definition 13 used for FG18 still
remains too weak for ABCs and group signatures.

3.2 Distinguishing Signatures

Now, we show how a malicious signer can distinguish signatures even if keys
are generated honestly. In the case of dynamic group signatures (GS) in [30] (or
ABCs under honest keys), the adversary in the anonymity game is allowed to
compute signatures on its own and we will show how this enables the adversary to
track signatures, which breaks the anonymity proof. We stress that this attack
works independently of whether there is a trapdoor in the secret key, as the
GS in [30] rely on the BSZ model [15] and thus assume honest key generation
(mitigating the attack in Section 3.1 by construction).

Attack strategy. First we show how a signer who remembers S during running
Sign can obtain the value of [r]2, which was used as a randomizer for the signature
during ChgRep, and then how he can use it to distinguish two signatures. Again,



let us set k = 2 and k′ = 1. So, we have S =


S1 S2

S3 S4

S5 S6

S7 S8

, and when ChgRep

multiplies [S]2 on r =

(
r1
r2

)
, we receive [s]2 =


s1
s2
s3
s4


2

=


r1S1 + r2S2

r1S3 + r2S4

r1S5 + r2S6

r1S7 + r2S8


2

. Taking

[s]2 and S, we compute [ s1S1
]2 − [ s2S3

], and then multiply it to (S2

S1
− S4

S3
)−1 to

obtain [r2]2. Now, we also can recover [r1]2 and so we obtain [r]2.
Now, let the signer generate two signatures, say for Alice and Bob, where he

later wants to link the received randomized signature to one of them.

The signer picks S =


S1 S2

S3 S4

S5 S6

S7 S8

 for Alice, and picks different S′5, S
′
6, S
′
7, S
′
8,

and sets S′ =


S1 S2

S3 S4

S′5 S
′
6

S′7 S
′
8

 for Bob in their respective signatures. When the signer

receives [s]2, a candidate for a signature obtained from ChgRep, based on the
approach discussed above he obtains [r]2. Now he checks whether [s3]2 = [r1S5+
r2S6]2 holds, in which case the randomized signature is related to Alice. On the
other hand, if [s3]2 = [r1S

′
5 + r2S

′
6]2 holds, then the randomized signature is

related to Bob.

3.3 No Perfect Composition

Subsequently, in Definition 14 we recall the perfect composition notion from [51]
required to construct VES from SPS-EQ. This notion intuitively requires that
ChgRep executed with random coins fixed to 1 updates only the parts of the
given signature that are affected by updating the representative from [m]i to
µ[m]i and not changing the randomness ω previously used by Sign.

Definition 14 (Perfect Composition [51]). An SPS-EQ scheme
(ParGen,Sign,ChgRep,Verify,VKey) allows perfect composition if for all
random tapes ω and tuples (sk, pk, [m]i, σ, µ):

VKey(sk, pk) = 1 σ ← Sign([m]i, sk;ω) [m]i ∈ (G∗i )` µ ∈ Z∗p

it holds that (µ[m]i,Sign(µ[m]i, sk;ω)) = ChgRep([m]i, σ, µ, pk; 1).

Since this notion does not require any assumption on the distribution of original
and adapted signatures, the issues discussed so far do not yield to any problem.
However, it is quite easy to see that this notion is not satisfied by the FG18
scheme and this is actually an inherent problem for EQS (SPS-EQ) schemes
where signatures output by Sign and ChgRep have different forms. To illustrate



this for the FG18 scheme (cf. Figure 1), signatures resulting from Sign contain a
matrix [S]2, whereas signatures output by ChgRep contain the vector [s]2 := [S]2r
(where in context of Definition 14, r represents the all all-ones vector).

4 Our OR-Proof and Core Lemma

Subsequently, we present the concrete instantiation of our malleable OR-proof
that we use for our SPS-EQ scheme. Firstly, PPro computes as a proof two copies
Ω1 and Ω2 of an OR-proof for statements [x1]1 and [x2]1, which use the same
randomness v and share a QA-NIZK proof π (denoted by Ω). Consequently,
instead of ending up with two independent proofs, we end up with a single proof
Ω = (Ω1 = ([C1,i]2, [Π1,i]1), Ω2 = ([C2,i]2, [Π2,i]1), [zi]2, π) for i = 0, 1 where
both proofs share [zi]2 and π. We also have PVer and PSim which take two
statements and proofs with shared randomness and QA-NIZK denoted by π as
input. Our ZKEval is restricted to any two words [x1]1 and [x2]1 corresponding to
witnesses r1 and r2 where the associated proofs Ω1 and Ω2 have been computed
using the same randomness v and thus have shared [zi]2 and π. The output of
ZKEval is a proof Ω′ = (Ω′1, [z

′
i]2, π

′) for word [x′1]1 corresponding to witness r′ =

r1+ψr2 with ψ
R←− Zp chosen by ZKEval (i.e., ψ indexes a concrete transformation

in the family T ). Finally, we also provide a verification algorithm (PRVer) that
verifies a single OR-proof (as we use it in the SPS-EQ).

Our OR-proof. Now, we present our malleable proof for OR language L∨A0,A1

based upon the one in [43]. We recall their NIZK proof as well as the QA-NIZK
used by us in our NIZK proof in the full version. The language is

L∨A0,A1
= {[x]1 ∈ G2k

1 |∃r ∈ Zkp : [x]1 = [A0]1 · r ∨ [x]1 = [A1]1 · r}

and par := (BG, [A0]1, [A1]1) with BG ← BGGen(1λ) and A0,A1
R←− D2k,k

for k ∈ N. We henceforth denote our proof by PS and set k = 1 and consider the
class of admissible transformations T := {(Tψx , Tψw )}ψ∈Z∗p and Tψx ([x1]1, [x2]1) :=

[x1]1 + ψ[x2]1 and Tψw (r1, r2) := r1 + ψr2. Observe that the output of ZKEval
is a proof with new randomness v′ = αv, s′0 = αs1,0 + αψs2,0 + β0 and s′1 =
αs1,1 + αψs2,1 + β1 as well as new witness r′ = r1 + ψr2.

Below, we show that the protocol in Figure 2 is indeed a NIZK argument.

Theorem 1. The protocol in Figure 2 is a malleable non-interactive zero-
knowledge argument for the language L∨A0,A1

with respect to allowable trans-
formations T .

Proof. We need to prove three properties, perfect completeness, composable
zero-knowledge, computational soundness and derivation privacy.

Completeness: This is easy to verify.

Zero-Knowledge: The challenger sends an MDDH challenge ([D]2, [z]2) to the

adversary B. Then B picks A0,A1
R←− D2,1, A

R←− D1, K
R←− Z2×1

p and computes

[P]2 = [z> + D>]2K and C = KA.



PGen(par, 1λ) :

D,A
R←− D1, z

R←− Z2
p \ span(D)

K
R←− Z2×1

p

M := D + z

P := M>K

C := KA

crs = (par, [D]2, [z]2, [P]2, [A]1, [C]1)
return crs

PPro(crs, [x1]1, r1, [x2]1, r2) :

Let b ∈ {0, 1}, j ∈ {1, 2} s.t. [xj ]1 = [Ab]1rj

v
R←− Zp

[z1−b]2 := v[D]2
[zb]2 := v[z]2
π := v[P]2

s1,0, s1,1, s2,0, s2,1
R←− Zp

[C1,b]2 := s1,b[D]>2 + r1[zb]2

[Π1,b]1 := [Ab]
>
1 s1,b

[C1,1−b]2 := s1,1−b[D]>2
[Π1,1−b]1 := [A1−b]1 · s1,1−b − [x1]1v

[C2,b]2 := s2,b[D]>2 + r2[zb]2

[Π2,b]1 := [Ab]
>
1 s2,b

[C2,1−b]2 := s2,1−b[D]>2
[Π2,1−b]1 := [A1−b]1 · s2,1−b − [x2]1v
Ω := ([Cj,i]2, [Πj,i]1, [zi]2, π)j∈{1,2},i∈{0,1}
return Ω

PVer(crs, [x1]1, [x2]1, Ω) :

if e([A]1, π) = e([C]1, [z1]2 + [z0]2)
and for all i ∈ {0, 1}, j ∈ {1, 2} it holds
e([Ai]1, [Cj,i]2)

e([Πj,i]1, [D]>2 ) + e([xj ]1, [zi]
>
2 )

return 1
else return 0

PRVer(crs, [x′1]1, Ω
′
1) :

if e([A]1, π
′) = e([C]1, [z1]2 + [z0]2)

and for all i ∈ {0, 1} it holds
e([Ai]1, [C

′
i]2) =

e([Π′i]1, [D]>2 ) + e([x′1]1, [z
′
i]
>
2 )

return 1
else return 0

PTGen(par, 1λ) :

D,A
R←− D1, u

R←− Zp
K

R←− Z2×1
p

z := Du
M := D + z

P := M>K

C := KA

crs := (par, [D]2, [z]2, [P]2, [A]1, [C]1)
trap := (u,K)
return (crs, trap)

PSim(crs, trap, [x1]1, [x2]1) :

v
R←− Zp

[z0]2 := v[D]2
[z1]2 := v[z]2
π := v[P]2

s1,0, s1,1, s2,0, s2,1
R←− Zp

[C1,0]2 := s1,0[D]>2
[Π1,0]1 := [A0]·1s1,0 − [x1]1v

[C1,1]2 := s1,1[D]>2
[Π1,1]1 := [A1]1 · s1,1 − [x1]1(vu)

[C2,0]2 := s2,0[D]>2
[Π2,0]1 := [A0]·1s2,0 − [x2]1v

[C2,1]2 := s2,1[D]>2
[Π2,1]1 := [A1]1 · s2,1 − [x2]1(vu)
Ω := ([Cj,i]2, [Πj,i]1, [zi]2, π)j∈{1,2},i∈{0,1}
return Ω

ZKEval(crs, [x1]1, [x2]1, Ω) :

Parse Ω = (Ω1, Ω2, [zi]2, π)
if PVer(crs, [x1]1, [x2]1, Ω) = 0

return ⊥
else ψ, α, β0, β1

R←− Z∗p
and for all b ∈ {0, 1}[

z′b
]
2

:= α[zb]2[
C′b
]
2

:= α[C1,b]2 + αψ[C2,b]2 + βb[D]2[
Π′b
]
1

:= α[Π1,b]1 + αψ[Π2,b]1 + βb[Ab]1

π′ := απ
Ω′ := (Ω′1, [z

′
i]2, π

′)
return Ω′

Fig. 2. Malleable NIZK argument for language L∨A0,A1



Then B sends ([A0]1, [A1]1, [z]2, [D]2, [P]2, [A]1, [C]1) to A as crs. When B re-
ceives a real MDDH tuple, where [z]2 = [Du]2 for some u ∈ Zp, B simulates

crs as PTGen. In the other case, where [z]2
R←− G2

2, using the fact that the uni-
form distribution over Z2

p and the uniform distribution over Z2
p\span(D) are

1/p-statistically close distributions, since D is of rank 1, we can conclude that
B simulates the crs as output by PGen, within a 1/p statistical distance. Now,
note that PPro and PSim compute the vectors [z0]2 and [z1]2 in the exact same
way, i.e., for all b ∈ {0, 1}, zb := Dvb where v0, v1 are uniformly random over Zp
subject to v1 = v0u (recall z := Du).

Also for case j = 1, on input [x1]1 := [Abr1]1, for some b ∈ {0, 1},
PPro(crs, [x1]1, [x2]1, r1, r2) computes [C1,1−b]2 and [Π1,1−b]1 exactly as PSim,
that is: [C1,1−b]2 = s1,1−b[D]2 and [Π1,1−b]1 = [A1−b]1s1,1−b − [x1]1v1−b.
The algorithm PPro additionally computes [C1,b]2 = s1,b[D]2 + r1[z]2 and

[Π1,b]1 = [Ab]1s1,b, with s1,b
R←− Zp. Since the following are identically dis-

tributed:

s1,b and s1,b − r1vb

for s1,b
R←− Zp, we can re-write the commitment and proof computed by PPro

as [C1,b]2 = s1,b[D]2 − r1vb[D]2 + r1[zb]2 = [s1,bD]2 and [Π1,b]1 = [Ab]1s1,b −
[Abr1vb]2 = [Abs1,b]1 − [x1vb]2, which is exactly as the output of PSim.

For case j = 2 the argumentation is analogous.

Computational Soundness: Based on the computational soundness of the
QA-NIZK proofs [65], we have z0 + z1 /∈ span(D). So, there is a b ∈ {0, 1}
such that zb /∈ span(D). This implies that there exists a d⊥ ∈ Z2

p such that

D>d⊥ = 0, and z>b d⊥ = 1. Furthermore, as the row vectors of D together with zb

form a basis of Z2
p, we can write [Cj,b]2 := [sj,bD+rjzb]2 for some sj,b, rj

R←− Zp.
Multiplying the verification equation by d thus yields [Abrj ]1 = [xj ]1, which
proves a successful forgery outside L∨A0,A1

impossible.

Derivation privacy: As can be seen, the algorithm ZKEval outputs a proof
with new independent randomness. So, the algorithm ZKEval and the al-
gorithm PPro, when only compute a single proof, have identical distribu-
tion, i.e., we have perfect derivation privacy. More precisely, under the CRS
([A0]1, [A1]1, [z]2, [D]2, [P]2), a proof Ω′ = (Ω′1, [z

′
i]2, π

′) for word [x′1]1 corre-
sponding to witness r′ has form [z′1−b]2 = v′[D]2, [z′b]2 = v′[z]2 and π = v′[P]2,

and [C′b]2 = s′b[D]>2 + r′[z′b]2, [Π′b]1 = [Ab]
>
1 s
′
b, [C′1−b]2 = s′1−b[D]>2 and

[Π′1−b]1 = [A1−b]1 ·s′1−b− [x′1]1v
′ for new independent randomness r′, v′, s′b, s

′
1−b

and so is a random element in the space of all proofs. Concluding, the proof
output by ZKEval is distributed identically to a fresh proof output by PPro. ut

4.1 Our Core Lemma

We now give a new core lemma, which we denote by Expcore
β . Note that we set

k = 1, as it is sufficient for our construction of SPS-EQ. Consider following



Expcore
β (λ), β ∈ {0, 1} :

ctr := 0

BG← BGGen(1λ)

A0,A1
R←− D1

par := (BG, [A0]1, [A1]1)

crs← PGen(par, 1λ)

k0,k1
R←− Z2

p

pp := (BG, [A0]1, crs)

tag← ATAGO()(pp)
return VERO(tag)

TAGO() :

ctr := ctr + 1

r1, r2
R←− Zp

[t]1 := [A0]1r1, [w]1 := [A0]1r2
Ω := (Ω1, Ω2, [z0]2, [z1]2, π)← PPro(crs, [t]1, r1, [w]1, r2)[
u′
]
1

:= (k0 + β · F(ctr))>[t]1, [u
′′]1 := (k0 + β · k1)>[w]1

Tag := ([t]1, [w]1, Ω = (Ω1, Ω2, [z0]2, [z1]2, π), [u′]1, [u
′′]1)

return Tag

VERO(tag) :

Parse tag = ([t]1, Ω1, [z0]2, [z1]2, π, [u
′]1)

if 1← PVer(crs, [t]1, (Ω1, [z0]2, [z1]2, π))

and ∃ctr′ ≤ ctr : [u′]1 = (k0 + β · F(ctr′))>[t]1
return 1

else return 0

experiments (for two cases β = 0 and β = 1), where F : Zp → Z2
p is a random

function computed on the fly:

Lemma 2 (Core lemma). If the D1-MDDH (DDH) assumption holds in G1

and the tuple of algorithms (PGen,PTGen,PPro,PVer) is a non-interactive zero-
knowledge proof system for L∨A0,A1

, then going from experiment Expcore
0 to

Expcore
1 can (up to negligible terms) only increase the winning chance of an ad-

versary. More precisely, for every adversary A, there exist adversaries B, B1 and
B2 such that

Advcore
0 (A)−Advcore

1 (A) ≤ ∆core
A ,

where

∆core
A = (2 + 2dlogQe)Advzk

PS(B) + (8dlogQe+ 4)AdvMDDH
D1,Gs

(B1)

2dlogQeAdvsnd
PS (B2) + dlogQe∆D1

+
(8dlogQe+ 4)

p− 1
+

(dlogQe)Q
p

and the term ∆D1
is statistically small.

Due to the lack of space and the similarity of the proof to the approach in
[43] we present the full proof in the full version.

5 Our SPS-EQ Scheme

In Figure 3 we present our SPS-EQ scheme in the common parameter model
under simple assumptions. We set k = 1 as we need randomizability and note
that our scheme is based on the malleable OR-proof presented in Section 4.
Observe that in ChgRep the new randomness is v′ = αv, s′0 = αµs1,0+αψs2,0+β0
and s′1 = αµs1,1 + αψs2,1 + β1 and the new witness is r′ = µr1 + ψr2.



ParGen(1λ) :

BG← BGGen(1κ)

A0,A1
R←− D1

crs← PGen((BG, [A0]1, [A1]1), 1λ)
par := (BG, [A0]1, [A1]1, crs)
return par

Sign([m]1, sk) :

r1, r2
R←− Zp

[t]1 := [A0]1r1
[w]1 := [A0]1r2
Ω ← PPro(crs, [t]1, r1, [w]1, r2)
Parse Ω = (Ω1, Ω2, [z0]2, [z1]2, π)

u1 := K>0 [t]1 + K>[m]1

u2 := K>0 [w]1
σ := ([u1]1, Ω1, [z0]2, [z1]2, π, [t]1)
τ := ([u2]1, Ω2, [w]1)
return (σ, τ)

Verify([m]1, (σ, τ), pk) :

Parse σ = ([u1]1, Ω1, [z0]2, [z1]2, π, [t]1)
Parse τ ∈ {([u2]1, Ω2, [w]1) ∪ ⊥}
1: if 1 = PVer(crs, [t]1, (Ω1, [z0]2, [z1]2, π))
2: if e([u1]>1 , [A]2) =
e([t]>1 , [K0A]2) + e([m]>1 , [KA]2)
if τ 6= ⊥

3: if 1← PVer(crs, [w]1, (Ω2, [z0]2, [z1]2, π))
4: if e([u2]>1 , [A]2) = e([w]>1 , [K0A]2)

return 1
return 1

else return 0

KeyGen(par, `) :

A
R←− D1

K0
R←− Z2×2

p

K
R←− Z`×2

p

sk := (K0,K)
pk := ([A]2, [K0A]2, [KA]2)
return (pk, sk)

ChgRep([m]1, σ, τ, µ, pk) :

Parse σ = ([u1]1, Ω1, [z0]2, [z1]2, π, [t]1)
Parse τ = ([u2]1, Ω2, [w]1)
Ω := (Ω1, Ω2, [z0]2, [z1]2, π)
if 1 6= PVer(crs, [t]1, [w]1, Ω)

or e([u2]>1 , [A]2) 6= e([w]>1 , [K0A]2)

or e([u1]>1 , [A]2) 6=
e([t]>1 , [K0A]2) + e([m]>1 , [KA]2)

return ⊥
else ψ, α, β0, β1

R←− Z∗p
[u1]′1 := µ[u1]1 + ψ[u2]1[
t′
]
1

:= µ[t]1 + ψ[w]1 = [A0]1(µr1 + ψr2)

for all b ∈ {0, 1}[
z′b
]
2

:= α[zb]2[
C′b
]
2

:= αµ[C1,b]2 + αψ[C2,b]2 + βb[D]2[
Π′b
]
1

:= αµ[Π1,b]1 + αψ[Π2,b]1 + βb[Ab]1

π′ := απ
Ω′ := (Ω′1, [z

′
i]2, π

′)
σ′ := ([u′1]1, Ω

′, [t′]1)
return (µ[m]1, σ

′)

Fig. 3. Our SPS-EQ scheme.

Theorem 2. If KerMDH and MDDH assumptions holds, our SPS scheme is
unforgeable.

Proof. We prove the claim by using a sequence of Games and we denote the
advantage of the adversary in the j-th game as Advj .

Game 0: This game is the original game and we have:

Adv0 = AdvEUF-CMA
SPS-EQ (A)

Game 1: In this game, in Verify, we replace the verification in line (2:) with the
following equation:



[u∗1]1 = K0
>[t∗]1 + K>[m∗]1

For any signature σ = ([u∗1]1, Ω
∗
1 , [z

∗
0]2, [z

∗
1]2, π

∗, [t∗]1) that passes the original
verification but not verification of Game 1 the value

[u∗1]1 −K0
>[t∗]1 −K>[m∗]1

is a non-zero vector in the kernel of A. Thus if A outputs such a signature, we
can construct an adversary B that breaks the D1-KerMDH assumption in G2.
To do this we proceed as follows: The adversary B receives (BG, [A]2), samples
all other parameters and simulates Game 1 for A. When B receives the forgery
from A as tuple σ = ([u∗1]1, Ω

∗
1 , [z

∗
0]2, [z

∗
1]2, π

∗, [t∗]1) for message [m∗]1, he passes
following values to its own challenger:

[u∗1]1 −K0
>[t∗]1 −K>[m∗]1

We have:
|Adv1 −Adv0| 6 AdvKerMDH

D1,G2
(B)

Game 2: In this game, we set K0 = K0 + k0(a⊥)> (in key generation we can
pick k0 ∈ Z2

p and K0 ∈ Z2×2
p and set K0; we have a⊥A = 0). We compute

[u1]1 = K>0 [t]1 + K>[m]1 + a⊥(k0)>[t]1 and [u2]1 = K>0 [w]1 + a⊥(k0)>[w]1.
There is no difference to the previous game since both are distributed identically.
So, we have:

Adv2 = Adv1

Game 3: In this game, we add the part of F(ctr) for ctr = ctr + 1, where F is a
random function, and obtain [u1]1 = K>0 [t]1 + K>[m]1 + a⊥(k0 + F(ctr))>[t]1
and [u2]1 = K>0 [w]1 + a⊥(k0 + k′)>[w]1. In the verification we have:

1← PVer(crs, [t]1, (Ω1, [z0]2, [z1]2, π)) and

∃ctr′ ≤ ctr :

[u1]1 = K>0 [t]1 + a⊥(k0 + F(ctr′))> + K>[m]1

Let A be an adversary that distinguishes between Game 3 and Game 2. We
can construct an adversary B1 that breaks the core lemma. B1 receives par =

(BG, [A0]1, crs) from Expcore
β,B1

. B1 picks A
R←− Dk, a⊥ ∈ orth(A), K0

R←− Z2×2
p ,

K
R←− Z2×`

p , and sends public key pk = ([A0]1, [A]2, [K0A]2, [KA]2) to A. B1
uses the oracle TAGO() to construct the signing algorithm. This oracle takes
no input and returns tag = ([t]1, [w]1, Ω = (Ω1, Ω2, [z0]2, [z1]2, π), [u′]1, [u

′′]1).
Then B1 computes [u1]1 = K>0 [t]1 + a⊥[u′]1 + K>[m]1, [u2]1 = K>0 [w]1 +
a⊥[u′′]1, and sends the signature σ = ([u1]1, [z0]2, [z1]2, π, [t]1) and tag τ =
([u2]1, Ω2, [w]1, ) to A. When the adversary A sends his forgery ([m∗]1, σ

∗) =
(u∗1, [t

∗]1, Ω
∗
1 , [z

∗
0]2, [z

∗
1]2, π

∗), B1 returns 0 if [u1]1 = 0; otherwise he checks
whether there exists [u′∗]1 such that [u∗1]1 −K>0 [t∗]1 −K>[m∗]1 = a⊥[u′∗]1. If
it does not hold, then it returns 0 to A, otherwise B1 computes [u′∗]1, and calls



the verification oracle VERO() on the tag tag∗ = ([t∗]1, Ω
∗
1 , [z

∗
0]2, [z

∗
1]2, π

∗, [u′∗]1)
and returns the answer to A. Using the core lemma, we have:

Adv2 −Adv3 6 Advcore
BG (B1)

Game 4: In this game, we pick r1, r2 from Z∗p instead of Zp. The difference of
advantage between Game 3 and Game 4 is bounded by the statistical distance
between the two distributions of r1, r2. So, under Q adversarial queries, we have:

|Adv4 −Adv3| 6
Q

p

Game 5: In this game, we pick c̃tr
R←− [1, Q], and we add a condition ctr′ = c̃tr

to verification. Actually, now we have this conditions:

1← PVer(pk, [t]1, (Ω1, [z0]2, [z1]2, π)) and

∃ctr′ ≤ ctr : ctr′ = c̃tr and

[u1]1 = K>0 [t]1 + a⊥(k0 + F(ctr′))> + K>[m]1

Since the view of the adversary is independent of c̃tr, we have

Adv5 =
Adv4

Q

Game 6: In this game, we can replace K by K + v(a⊥)> for v
R←− Z`p. Also,

we replace {F(i) : i ∈ [1, Q], i 6= c̃tr} by {F(i) + wi : i ∈ [1, Q], i 6= c̃tr}, for

wi
R←− Z2k

p and i 6= ĉtr. So, in each i-th query, where i 6= ĉtr, we compute

[u1]1 = K>0 [t]1 + (K> + a⊥v>)[mi]1 + a⊥(k0 + F(i) + wi)
>[t]1

Also, for c̃tr-th query for the message [mc̃tr]1, we compute

[u1]1 = K>0 [t]1 + (K> + a⊥v>)[mc̃tr]1 + a⊥(k0 + F(c̃tr) + wi)
>[t]1

So, A must compute the following:

[u∗1]1 = K>0 [t∗]1 + (K> + a⊥v>)[m∗]1 + a⊥(k0 + F(c̃tr) + wi)
>[t∗]1

Since m∗ 6= [mc̃tr]R (in different classes) by definition of the security game,
we can argue v>m∗ and v>mc̃tr are two independent values, uniformly random
over G1. So, A only can guess it with probability of 1

p . So, we have

AdvEUF-CMA
SPS-EQ (A) 6 AdvKerMDH

BG (B) + AdvcoreBG (B1) +
2Q

p
.

Theorem 3. Our scheme satisfies perfect adaption under malicious keys in the
honest parameters model, i.e., Definition 10.



Proof. For any message [m]1, and pk which is generated accord-
ing to the CRS ([A]2, [A0]1, [A1]1, [z]2, [D]2, [P]2), a signature σ =
([u1]1, Ω, [t]1, ) satisfying the verification algorithm must be of the form
σ = (K>0 [A0]1r + K>[m]1, v[z]2, v[D]2, v[P]2, s0[D>] + rv[z]2, s1[D>]2,
[A0]1s0, [A1]1s1 − [A0]1rv, [A0]1r). A signature output by ChgRep has
the form σ′ = (K>0 [A0]1r

′ + K>[m]1, v
′[z]2, v

′[D]2, v
′[P]2, s

′
0[D>] +

r′v′[z]2, s
′
1[D>]2, [A0]1s

′
0, [A1]1s1 − [A0]1r

′v′, [A0]1r
′) for new independent

randomness r′, v′, s′0, s
′
1 and so is a random element in the space of all signa-

tures. Actually, the signature output by ChgRep is distributed identically to a
fresh signature on message [m]1 output by Sign. ut

6 Applications

As already discussed in [35], there are no known applications of SPS-EQ where
signatures that have been randomized need to be randomized again by an entity
that does not know the original signature. Consequently, and as shown in [35],
tag-based schemes as the one introduced in this paper can be used within all the
known applications without restrictions. Now let us summarize and clarify how
our SPS-EQ scheme can be used in existing applications of SPS-EQ.

Using our scheme we can instantiate the group signatures in [30] and [11] as
well as access control encryption (ACE) in [36]. As already mentioned earlier,
both models assume honest key generation and so we can merge ParGen and
KeyGen of the SPS-EQ scheme and do not need a trusted party to generate the
CRS, i.e., it can be done by the signer during key generation.

Also we can instantiate attribute-based credentials [52, 38, 40] in the honest
key model or under malicious keys (for latter requiring a CRS), but not in the
malicious key model without a CRS. Due to an argumentation following a rea-
soning related to the one in Section 3.3, our scheme cannot be used to instantiate
the verifiable encrypted signatures from [51].

Round-optimal blind signatures in the CRS model. What remains to
be discussed is the application to round-optimal blind signatures as introduced
in [39, 37]. As already mentioned, as our SPS-EQ scheme does not provide the
strongest notion of perfect adaption under malicious keys, we are only able to
construct round-optimal blind signatures in the CRS model. In contrast to ex-
isting schemes in the CRS model relying on non-standard and non-static q-type
assumptions such as [33, 9] which require around 30 group elements in the signa-
ture, the most recent scheme under standard assumptions, i.e., SXDH, by Abe
et al. [8] requires (42, 40) elements in G1 and G2 respectively. In contrast to
other existing schemes which follow the framework of Fischlin [32], we can take
our SPS-EQ scheme to instantiate the framework in [39]. We note that when
we are in the CRS model, we can move the commitment parameters Q and Q̂
from [39] in the CRS, and thus obtain a round optimal blind signature scheme
under SXDH. This is the same assumption as used by Abe et al. in [8], but our
signature sizes are only (10, 9) elements in G1 and G2 respectively, improving
over [8] by about a factor of 4 and even beating constructions proven secure



under q-type assumptions.
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