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Abstract. A universal circuit (UC) is a general-purpose circuit that can
simulate arbitrary circuits (up to a certain size n). At STOC 1976 Valiant
presented a graph theoretic approach to the construction of UCs, where
a UC is represented by an edge universal graph (EUG) and is recursively
constructed using a dedicated graph object (referred to as supernode).
As a main end result, Valiant constructed a 4-way supernode of size 19
and an EUG of size 4.75n logn (omitting smaller terms), which remained
the most size-efficient even to this day (after more than 4 decades).

Motivated by the emerging applications of UCs in various privacy p-
reserving computation scenarios, we revisit Valiant’s universal circuits,
and propose a 4-way supernode of size 18, and an EUG of size 4.5n logn.
As confirmed by our implementations, we reduce the size of universal
circuits (and the number of AND gates) by more than 5% in general ,
and thus improve upon the efficiency of UC-based cryptographic appli-
cations accordingly. Our approach to the design of optimal supernodes is
computer aided (rather than by hand as in previous works), which might
be of independent interest. As a complement, we give lower bounds on
the size of EUGs and UCs in Valiant’s framework, which significantly im-
proves upon the generic lower bound on UC size and therefore reduces
the gap between theory and practice of universal circuits.

1 Introduction

A universal circuit (UC)4 refers to a circuit that can be programmed to simulate
any Boolean circuit C up to a given size. That is, a UC takes as input program
bits pC (that encodes C) in addition to an input x, and produces as output
UC(x, pC) = C(x). This is analogous to a central processing unit (CPU) that
carries out the computations specified by the instructions of a computer program.

4 As a slight abuse of abbreviation, we use UC as the shorthand for universal circuit,
and the readers should not confuse it with universal composability.
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1.1 Applications of Universal Circuits

Universal circuits have received sustained research interests and have been found
useful in various privacy-preserving computation applications. We recall a few
below, whose efficiency would benefit from the improvement of universal circuits.

Program Obfuscation Garg et al. [11] used UCs to construct universal branch-
ing programs which was in turn used to build a candidate indistinguishability
obfuscation (iO). More recently Zimmerman [36] proposed an approach to ob-
fuscation by viewing UC as a keyed program for circuit families.

Private Function Evaluation Universal circuits are an essential tool to trans-
form a multi-party computation (MPC) protocol into one for private function
evaluation (PFE). UC-based PFE was studied in [21] and was later improved
and extended in [23, 6]. A general framework for PFE protocols that allows for
instantiations from various concrete protocols in different settings was proposed
in [26] and was then extended to malicious adversary setting in [27]. Further-
more, the actively secure non-interactive secure computation (NISC) technique
[1] can be applied to UC to realize actively secure non-interactive PFE, which
is beyond the reach of the framework of [26, 27].

Batched Execution of 2PC Another interesting application of UC is efficient
batch execution for secure two-party computation (2PC). The batch execution
techniques [18, 22] were originally intended for amortizing the cost of maliciously
secure garbled circuits for the same function, and UCs can now enable batched
execution for circuits of different functions (realized by the same UC).

Universal Models of Computation Valiant’s UCs motivated the design of u-
niversal parallel computers [10, 25]. Both depth-optimized [7] and size-optimized
[31] approaches to UCs were adapted in [5] to universal quantum circuits.

Other Applications UCs were used to hide the functions in verifiable computa-
tion [8] and multi-hop homomorphic encryption [15], to hide queries in database
management systems (DBMSs) [28, 9] and to reduce verifier’s preprocessing costs
in NIZK argument [14]. Attrapadung [4] used UCs to transform the attribute-
based encryption (ABE) schemes for any polynomial-size circuits [12, 16] into
ciphertext-policy ABE. UCs were also used to build the ABE scheme in [13].

1.2 Related Works

Valiant viewed a Boolean circuit as a directed acyclic graph (DAG) and intro-
duced an edge-universal graph (EUG) that edge embeds arbitrary DAGs (of a
certain size) in a way that is analogous (and can be translated) to a universal cir-
cuit and its simulation of arbitrary circuits. Following Valiant and his follow-up
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works [31, 23, 19, 17], we assume WLOG that the circuit has s inputs, t output-
s, g gates of fan-in and fan-out 2, and let n = s + g be the main parameter.
Valiant gave a recursive construction of EUGs (and UCs) based on a k-way su-
pernode (a graph object based on EUG, abbreviated as SN) parameterized by
some constant k. As the main results, Valiant constructed a 2-way supernode of
size 5 and a 4-way supernode of size 19, which gives rise to EUGs of size 5n log n
and 4.75n log n respectively (and UCs of size approximately four times that of
the corresponding EUGs, all omitting non-dominant terms). Later Cook and
Hoover [7] gave a depth-preserving construction of UC with optimal depth O(d)
but larger size O(n3d/ log n), where d is the depth of circuit simulated. More
recently, there have been ongoing efforts of implementations and optimization-
s of UC under Valiant’s framework. Kolesnikov and Schneider [21] proposed a
practical UC with size-complexity roughly 0.25n log2 n and gave a first imple-
mentation of UC-based PFE under the Fairplay 2PC framework [24]. Despite
not being asymptotically optimal their construction [21] outperforms Valiant’s
UC for small scale circuits. Lipmaa et al. [23, 29] further brought down the size
of Valiant 4-way UC from 19n log n to 18 log n by reducing the number of XOR
gates (while keeping the same number of AND gates). Moreover, Lipmaa et al.
gave a general construction of k-way supernode and showed that their design
has smallest size when k = 3.147. Independent of Lipmaa et al.’s work [23], Kiss
and Schneider [19] mainly focused on PFE, a prominent application of UC, for
which the size of UC (and especially the number of AND gates) is significantly
optimized. Further, they [19] borrowed building blocks from [21] and proposed
hybrid constructions of UCs for circuits with long inputs and outputs. Günther
et al. [17] implemented Valiant’s 4-way UC and then provided a hybrid UC
construction with further improved practical efficiency by combining Valiant’s
2-way and 4-way UCs.

Table 1. A comparison of previous results and ours in terms of the sizes of 4-way
supernodes, EUGs, UCs and the number of AND gates, omitting non-dominant terms.

|SN(4)| |EUG2(n)| |UCgs,t| #(AND gates)

Valiant’s UC [31] 19 4.75n logn 19n logn 4.75n logn
Kolesnikov et al.[21] N/A 0.25n log2 n n log2 n 0.25n log2 n
Lipmaa et al. [23] 19 4.75n logn 18n logn 4.75n logn
Our result 18 4.5n logn 17.75n logn 4.5n logn

Valiant’s 4-way universal circuits remained to date the most efficient con-
struction (i.e., 4.75n log n). Motivated by aforementioned UC-based cryptograph-
ic applications, the efficiency improvement efforts towards making them practical
and the trend of circuit size towards 10-million-gate or even billion-gate scale
(e.g., [3, 35]), it is natural to raise the following question:
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Can we build more efficient UCs with better constant factors (i.e., smaller than
4.75) and is there a tighter bound on the size of EUG in Valiant’s framework?

1.3 Our Contributions

We propose an algorithm that automates the search for optimal k-way supern-
odes (practical for k ≤ 4), which yields a 4-way supernode of size 18 and depth
13 (as shown in Figure 1), improving upon the counterpart by Valiant [31] of
size 19 and depth 14. Plugging it into Valiant’s framework immediately brings
down the size complexity of Valiant’s UC (resp., EUG) from 19n log n (resp.,
4.75n log n) to 18n log n (resp., 4.5n log n), where the size of UC 18n log n can
be further reduced to 17.75n log n using the techniques from [23]. In general,
our 4-way supernode achieves an overall improvement of more than 5% in graph
(circuit) size, along with a reduction of over 6% in graph (circuit) depth as a
by-product. We refer to Table 1 for a detailed comparison with related works.
As far as secure computation scenarios such as MPC and PFE are concerned, a
practical efficiency indicator would be the number of AND gates (i.e., excluding
XOR gates) and in this respect our work is also currently the best (more than
5% improvement over previous works). We implement our UC [33], evaluate its
performance with a comparison to existing implementations (see Table 3) based
on circuits of basic functions suitable for MPC and FHE, suggested by Tillich
and Smart [30].

Furthermore, our supernode can be plugged into Valiant’s 4-way UC or any
applications that use the 4-way supernode as a blackbox to achieve improvements
accordingly. For example, our 4-way supernode was used in the recent hybrid UC
[2], which was based on the hybrid UC from [17] by replacing Valiant’s 4-way
counterpart. The engineering efforts of adapting the existing implementations
to ours are affordable by replacing the supernode components, thanks to the
modularity of Valiant’s framework.

in1

in2

in3

in4

P1 P2 P3 P4

out1

out2

out3

out4

Fig. 1. A 4-way supernode that consists of 18 nodes (excluding inputs and outputs).

Our approach to the design of supernodes is computer aided (rather than by
hand as in previous works), which could be of independent interest. Although not
specific to 4-way supernodes, the time complexity of our algorithm when used in
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search of optimal k-way supernodes for k ≥ 5 becomes impractically large. We
stress that the implementations of k-way UC for k ≥ 5, even if they exist with
smaller size, are less desirable in practice. This is because the complexity of the
conversion from an arbitrary circuit to the corresponding UC (which includes
EUG generation, edge embedding, etc.) blows up dramatically with respect to
k. This justifies why Valiant’s 2-way UCs were implemented in [19] earlier than
its 4-way counterpart in [17] despite that the latter has slightly smaller circuit
size. Still, for theoretical interests, we give a lower bound on the size of k-
way supernodes (over all k’s) as a complement, which in turn implies a lower
bound on the size of universal circuit in Valiant’s framework. That is, the size of
an EUG2(n) (resp., UC) is lower bounded by 3.644n log n (resp., 14.576n log n).
We note that a generic lower bound on UC size Ω(n log n) was folklore, where
the hidden constant (implicit in [32, Theorem 8.1]) is quite small (about 1 as
sketched in Section 4.1). We attribute this gap (14.576 vs. 1) to that either the
generic bound is not tight or Valiant’s approach to UC construction, despite its
generality and modularity, might be only asymptotically optimal (i.e., not having
a good constant factor). Given that most existing UC constructions were built
upon Valiant’s framework, we believe that our lower bound can be of practical
relevance. Finally, it is left as an interesting open problem whether the gap
between our construction and proved lower bound, 4.5n log n vs. 3.644n log n,
can be further reduced.

2 Preliminaries and Valiant’s UC Construction

In this section, we give basic notations and definitions about universal circuits
and explain Valiant’s construction of universal circuits for completeness and
accessibility. We refer to [23] for an excellent exposition on Valiant’s framework.

2.1 Notations and Definitions

Notations |G| (resp., |C|) refers to the size of a graph G (resp., circuit C),
namely, the number of nodes (resp., gates) in G (resp., C). In this paper, we
stick to the graph theoretical (rather than the standard electronics) terminology,
where a circuit is represented by a Directed Acyclic Graph (DAG), inputs, out-
puts and gates are considered as nodes and wires are seen as edges of the DAG.
Cg
s,t denotes a circuit with s inputs, t outputs and size up to g, and UCg

s,t denotes
a universal circuit which simulates arbitrary Cg

s,t. DAGd(n) is a DAG of size n
and fan-in (and fan-out) d. Valiant [31] introduced Edge-Universal Graph (EUG)
as defined in Definition 2 below. Loosely speaking, Universal Circuits to circuits
are like Edge-Universal Graphs to Directed Acyclic Graphs. We use EUGd(n)
to denote an edge-universal graph that edge-embeds arbitrary DAGd(n). Note
that we have |UCg

s,t| > g (resp., |EUGd(n)| > n) because UCg
s,t (resp., EUGd(n))

simulates (resp., edge-embeds) any Cg
s,t (resp., DAGd(n)). We refer to the nodes

of EUGd(n) which are mapped from the corresponding vertices in DAGd(n) as
“poles” and other nodes which are used to simulate the structure of DAGd(n) as
common nodes.
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Definition 1 (Universal Circuit). A circuit UCg
s,t is called a universal circuit,

if for any circuit with s inputs, t outputs, size up to g (denoted by Cg
s,t), there

exists a set of program bits p ∈ {0, 1}m such that UCg
s,t can be programmed to

realize Cg
s,t, i.e., ∀x ∈ {0, 1}s,UCg

s,t(x, p) = Cg
s,t(x).

Definition 2 (Edge-Universal Graphs). An edge-embedding % of G = (V,E)
into G∗ = (V ∗, E∗) is a mapping that maps V into V ∗ one to one, and E into
directed paths in G∗ (i.e., (i, j) ∈ E maps to a path from %(i) to %(j)) that are
pairwise edge-disjoint. A graph G∗ is an edge-universal graph for DAGd(n) if it
has distinguished poles P1, . . . , Pn such that every G ∈ DAGd0

(n0), with d0 ≤ d
and n0 ≤ n, can be edge-embedded into G∗ by a mapping % such that %(i) = Pi

for each i ∈ V . This should hold for any labeling of G.

UCgs,t EUG2(n)

n = s + g

EUG1(n) EUG1(dn/ke − 1) . . .

Fig. 2. A high-level view of Valiant universal circuit construction [23].

2.2 From Edge-Universal Graphs to Universal Circuits

As depicted in Fig 2, Valiant’s UC construction consists of the following steps:

1. Construct a UCg
s,t from an EUG2(n), where n = g + s;

2. Construct an EUG2(n) from an EUG1(n);
3. Construct an EUG1(n) given an EUG1(dn/ke − 1) for some constant k;
4. Repeat Step 3 recursively until reaching an EUG of some small size that can

be trivially constructed.

Construct UCg
s,t from EUG2(n) To build a universal circuit UCg

s,t from a

EUG2(n) 5, each node in EUG2(n) should be implemented by Boolean gates and
each edge is a wire of UCg

s,t. The details are as follows.

– Each pole is implemented by a universal gate (UG). A 2-input UG supports
any of the 16 possible gate types represented by the 4 control bits of the
gate table (c1, c2, c3, c4). It computes function ug: {0, 1}2 × {0, 1}4 → {0, 1}
as follows:

ug(x1, x2, c1, c2, c3, c4) = x1x2c1 + x1x2c2 + x1x2c3 + x1x2c4 (1)

A UG can be implemented with 3 AND and 6 XOR gates [23]. The control
bits c1, c2, c3, c4 are part of the program bits of the universal circuit.

5 Definition 2 puts no limits on the fan-in/fan-out of EUG, but Valiant’s UC construc-
tion requires the underlying EUG to be a DAG2.
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– Each common node with indegree and outdegree both 2 can be implemented
by an X-switching gate [20], that computes fX : {0, 1}2 × {0, 1} → {0, 1}2
(Figure 3a). The inputs of an X-switching gate are forwarded to its outputs,
switched or not switched, depending on control bit c. This block can be
implemented with 1 AND gate and 3 XOR gates (Figure 3c).

– Each common node with indegree 2 and outdegree 1 can be implemented
by a Y-switching gate [20] , that computes fY : {0, 1}2 × {0, 1} → {0, 1}
(Figure 3b). A Y-switching gate takes as input two bits and produces one of
them as output, depending on control bit c. This block can be implemented
with 1 AND gate and 2 XOR gates (Figure 3d).

– Each common node with indegree 1 and outdegree 2 (i.e., splitter gate) is
replaced by two outgoing wires to copy its input to the two outputs.

– Each common node with indegree 1 and outdegree 1 is replaced by a wire.

x0 x1

x0 x1

c = 0
or

x0 x1

x1 x0

c = 1

(a) X-switching Gate

x0 x1

x0

c = 0
or

x0 x1

x1

c = 1

(b) Y-switching Gate

x0
x1

c

xc

xc

(c) Circuit of X-switching Gate

x0
x1

c

xc

(d) Circuit of Y-switching Gate

Fig. 3. Switching gates and their circuit implementations.

This completes the construction of UCg
s,t from EUG2(n). It remains to show

how UCg
s,t simulates a given circuit Cg

s,t (as intended for a universal circuit),
where simulation is essentially setting the input wires and the program (and
control) bits for all universal gates and switching gates.

Simulate Cg
s,t using UCg

s,t Following [31, 23, 17], we assume WLOG that the
circuits have fan-in/fan-out bounded by two, and it is well-known that any circuit
of unbounded fan-in/fan-out can be transformed into a functionally equivalent
one by paying reasonable prices in size (Cg

s,t ⊂ C2g+t,2
s,t ). [31, Cor 3.1].

We model the circuit Cg
s,t as a graph GC = (VC , EC) where each input wire

and each gate are represented as a node and each wire is represented by an edge
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in the graph. The derived graph is a DAG2(n) with n = s+ g. By Denition 2, it
is possible to embed GC into an EUG2(n), such that for every edge (vi, vj) ∈ EC ,
there is a path from vi to vj that is edge-disjoint to other paths. These paths
constitute set Q = {Q1, Q2, . . . , Q|EC |}, which will be used to determine the
control bits of the switching gates in UCg

s,t, the universal circuit corresponding
to the EUG2(n) above. We set the control bits and input wires as follow.

– Control bits of switching gates. For an X-(/Y-)switching gate GS of
UCg

s,t, we denote by NS the corresponding node in EUG2(n). If a path Qi ∈ Q
passes through NS , we set the control bit of GS to satisfy the direction of Qi

through NS .6 If no paths go through NS , we can set arbitrary binary value
for the control bit of GS .

– Control bits of universal gates and input wires of universal circuit.
For a universal gate GU of UCg

s,t, we denote by NU the corresponding pole in
EUG2(n). If NU represents a gate of the given circuit Cg

s,t, we set the control
bits of GU to realize the gate. If NU represents an input of Cg

s,t, we can set
arbitrary binary values for the control bits of GU and set the output wire of
GU as an input wire of UCg

s,t.

This completes the simulation. Now we analyze the complexity of UCg
s,t.

Lemma 1. |UCg
s,t| ≤ 4|EUG2(n)|+ 5n, where n = s+ g

Proof. From the construction of UCg
s,t, we know that the size of UCg

s,t is related to
the numbers of X-switching gates (denoted by nX), Y-switching gates (denoted
by nY ) and the universal gates (exactly n), which can be expressed as: |UCg

s,t| =
4nX + 3nY + 9n ≤ 4(nX + nY + n) + 5n ≤ 4|EUG2(n)|+ 5n, as switching gates
(which amount to nX + nY ) are part of the common nodes in EUG2(n).

In Valiant’s supernode design, the fan-in/fan-out of every common node is two,
meaning that there are no Y-switching gates and splitters in the corresponding
UC (i.e., nY = 0). In that case, the inequality in Lemma 1 can be used as an
equality. Later, the supernode designed by Lipmaa et al. [23] additionally utilized
Y-switching gates and splitters to reduce the number of XOR gates, which we
will elaborate in the next section. In summary, we reduce the construction of UC
to that of EUG2(n), which will be our focus for the remainder of this section.

2.3 Edge-Universal Graphs: from EUG1(n) to EUG2(n)

Next we show how to construct from EUG1(n) to EUG2(n).

Lemma 2 (Lemma 2.1 from [31]). For any DAGd(n) = (V,E), E can be
regarded as the union of d disjoint set Ei, i.e., E = ∪di=1Ei, such that each
(V,Ei) is a DAG1(n).

6 Since NS is a common node, it cannot be an endpoint of a path. For a X-switching
gate GS , there may be two paths passing through NS , for which only a single control
bit is needed as paths in Q are edge-disjoint by definition.
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Lemma 3 ([23]). An EUG2(n) can be constructed from two instances of EUG1(n).

Proof. An EUG2(n) is constructed from two EUG1(n), which can be achieved by
merging every two poles in the same positions of the two EUG1(n). Then we prove
that any DAG2(n) = (V,E) can be edge-embedded into the EUG2(n). By Lemma
2 we can divide E into two sets E1 and E2 such that each (V,Ei) is a DAG1(n),
and therefore we can embed each in a separate EUG1(n). The edge-embedding
from (V,E) to EUG2(n) is the combination of two edge-embeddings from (V,Ei)
to the respective EUG1(n). This completes the EUG2(n) construction.

As we mentioned before, when constructing a UCs,t
g we need the EUG2(n) to

be a DAG2. So the EUG1(n) used to construct this EUG2(n) also needs to be a
DAG2 and the indegree (outdegree) of poles of EUG1(n) should be 1. Therefore,
when we talk about Valiant’s construction, the edge-universal graphs EUG1(n)
and EUG2(n) should meet the requirements above.

2.4 Edge-Universal Graphs: from EUG1(dn/ke − 1) to EUG1(n)

Now that we reduce the construction of UCg
s,t to the design of EUG1(n). What

we will show next is a reduction of EUG1(n) to itself of smaller sizes (which can
be done recursively until reaching an EUG1 of trivial size we have on hand). The
recursion relies on an essential building block called supernode (see Definition
3) and we use it to reduce EUG1(n) to EUG1(n/k) in each step.

Definition 3 (Supernode). A k-way supernode SN(k) is an edge-universal-
graph with k inputs {in1, . . . , ink}, k outputs {out1, . . . , outk}, k poles P =
{P1, . . . , Pk} and m other nodes (called common nodes), such that any graph G =
(V,E) ∈ DAG1(3k), where V = {in1, . . . , ink} ∪ {P1, . . . , Pk}∪{out1, . . . , outk},
and every edge e = (v1, v2) ∈ E satisfies the conditions below:

1. If v1 ∈ {in1, . . . , ink} then v2 ∈ P .
2. If v2 ∈ {out1, . . . , outk} then v1 ∈ P .
3. v1 /∈ {out1, . . . , outk}.
4. v2 /∈ {in1, . . . , ink}.

can be edge embedded into SN(k). The size7 of SN(k) is the defined as m+ k.

As an example, Figure 1 is a 4-way supernode. Given a k-way supernode,
we can reduce the problem of EUG construction to itself (of smaller sizes) in a
recursive way. This is stated as the theorem below and for self-containedness we
sketch its main idea (visualized in Figure 4) and refer to the appendix for a full
proof. That is, given an EUG1(dnk e − 1) and SN(k), we construct a EUG1(n) as
follows. We connect dnk e k-way supernodes together by merging the inputs and
outputs of two adjacent supernodes one by one (e.g. merge out11 and in21 into

7 As a slight abuse of definition, the size of a supernode is different from that of a
graph by excluding input and output nodes. As we will see, it comes in handy when
composing the components to build a large EUG and calculating its size.
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one 8). We divide those merged nodes into k groups and invoke EUG1(dnk e − 1)
for each group (see Figure 4).

Theorem 1 ([31, 23]). Given an EUG1(dnk e−1) and a k-way supernode SN(k),
there exists an explicit construction of EUG1(n) of size

k · |EUG1(dn
k
e − 1)|+ dn

k
e · |SN(k)| .

SN(k)1

out11

in2
1

. . .

SN(k)2

. . .

•• •
•
•
•

•
•
•

. . .

SN(k)dn
k
e

EUG1(dn
k
e − 1)1 EUG1(dn

k
e − 1)k

Fig. 4. Valiant’s construction of EUG1(n) based on EUG1(dn
k
e − 1) and SN(k).

With SN(k) we recursively reduce the problem to itself of smaller sizes, and
we just need an EUG1 of small size, say EUG1(k), at initialization. Note that
EUG1(k) is already implied by and can be extracted from SN(k). In summary,
SN(k) can be used to build EUGs of arbitrary size. We refer to this approach
to UC construction (from supernodes) as Valiant’s construction (or Valiant’s
framework) and see Figure 4 for the high-level overview. Clearly, the complexity
of Valiants framework is related to the size of the supernode used, which will be
analyzed in the next subsection.

2.5 Circuit Complexity in Valiant’s Framework

Valiant’s approach to universal circuits remains the most efficient to date, and
thus we consider the complexity of UC and EUG constructed in Valiant’s frame-
work. The following equations are from Theorem 1 and Lemma 3:

|EUG2(n)| = 2|EUG1(n)| − n , (2)

8 inij (outij) denotes the j-th input (output) of the i-th supernode (denoted by SN(k)i)
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|EUG1(n)| = k|EUG1(dn
k
e − 1)|+ dn

k
e|SN(k)| . (3)

By using recurrence relation above, we get

|EUG2(n)| = 2|SN(k)|
k log k

n log n−O(n) , (4)

|CircuitEUG2(n)| = 2|CircuitSN(k)|
k log k

n log n−O(n) , (5)

where CircuitEUGd(n) denotes the circuit counterpart of EUG2(n) in Equation 4.
The size of UC can be estimated by combining Equation 4 with Lemma 1 [31]:

|UCg
s,t| =

8|SN(k)|
k log k

n log n−O(n),where n = s+ t+ 2g . (6)

Next, we consider depth and from Figure 4 we know:

depth(EUG1(n)) = dn
k
edepth(SN(k)) + (dn

k
e − 1)

=
n

k
(depth(SN(k)) + 1) +O(1) .

(7)

Combining with Lemma 3, we have:

depth(UCg
s,t) = depth(CircuitEUG1(n))

= dn
k
edepth(CircuitSN(k)) + (dn

k
e − 1)depth(X-switching) .

(8)

The depth of the circuit of SN(k) is 3×depth(SN(k)) 9 as the X- and Y-switching
gates are both of depth 3 (see Figure 3). Thus, its depth complexity is:

depth(UCg
s,t) =

3× depth(SN(k)) + 3

k
n+O(1) . (9)

Table 2. The known results of UC size and depth.

k Supernode size Supernode depth |UCgs,t| depth(UCgs,t)

2-way 5 5 20n logn[31] 9n
3-way 12 7 20.19n logn [17] 8n

Valiant’s 4-way 19 14 19n logn[31, 17] 11.25n
Our 4-way 18 13 18n logn 10.5n

9 Similar to the size of supernode, we define the depth of SN(k) as the length of the
longest path minus 2 (i.e., excluding inputs and outputs), denoted by depth(SN(k)).
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We summarize in Table 2 known results about the size and depth of su-
pernode and corresponding UCs. As we can see, the size and depth of Valiant’s
universal circuits crucially depend on the respective size and depth of the un-
derlying k-way supernode. This motivates our search for a smaller supernode for
some practical value of k.

3 A New Design of Supernode via Automated Search

In this section, we introduce an automated approach to the design of supern-
odes. As a main end result, we get a better 4-way supernode with an overall
improvement of more than 5% on the efficiency of UC constructions and their
applications, stated as the theorem below. We refer to the external link [34] for
a lengthy (computer generated) proof that Figure 1 gives a 4-way supernode,
where all effective DAGs are exhausted and their edge-embeddings into the su-
pernode are provided. As we will show, it is already size optimal (as a 4-way
supernode) as 4-way supernodes of size 17 do not exist.

Theorem 2 (4-way SN and EUG, revisited). The graph in Figure 1 is a
4-way supernode with 18 nodes (excluding inputs and outputs), which implies an
EUG2(n) of size 4.5n log n−O(n) and depth 3.5n+O(1).

3.1 Construction of Supernodes

While giving constructions of 2-way and 4-way supernodes in his work [31],
Valiant gave no details on how the constructions were obtained. Lipmaa et al.
[23] formalized and explained the k-way supernode construction methodology in
a modular and intuitive way. As depicted in the right-hand of Figure 5, a general
design of k-way supernode consists of two layers of permutation-networks (PNs)
at both ends and an EUG augmented with k − 1 additional nodes in between.
For k = 4, the size of SN(4) following the general design is

2|PN|+ |EUG1(k)|+ k − 1 = 10 + 7 + 3 = 20 .

Looking back, Valiant’s 4-way supernode can be regarded as an optimized version
of the general design by saving a node from one of the permutation networks (see
the comparison in Figure 5). One might think that by exploiting the symmetry
it is possible to save two nodes (one from each permutation network) to get a
4-way supernode of smaller size (i.e., 18). Unfortunately, this intuition does not
work because the resulting graph would not be a supernode any more, which was
refuted by our supernode testing algorithm (presented in the next subsection).
It remained open if one can construct more size-efficient supernodes. Next we
will present an algorithm for testing whether a graph is supernode or not, and
an automated searching algorithm for more size-efficient supernodes.
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Fig. 5. A comparison of Valiant’s SN(4) and the general design of SN(k) from [23].

3.2 Supernode Test for Graphs

As the first step, we propose a method to check whether a graph (with k inputs,
k outputs, k poles and m common nodes) is a k-way supernode or not. A k-way
supernode is an edge-universal-graph that edge embeds any graph G ∈ DAG1(3k)
(see Definition 3) and thus it seems necessary to enumerate all G ∈ DAG1(3k).
For efficiency, we observe that it suffices to enumerate over a special type of
graph called pole-complete graphs, and the remaining graphs can be omitted
as they are already implied. As we will see in the next section, the notion of
pole-complete graphs will also be useful for proving the lower bound.

Definition 4 (Pole-complete Graph). For G = (V,E) ∈ DAG1(3k) with k
inputs, k outputs, and k poles P1, . . . , Pk that are topologically ordered, we say
that G is pole-complete if
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1 Every edge of G satisfies the four properties stated in Definition 3;
2 For any pole p ∈ {P1, . . . , Pk}, there exist e1 = (v1, v2), e2 = (v3, v4) ∈ E such

that v2 = p and v3 = p.

We denote by Fk the number of all the k-way pole-complete graphs G ∈ DAG1(3k).

Informally, for any G = (V,E) ∈ DAG1(3k) to be edge-embedded into the can-
didate supernode (Definition 3), we can see G as a set of paths. We call G
pole-complete if for each path its start-node is an input (from {in1, . . . , ink}),
the middle-nodes (poles) are topological sorted, and its end-node is an output.
“Pole-complete” means that all the k poles are in the paths.

Lemma 4. A graph G0 with k inputs {in1, . . . , ink}, k outputs {out1, . . . , outk},
and k poles P = {P1, . . . , Pk} is a SN(k) if any pole-complete graph G ∈
DAG1(3k) can be edge-embedded into G0.

Proof. First, we observe that if graph G = (V,E) can be edge-embedded into
graph G0, then so can any subgraph G′ = (V ′, E′) of G since the edge-embedding
of G′ is implied by that of G by ignoring those edges e ∈ E \ E′ (recall E′ ⊂
E). Next, we prove that for any graph G′ = (V ′, E′) ∈ DAG1(3k) satisfying
Definition 3 but is not pole-complete, there exists a pole-complete G ∈ DAG1(3k)
such that G′ is a subgraph of G. We construct such G by adding edges into G′.
As mentioned before, G′ ∈ DAG1(3k) can be regarded as a set of several paths.
Since G′ is not pole-complete, there must be one or more isolated poles not in the
paths, or there are one or more paths start (or end) with poles, called starting
poles (or ending poles). We put all isolated poles in a path and add the path to
G′. Then, for each starting pole (or ending pole), we add an edge that connects
an isolated input to (or output from) it. Note that we can always find such
isolated input/output nodes as the number of input/output nodes equals to the
number of poles. At last, we construct a supergraph of G′ which is pole-complete.

We use a depth-first-search algorithm to find an edge-embedding of pole-
complete G, and repeat the process on all pole-complete ones. In a pole-complete
graph, the precursor-node (abbreviated as pre-node) of the first pole P1 should
reside in the k inputs, denoted by ini, and the pre-node of P2 should be in
{P1, in1, . . . , ini−1, ini+1, . . . , ink}, with k possibilities as well. Therefore, the
pre-node of every pole each has k different possibilities and there are kk possi-
bilities to enumerate. Then, we connect inputs and the poles to form several (no
greater than k) paths. Finally, we enumerate the arrangement of outputs for the
paths to get the pole-complete graph G.

3.3 Search for More Size-efficient k-way Supernodes

As given in Definition 3, we define the size of a supernode SN(k) as the sum
of the numbers of poles and common nodes and we find it convenient to com-
pute the size of EUG in Valiant’s framework (see Footnote 7). Thus, the su-
pernode of size n has n + 2k nodes (k inputs, k outputs, k poles and n − k
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common nodes). To search for SN(k) of size n, we number the nodes in SN(k) as
N1, N2, . . . , Nn+2k with N1, N2, . . . , Nk as inputs, Nn+k+1, Nn+k+2, . . . , Nn+2k

as outputs and Nk+1, Nk+2, . . . , Nn+k as poles and common nodes (collectively
referred to as middle nodes). The idea of searching for a SN(k) of size n is to
enumerate the pre-nodes of each node in the graph, and output if it is a supern-
ode (using the supernode test method from the last subsection). For example, if
the inputs have no pre-nodes, we can just set the k inputs as isolated nodes at
initialization. For a middle node Ni (k < i < n+ k + 1), the number of its pre-
nodes can be one (if Ni is a pole) or two (otherwise), so we must consider both
possibilities. Upon the enumeration of Nj as Ni’s pre-node candidate, we should
check whether Nj is legal or not, in particular, if Nj ’s out-degree is 2 or Nj is an
input or pole and its out-degree is 1, then Nj is not a pre-node of Ni (because
the SN(k)’s fan-out is 2 and the out-degree of an input or pole must be 1). This
condition for Nj is described as “Nj ’s out-degree is not full” in line 8 and line 18
of Algorithm 3.3. At last, we add the k outputs as the successor nodes of the n-
odes whose out-degree is not full. The steps above allow for an automated search
over all candidates. However, the above search is not efficient as it enumerates
all candidates, many of which could have been ruled out from supernode tests.
So we add the pruning method to improve efficiency. After choosing a middle
node as the j-th pole, we check whether graph G we construct can be a part
of SN(k) or not, for which we need to enumerate all the DAG1(k + j) (with k
inputs and j poles, see Definition 3) and check whether those DAG1(k+ j)s can
be edge-embedded into G or not. We refer to Algorithm 3.3 for the pseudocode
of search for supernode SN(k) of size n, where the pruning method is invoked in
line 10.

3.4 New Constructions

in3

in2

in1

P1 P2 P3

out3

out2

out1

Fig. 6. A 3-way supernode that consists of 12 nodes.

We run the automated tool on a PC to search for k-way supernodes. We
start with 3-way supernodes (the case of k = 2 is trivial). The search for SN(3)
of size 11 failed, and an outcome of SN(3) of size 12 is illustrated in Figure 6,
which is already known in literature [17].

We proceed to the case k = 4. For the 4-way supernode of size 17, the search
exits in a couple of minutes without any outcome, meaning that no such exist.
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Algorithm 1 The search algorithm for SN(k) of size n

Require: k, n
Ensure: All k-way supernodes of size n (if exists)
1: Initialize the graph G
2: ADDNODE(G,k + 1)
3:
4: function Addnode(G, i)
5: if i ≥ k + n then
6: if #(G’s pole)< k then
7: for j = 1→ i− 1 do
8: if Nj ’s outdegree is not full then
9: Addedge(Nj , Ni) to G

10: if G passes the pruning method test then
11: ADDNODE(G,i + 1)
12: end if
13: end if
14: end for
15: end if
16: for j = 1→ i− 1 do
17: for k = 1→ j − 1 do
18: if (Nj ’s outdgree is not full) and (Nk’s outdgree is not full) then
19: Addedge(Nj , Ni) to G
20: Addedge(Nk, Ni) to G
21: ADDNODE(G, i + 1)
22: end if
23: end for
24: end for
25: else
26: Add the output nodes for G;
27: if G is a Supernode then
28: output G;
29: end if
30: end if
31: end function
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For the 4-way supernode of size 18, the search runs in a number of minutes and
returns the outcomes 10, which are depicted in the Figure 1. This beats the best
previously known result by Valiant [31] of size 19. As a result, we improve the
size of EUG2(n) from 4.75n log n to 4.5n log n (omitting smaller terms).

Moving from k = 4 to k = 5 seems a tiny step. However, for k = 5 the search
algorithm is not terminating due to the substantially higher time complexity. For
the 4-way supernode of size 18, we search for 6859734 candidate graphs (already
after pruning) and for each candidate we should enumerate 5056 DAG1(3 × 4)s
to decide whether it is a supernode or not. That justifies why it takes several
minutes to get the results. Nevertheless, for k = 5 we target at supernodes of size
26 (any 5-way supernode with size 27 or more yields an EUG2(n) of size greater
than 4.5n log n), then the number of candidate graphs grows rapidly to almost
247 , and for each candidate we need to enumerate about 218 DAG1(3 × 5)s,
where the product 265 is beyond the reach of a PC. We did try other methods
(e.g. SAT solvers) to improve the efficiency for k = 5. But the attempt failed
due to the difficulty of finding out the SAT formula determining whether a DAG
can be embedded into a supernode candidate or not.

in1

in2

in3

in4

P1

P2 P3

P4

out1

out2

out3

out4

Fig. 7. The 4-way split supernode construction from [23], where each green node can
be implemented by a Y-switching gate.

By replacing each common node with an X-switching gate and each pole with
a universal gate, we immediately convert the EUG2(n) to a universal circuit of
size 18n log n+O(n) and thus improve upon the Valiant’s UC of size 19n log n.
However, while our UC size seems the same as 18n log n achieved by Lipmaa et
al. [23], their UC construction was based on Valiant’s supernode and decreased
its total number of gates by replacing 4 X-switching gates with 4 Y-switching
gates (see Figure 7). In other words, their construction reduces only the number
of XOR gates (and that of AND gates remain the same as [31]) and thus the
improvement may not be appreciated by applications such as MPC and PFE
with UC, where XOR gates can be evaluated for free [21]. Further, we can use
the same idea from [23] to save some XOR gates. For example, based on our

10 The search algorithm outputs a few hundred of outcomes many of which are isomor-
phic to each other, but our verification is by hand and is certainly not exhaustive.
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supernode we change an X-switching gate to Y-switching gate (the black node
in Figure 8), and the size of universal circuit now becomes 17.75n log n+O(n),
which is better than [23].

in1

in2

in3

in4

P1 P2 P3 P4

out1

out2

out3

out4

Fig. 8. Our 4-way supernode can be improved (in the sense of circuit size) by replacing
an X-switching gate with a Y-Switching gate at the black node.

At last, our 4-way UCs are also shallower than the counterparts in literature
[31, 23]. The depth of Valiant’s SN(4) is 14 but ours is 13. From Equation 7
and Equation 9, we know that the depth of the EUG (resp. UC) based on our
4-way supernode is 3.5n (resp. 10.5n), which is better than (and improves by
6.67%) Valiant’s 3.75n (resp. 11.25n). However, if one only cares about depth,
then he would just use 3-way supernode of depth 7 (see Figure 6) to get a UC
of depth 8n. Otherwise said, the depth improvement on 4-way UC is considered
as a by-product (instead of a main advantage) of our UC construction.

3.5 Implementation and Performance Evaluation

As we mentioned before, the universal circuits based on our 4-way supernode
have smaller circuit size than other constructions especially for large n (when
emulating large-size circuits). We implement our 4-way construction [33] and
compare it with the implementations of Valiant’s 2-way [19], 4-way and their
hybrid [17]. Table 3 evaluates the performances based on circuits of basic func-
tions suitable for MPC and FHE, provided by Tillich and Smart [30]. In partic-
ular, Table 3 compares the number of AND gates in our universal circuits with
other works11, where our work is tabulated in the last column of Table 3 and
the statistics of other works are picked from [17, Table 5].

As seen from Table 3, our construction has no advantage over (and is even
worse than) the implementations of Kiss et al.s and Günther et al.’s for small
circuits (n up to up to a few hundreds). But with the growth of circuit size, our
construction starts to outperform the rest by a few percentage points. Curiously,

11 Recall that the number of AND gates of Lipmaa et al.’s circuits (Fig 7) remains
the same with Valiant’s 4-way construction since it saves only XOR gates, so the
comparison does not include the Lipmaa et al.’s work.
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Table 3. A comparison (in terms of the number of AND gates) of the (Kiss et al.’s
2-way, Günther et al.’s 4-way and hybrid, and our 4-way) UC implementations to
simulate sample circuits from [30].

Circuit n = g + s 2-way UC[19] 4-way UC [17] Hybrid UC[17] Our 4-way UC

Credit Checking 82 1.50 · 103 1.51 · 103 1.49 · 103 1.50 · 103

Mobile Code 160 3.65 · 103 3.88 · 103 3.61 · 103 3.82 · 103

ADD-32 342 9.58 · 103 9.55 · 103 9.44 · 103 9.30 · 103

MULT-32X32 12202 6.54 · 105 6.50 · 105 6.35 · 105 6.24 · 105

AES-exp 38518 2.39 · 106 2.38 · 106 2.31 · 106 2.27 · 106

DES-exp 32207 1.98 · 106 1.94 · 106 1.90 · 106 1.87 · 106

SHA-256 201206 1.49 · 107 1.46 · 107 1.44 · 107 1.39 · 107

in the case of SHA-256, the number of AND gates in our 4-way universal circuit
is about 1.39 · 107 and Valiant’ 4-way is 1.46 · 107. Their ratio is about 0.952,
which is very close to 18/19 and therefore confirms our analysis that the constant
factor (in the of number of AND gates, as well as the size of the EUG) has been
improved from 4.75 to 4.5. Even taking into consideration the optimization (e.g.,
using the hybrid of 2-way and 4-way) [17], our construction still has its advantage
[2].

4 A Lower Bound on Circuit Size in Valiant’s Framework

Our search algorithm is intended for arbitrary k-way supernodes, but the time
complexity is too large to be practical for k ≥ 5. In this section, we aim to find
a lower bound (for all k’s) on the size of Valiant’s EUG (and UC), which is in
turn based on that of the supernode.

4.1 A Generic Lower Bound on Circuit Size

Valiant showed a generic bound Ω(n log n) to argue the asymptotic optimali-
ty of his construction [31], where constant behind Ω could be extracted from
Wegener’s book [32, Theorem 8.1] by carefully checking its (somewhat nested)
proof. We mention that this could be seen directly from a counting argument
which we informally sketch below (and stress that it is not a proof and refer
to [32] for formal details). That is, consider an arbitrary Cg

s,t with inputs and
gates topologically sorted (inputs followed by gates), i.e., in1, · · · , inn, gs+1, · · · ,
gn=s+g, and assume that they are c different symmetric gates (e.g., XOR and
AND) of fan-in 2. Then, for each gi (i > s) there are

(
i−1
2

)
choices of inputs and

therefore the logarithm of the cardinality:

log |Cg
s,t| ≥ log

( (n!)2 · ( c
2 )n−s

n!

)
= n log n−O(n) ,

where the n! in the denominator accounts for that the topological sorting of
inputs and gates are not unique (but up to the permutation of the nodes).
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Finally, the input length of the universal circuit is lower bounded by log |Cg
s,t|

and so is the size of UC. Apparently, there are some loose steps, such as the
order of gates cannot be arbitrarily permuted but this does not affect the lower
bound by a factor of more than 2. A major lossy step is that we only require the
size of the UC (of fan-in 2) to be at least the same as that of the input (in order
for every input to contribute to the output the UC must be a connected DAG).
In fact, a UC would need much more gates than its inputs to accomplish the
simulation, and therefore additional knowledge about a specific UC framework
could be helpful to improve this generic bound.

There remains a substantial gap between the constant factor in the generic
(not specific to Valiant’s UC framework) lower bound (i.e., 1) and that of known
constructions (19 for Valiant’s UC [31] and reduced to 18 in this work). Further,
the generic bound sheds no light on the lower bound on the size of Valiant’s
EUG. Motivated by that most existing UCs are constructed under Valiant’s
framework, we aim to find a better (much lifted) lower bound on the size of
EUG (and UC) in Valiant’s framework.

4.2 Size of k-way Supernode

Recall that sizes of EUG and UC can both be based on that of the supernode
(see Equation 4 and Equation 6 reproduced below):

|EUG2(n)| = 2|SN(k)|
k log k

n log n−O(n) ,

|UCg
s,t| =

8|SN(k)|
k log k

n log n−O(n) ,

where the smaller term O(n) is often omitted. Thus, our task is to lower bound
2|SN(k)|
k log k by some constant. Recall that Fk denotes the number of all the k-way

pole-complete graphs (Definition 4). We use the following lemma to reduce our
task to the approximation of Fk.

Lemma 5. |SN(k)| ≥ dlog(Fk) + ke.

Proof. Every pole-complete graph G can be configured (by setting the con-
trol bits) to be edge-embedded into SN(k), and the common nodes should be
switching gates. Therefore, for an SN(k) we need set the control bits of its
|SN(k)| − k common nodes to cater for all pole-complete graphs (amount to
Fk), i.e., 2|SN(k)|−k ≥ Fk, where |SN(k)| is an integer. This completes the proof.

|EUG2(n)| = 2|SN(k)|
k log k n log n−O(n) ≥ 2dlog(Fk)+ke

k log k n log n−O(n)

Our next job is to lower bound g(k)
def
= 2dlog(Fk)+ke

k log k as a function of k ∈ N+.
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4.3 A Guess for the Constant Factor

In order to lower bound g(k), it would be ideal to give an approximation of
Fk and then take the minimum over all k’s. However, a general closed-form
expression for Fk seems difficult. We further define Ai,k in Definition 5 and
give the relation between Fk and Ai,k in Lemma 6. We also provide a recursion
formula for Ai,k in Lemma 7, which facilitates the computation of Ai,k (by
dynamic programming) for small values of i and k. With the above, we are able
to compute g(k) for k up to a few thousand (see Table 4 for values when k < 100).
Based on the values computed, we have the guess that g(k) > 3.644, where
g(k) is monotonically decreasing for k ≤ 69 and monotonically increasing for
k ≥ 69 with minimum g(k) ≈ 3.6442 achieved at k = 69. The former (monotonic
decreasing) statement is verified by computing all g(k) for all k ≤ 69 and a proof
of the latter (monotonic increasing) is deferred to the next subsection.

Definition 5. Let Ai,k denote the number of ways to spread k different balls
into i (i ≤ k) identical boxes with the condition that no boxes are empty.

Lemma 6. Fk =
∑k

i=1( k!
(k−i)! )

2Ai,k.

Proof. If G = (V,E) ∈ DAG1(3k) is a k-way pole-complete graph, by Definition
4, we know that G can be regarded as a set of paths. It remains to sum up the
numbers of pole-complete graphs for 1 ≤ i ≤ k paths: the number of ways to
“put” k poles into i paths is Ai,k by Definition 5, and there are k!

(k−i)! ways to

link i start-nodes (resp., end-nodes) to k inputs (resp., outputs) for these paths.
Thus, ( k!

(k−i)! )
2Ai,k different pole-complete graphs for each value of i and we sum

up (for i = 1 to i = k) to get the final result.

Lemma 7. 1. A1,k = 1,∀k ∈ N+;

2. Ai,k =
∑k−i

j=0

(
k−1
j

)
Ai−1,k−j−1.

Proof. The first statement is trivial and we just need to prove the second one.
Recall that in Definition 5 balls are all distinct while boxes are identical. We
assume WLOG that ball #1 is in box #1, and let j be the number of other balls
(in addition to ball #1) in box #1, where j ≤ k − i is required to make sure
that no boxes are empty. After choosing these j balls (

(
k−1
j

)
different choices),

it remains to put the rest k − j − 1 balls into the remaining i− 1 boxes, which
can be done in Ai−1,k−j−1 different ways by definition.

We compute the values of g(k) and other functions of k for k up to a few
thousand, and list only partial results (up to k = 99) in Table 4 due to lack of
space, from which we guess g(k) > 3.644 (recall that g(69) is actually greater
than 3.644). Note that it is tight at k = 2 (g(2) = 5) but not tight at k = 4 as
g(4)=4.25 but the constant factor of our size optimal UC is 4.5.
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Table 4. The values of dlog(Fk) + ke and g(k) for k < 100.

k 2 3 4 5 . . . 68 69 70 . . . 98 99

dlog(Fk) + ke 5 11 17 23 . . . 755 768 782 . . . 1182 1197

g(k) = 2dlog(Fk)+ke
k log k

5 4.63 4.25 3.96 . . . 3.6478 3.6442 3.6453 . . . 3.6468 3.6477

4.4 The Lower Bound

We proceed to the proof of g(k) = 2dlog(Fk)+ke
k log k > 3.644 for k ≥ 69. We give

its proof in Lemma 8 but only for k ≥ 1478, and gap (values of g(k) for 70 ≤
k ≤ 1477) is verified by computer. Note that there is nothing special with 1478,
which is attributed to the loss of tightness by some inequality applied in its proof
(such that 3.644 can only be obtained when k = 1478 in the right-hand of the
inequality).

Lemma 8. g(k) = 2dlog(Fk)+ke
k log k > 3.644 for all k ≥ 1478.

Proof. From Lemma 6, we have

Fk =

k∑
i=1

(
k!

(k − i)!
)2Ai,k ≥

k∑
i=k−1

(
k!

(k − i)!
)2Ai,k = (Ak−1,k +Ak,k)(k!)2 ,

and Ak,k = 1, Ak−1,k =
(
k
2

)
= (k−1)k

2 (Definition 5). Thus, Fk ≥ ( (k−1)k
2 +1)(k!)2.

It follows from Stirling’s formula k! ≥
√

2πk(k
e )k that

Fk ≥ (2πk)
( (k − 1)k

2
+ 1
)(k

e

)2k

,

and therefore

g(k) ≥ 2 log(Fk) + k

k log k
≥

2 log(πk((k − 1)k + 2)(k
e )2k) + k

k log k

= 4− (4 log e− 1)k − log(πk((k − 1)k + 2))

k log k

def
= h(k) ,

where by taking the derivative we know that h(k) in the right-hand is monoton-
ically increasing for k ≥ 2, as also visualized in Figure 9, and the conclusion fol-
lows by finding the threshold T such that h(k) ≥ h(T ) ≈ 3.644 for all k ≥ T . By
enumeration we find out T = 1478. Recall that values of g(k) for 70 ≤ k ≤ 1477
have been verified by computer.

Combining Equation 4, Lemma 5 and Lemma 8, we have the following the-
orem:

Theorem 3. We have the following lower bound on the size of EUG2(n):

|EUG2(n)| > 3.644n log n ,

for all sufficiently large n.
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Fig. 9. The graph of h(k) as a function of k.

5 Concluding remarks

We revisit Valiant’s graph theoretic approach to the construction of universal
circuits, and show that its supernode can be improved in both size and depth,
which yields more efficient universal circuits (with a more than 5% improve-
ment). We give a lower bound on the size of UC to complement our explicit
constructions, which reduces the gap between theory and practice of UCs.
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A Proofs omitted in the main body

A.1 Proof of Theorem 1

To prove the graph in Figure 4 is an EUG1(n), we need to prove that any
DAG1(n) = (V,E) can be edge-embedded into it. At first, we sort the nodes
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of a given DAG1(n) in their topological order: V1, V2, . . . , Vn. And the edge-
embed mapping % can be defined as: %(Vi) is the i-th pole of the supernodes
from top to bottom, or formally, the (i mod k)-th pole of SN(k)d i

k e
. For each

node Vi in the DAG1(n), it may have a precursor-node (denote by V pre
i ) and

a successor-node (denote by V suc
i ). Then we assign the [Vi]in-th input and the

[Vi]out-th output of SN(k)d i
k e

( in
d i
k e

[Vi]in
and out

d i
k e

[Vi]out
) to Vi to make sure that

[Vi]in = [V pre
i ]out, [Vi]out = [V suc

i ]in and no inputs and outputs of supernodes
are reused. The method for assignment can be find in [17]. At last, for every edge
(Vi, Vj) ∈ E (i < j due to the topological sorting), we give an edge-disjoint path
from %(Vi) to %(Vj) as follow. Due to V suc

i = Vj and V pre
j = Vi, we know that

[Vi]out = [Vj ]in, which means out
d i
k e

[Vi]out
and in

d j
k e

[Vj ]in
are both in the edge-universal

graph: EUG1(dnk e − 1)[Vi]out
, so there is an edge-disjoint path from out

d i
k e

[Vi]out
to

in
d j
k e

[Vj ]in
. As SN(k)d i

k e
is a supernode, there must be a edge-disjoint path from

%(Vi) to out
d i
k e

[Vi]out
. Similarly, the edge-disjoint path from in

d j
k e

[Vj ]in
to %(Vi) can also

be found. We connect these three paths to complete edge-embedding.


