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Abstract. In this paper, we present an efficient method to compute ar-
bitrary odd-degree isogenies on Edwards curves. By using the w-coordinate,
we optimized the isogeny formula on Edwards curves by Moody and Shu-
mow. We demonstrate that Edwards curves have an additional benefit
when recovering the coefficient of the image curve during isogeny com-
putation. For `-degree isogeny where ` = 2s + 1, our isogeny formula on
Edwards curves outperforms Montgomery curves when s ≥ 2. To bet-
ter represent the performance improvements when w-coordinate is used,
we implement CSIDH using our isogeny formula. Our implementation is
about 20% faster than the previous implementation. The result of our
work opens the door for the usage of Edwards curves in isogeny-based
cryptography, especially for CSIDH which requires higher degree isoge-
nies.

Keywords: Isogeny, Post-quantum cryptography, Montgomery curves,
Edwards curves, SIDH, CSIDH

1 Introduction

Cryptosystems based on isogenies using supersingular elliptic curves were first
proposed by De Feo and Jao [16]. They proposed a Diffie-Hellman type key ex-
change protocol named Supersingular Isogeny Diffie-Hellman (SIDH). Instead
of relying on the discrete logarithm problems where intractability assumption
of the problem is broken by Shor’s algorithm, the security relies on the prob-
lem of finding an isogeny between two given elliptic curves over a finite field.
Moreover, since the key sizes are small compared to other post-quantum cryp-
tography (PQC) categories, isogeny-based cryptography has positioned itself as a
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promising candidate for PQC. Later, SIDH led to the development of the key en-
capsulation mechanism called Supersingular Isogeny Key Encapsulation (SIKE),
which is a Round 2 candidate in the NIST PQC standardization project [2].

Recently, De Feo et al. proposed the improvements to the CRS scheme in [12]
and [23]. The CRS scheme was the first cryptosystem based on isogenies between
ordinary curves. However, the scheme was highly inefficient and the use of ordi-
nary curves makes the algorithm suffer from the subexponential attack proposed
by [8]. The scheme proposed in [13] optimized the CRS scheme, although sev-
eral minutes are still required for a single key exchange. Independent from [13],
Castryck et al. proposed CSIDH (Commutative SIDH), which also adapted the
CRS scheme, but applied it to supersingular elliptic curves [7]. Instead of work-
ing with supersingular elliptic curves over Fp2 as in SIDH/SIKE, CSIDH works
over Fp. CSIDH is a non-interactive key exchange protocol having smaller key
sizes than SIDH/SIKE.

Considering the implementation, isogeny-based cryptosystems involve com-
plicating isogeny operations in addition to the standard elliptic curve arithmetic
over a finite field. Regarding the isogeny operations, the degree of an isogeny used
in the cryptosystem depends on the prime chosen for the scheme. For SIDH or
SIKE, p is of the form p = `eAA `eBB f ± 1, where `A and `B are coprime to each
other. The `A and `B can be considered as the degree of isogenies dealt in the
scheme. Since the complexity of computing isogenies increases as the degree
increases, isogenies of degree 3- and 4- were mostly considered for implement-
ing SIDH or SIKE. CSIDH exploits p of the form p = 4`1`2 · · · `n − 1, where
`i are odd-primes. Similarly, as `i are degrees of isogenies used in the scheme,
demands for odd-degree isogeny formulas have increased after the proposal of
CSIDH. Regarding the elliptic curve arithmetic, it is important to select the form
of elliptic curves that can provide efficient curve operations. Until recently, only
Montgomery curves were used, as they offer fast computations on both com-
ponents – i.e. isogeny computation and curve arithmetic. The state-of-the-art
implementation proposed in [11] is also based on Montgomery curves.

Meanwhile, researches have extended to adopt other forms of elliptic curves
that yield efficient arithmetic or isogeny computation. In [9], it was mentioned
that due to the birationality between twisted Edwards curves and Montgomery
curves, there might exist savings to be gained when twisted Edwards curves are
used for SIDH/SIKE. The utilization of elliptic curve arithmetic on twisted Ed-
wards curves was first proposed by Meyer et al. [20]. Their method uses twisted
Edwards curves for elliptic curve arithmetic and Montgomery curves for isogeny
computation. For isogenies on Edwards curves, optimized 3- and 4- isogeny for-
mulas were first proposed in [17], in order to apply Edwards curves in isogeny-
based cryptosystems. In [19], they implemented CSIDH by using Montgomery
curves for isogenies and twisted Edwards curves for recovering the coefficient of
the image curve.

Currently, using Edwards curves for isogeny-based cryptosystems is not so
promising. As Bos and Friedberger [5] have demonstrated, working with twisted
Edwards curves does not provide faster elliptic curve arithmetic in the setting
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of SIDH or SIKE. The implementation results in [1] and [18] also show that
Edwards curves do not result in faster performance. In short, Edwards curves
for implementing SIDH or SIKE have one critical disadvantage – elliptic curve
arithmetic are slower on Edwards curves than on Montgomery curves in SIDH
or SIKE settings. When it comes to CSIDH, the most painstaking part is to
construct odd-degree isogenies. Although the motivation for the work in [9] is
slightly different, the proposed odd-degree isogeny formula can naturally be ap-
plied in CSIDH when using Montgomery curves. The only generalized odd-degree
isogeny formula on Edwards curves is the formula proposed by Moody and Shu-
mow in [21]. Though, as stated in [19], the coordinate map of the formula is not
as simple to compute as in [9].

However, there are still some aspects to optimize the odd-degree isogeny
formula on Edwards curves. Until now, the optimization of isogenies on Ed-
wards curves was only done for small degree isogenies. In [17] and [18], the
3- and 4- isogeny formula on Edwards curves were optimized by substituting
the x-coordinate and curve coefficients of Moody and Shumow’s formula to y-
coordinates using division polynomials and curve equations. As the degree goes
higher, optimizing Moody and Shumow’s formula by using the method presented
in [17] and [18] is cumbersome. Additional improvements can be achieved on a
higher degree isogenies if different approaches are applied for the optimization.

The aim of this work is to construct efficient and generalized odd-degree
isogenies on Edwards curves to be suitable for isogeny-based cryptosystems.
The following list details the main contributions of this work.

– We exploit the w-coordinate proposed in [14] on Edwards curves. As men-
tioned above, the main disadvantage of using Y Z-coordinates for Edwards
curves is that the elliptic curve arithmetic is slower than on Montgomery
curves in SIDH or SIKE settings. However, the costs of doubling, tripling,
and differential addition using projective w-coordinate are the same as on
Montgomery curves, which motivates us to use the w-coordinate system on
Edwards curves.

– We present the formula for computing odd-degree isogenies using the w-
coordinate. By optimizing the isogeny formula proposed by Moody and Shu-
mow, the computational cost of evaluating an `-isogeny is the same as on
Montgomery curves. We also optimized the formula for obtaining the curve
coefficient of the image curve. Our formula for computing the curve coeffi-
cient does not require additional points and has benefits over Montgomery
curves when the degree is higher than 5. Derivations of our isogeny for-
mula and computational cost are presented in Section 3, and analysis of our
isogeny formula is presented in Section 4.

– We present the implementation result of CSIDH using Edwards w-coordinates.
The result of our implementation is about 20% faster than the implemen-
tation proposed in [7], and 2% faster than the implementation presented
in [19]. This result is natural as computing the coefficient of the image curve
is more efficient on Edwards w-coordinate than Montgomery x-coordinate.
Additionally, when computing elliptic curve arithmetic, the number of addi-
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tions and subtractions decreases on w-coordinate Edwards curves compare
to x-coordinate Montgomery curves. As the cost of elliptic curve arithmetic
is inevitable, the difference in the number of additions is accumulated and
resulted in a faster speed than hybrid-CSIDH, proposed in [19].

This paper is organized as follows: In Section 2, we review on Edwards curves
and their arithmetic using w-coordinates. Also, the description of the SIDH and
CSIDH protocol are presented. In Section 3, we present our optimization of a
generalized odd-degree isogeny formula on Edwards curves. The implementations
result of CSIDH using Edwards w-coordinate is presented Section 4. We draw
our conclusions and future work in Section 5.

2 Preliminaries

In this section, we provide the required background that will be used throughout
the paper. First, we review the Edwards curves and their arithmetic using the
w-coordinate. Then, we introduce the SIDH and CSIDH protocol to illustrate
the required degree of an isogeny for each protocol.

2.1 Edwards curves and their arithmetic

Edwards curves Edwards elliptic curves over K are defined by the equation,

Ed : x2 + y2 = 1 + dx2y2, (1)

where d 6= 0, 1. The Ed has singular points (1 : 0 : 0) and (0 : 1 : 0) at infinity.
In Edwards curves, the point (0, 1) is the identity element, and the point (0,−1)
has order two. The points (1, 0) and (−1, 0) have order four. The condition that
Ed always has a rational point of order four restricts the use of elliptic curves
in the Edwards model. Twisted Edwards curves are a generalization of Edwards
curves proposed by Bernstein et al. in [3], to overcome such deficiency. Twisted
Edwards curves are defined by the equation,

Ea,d : ax2 + y2 = 1 + dx2y2, (2)

for distinct nonzero elements a, d ∈ K [3]. Clearly, Ea,d is isomorphic to an
Edwards curve over K(

√
a). The j-invariant of Edwards curves is defined as

j(Ed) = 16(1 + 14d+ d2)3/d(1− d)4. For the same reason as in [11], we use pro-
jective curve coefficients on Edwards curves to avoid inversions when recovering
the coefficient of the image curves. Let (C,D) ∈ P1(K) where C ∈ K̄× such that
d = D/C. Then Ed can be expressed as

EC:D : Cx2 + Cy2 = C +Dx2y2.
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Arithmetic on Edwards curves For points (x1, y1) and (x2, y2) on Edwards
curves Ed, the addition of two points is defined as below, and doubling can be
performed with exactly the same formula.

(x1, y1) + (x2, y2) =

(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)
.

Generally, projective coordinates (X : Y : Z) ∈ P2 where x = X/Z and y =
Y/Z are used for the corresponding affine point (x, y) on Ed to avoid inversions
during elliptic curve arithmetic. There are several coordinate systems relating
to Edwards curves such as inverted coordinates (X : Y : Z) which represents
the point (Z/X,Z/Y ) on an Edwards curve or extended coordinates which uses
(X : Y : Z : T ) with XY = ZT , for an efficient computation [4, 15].

2.2 w-coordinate on Edwards curves

To evaluate the point addition efficiently, Farashahi and Hosseini proposed w-
coordinate system on Edwards curves, and we briefly introduce here [14]. In [14],
they proposed the rational map w as w(x, y) = dx2y2 or w(x, y) = x2/y2 for
points (x, y) on an Edwards curve and presented Montgomery-like formulas for
elliptic curve arithmetic on Edwards curves. Although w(x, y) = dx2y2 and
w(x, y) = x2/y2 are different rational functions, as they yield identical formula,
we shall use the map w(x, y) = dx2y2 for the explanation.

Define the rational function w by w(x, y) = dx2y2. This function is well
defined for all affine points on an Edwards curve. For P = (x, y) on an Edwards
curve Ed, −P = (−x, y) so that w(P ) = w(−P ). Also, w(O) = 0. Let P1 =
(x1, y1) and P2 = (x2, y2) be the points on Ed. Let w0 = w(2P1), w3 = w(P1 +
P2), and w4 = w(P1 − P2). The addition formula on Edwards curves gives

x3(1 + dx1x2y1y2) = x1y2 + x2y1,

x4(1− dx1x2y1y2) = x1y2 − x2y1,

y3(1− dx1x2y1y2) = y1y2 − x1x2,

y4(1 + dx1x2y1y2) = y1y2 + x1x2,

where P1 + P2 = (x3, y3) and P1 − P2 = (x4, y4). By multiplying the above
equations and squaring both sides we have,

x2
3y

2
3x

2
4y

2
4 =

(x2
1y

2
2 − x2

2y
2
1)2(y2

1y
2
2 − x2

1x
2
2)2

(1− d2x2
1x

2
2y

2
1y

2
2)4

.

Multiplying both sides by d2 of the above equation, we obtained the differen-
tial addition formula as presented in [14]. In [14], the doubling and differential
addition formulas are defined as,

w0 =
4w1((w1 + 1)2 − ew1)

(w2
1 − 1)2

, w3w4 =
(w1 − w2)2

(w1w2 − 1)2
.
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where e = 4/d. For the rest of the subsection, we analyze the computational cost
of doubling, tripling, and differential additions in the setting of isogeny-based
cryptosystems, using projective w-coordinates. The M and S refers to a field
multiplication and squaring, respectively, and a and s refers to a field addition
and subtraction, respectively. In the remainder of this paper, we shall consider
WZ-coordinate as projective w-coordinates. As mentioned above, although we
define w(x, y) as w(x, y) = dx2y2, computational costs are identical when w(x, y)
is defined as w(x, y) = x2/y2. Note that these elliptic curve arithmetic form the
building blocks when implementing isogeny-based cryptosystems.

Doubling Let P = (x, y) be a point on an Edwards curve Ed defined as in
equation (1). Let d = D/C, w = dx2y2, and w = W/Z. For P = (W : Z) in
projective w-coordinates, the doubling of P gives [2]P = (W ′ : Z ′), where W ′

and Z ′ are defined as

W ′ = 4WZ(D(W + Z)2 − 4CWZ),

Z ′ = D(W + Z)2(W − Z)2.

The above equation can be computed as,

t0 = (W + Z)2, t1 = (W − Z)2, t2 = D · t0,
Z ′ = t2 · t1, t0 = t0 − t1, t1 = C · t0,

W ′ = t2 − t1, W ′ = W ′ · t0.

The computational cost is 4M+2S.

Tripling For P = (W : Z) on an Edwards curve Ed represented in projective
coordinates, the tripling of P gives [3]P = (W ′ : Z ′), where W ′ and Z ′ are
defined as

W ′ = W (D(W 2 − Z2)2 − Z2(4D(W + Z)2 − 16CWZ))2,

Z ′ = Z(−D(W 2 − Z2)2 +W 2(4D(W + Z)2 − 16CWZ))2.

The computational cost is 7M+5S.

Differential addition The differential addition is needed when computing the
kernel for SIDH or CSIDH. For example, SIDH starts by computing R = [m]P +
[n]Q for chosen basis P and Q and a secret key (m,n). Without loss of generality,
we may assume that m is invertible, and compute R = P + [m−1n]Q. This can
be done by using the Montgomery ladder which requires computing differential
additions as a subroutine.

Let P1 = (W1 : Z1) and P2 = (W2 : Z2) be the points on Ed. Let w0 =
w(P1 − P2) and w3 = w(P1 + P2). Let w0 = W0/Z0 and w3 = W3/Z3.
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Then,

W3 = Z0(W1Z2 −W2Z1)2,

Z3 = W0(W1W2 − Z1Z2)2.

The computational cost of differential addition and doubling on Edwards curves
is 6M+4S using affine coordinates (SIDH/SIKE settings) and 8M+4S using
projective coordinates (CSIDH setting).

2.3 Isogeny-based Cryptosystems

We recall the SIDH and CSIDH key exchange protocol proposed in [16] and [7].
For more information, please refer to [16] and [7] for SIDH and CSIDH, respec-
tively. The notations used in this section will continue to be used throughout
the paper.

SIDH protocol Fix two coprime numbers `A and `B . Let p be a prime of the
form p = `eAA `eBB f ± 1 for some integer cofactor f , and eA and eB be positive
integers such that `eAA ≈ `

eB
B . Then we can easily construct a supersingular elliptic

curve E over Fp2 of order (`eAA `eBB f)2 [6]. We have full `e-torsion subgroup on E
over Fp2 for ` ∈ {`A, `B} and e ∈ {eA, eB}. Choose basis {PA, QA} and {PB , QB}
for the `eAA - and `eBB -torsion subgroups, respectively.

Suppose Alice and Bob want to exchange a secret key. Let {PA, QA} be the
basis for Alice and {PB , QB} be the basis for Bob. For key generation, Alice
chooses random elements mA, nA ∈ Z/`eAA Z, not both divisible by `A, and com-
putes the subgroup 〈RA〉 = 〈[mA]PA+[nA]QA〉. Then using Velu’s formula, Alice
computes a curve EA = E/〈RA〉 and an isogeny φA : E → EA of degree `eAA ,
where kerφA = 〈RA〉. Alice computes and sends (EA, φA(PB), φA(QB)) to Bob.
Bob repeats the same operation as Alice so that Alice receives (EB , φB(PA), φB(QA)).

For the key establishment, Alice computes the subgroup 〈R′A〉 = 〈[mA]φB(PA)+
[nA]φB(QA)〉. By using Velu’s formula, Alice computes a curve EAB = EB/〈R′A〉.
Bob repeats the same operation as Alice and computes a curve EBA = EA/〈R′B〉.
The shared secret between Alice and Bob is the j-invariant of EAB , i.e. j(EAB) =
j(EBA).

CSIDH protocol CSIDH uses commutative group action on supersingular
elliptic curves defined over a finite field Fp. Let O be an imaginary quadratic
order. Let E``p(O) denote the set of elliptic curves defined over Fp with the
endomorphism ring O. It is well-known that the class group Cl(O) acts freely
and transitively on E``p(O). We call the group action as CM-action and denote
the action of an ideal class [a] ∈ Cl(O) on an elliptic curve E ∈ E``p(O) by [a]E.

Let p = 4`1`2 · · · `n − 1 be a prime where `1, · · · , `n are small distinct odd
primes. Let E be a supersingular elliptic curve over Fp such that Endp(E) = Z[π],
where Endp(E) is the endomorphism ring of E over Fp. Note that Endp(E)
is a commutative subring of the quaternion order End(E). Then the trace of
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Frobenius is zero, hence E(Fp) = p+ 1. Since π2 − 1 = 0 mod `i, the ideal `iO
splits as `iO = li l̄i, where li = (`i, π − 1) and l̄i = (`i, π + 1). The group action
[li]E (resp. [l̄i]E) is computed via isogeny φli (resp. φl̄i) over Fp (resp. Fp2) using
Velu’s formulas.

Suppose Alice and Bob want to exchange a secret key. Alice chooses a vector
(e1, · · · , en) ∈ Zn, where ei ∈ [−m,m], for a positive integer m. The vector
represents an isogeny associated to the group action by the ideal class [a] =
[le11 · · · lenn ], where li = (`i, π− 1). Alice computes the public key EA := [a]E and
sends EA to Bob. Bob repeats the similar operation with his secret ideal b and
sends the public key EB := [b]E to Alice. Upon receiving Bob’s public key, Alice
computes [a]EB and Bob computes [b]EA. Due to the commutativity, [a]EB and
[b]EA are isomorphic to each other so that they can derive a shared secret value
from the elliptic curves.

3 Optimized odd-degree isogenies on Edwards curve

In this section, we present the optimized method for computing odd-degree iso-
genies on Edwards curves. We used the result of Moody and Shumow as a base
formula and optimized it by using w-coordinates. We conclude that the structure
of odd-degree isogenies on Edwards curves is similar to the coordinate map on
Montgomery curves presented in [9].

3.1 Motivation

After the proposal of CSIDH, demands on a general formula for computing
odd-degree isogenies have aroused. The prime p in CSIDH is of the form p =
4`1`2 · · · `n − 1, where `i are small distinct odd primes. To implement CSIDH,
isogeny of degree `i is required for all i, 1 ≤ i ≤ n. The parameter CSIDH-512
presented in [7] uses n = 74, meaning that `1, . . . , `73 are the 73 smallest odd
primes, and `74 is a smallest prime distinct from other primes that makes p
a prime. Therefore, isogeny formulas of degrees up to at least 587 (=`74) are
required. Although the motivation of the work in [9] is independent of CSIDH
scheme, they presented an efficient and generalized odd-degree isogeny formula
on Montgomery curves so that the formula can naturally be used for CSIDH.
For Edwards curves, optimization of the Moody and Shumow’s formula must be
performed for the use in CSIDH and other isogeny-based cryptosystems.

Let G be a subgroup of the Edwards curve Ed with odd order ` = 2s + 1,
and points G = {(0, 1), (±α1, β1), ..., (±αs, βs)}. Let φ be an `-isogeny from Ed

with kernel G. The φ proposed by Moody and Shumow is given as follows, where
B =

∏s
i=1 βi [21].

φ(x, y) =

(
x

B2

s∏
i=1

β2
i x

2 − α2
i y

2

1− d2α2
iβ

2
i x

2y2
,
y

B2

s∏
i=1

β2
i y

2 − α2
ix

2

1− d2α2
iβ

2
i x

2y2

)
(3)

For optimizing 3-isogeny formula on Edwards curves, Kim et al. used the curve
equation and the division polynomial to represent the x-coordinate and the
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curve coefficient in equation (3), in terms of y-coordinate [17]. However, for
higher degree isogenies, this optimization method is burdensome. On the other
hand, the computational costs of elliptic curve arithmetic are the same for both
curves when WZ-coordinate and XZ-coordinate are used for Edwards curves
and Montgomery curves, respectively. This motivates us to optimize the odd-
degree isogeny on Edwards curves using the w-coordinate. For the rest of the
section, we present an odd-degree isogeny formula on Edwards curves expressed
in w-coordinate.

3.2 Proposed odd-degree isogeny formula

We first present the isogeny formula using the w-coordinate, where the rational
function w is defined as w(x, y) = dx2y2 for points (x, y) on Ed.

Theorem 1. Let P be a point on the Edwards curve Ed of odd order ` = 2s+1.
Let 〈P 〉 = {(0, 1), (±α1, β1), · · · , (±αs, βs)}, where P = (α1, β1). Let wi = dα2

iβ
2
i

for 1 ≤ i ≤ s, and w = w(Q), where Q = (x, y) ∈ Ed. Then for `-isogeny φ from
Ed to Ed′ = Ed/〈P 〉 the evaluation of w, φ(w), is given by,

φ(w) = w

s∏
i=1

(w − wi)
2

(1− wwi)2
. (4)

Proof. The proof of Theorem 1 is as follows. From the formula proposed by
Moody and Shumow, φ is as in equation (3), where d′ = B8d` and B =

∏s
i=1 βi

[21]. In order to use the w-coordinate, we need to express the input and output
of an isogeny function in terms of the w-coordinate. The points (x, y) ∈ Ed and
(αi, βi) ∈ Ed where 1 ≤ i ≤ s, are expressed as w = dx2y2 and wi = dα2

iβ
2
i ,

in w-coordinates, respectively. Let φ(x, y) = (X,Y ) be the image point. Then
w(φ(x, y)) = d′X2Y 2 so that,

d′X2Y 2 = B8d` ·

(
x

B2

s∏
i=1

β2
i x

2 − α2
i y

2

1− d2α2
iβ

2
i x

2y2

)2(
y

B2

s∏
i=1

β2
i y

2 − α2
ix

2

1− d2α2
iβ

2
i x

2y2

)2

.

The above equation can be simplified as follows.

d′X2Y 2 = B8d` · x
2

B4

y2

B4

(
s∏

i=1

β2
i x

2 − α2
i y

2

1− d2α2
iβ

2
i x

2y2
· β2

i y
2 − α2

ix
2

1− d2α2
iβ

2
i x

2y2

)2

= dx2y2
s∏

i=1

(
d(β2

i x
2 − α2

i y
2)(β2

i y
2 − α2

ix
2)

(1− d2α2
iβ

2
i x

2y2)2

)2

.

Since wi = dα2
iβ

2
i and w = dx2y2, the denominator on the inside of the product

in the above equation can be simplified as (1− wwi)
4, which gives,

d′X2Y 2 = w

s∏
i=1

(d(β2
i x

2 − α2
i y

2)(β2
i y

2 − α2
ix

2))2

(1− wwi)4
. (5)
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Now, the numerator on the inside of the product of equation (5) can be simplified
as follows.

(d(β2
i x

2 − α2
i y

2)(β2
i y

2 − α2
ix

2))2 = (d(x2y2β4
i − α2

iβ
2
i x

4 − α2
iβ

2
i y

4 + x2y2α4
i ))2

= (w(α4
i + β4

i )− wi(x
4 + y4))2

(6)

For further simplification of equation (6) we use the curve equation. Note that
(αi, βi) and (x, y) are on the Edwards curve Ed. Then, α2

i + β2
i = 1 +wi so that

α4
i + β4

i = (1 + wi)
2 − 2α2

iβ
2
i

= (1 + wi)
2 − 2wi/d.

Similarly for the point (x, y), we have x4 + y4 = (1 + w)2 − 2w/d. Substituting
the result to equation (6), we have,

(d(β2
i x

2 − α2
i y

2)(β2
i y

2 − α2
ix

2))2 =

(
w

(
(1 + wi)

2 − 2wi

d

)
− wi

(
(1 + w)2 − 2w

d

))2

= ((w − wi)(1− wwi))
2.

Now if we substitute the above equation to equation (5), we have

d′X2Y 2 = w

s∏
i=1

((w − wi)(1− wwi))
2

(1− wwi)4

= w

s∏
i=1

(w − wi)
2

(1− wwi)2
.

which gives the desired result. ut

Theorem 1 shows that the evaluation of an isogeny on Edwards curves can be
expressed in w-coordinate. Now, it remains to express the coefficient of the image
curve in w-coordinates. From the formula proposed by Moody and Shumow, the
curve coefficient d′ of the image curve Ed′ is d′ = d`B8 where B =

∏s
i=1 βi.

Since (αi, βi) satisfies the curve equation, α2
i = (1− β2

i )/(1− dβ2
i ) so that

wi = dα2
iβ

2
i

= d

(
1− β2

i

1− dβ2
i

)
β2
i .

Solving the above equation for β2
i , we can express the curve coefficient of the

image curve in w-coordinate. However, direct change of d′ to w-coordinate is
computationally inefficient due to the square root computation. To solve this
problem, we refer to the following theorem. Let Pi = (αi, βi) ∈ 〈P 〉 for 1 ≤ i ≤ s,
where −Pi = (−αi, βi). We exploit the fact that the set of y-coordinates of [2]Pi

where 1 ≤ i ≤ s, is equal to the set of y-coordinates of Pj , where 1 ≤ j ≤ s, up
to permutations.

10



Theorem 2. The curve coefficient d′ of the image curve Ed′ in Theorem 1 is
equal to

d′ = d`
s∏

i=1

(wi + 1)8

44
. (7)

Proof. The proof of the Theorem 2 is as follows. From the formula proposed by
Moody and Shumow, d′ = d`B8 where B =

∏s
i=1 βi. In order to use w-coordinate

system for isogeny computations, we also need to express d′ in w-coordinate. As
denoted above, converting βi directly to w-coordinate is cumbersome. The idea
is that doubling the kernel points also generates the same subgroup since we are
only dealing with odd-degree isogenies.

Let Pi = (αi, βi). Instead of computing the square of the y-coordinate (or
x-coordinate) of Pi, we shall compute the square of the y-coordinate (or x-
coordinate) of [2]Pi. Note that since P is an `-torsion point where ` = 2s +
1, [2]Pi = ±Pj for some i, j ∈ {1, ..., s}. Then from the addition formula on
Edwards curves, we have

[2]Pi =

(
2αiβi

1 + dα2
iβ

2
i

,
β2
i − α2

i

1− dα2
iβ

2
i

)
.

Squaring the x-coordinate of [2]Pi, we have(
2αiβi

1 + dα2
iβ

2
i

)2

=
4α2

iβ
2
i

(1 + wi)2

=
4wi/d

(1 + wi)2
.

Since wi = dα2
iβ

2
i , β2

i = wi/dα
2
i . Hence, by substituting the results, we have

d′ = d`
s∏

i=1

β8
i

= d`
s∏

i=1

(wi + 1)8

44

which gives the desired result. ut

3.3 Alternate odd-degree isogeny formula

In this section, we present the isogeny formula by defining the rational function
w as w(x, y) = x2/y2 for a point (x, y) on Ed. As shown below, the cost of
evaluating isogenies is the same as the case when w(x, y) = dx2y2. Formulas for
computing the coefficient of the image curve are similar in both cases.

Theorem 3. Let P be a point on the Edwards curve Ed of odd order ` = 2s+1.
Let 〈P 〉 = {(0, 1), (±α1, β1), · · · , (±αs, βs)}, where P = (α1, β1). Let wi = α2

i /β
2
i

11



for 1 ≤ i ≤ s. and w = w(Q), where Q = (x, y) ∈ Ed. Then for `-isogeny φ from
Ed to Ed′ = Ed/〈P 〉 the evaluation of w, φ(w), is given by,

φ(w) = w

s∏
i=1

(w − wi)
2

(1− wwi)2
(8)

Proof. The proof of Theorem 3 is similar to the proof of Theorem 1. From the
formula proposed by Moody and Shumow, φ is given by equation (3). The points
(x, y) ∈ Ed and (αi, βi) ∈ Ed, where 1 ≤ i ≤ s, are expressed as w = x2/y2 and
wi = α2

i /β
2
i in w-coordinates, respectively. Let φ(x, y) = (X,Y ) be the image

point. Then φ(x, y) can be expressed in w-coordinate as,

φ(w) =
X2

Y 2
=
x2

y2

s∏
i=1

(β2
i x

2 − α2
i y

2)2

(β2
i y

2 − α2
ix

2)2
.

Simplifying the equation and expressing in w-coordinate, we obtain φ(w) as
in equation (8). ut

To obtain the coefficient of the image curve, we refer to the following theorem.

Theorem 4. The curve coefficient d′ of the image curve Ed′ in Theorem 1 is
equal to

d′ = d`
s∏

i=1

44

(wi + 1)8
. (9)

Proof. Let Pi = (αi, βi) be the point of the kernel. Similar to the proof of the
Theorem 2, the Theorem 4 exploits the square of the x-coordinate of [2]Pi. From
the addition formula on Edwards curves, we have

[2]Pi =

(
2αiβi

1 + dα2
iβ

2
i

,
β2
i − α2

i

1− dα2
iβ

2
i

)
.

Squaring the x-coordinate of [2]Pi and dividing both the denominator and nu-
merator by β4

i , we have,

4α2
iβ

2
i

(1 + dα2
iβ

2
i )2

=
4α2

iβ
2
i

(α2
i + β2

i )2

=
4wi

(1 + wi)2
.
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Now, since wi = α2
i /β

2
i , β2

i = α2
i /wi so that

d′ = d`
s∏

i=1

β8
i

= d`
s∏

i=1

(
α2
i

wi

)4

= d`
s∏

i=1

44

(wi + 1)8

which gives the desired result. ut

4 Implementation

In this section, we provide the performance result of our odd-degree isogeny for-
mula by applying to CSIDH. We first compare the computational costs between
Montgomery curves and Edwards curves. We then show the performance result
of CSIDH when w-coordinate is used.

4.1 Computational costs

To evaluate the computational costs of the proposed formula, we first projectivize
the function into P1 to avoid inversions. Since both rational maps induce the
similar formula, we shall explain this section by defining the rational map as
w(x, y) = x2/y2 for points (x, y) on Edwards curves. Thus, for (αi, βi) ∈ Ed,
(Wi : Zi) = (wi : 1) for i = 1, ..., s where wi = α2

i /β
2
i . Let φ be a degree `

isogeny from Ed to Ed′ . For additional input point (W : Z) on the curve Ed, the
output is expressed as (W ′ : Z ′) where (W ′ : Z ′) = φ(W : Z). Then,

W ′ = W ·
s∏

i=1

(WZi − ZWi)
2,

Z ′ = Z ·
s∏

i=1

(WWi − ZZi)
2.

Let Fi = (W − Z)(Wi + Zi) and Gi = (W + Z)(Wi − Zi). Then the above
equation can be rewritten as,

W ′ = W ·
s∏

i=1

(Fi −Gi)
2,

Z ′ = Z ·
s∏

i=1

(Fi +Gi)
2.
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Therefore, computation of (WZi − ZWi) and (WWi − ZZi) cost 2M+6a. For
` = 2s + 1-isogeny, evaluation of an isogeny costs (4s)M+2S. To compute the
curve coefficients, let d = D/C. Then we have,

D′ = D` ·
s∏

i=1

(2Zi)
8,

C ′ = C` ·
s∏

i=1

(Wi + Zi)
8,

where d′ = D′/C ′. Concluding the section, Table 1 presents the computa-
tional costs of evaluation of an isogeny as well as curve coefficient for degree
` ∈ {3, 5, 7, 9}.

As shown in Table 1, the computational costs of evaluating isogenies are iden-
tical on both curves. In Table 1, we used the 2-torsion method for Montgomery
curves to analyze the computational costs of computing the coefficients. In [9],
instead of directly computing the curve coefficients, they exploit the fact that
pushing 2-torsion points through an odd-degree isogeny preserves their order on
the image curve. When the image of the 2-torsion point is obtained, the curve
coefficient of the image curve can be recovered in 2S+5a. For the details of the
method, please refer to [10].

Table 1: Computational costs of isogenies of degree 3, 5, 7, and 9 on Montgomery cures
and Edwards curves. For computing the curve coefficients on Montgomery curve, the
2-torsion method is used, and the table presents the combined computational cost of
evaluating image of the 2-torsion point ((4s)M+2S) and recovering curve coefficient
(2S)).

Evaluation Curve coefficient

Montgomery
Edwards

(This Work)
Montgomery

Edwards

(This Work)

3 4M+2S+6a 2M+3S 4M+6S+8a

5 8M+2S+10a 8M+4S+5a 6M+6S+8a

7 12M+2S+14a 12M+4S+5a 8M+6S+8a

9 16M+2S+18a 16M+4S+5a 10M+6S+8a

Since an additional 2-torsion point is evaluated, the computational cost of
recovering the curve coefficient of the image curve is equal to (4s)M+4S, where
(4s)M+2S is for isogeny evaluation and 2S is for recovering from image points.
One drawback of the 2-torsion method is that the additional 2-torsion point must
be evaluated to recover the curve coefficient. Therefore, the computational cost
of obtaining the curve coefficient of the image curve increases as the degree of
isogeny increases. Although this is also the case on Edwards curves, an additional
2-torsion point is not required for Edwards curves.
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For Montgomery curves, curve coefficients can also be recovered using the x-
coordinates of points and the x-coordinate of their differences – i.e. x-coordinates
of the points P , Q, and Q − P on a Montgomery curve [9]. We shall call this
method as get a from diff method. Recovering the curve coefficient using this
method costs 8M+5S+11a and the cost does not increase even if the degree of
isogeny increases. In SIDH/SIKE settings, the points P , Q, and Q − P can be
seen as a public key (PA, QA, PA − QA) (or (PB , QB , PB − QB) on Bob’s side)
and are evaluated for each iteration for efficient ladder computations. Therefore,
get a from diff method are more efficient in SIDH than the 2-torsion method.

Figure 1 depicts the difference in the computational cost of recovering the
curve coefficient between Montgomery curves and Edwards curves. The hori-
zontal axis represents the degree of an isogeny and vertical axis represents the
number of multiplication used for the computation. The blue line indicates the
computational cost on Montgomery curves and the orange line indicates the
computational cost on Edwards curves. We considered 1S as 0.8M. Note that
when WZ-coordinate is used for Edwards curves and XZ-coordinate is used for
Montgomery curves, the difference in the performance purely lies on the cost of
recovering the coefficients of the image curve, because the costs of all the re-
maining operations are the same. As shown in Figure 1.(a), when the 2-torsion
method is used on Montgomery curves, Edwards curves become more efficient
as the degree of isogeny increases. On the other hand, as shown in Figure 1.(b),
when get a from diff method is used for Montgomery curves, Montgomery
curves become more efficient as the degree of isogeny increases. More concretely,
Montgomery curves are preferred in SIDH/SIKE settings and are more efficient
than Edwards curves for s ≥ 3. In CSIDH setting, the points P , Q, and Q− P
are not evaluated so that the 2-torsion method is used for Montgomery curves.
Hence Edwards curves are preferred and are more efficient than Montgomery
curves in CSIDH for s ≥ 2.

Fig. 1: (a) Computational costs of recovering the curve coefficient of the image curve
when the 2-torsion method is used for Montgomery curves. (b) Computational costs
of recovering the curve coefficient of the image curve when get a from diff method is
used for Montgomery curves.
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4.2 Implementation result of CSIDH using w-coordinate

To evaluate the performance, the algorithms are implemented in C language.
All cycle counts were obtained on one core of an Intel Core i7-6700 (Skylake)
at 3.40 GHz, running Ubuntu 16.04 LTS. For compilation, we used GNU GCC
version 5.4.0. Before we present the implementation result, we briefly introduce
the hybrid-CSIDH proposed by Meyer et al., in order to better explain the results
[19].

Hybrid-CSIDH In [19], Meyer et al. proposed hybrid implementation of CSIDH
which uses Montgomery curves for elliptic curve arithmetic and isogeny compu-
tation, and twisted Edwards curves for computing the coefficients of the image
curves. As stated above, computing the image curve is not as straightforward
as for the point evaluations on Montgomery curves [9]. However, as presented
in [21], computing the image curve is much simpler on twisted Edwards curves.
Hence, in [19] by using the fact that conversion between two models costs only
two additions, they transformed Montgomery curve to corresponding twisted
Edwards curve and computed the image curve and transformed back to Mont-
gomery curve.

Sampling random points on Edwards curves In order to calculate the
class group action, a random point P on a curve is sampled over Fp or Fp2 \ Fp.
For Montgomery curve, this can be done by sampling a random Fp-rational x-
coordinate, and check whether x2 + Ax2 + x is a square or not. For Edwards
curves, we sample a random Fp-rational y-coordinate, check whether correspond-
ing x-coordinate is a square or not, and convert to w-coordinate.

Note that for an Edwards curve define as in equation (1), x2 = (1− y2)/(1−
dy2). Thus, we need to check whether (1− y2)/(1− dy2) is a square or not. This
is equivalent to check whether (1−y2)(1−dy2) is a square or not. After checking
the sign, we convert the sampled point on an Edwards curve to projective w-
coordinate. For example, when w = dx2y2 is used for the implementation, the
following conversion is required.

P = (w : 1) =

(
d · 1− y2

1− dy2
· y2 : 1

)
= (dy2(1− y2) : 1− dy2)

This can be done as in Algorithm 1, which costs 3M+1S.
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Algorithm 1 Sampling random point on an Edwards curve

Require: An Edwards curve Ed

Ensure: A point P = (W : Z) on Ed in projective w-coordinate for w = dx2y2

1: Sample a random y ∈ Fp

2: Z ← y2 // Z = y2

3: t0 ← d · Z // t0 = dy2

4: t1 ← 1− Z // t1 = 1− y2

5: Z ← 1− t0 // Z = 1− dy2

6: rhs← t1 · Z // rhs = (1− dy2)(1− y2)
7: W ← t1 · rhs′ // W = dy2(1− y2)
8: Set s← +1 if rhs is a square in Fp, else s← −1
9: return P

Remark 1. Another method to sample random points on Edwards curves is to
use the idea proposed in [22]. In [22], Moriya et al. proposed a method to sample a
random element in Fp, directly in w-coordinate. The idea is to sample a random
element in Fp and consider it as a w-coordinate of w(P ). They prove that if
w(2P ) is a square, then there exist P ′ ∈ E[πp + 1] such that w(P ′) = w(2P ). If
w(2P ) is a non-square, then there exist P ′ ∈ E[πp − 1].

Performance of CSIDH using Edwards curves We used prime field Fp

presented in [7], where p is of the form p = 4`1`2 · · · `74 − 1. The `1, · · · , `73 are
the 73 smallest distinct odd primes and `74 = 587. To compare the performance
result with the implementation in [7] and [19], the field operations implemented
in [7] are used for the experiment. We refer to the implementation in [7] as
Montgomery-CSIDH and the implementation in [19] as hybrid-CSIDH, for the
rest of the paper. Our implementation of CSIDH using Edwards w-coordinate is
referred to as Edwards-CSIDH. We used w = dx2y2 for the implementation.

First, the base field operations were tested in order to visualize the ratio
between field operations. Each field operations were repeated 108 times.

Table 2: Cycle counts of the field operations over Fp

Addition Subtraction Multiplication

p511 29 24 201

Table 3 illustrates the computational costs of elliptic curve arithmetic and
isogeny on Hybrid-CSIDH and Edwards-CSIDH setting. The [k]P represents the
computational cost of [k]P on Montgomery curves with respect to the cost on
Edwards curves. The additional 3a on Hybrid-CSIDH comes from the curve con-
version. Since the number of calls of differential addition when computing [k]P
is equal to the bit-length of k, (log k× 4)a are additionally required when using
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Montgomery curves compared to Edwards curves. When computing (2s + 1)-
isogeny, 5 field additions are additionally required for Hybrid-CSIDH for trans-
forming between Montgomery and Edwards curves. However, when computing
the image curve, 8 number of field addition is additionally required in Edwards-
CSIDH.

Table 3: Computational costs of elliptic curve arithmetic and isogenies on Hybrid-
CSIDH and Edwards-CSIDH

Hybrid-CSIDH Edwards-CSIDH

Differential addition 8M+4S+7a+4s 8M+4S+3a+4s

Doubling 4M+2S+6a+2s 4M+2S+1a+3s

Addition 4M+2S+3a+3s 4M+2S+3a+3s

[k]P 3a+(log k × 4)a -

(2s + 1)-isogeny (-3)a -

As shown in Table 4, implementing CSIDH using Edwards w-coordinate is the
fastest. When comparing the result between Montgomery-CSIDH and Edwards-
CSIDH, the result is not surprising since computing the curve coefficient of the
image curve is more efficient on Edwards curves. In order to better compare the
result between Hybrid-CSIDH and Edwards-CSIDH, we analyzed the computa-
tional cost of each building blocks of CSIDH.

The table below denotes the average number of function calls and differences
in the number of field additions of Hybrid-CSIDH with respect to Edwards-
CSIDH. The number of additions is omitted as its computational costs are the
same for Hybrid-CSIDH and Edwards-CSIDH.

Table 4: Implementation results of CSIDH

Montgomery [7] Hybrid [19]
Edwards

(This Work)

Alice’s keygen 129,165,448 cc 105,438,581 cc 103,239,120 cc

Bob’s keygen 128,460,087 cc 105,217,108 cc 103,078,319 cc

Alice’s shared key 129,215,839 cc 105,429,541 cc 103,232,321 cc

Bob’s shared key 128,426,421 cc 105,204,672 cc 103,084,354 cc
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Table 5: Average number of function calls for CSIDH-512 and additional number of
field operations for Hybrid-CSIDH with respect to Edwards-CSIDH

Average number of calls Hybrid-CSIDH

Doubling 202 +848.4 a

[k]P 218 +75,103 a

(2s + 1)-isogeny 202 -606 a

Summing up the result of Table 2 and Table 5, although Edwards-CSIDH and
Hybrid-CSIDH have the same number of field multiplications and squarings, the
efficiency in the number of field additions and subtractions on Edwards-CSIDH
lead to the fastest result.

5 Conclusion

In this paper, we proposed the optimized method for computing odd-degree iso-
genies on Edwards curves. By using the w-coordinates, we optimized the isogeny
formula proposed by Moody and Shumow. The use of the w-coordinate makes
the costs of elliptic curve arithmetic and evaluation of an isogeny identical to
that of on Montgomery curves, having efficiency when computing the coefficient
of the image curve. For `-degree isogeny where ` = 2s+ 1, the proposed formula
has benefit over Montgomery curves when s ≥ 2. We conclude that Montgomery
curves are efficient for implementing SIDH or SIKE and Edwards curves are
efficient for implementing CSIDH. Additionally, we implemented CSIDH using
w-coordinates. Our Edwards-CSIDH is about 20% faster than the Montgomery-
CSIDH, and 2% faster than the hybrid-CSIDH. For the future work, we plan to
implement constant-time CSIDH using w-coordinate on Edwards curves.
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