
How to Correct Errors in Multi-Server PIR

Kaoru Kurosawa

Ibaraki University,
kaoru.kurosawa.kk@vc.ibaraki.ac.jp

Abstract. Suppose that there exist a user and ℓ servers S1, ..., Sℓ. Each
server Sj holds a copy of a database x = (x1, . . . , xn) ∈ {0, 1}n, and the
user holds a secret index i0 ∈ {1, . . . , n}. A b error correcting ℓ server
PIR (Private Information Retrieval) scheme allows a user to retrieve xi0

correctly even if and b or less servers return false answers while each
server learns no information on i0 in the information theoretic sense.
Although there exists such a scheme with the total communication cost
O(n1/(2k−1) × kℓ log ℓ) where k = ℓ− 2b, the decoding algorithm is very
inefficient.
In this paper, we show an efficient decoding algorithm for this b error
correcting ℓ server PIR scheme. It runs in time O(ℓ3).

keywords. Private Information Retrieval, information theoretic, error
correcting

1 Introduction

Private information retrieval (PIR) was introduced by Chor, Kushilevitz, Goldre-
ich and Sudan [8]. In this model, a server S holds a database x = (x1, . . . , xn) ∈
{0, 1}n, and a user holds a secret index i0 ∈ {1, . . . , n}. The user should be able
to retrieve xi0 without revealing no information on i0 to the server S. A trivial
solution is that S sends the entire x to the user. Can the user obtain xi0 with
less than n bits of communication ?

Unfortunately, Chor et al. [8] showed that n bits are required in the infor-
mation theoretic setting. (In what follows, we consider information theoretic
setting.) To get around this, they considered an ℓ server PIR scheme such that
each server Sj has a copy of the database x, where the ℓ servers do not commu-
nicate each other. In particular, they showed a two server protocol whose total
communication cost is O(n1/3). 1 The ℓ server PIR schemes have been improved
further by [1, 3, 4, 22, 12, 16, 6, 10].

Beimel and Stahl [5] considered what can be done if some of the servers
break down. In a (k, ℓ) robust PIR schemes, the user can retrieve xi0 if k out of ℓ
servers respond. Woodruff and Yekhanin [21] showed a (k, ℓ) robust PIR scheme
whose total communication cost is

O(n1/(2k−1) × kℓ log ℓ).

1 i.e., the total number of bits communicated between the user and the servers.
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Currently this is the best known (k, ℓ) robust PIR scheme.
Beimel and Stahl [5] also considered what can be done if some of the servers

return false answers. A b-error correcting ℓ server PIR scheme is an (ℓ, ℓ) robust
PIR scheme with the additional property such that the user can compute xi0

correctly even if b (or less) servers return false answers. They [5] showed that a
(k, ℓ) robust PIR scheme can be used as a b error correcting ℓ server PIR scheme
if

ℓ ≥ k + 2b.

However, their generic decoding algorithm is very inefficient as they mentioned
in [5, page 314].

To summarize, although there exists a b error correcting ℓ server PIR scheme
with the total communication cost O(n1/(2k−1)×kℓ log ℓ) [5, 21], where k = ℓ−2b,
the decoding algorithm [5] is very inefficient.

In this paper, we show an efficient decoding algorithm for the above b error
correcting ℓ server PIR scheme. The running time is O(ℓ3). We achieve this
by extending Berlekamp-Welch decoding algorithm [23] for Reed-Solomon codes
to our problem. While a codeword is defined by using a polynomial f(x) in a
Reed-Solomon code, it is defined by using (f(x), f ′(x)) in the b error correcting
ℓ server PIR scheme. This is the difficulty which we must overcome.

A ℓ server PIR scheme is said to be t-private if any coalition of t servers
learn no information on i0. Woodruff and Yekhanin [21] showed a t-private (k, k)
robust PIR scheme with the total communication cost O(n⌊(2k−1)/t⌋×kℓ/t log ℓ).
It is easily generalized to a t-private (k, ℓ) robust PIR scheme, and the latter
can be used as a t-private b error correcting ℓ server PIR scheme if ℓ ≥ k + 2b
[5]. Our decoding algorithm can be applied to this scheme too.

1.1 Related Works

In the above model, the user wants one bit. What if the data is partitioned into
blocks of m bits each and the user wants an entire block. The user could invoke
a PIR scheme m times. Chor et al. [8] showed a more efficient protocol than this.
Goldberg [14] and Devet et al. [11] considered b error correcting PIR schemes in
this model.

Sun et al. [19, 20] and Banawan et al. [2] considered the case where the size
of xi is very large, and hence only the download cost is of interest (but not the
upload cost).

In the computatioanl setting, PIR has been studied by [7, 17, 9, 18, 15].
[13] is a good survey.

2 Preliminaries

2.1 PIR

In the model of (k, ℓ) robust PIR schemes, there exist ℓ servers S1, ..., Sℓ such
that each server Sj has a copy of a database x = (x1, . . . , xn) ∈ {0, 1}n. The



user should be able to retrieve xi0 if k servers respond while any server Sj should
learn no information on i0 in the information theoretic sense.

Definition 1. A (k, ℓ) robust PIR scheme consists of three algorithms (Q,A, C)
as follows.

1. The user U runs Q(n, i0) to generate ℓ queries (q1, ..., qℓ) together with an
auxiliary information aux.

2. He sends qj to server Sj for j = 1, . . . , ℓ.
3. Each server Sj returns aj = R0(j,x, qj) to U , where x = (x1, . . . , xn) ∈

{0, 1}n is a copy of a database.
4. Upon receiving (at least) k answers aj1 , . . . , ajk from servers, U runs

C((j1, aj1), ..., (jk, ajk), aux)

to compute xi0 . (See step 1 for aux.)

It must satisfy the following requirements.

– Correctness：
For any n, x ∈ {0, 1}n, i0 ∈ {1, . . . , n} and {j1, . . . , jk} ⊂ {1, . . . , ℓ}, it holds
that

C((j1, aj1), ..., (jk, ajk), aux) = xi0

if (q1, ..., qℓ) and (a1, ..., aℓ) are computed from n, x ∈ {0, 1}n and i0 ∈
{1, . . . , n}.

– Privacy：
Any server learns no information on i0. Formally, for any i1, i2 ∈ {1, . . . , n},
qj generated by Q(n, i1) and qj generated by Q(n, i2) are identically dis-
tributed for j = 1, . . . , ℓ.

Definition 2. A b-error correcting ℓ server PIR scheme is an (ℓ, ℓ) robust PIR
scheme with the additional property such that the user can compute xi0 correctly
even if b (or less) answers among (a1, . . . , aℓ) are false.

Definition 3. The total communication cost of a (k, ℓ) robust PIR scheme is
the number of bits communicated between the user U and the ℓ servers S1, ..., Sℓ.

The total communication cost of a b-error correcting ℓ server PIR scheme is
defined similarly.

.

2.2 Technical Lemma

Woodruff and Yekhanin [21] proved the following lemma.

Lemma 1. Suppose that (yi, ui) are given for i = 1, . . . , s, where yi ∈ Fp and
ui ∈ Fp. Then there exists at most one polynomial f(λ) over Fp of degree ≤ 2s−1
such that f(i) = yi and f ′(i) = ui for i = 1, . . . , s.



3 Robust PIR of Woodruff and Yekhanin

Let
x = (x1, . . . , xn) ∈ {0, 1}n

be a database. Woodruff and Yekhanin [21] showed a (k, ℓ) robust PIR scheme
such that the total communication cost is

O(n1/(2k−1) × kℓ log ℓ).

In their (k, k)-robust PIR scheme, the user somehow obtains (f(i), f ′(i)) from
a server Si for i = 1, . . . , k, where f(λ) is a polynomial of degree 2k − 1 such
that f(0) = xi0 . He then reconstruct f(λ) from

(f(1), f ′(1)), . . . , (f(k), f ′(k)).

3.1 (k, k)-robust PIR scheme

For a given (n, k), consider m such that(
m

2k − 1

)
≥ n. (1)

There exists such m which also satisfies [21]

m = O(kn1/(2k−1)). (2)

Then we can consider an injection

E : {1, . . . , n} → {0, 1}m

such that each E(i) has the Hamming weight 2k − 1.
Let p be a prime such that k < p ≤ 2k. For a database x = (x1, . . . , xn) ∈

{0, 1}n, define a function F : Fm
p → Fp by

F (z1, . . . , zm) = x1 · (
∏

E(1)j=1

zj) + . . .+ xn · (
∏

E(n)j=1

zj) (3)

where E(i)j is the jth coordinate of E(i) ∈ {0, 1}m.
For example, let n = m = 4 and 2k − 1 = 3. Define E as

E(1) = (1, 1, 1, 0), E(2) = (1, 1, 0, 1), E(3) = (1, 0, 1, 1), E(4) = (0, 1, 1, 1).

Then

F (z1, . . . , z4) = x1(z1z2z3) + x2(z1z2z4) + x3(z1z3z4) + x4(z2z3z4).

(A1) The degree of F (z1, . . . , zm) is 2k − 1 because each E(i) has the Hamming
weight 2k − 1.

(A2) For each i, it holds that F (E(i)) = xi.



Their (k, k)-robust PIR scheme is as follows.

1. The user chooses V = (v1, . . . , vm) ∈ Fm
p randomly.

2. For i = 1, . . . , k, he sends

Qi = E(i0) + i ·V ∈ Fm
p

to a server Si, where i0 is the secret index of the user.
3. For i = 1, . . . , k, Si returns yi ∈ Fp and Bi ∈ Fm

p such that

yi = F (Qi)

Bi = (Fz1(Qi), . . . , Fzm(Qi))

to the user, where F is defined by eq.(3) and Fz is the partial derivative of
F by z.

Now define
f(λ) = F (E(i0) + λV). (4)

Then the degree of f(λ) is 2k − 1 from (A1). Therefore f(λ) is written as

f(λ) = a0 + a1λ+ . . .+ a2k−1λ
2k−1. (5)

Further it holds that

f(i) = yi, (6)

f ′(i) = Bi ·VT (7)

for i = 1, . . . , k. (Eq.(7) is obtained by using the chain rule.) The above equations
give 2k linear equation in (a0, . . . , a2k−1).

The user computes (a0, . . . , a2k−1) by solving this set of equations. Finally
the user obtains xi0 from

xi0 = F (E(i0)) = f(0) = a0.

See (A2).

(Privacy) For any i, Qi = E(i0) + i · V is random because V is randomly
chosen. Therefore any sever Si learns no information on i0.

(Communication Cost) The user sends Qi ∈ Fm
p to each sever Si, and Si

returns (yi,Bi) ∈ Fm+1
p . Since m = O(kn1/(2k−1)) and p ≤ 2k, the total

communication cost is given by

O(n1/(2k−1) × k2 log k).

3.2 (k, ℓ)-robust PIR

Let p be a prime such that ℓ < p ≤ 2ℓ. Then the above scheme is easily general-
ized to a (k, ℓ)-robust PIR scheme. In steps 2 and 3, just replace “i = 1, . . . , k”
with “i = 1, . . . , ℓ”.

The total communication cost is given by

O(n1/(2k−1) × kℓ log ℓ).



4 Error Correcting PIR of Beimel and Stahl

Beimel and Stahl [5] showed that a robust PIR scheme can be used as an error
correcting PIR.

Proposition 1. A (k, ℓ) robust PIR scheme is also a b error correcting ℓ server
PIR if

ℓ ≥ k + 2b.

Their generic decoding algorithm is as follows.

1. For each subset B of servers such that |B| = k, compute xi0 by running the
(k, ℓ) robust PIR scheme.

2. Find the largest A such that for every B ⊂ A such that |B| = k, the user
reconstructs the same value of xi0 .

3. Output this value as the value of xi0 .

This algorithm is, however, very inefficient because
(
ℓ
k

)
is very large in gen-

eral, as Beimel and Stahl mentioned in [5, page 314].

From Proposition 1 [5], the (k, ℓ) robust PIR scheme of Woodruff and Yekhanin
[21] is also a b error correcting ℓ server PIR scheme if ℓ ≥ k + 2b. However, the
decoding algorithm is very inefficient as shown above.

For this b error correcting ℓ server PIR scheme, we can consider a variant of
the decoding algorithm as follows.

1. For each subset BAD of servers such that |BAD| = b, check if the user
reconstructs the same value of xi0 for every B ⊂ A\BAD such that |B| = k.

2. If the check succeeds, then output this value as the value of xi0 .

Still it is very inefficient because
(
ℓ
b

)
is very large in general.

To summarize, although there exists a b error correcting ℓ server PIR scheme
with the total communication cost O(n1/(2k−1)×kℓ log ℓ) [5, 21], where k = ℓ−2b,
the decoding algorithm [5] is very inefficient.

5 Proposed Decoding Algorithm

In this section, we show an efficient decoding algorithm for the above b error
correcting ℓ server PIR scheme. The running time is O(ℓ3).

We achieve this by extending Berlekamp-Welch decoding algorithm [23, 24]
for Reed-Solomon codes to our problem. While a codeword is defined by using a
polynomial f(x) in a Reed-Solomon code, it is defined by using (f(x), f ′(x)) in
the b error correcting ℓ server PIR scheme. This is the difficulty which we must
overcome.



5.1 Berlekamp-Welch Algorithm

Consider a Reed Solomon code of length ℓ with dimension k over Fp. A codeword
is given by

c = (f(1), . . . , f(ℓ))

for some polynomial f(λ) of degree at most k − 1. Let

r = (r1, . . . , rℓ)

be the received vector which includes at most b errors, where

ℓ ≥ 2b+ k. (8)

Note that ri = f(i) if ri has no error.
Now Berlekamp-Welch decoding algorithm [23] works as follows. Since the

number of errors is at most b, there exists a monic polynomial R1(λ) of degree
b such that R1(i) = 0 if ri ̸= f(i). Then it holds that

R1(i)f(i) = R1(i)ri

for i = 1, . . . , ℓ. Let R0(λ) = R1(λ)f(λ). Then we have

R0(i) = R1(i)ri (9)

for i = 1, . . . , ℓ. R0(λ) has b+ k unknown coefficients and R1(λ) has b unknown
coefficients. Hence there are (b+k)+ b = k+2b unknowns in total. On the other
hand, eq.(9) gives ℓ linear equation in these unknowns.

Therefore we can obtain R0(λ) and R1(λ) by solving this set of linear equa-
tions, and can find f(λ) = R0(λ)/R1(λ).

5.2 Proposed Decoding Algorithm

We show an efficient decoding algorithm for the b error correcting ℓ server PIR
scheme. Fix (b, ℓ) and k such that

ℓ ≥ k + 2b. (10)

See Proposition 1 for eq.(10).
Consider the (k, ℓ) robust PIR scheme of Woodruff and Yekhanin [21]. If all

servers are honest, then the user obtains

c = (c1, . . . , cℓ)

such that
ci = (f(i), f ′(i))

for i = 1, . . . , ℓ from eq.(6) and eq.(7), where

deg f(λ) = 2k − 1. (11)



See Sec.3.1.
Suppose that b or less servers return false answers. Then the user obtains

c′ = (c′1, . . . , c
′
ℓ)

which includes b or less errors. Let

c′i = (ŷi, ûi)

for i = 1, . . . , ℓ. Note that

(ŷi, ûi) = (f(i), f ′(i))

if c′i has no error.
Now consider two polynomials R0(λ) and R1(λ) over Fp with the following

properties:

(P1) degR0(λ) ≤ 2k − 1 + 2b.
(P2) R1(λ) is a monic polynomial with degR1(λ) = 2b.
(P3) R0(i)− ŷiR1(i) = 0 for i = 1, . . . , ℓ.
(P4) R′

0(i)− ûiR1(i)− ŷiR
′
1(i) = 0 for i = 1, . . . , ℓ.

Theorem 1. There exist such polynomials R0(λ) and R1(λ).

Proof. Define
BAD = {i | (ŷi, ûi) ̸= (f(i), f ′(i))}.

Then c = |BAD| ≤ b. Let

B(z) = zb−c
∏

i∈BAD

(z − i).

Let

R1(λ) = B(λ)2,

R0(λ) = f(λ)R1(λ) = f(λ)B(λ)2.

Then it is easy to see that (P1) and (P2) are satisfied. Further

R0(i)− ŷiR1(i) = f(i)B(i)2 − ŷiB(i)2

= (f(i)− ŷi)B(i)2

= 0

because B(i) = 0 if f(i) ̸= ŷi. Also

R′
0(i)− ûiR1(i)− ŷiR

′
1(i)

= f ′(i)R1(i) + f(i)R′
1(i)− ûiR1(i)− ŷiR

′
1(i)

= (f ′(i)− ûi)R1(i) + (f(i)− ŷi)R
′
1(i)

= (f ′(i)− ûi)B(i)2 + 2(f(i)− ŷi)B(i)B′(i)

= 0

because B(i) = 0 if (f(i), f ′(i)) ̸= (ŷi, ûi). Therefore (P3) and (P4) are satisfied.
⊓⊔



Theorem 2. We can find R0(λ) and R1(λ) which satisfy (P1) ∼ (P4) in time
O(ℓ3).

Proof. From (P1) and (P2), the number of unknown coefficients of R0(λ) and
R1(λ) are given by

2k + 2b+ 2b = 2(k + 2b).

On the other hand, (P3) and (P4) give

2ℓ ≥ 2(k + 2b)

linear equations involving them. (See eq.(10).) Further there exists a solution
for this set of linear equations from Theorem 1. Hence we can find a solution in
time O(ℓ3).

Consequently we can find R0(λ) and R1(λ) which satisfy (P1) ∼ (P4) in time
O(ℓ3).

⊓⊔

Theorem 3. It holds that

f(λ) = R0(λ)/R1(λ)

for any R0(λ) and R1(λ) which satisfy (P1) ∼ (P4),

Proof. Let
Q(λ) = R0(λ)− f(λ)R1(λ).

Then
Q′(λ) = R′

0(λ)− f ′(λ)R1(λ)− f(λ)R′
1(λ).

Since there are at most b errors, there exist

ℓ− b ≥ k + 2b− b = k + b(= s)

points such that ŷi = f(i) and ûi = f ′(i). For these k + b points, we have

Q(i) = R0(i)− f(i)R1(i)

= R0(i)− ŷiR1(i)

= 0

and

Q′(i) = R′
0(i)− f ′(i)R1(i)− f(i)R′

1(i)

= R′
0(i)− ûiR1(i)− ŷiR

′
1(i)

= 0

from (P3) and (P4). On the other hand,

degQ(λ) ≤ max(degR0(λ),deg f(λ) + degR1(λ))

= 2(k + b)− 1(= 2s− 1)

This means thatQ(λ) = 0 from Lemma 1. Therefore we have f(λ) = R0(λ)/R1(λ).
⊓⊔



Our decoding algorithm of the user is given as follows.

1. The user obtains (ŷi, ûi) from the answer of a server Si for i = 1, . . . , ℓ.
2. He computes two polynomials R0(λ) and R1(λ) which satisfy (P1) ∼ (P4)

in time O(ℓ3). See Theorem 2.
3. He computes f(λ) = R0(λ)/R1(λ). See Theorem 3.
4. Finally he computes xi0 = f(0).

It runs in time O(ℓ3).

6 Extension to t-Private PIR Scheme

A ℓ server PIR scheme is said to be t-private if any coalition of t servers learn no
information on i0. Woodruff and Yekhanin [21] showed a t-private (k, k) robust
PIR scheme with the total communication cost O(n⌊(2k−1)/t⌋ × kℓ/t log ℓ) such
as follows.

Let d = ⌊(2k − 1)/t⌋. For a given n, consider m such that(
m

d

)
≥ n. (12)

There exists such m which also satisfies [21]

m = O(dn1/d). (13)

1. The user chooses V1, . . . ,Vt ∈ Fm
p randomly.

2. For i = 1, . . . , k, the user sends

Qi = E(i0) + i ·V1 + . . .+ it ·Vt

to the server Si.

The rest is the same as in 3.1. A t-private (k, ℓ) robust PIR scheme is obtained
similarly.

Beimel and Stahl [5] showed that a t-private (k, ℓ) robust PIR scheme can
be used as a t-private b error correcting ℓ server PIR scheme if ℓ ≥ k + 2b. Now
it is easy to see that our decoding algorithm can also be applied to this scheme.
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