
MILP-aided Method of Searching Division
Property Using Three Subsets and Applications

Senpeng Wang(�), Bin Hu, Jie Guan, Kai Zhang, and Tairong Shi

PLA SSF Information Engineering University, Zhengzhou, China
wsp2110@126.com

Abstract. Division property is a generalized integral property proposed
by Todo at EUROCRYPT 2015, and then conventional bit-based division
property (CBDP) and bit-based division property using three subsets
(BDPT) were proposed by Todo and Morii at FSE 2016. At the very
beginning, the two kinds of bit-based division properties once couldn’t
be applied to ciphers with large block size just because of the huge time
and memory complexity. At ASIACRYPT 2016, Xiang et al. extended
Mixed Integer Linear Programming (MILP) method to search integral
distinguishers based on CBDP. BDPT can find more accurate integral
distinguishers than CBDP, but it couldn’t be modeled efficiently.
This paper focuses on the feasibility of searching integral distinguishers
based on BDPT. We propose the pruning techniques and fast propaga-
tion of BDPT for the first time. Based on these, an MILP-aided method
for the propagation of BDPT is proposed. Then, we apply this method
to some block ciphers. For SIMON64, PRESENT, and RECTANGLE,
we find more balanced bits than the previous longest distinguishers. For
LBlock, we find a better 16-round integral distinguisher with less ac-
tive bits. For other block ciphers, our results are in accordance with the
previous longest distinguishers.
Cube attack is an important cryptanalytic technique against symmetric
cryptosystems, especially for stream ciphers. And the most important
step in cube attack is superpoly recovery. Inspired by the CBDP based
cube attack proposed by Todo at CRYPTO 2017, we propose a method
which uses BDPT to recover the superpoly in cube attack. We apply this
new method to round-reduced Trivium. To be specific, the time complex-
ity of recovering the superpoly of 832-round Trivium at CRYPTO 2017
is reduced from 277 to practical, and the time complexity of recovering
the superpoly of 839-round Trivium at CRYPTO 2018 is reduced from
279 to practical. Then, we propose a theoretical attack which can recover
the superpoly of Trivium up to 841 round.

Keywords: Integral distinguisher · Division property · MILP · Block
cipher · Cube attack · Stream cipher.

1 Introduction

Division property, a generalization of integral property [11], was proposed by
Todo at EUROCRYPT 2015 [22]. It can exploit the algebraic structure of block
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ciphers to construct integral distinguishers even if the block ciphers have non-
bijective, bit-oriented, or low-degree structures. Then, at CRYPTO 2015 [20],
Todo applied this new technique to MISTY1 and achieved the first theoretical
cryptanalysis of the full-round MISTY1. Sun et al. [18], revisited division prop-
erty, and they studied the property of a set (multiset) satisfying certain division
property. At CRYPTO 2016 [4], Boura and Canteaut introduced a new notion
called parity set to exploit division property. They formulated and character-
ized the division property of S-box and found better integral distinguisher of
PRESENT [3]. But it required large time and memory complexity. To solve this
problem, Xie and Tian [28] proposed another concept called term set, based on
which they found a 9-round distinguisher of PRESENT with 22 balanced bits.

In order to exploit the concrete structure of round function, Todo and Morii
[21] proposed bit-based division property at FSE 2016. There are two kinds of
bit-based division property: conventional bit-based division property (CBDP)
and bit-based division property using three subsets (BDPT). CBDP focuses on
that the parity

⊕
x∈X

xu is 0 or unknown, while BDPT focuses on that the parity⊕
x∈X

xu is 0, 1, or unknown. Therefore, BDPT can find more accurate integral

characteristics than CBDP. For example, CBDP proved the existence of the
14-round integral distinguisher of SIMON32 while BDPT found the 15-round
integral distinguisher of SIMON32 [21].

Although CBDP and BDPT could find accurate integral distinguishers, the
huge complexity once restricted their wide applications. At ASIACRYPT 2016,
Xiang et al. [27] applied MILP method to search integral distinguishers based on
CBDP, which allowed them to analyze block ciphers with large sizes. But there
was still no MILP method to model the propagation of BDPT.

Cube attack, proposed by Dinur and Shamir [6] at EUROCRYPT 2009, is
one of the general cryptanalytic techniques against symmetric cryptosystems.
For a cipher with n secret variables x = (x0, x1, . . . , xn−1) and m public vari-
ables v = (v0, v1, . . . , vm−1), the output bit can be denoted as a polynomial
f (x,v). The core idea of cube attack is to simplify f (x,v) by summing the
output of cryptosystem over a subset of public variables, called cube. And the
target of cube attack is to recover secret variables from the simplified polynomial
called superpoly. In the original paper of cube attack [6], the authors regarded
stream cipher as a blackbox polynomial and introduced a linearity test to recov-
er superpoly. Recently, many variants of cube attacks were put forward such as
dynamic cube attacks [7], conditional cube attacks [14], correlation cube attacks
[15], CBDP based cube attacks [23, 26], and deterministic cube attacks [30].

At EUROCRYPT 2018 [15], Liu et al. proposed correlation cube attack, which
could mount to 835-round Trivium using small dimensional cubes. Then, in [30],
Ye et al. proposed a new variant of cube attack, named deterministic cube at-
tacks. Their attacks were developed based on degree evaluation method proposed
by Liu et al. at CRYPTO 2017 [16]. They proposed a special type of cube that
the numeric degree of every term was always less than or equal to the cube size,
called useful cube. With a 37-dimensional useful cube, they recovered the corre-
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sponding exact superpoly for up to 838-round Trivium. However, as the authors
wrote in their paper, it seemed hard to increase the number of attacking round
when the cube size increased. Namely, their methods didn’t work well for large
cube size. Moreover, at CRYPTO 2018 [9], Fu et al. proposed a key recovery
attack on 855-round Trivium which somewhat resembled dynamic cube attacks.
For the attack in [9], the paper [12] pointed out that there was possibility that
the correct key guesses and the wrong ones shared the same zero-sum property.
It means that the key recovery attack may degenerate to distinguish attack.

It is noticeable that, at CRYPTO 2017 [23], Todo et al. treated the polyno-
mial as non-blackbox and applied CBDP to the cube attack on stream ciphers.
Due to the MILP-aided CBDP, they could evaluate the algebraic normal form
(ANF) of the superpoly with large cube size. By using a 72-dimensional cube,
they proposed a theoretical cube attack on 832-round Trivium. Then, at CRYP-
TO 2018 [26], Wang et al. improve the CBDP based cube attack and gave a
key recovery attack on 839-round Trivium. For CBDP based cube attacks, the
superpolies of large cubes can be recovered by theoretical method. But the the-
ory of CBDP cannot ensure that the superpoly of a cube is non-constant. Hence
the key recovery attack may be just a distinguish attack. BDPT can exploit the
integral distinguisher whose sum is 1, which means BDPT may show a deter-
mined key recovery attack. However, compared with the propagation of CBDP,
the propagation of BDPT is more complicated and cannot be modeled by MILP
method directly. An automatically searching for a variant three-subset division
property with STP solver was proposed in [13], but the variant is weaker than
the original BDPT. How to trace the propagation of BDPT is an open problem.

1.1 Our Contributions

In this paper, we propose an MILP-aided method for BDPT. Then, we apply
it to search integral distinguishers of block ciphers and recover superpolies of
stream ciphers.

1.1.1 MILP-aided Method for BDPT

Pruning Properties of BDPT. When we evaluate the propagation of BDPT,
there may be some vectors that have no impact on the BDPT of output bit. So
we show the pruning properties when the vectors of BDPT can be removed.

Fast Propagation and Stopping Rules. Inspired by the “lazy propagation”
in [21], we propose the notion of “fast propagation” which can translate BDPT
into CBDP and show some bits are balanced. Then, based on “lazy propagation”
and “fast propagation”, we obtain three stopping rules. Finally, an MILP-aided
method for the propagation of BDPT is proposed.

1.1.2 Searching Integral Distinguishers of Block Ciphers
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We apply our MILP-aided method to search integral distinguishers of some block
ciphers. The main results are shown in Table 1.

ARX Ciphers. For SIMON32, we find the 15-round integral distinguisher that
cannot be found by CBDP. For 18-round SIMON64, we find 23 balanced bits
which has one more bit than the previous longest integral distinguisher.

SPN Ciphers. For PRESENT, when the input data is 260, our method can
find 3 more balanced bits than the previous longest integral distinguisher. More-
over, when the input data is 263, the integral distinguisher we got has 6 more
balanced bits than that got by term set in the paper [28]. For RECTANGLE,
when the input data is 260, our method can also obtain 11 more balanced bits
than the previous longest 9-round integral distinguisher.

Generalized Feistel Cipher. For LBlock, we obtain a 17-round integral dis-
tinguisher which is the same with the previous longest integral distinguisher.
Moreover, a better 16-round integral distinguisher with less active bits can also
be obtained.

1.1.3 Recovering Superpoly of Stream Cipher

Using BDPT to Recover the ANF Coefficient of Superpoly. Inspired
by the CBDP based cube attack in [23, 26], our new method is based on the
propagation of BDPT which can find integral distinguisher whose sum is 0 or 1.
But it’s nontrivial to recover the superpoly by integral distinguishers based on
BDPT. Therefore, we proposed the notion of similar polynomial. We can recover
the ANF coefficient of superpoly by researching the BDPT propagation of corre-
sponding similar polynomial. In order to analyze the security of ciphers better,
we divide ciphers into two categories: public-update ciphers and secret-update
ciphers. For public-update ciphers, we proved that the exact ANF of superpoly
can be fully recovered by BDPT.

Application to Trivium. In order to verify the correctness and effectiveness of
our method, we apply BDPT to recover the superpoly of round-reduced Trivium
which is a public cipher. To be specific, the time complexity of recovering the su-
perpoly of 832-round Trivium at CRYPTO 2017 is reduced from 277 to practical,
and the time complexity of recovering the superpoly of 839-round Trivium at
CRYPTO 2018 is reduced from 279 to practical. Then, we propose a theoretical
attack which can recover the superpoly of Trivium up to 841 round. The detailed
information is shown in Table 2. And the time complexity in the table means
the time complexity of recovering superpoly. And c is the average computational
complexity of tracing the propagation of BDPT using MILP-aided method.
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Table 1. Summarization of integral distinguishers

Cipher Data Round
Number of

Time Reference
balanced bits

SIMON32 231
15 3 [21]
15 3 2m Sect. 5.1

SIMON64 263
18 22 6.7m [27]
18 23 1h41m Sect. 5.1

PRESENT
260

9 1 3.4m [27]
9 4 56m Sect. 5.2

263
9 22 [28]
9 28 10m Sect. 5.2

RECTANGLE 260
9 16 4.1m [27]
9 27 10m Sect. 5.2

LBlock
263

16 32 4.9m [27]
17 4 [8]
17 4 10h25m Sect. 5.3

262 16 18 6h49m Sect. 5.3

Table 2. Superpoly recovery of Trivium

Rounds Cube size Exact superpoly Complexity Reference

832 72 yes
277 [23]
276.7 [26]

practical Sect. 7.3

835 36/37 no [15]

838 37 yes practical [30]

839 78 yes
279 [26]

practical Sect. 7.3

841 78 yes 241 · c Sect. 7.4

1.2 Outline of the Paper.

This paper is organized as follows: Sect. 2 provides the background of MILP,
division property, and cube attacks etc. In Sect. 3, some new propagation prop-
erties of BDPT are given. In Sect. 4, we propose an MILP-aided method for
BDPT. Sect. 5 shows applications to block ciphers. In Sect. 6, we use BDPT to
recover the superpoly in cube attack. Sect. 7 shows the application to Trivium.
Sect. 8 concludes the paper. Some auxiliary materials are supplied in Appendix.

2 Preliminaries

2.1 Notations

Let F2 denote the finite field {0, 1} and a = (a0, a1, . . . , an−1) ∈ Fn
2 be an

n-bit vector, where ai denotes the i-th bit of a. For n-bit vectors x and u,
define xu =

∏n−1
i=0 xui

i . Then, for any k ∈ Fn
2 and k′ ∈ Fn

2 , define k ≽ k′ if
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ki ≥ k′i holds for all i = 0, 1, . . . , n− 1 and define k ≻ k′ if ki > k′i holds for all
i = 0, 1, . . . , n−1. For a subset I ⊂ {0, 1, . . . , n−1}, uI denotes an n-dimensional
bit vector (u0, u1, . . . , un−1) satisfying ui = 1 if i ∈ I and ui = 0 otherwise. We
simply write K ← k when K := K ∪ {k} and K → k when K := K \ {k}. And
|K| denotes the number of elements in the set |K|.

2.2 Mixed Integer Linear Programming

MILP is a kind of optimization or feasibility program whose objective function
and constraints are linear, and the variables are restricted to be integers. Gen-
erally, an MILP model M consists of variables M.var, constrains M.con, and
the objective functionM.obj. MILP models can be solved by solver like Gurobi
[10]. If there is no feasible solution, the solver will returns infeasible. When there
is no objective function in M, the MILP solver will only return whether M is
feasible or not.

2.3 Bit-based Division Property

Two kinds of bit-based division property (CBDP and BDPT) were introduced
by Todo and Morii at FSE 2016 [21]. In this subsection, we will briefly introduce
them and their propagation rules.

Definition 1. (CBDP [21]). Let X be a multiset whose elements take a value
of Fn

2 . When the multiset X has the CBDP D1n

K , where K denotes a set of n-
dimensional vectors whose i-th element takes a value between 0 and 1, it fulfills
the following conditions:⊕

x∈X
xu =

{
unknown, if there exists k ∈ K satisfying u ≽ k,
0, otherwise.

Definition 2. (BDPT [21]). Let X be a multiset whose elements take a value
of Fn

2 . Let K and L be two sets whose elements take n-dimensional bit vectors.
When the multiset X has the BDPT D1n

K,L, it fulfills the following conditions:

⊕
x∈X

xu =

unknown, if there is k ∈ K satisfying u ≽ k,
1, else if there is ℓ ∈ L satisfying u = ℓ,
0, otherwise.

According to [21], if there are k ∈ K and k′ ∈ K satisfying k ≽ k′, k can be
removed from K because the vector k is redundant. We denote this progress as
Reduce0 (K). If there are ℓ ∈ L and k ∈ K satisfying ℓ ≽ k, the vector ℓ can
also be removed from L. We denote this progress as Reduce1 (K,L). For any u,
the redundant vectors in K and L will not affect the value of

⊕
x∈X

xu.

The propagation rules of K in CBDP are the same with BDPT. So here we
only show the propagation rules of BDPT. For more details, please refer to [21].
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BDPT Rule 1 (Copy [21]). Let y = f (x) be a copy function, where x =
(x0, x1, . . . , xn−1) ∈ Fn

2 , and the output is calculated as y = (x0, x0, x1, . . . , xn−1).

Assuming the input multiset X has D1n

K,L, then the output multiset Y has D1n+1

K′,L′ ,
where

K′ ←
{
(0, 0, k1, . . . , kn−1) , if k0 = 0
(1, 0, k1, . . . , kn−1) , (0, 1, k1, . . . , kn−1) , if k0 = 1

,

L′ ←
{
(0, 0, ℓ1, . . . , ℓn−1) , if ℓ0 = 0
(1, 0, ℓ1, . . . , ℓn−1) , (0, 1, ℓ1, . . . , ℓn−1) , (1, 1, ℓ1, . . . , ℓn−1) , if ℓ0 = 1

,

are computed from all k ∈ K and all ℓ ∈ L, respectively.

BDPT Rule 2 (And [21]). Let y = f (x) be a function compressed by an
And, where the input x = (x0, x1, . . . , xn−1) ∈ Fn

2 , and the ouput is calculated
as y = (x0 ∧ x1, x2, . . . , xn−1) ∈ Fn−1

2 . Assuming the input multiset X has D1n

K,L,

then the output multiset Y has D1n−1

K′,L′ , where K′ is computed from all k ∈ K as

K′ ←
(⌈

k0 + k1
2

⌉
, k2, . . . , kn−1

)
,

and L′ is computed from all ℓ ∈ L satisfying (ℓ0, ℓ1) = (0, 0) or (1, 1) as

L′ ←
(⌈

ℓ0 + ℓ1
2

⌉
, ℓ2, . . . , ℓn−1

)
.

BDPT Rule 3 (Xor [21]). Let y = f (x) be a function compressed by an Xor,
where the input x = (x0, x1, . . . , xn−1) ∈ Fn

2 , and the output is calculated as
y = (x0 ⊕ x1, x2, . . . , xn−1) ∈ Fn−1

2 . Assuming the input multiset X has D1n

K,L,

then the output multiset Y has D1n−1

K′,L′ , where K′ is computed from all k ∈ K
satisfying (k0, k1) = (0, 0) , (1, 0) , or (0, 1) as

K′ ← (k0 + k1, k2, . . . , kn−1) ,

L′ is computed from all ℓ ∈ L satisfying (ℓ0, ℓ1) = (0, 0), (1, 0), or (0, 1) as

L′ x←− (ℓ0 + ℓ1, ℓ2, . . . , ℓn−1) .

And L x←− ℓ means

L :=

{
L ∪ {ℓ} if the original L does not include ℓ,
L \ {ℓ} if the original L includes ℓ.

BDPT Rule 4 (Xor with Secret Key [21]). Let X be the input multi-
set satisfying D1n

K,L. For the input x ∈ X, the output y ∈ Y is computed as
y = (x0, . . . , xi−1, xi ⊕ rk, xi+1, . . . , xn−1), where rk is the secret key. Then, the
output multiset Y has D1n

K′,L′ , where K′ and L′ are computed as

L′ ← ℓ, for ℓ ∈ L,
K′ ← k, for k ∈ K,

K′ ← (ℓ0, ℓ1, . . . , ℓi ∨ 1, . . . , ℓn−1) , for ℓ ∈ L satisfying ℓi = 0.
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CBDP Rule 5 (S-box [4, 27]). Let y = f (x) be a function of S-box, where the
input x = (x0, x1, . . . , xn−1) ∈ Fn

2 , and the output y = (y0, y1, . . . , ym−1) ∈ Fm
2 .

Then, every yi, i ∈ {0, 1, . . . ,m − 1} can be expressed as a Boolean function of
(x0, . . . , xn−1). For the input CBDP K, the output CBDP K′ is a set of vectors
as follows:

K′ = {u′ ∈ Fm
2 | for any u ∈ K, if yu′

contains any term xvsatisfying v ≽ u}.

When there was no effective way to model the propagation of BDPT, Todo
and Morii [21] proposed the notion of ‘lazy propagation” to give the provable
security of SIMON family against BDPT.

Definition 3. (Lazy Propagation [21]). Let D1n

Ki,Li
be the input BDPT of

the i-th round function and D1n

Ki+1,Li+1
be the BDPT from the lazy propagation.

Then, Ki+1 is computed from only a part of vectors in Ki, and Li+1 always
becomes the empty set ∅. Therefore, if the lazy propagation creates D1n

Kr,∅
, where

Kr has n distinct vectors whose Hamming weight is one, the accurate propagation
also creates the same n distinct vectors in the same round.

2.4 The MILP Representation of CBDP

For an r-round iterative cipher of size n, attackers determine indices set I ={
i0, i1, . . . , i|I|−1,

}
⊂ {0, 1, . . . , n − 1} and prepare 2|I| chosen plaintexts where

variables indexed by I are taking all possible combinations of values and the
other variables are set to constants. The CBDP of such chosen plaintexts is
D1n

K0={kI}. Based on the propagation rules, the propagation of CBDP from D1n

{kI}

can be evaluated as {kI}
def
= K0 → K1 → · · · → Kr, where D1n

Kr
is the CBDP

after r-round propagation. If the set Kr doesn’t have the unit vector em ∈ Fn
2

whose only m-th element is 1, the m-th output bit of r-round ciphertexts is
balanced. At ASIACRYPT 2016, Xiang et al. [27] applied MILP method to the
propagation of CBDP. They first introduced the concept of CBDP trail, which
is defined as follows.

Definition 4. (CBDP Trail [27]). Let us consider the propagation of the CB-

DP {kI}
def
= K0 → K1 → · · · → Kr. For any vector ki+1 ∈ Ki+1, there must

exist a vector ki ∈ Ki such that ki can propagate to ki+1 by the propagation
rules of CBDP. Furthermore, for (k0,k1, . . . ,kr) ∈ K0 × K1 × · · · × Kr, if ki

can propagate to ki+1 for all i ∈ {0, 1, . . . r − 1}, we call k0 → k1 → · · · → kr

an r-round CBDP trail.

In [27], the authors modeled CBDP propagations of basic operations (Copy,
Xor, And) and S-box by linear inequalities. Therefore, they could build an MILP
model to cover all the possible CBDP trails generated from a given initial CBDP.
Here, we introduce the MILP models for Copy, Xor, And and S-box.
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Model 1 (Copy [27]). Let a
Copy−−−→ (b0, b1, . . . , bn−1) be a CBDP trail of Copy.

The following inequalities are sufficient to describe its CBDP propagation{
M.var ← a, b0, b1, . . . , bn−1 as binary,
M.con← a = b0 + b1 + · · ·+ bn−1.

Model 2 (Xor [27]). Let (a0, a1, . . . , an−1)
Xor−−−→ b be a division trail of Xor.

The following inequalities are sufficient to describe its CBDP propagation{
M.var ← a0, a1, . . . , an−1, b as binary,
M.con← b = a0 + a1 + · · ·+ an−1.

Model 3 (And [27]). Let (a0, a1, . . . , an−1)
And−−−→ b be a division trail of And.

The following inequalities are sufficient to describe its CBDP propagation{
M.var ← a0, a1, . . . , an−1, b as binary,
M.con← b ≥ ai for all i ∈ {0, 1, . . . , n− 1}.

Model 4 (S-box [27]). The CBDP Rule 5 in Sect. 2.3 can generate the CBDP
propagation property of S-box. Then, we can using the inequality generator()
function in Sage software [17] to get a set of linear inequalities. Sometimes the
number of linear inequalities in the set is large. Thus, some Greedy Algorithms
[1, 19] were proposed to reduced this set.

2.5 Cube Attack

Cube attack was proposed by Dinur and Shamir at EUROCRYPT 2009 [6]. For
a cipher with n secret variables x = (x0, x1, . . . , xn−1) and m public variables
v = (v0, v1, . . . , vm−1), the output bit can be represented as f(x,v). Attackers
determine an indices subset Iv = {i0, i1, . . . , i|Iv|−1} ⊂ {0, 1, . . . ,m− 1}, then
f(x,v) can be uniquely represented as

f (x,v) = vuIv · p (x,v)⊕ q (x,v) ,

where p (x,v) is called the superpoly of CIv,Jv,Kv in f (x,v), and every term in
q (x,v) misses at least one variable from {vi0 , vi1 , . . . , vi|Iv|−1

}.
Attackers can prepare a cube set denoted as CIv,Jv,Kv , where public variables

indexed by Iv are taking all possible combinations of values, public variables
indexed by Jv ⊂ {0, 1, . . . ,m−1}−Iv are set to constant 1, and public variables
indexed by Kv = {0, 1, · · · ,m−1}−Iv−Jv are set to constant 0. Just as follows

CIv,Jv,Kv = {v ∈ Fm
2 |vi ∈ F2 if i ∈ Iv, vj = 1 if j ∈ Jv, vk = 0 if k ∈ Kv} (1)

What’s more, the sum of f (x,v) over the cube set CIv,Jv,Kv is⊕
v∈CIv,Jv,Kv

f (x,v) = pIv,Jv,Kv
(x) . (2)

If pIv,Jv,Kv (x) is not a constant polynomial, attackers can query the encryp-
tion oracle with the chosen cube set CIv,Jv,Kv to get the equation with secret
variables.
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2.6 The Cube Attack Based on CBDP

At CRYPTO 2017 [23], Todo et al. successfully applied CBDP to cube attack.
They use CBDP to analyze the ANF coefficients of superpoly.

Lemma 1. [23] Let f (x) =
⊕

u∈Fn
2

afu · xu be a polynomial from Fn
2 to F2 and

afu ∈ F2 be the ANF coefficients. Let k be an n-dimensional bit vector. If there

is no CBDP trail such that k
f−→ 1, then afu is always 0 for u ≽ k .

Proposition 1. [23] Let f (x,v) be a polynomial, where x ∈ Fn
2 and v ∈ Fm

2

denote the secret and public variables, respectively. For a cube set CIv,Jv,Kv de-
fined as Eq. (1), let ei be an n-bit unit vector whose only i-th element is 1. If

there is no CBDP trail such that (ei,uIv )
f−→ 1 , then xi is not involved in the

superpoly of the cube CIv,Jv,Kv .

When f (x,v) represents the output bit of target cipher, we can use MILP
method to identify the involved keys set I by checking whether there is division

trial {(ei,uIv )}
f−→ 1 for i = 0, 1, · · · , n − 1. Then, at CRYPTO 2018 [26],

Wang et al. proposed the degree bounding and term enumeration techniques to
further reduce the complexity of recovering superpoly. The degree evaluation of
superpoly is based on the following proposition.

Proposition 2. [26] For a set Ix =
{
i0, i1, . . . , i|Ix|−1

}
⊂ {0, 1, . . . , n− 1}, if

there is no CBDP trail such that (uIx ,uIv )
f−→ 1, then xuIx is not involved in

the superpoly of cube CIv,Jv,Kv .

After getting the involved keys set I and the degree d of superpoly, the su-

perpoly can be represented with
∑d

i=0

(
|I|
i

)
coefficients. Therefore, by selecting∑d

i=0

(
|I|
i

)
different x, a linear system with

∑d
i=0

(
|I|
i

)
variables can be con-

structed. Then, the whole ANF of pIv,Jv,Kv (x) can be recovered by solving such
a linear system. So the complexity of recovering the superpoly of cube CIv,Jv,Kv

is 2|Iv| ×
∑d

i=0

(
|I|
i

)
.

3 The Propagation Properties of BDPT

In this section, we will explore some new propagation properties of BDPT.

3.1 The BDPT Propagation of S-box

In the Sect. 2.3, we have introduced the existing BDPT propagation rules of
Copy, And, and Xor. Although any Boolean function can be evaluated by using
these three rules, the propagation requires large time and memory complexity
when the Boolean function is complex. Here, we propose a generalized method
to calculate the BDPT propagation of S-box.
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Theorem 1. For an S-box: Fn
2 → Fm

2 , let x = (x0, x1, . . . , xn−1) and y =
(y0, y1, . . . , ym−1) denote the input and output. Every yi, i ∈ {0, 1, . . . ,m − 1}
can be expressed as a boolean function of (x0, x1, . . . , xn−1). If the input BDP-
T of S-box is D1n

K,L={ℓ}, then the output BDPT of S-box can be calculated by

D1m

Reduce0(K),Reduce1(K,L), where

K = {u′ ∈ Fm
2 | for any u ∈ K, if yu′

contain any term xvsatisfying v ≽ u}.
L = {u ∈ Fm

2 |yucontains the term xℓ}.

Proof. Let K′ be the set of output BDPT that has no redundant vectors. Ac-
cording to the CBDP rules 5 in Sect. 2.3, we know that K′ = Reduce0 (K).

Let L′ be the set of output BDPT that has no redundant vectors. For any
u ∈ L′, we have

⊕
y∈Y

yu = 1. Since there is only one vector ℓ in the input L,

the ANF of yu must has the monomial xℓ. Thus, we get L′ ⊂ L. Because the
function Reduce1 only removes the vectors satisfying

⊕
y∈Y

yu = unknown, we

have L′ ⊂ Reduce1 (K,L).
On the other hand, if yu contains the monomial xℓ, we have

⊕
x∈X

yu equals

unknown or 1. For the set L, the function Reduce1 will remove all the vectors
satisfying

⊕
y∈Y

yu = unknown. So all the remaining vectors satisfying
⊕
y∈Y

yu = 1.

Then, we get Reduce1 (K,L) ⊂ L′.
Altogether, we obtain L′ = Reduce1 (K,L). �

We apply Theorem 1 to the core operation of SIMON family, the obtained
BDPT propagation rules are in accordance with that in [21]. Note that Theorem
1 can get the BDPT propagation rules when the input L has only one vector. If
there are more vectors in L, the paper [21] has showed an example on how to
get its BDPT propagation rules. Let D1n

K,L={ℓ0,ℓ1,...,ℓr−1} and D
1m

K′,L′ be the input
and output BDPT of S-box, respectively. According to Theorem 1, we can get
the output BDPT D1m

K′,L′
i
from the corresponding input BDPT DK,L={ℓi}, where

i = 0, 1, . . . , r − 1. Then,

L′ = {ℓ|ℓ appears odd times in sets L′0,L′1, . . . ,L′r−1}.

And we also give an example in Sect. 5.1 to help readers understand the propa-
gation of BDPT.

3.2 Pruning Techniques of BDPT

The previous works often divide ciphers into r rounds, and investigate the CBDP
or BDPT of round functions. Round functions often have too many operations
which will generate many redundant intermediate vectors of division property.
When the round number or block size grows, it will make propagation impossible
just because of complexity. In order to solve this problem, we divide the ciphers
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into small parts. And after getting the BDPT propagation of a part, we will use
the pruning techniques to remove the redundant vectors. Then, the remaining
vectors in BDPT can continue to propagate efficiently.

Let Qi be the i-th round function of an r-round cipher E = Qr ◦ Qr−1 ◦
· · · ◦ Q1, then we divide Qi into li parts Qi = Qi,li−1 ◦ Qi,li−2 ◦ · · · ◦ Qi,0.
Let Ei,j = (Qi,j−1 ◦Qi,j−2 ◦ · · · ◦Qi,0) ◦ (Qi−1 ◦Qi−2 ◦ · · · ◦Q1) and Ei,j =
(Qr ◦Qr−1 ◦ · · · ◦Qi+1) (Qi,li−1 ◦Qi,li−2 ◦ · · · ◦Qi,j), then E = Ei,j◦Ei,j , where
1 ≤ i ≤ r, 0 ≤ j ≤ li − 1 and E1,0 is identity function.

Theorem 2. (Prune K) For r-round cipher E = Qr ◦ Qr−1 ◦ · · · ◦ Q1, let
D1n

Ki,j ,Li,j
be the input BDPT of Ei,j. For any vector k ∈ Ki,j, if there is no CBDP

trail such that k
Ei,j−−→ em, the BDPT propagation of D1n

Ki,j ,Li,j
is equivalent to

that of D1n

Ki,j→k,Li,j
on whether em ∈ Kr+1,0 and em ∈ Lr+1,0 or not.

Proof. In Sect. 2.3, we know that for public function, the BDPT propagation
of Ki,j and Li,j is independent. Only when the secret round key is Xored, some
vectors of Li,j will affect Ki,j , but they only adds some vectors into Ki,j . Because
every vector k ∈ Ki,j is propagated independently based on CBDP, if there is

no CBDP trail such that k
Ei,j−−→ em, then removing it from Ki,j doesn’t have

any impact on whether Kr+1,0 includes em or not. That means D1n

Ki,j ,Li,j
has the

same result with D1n

Ki,j→k,Li,j
on whether Kr+1,0 includes em or not.

Because all the vectors of Lr+1,0 are generated from Li,j , that is, removing k
from Ki,j has no impact on the generation of em ∈ Lr+1,0. On the other hand,
we have got that removing k from Ki,j doesn’t have any impact on whether
Kr+1,0 includes em or not. So it has no impact on the reduction of em ∈ Lr+1,0.
That means D1n

Ki,j ,Li,j
has the same result with D1n

Ki,j→k,Li,j
on whether Lr+1,0

includes em or not. �

Theorem 3. (Prune L) For r-round cipher E = Qr ◦ Qr−1 ◦ · · · ◦ Q1, let
D1n

Ki,j ,Li,j
be the input BDPT of Ei,j. For any vector ℓ ∈ Li,j, if there is no CBDP

trail such that ℓ
Ei,j−−→ em, the BDPT propagation of D1n

Ki,j ,Li,j
is equivalent to

that of D1n

Ki,j ,Li,j→ℓ on whether em ∈ Kr+1,0 and em ∈ Lr+1,0 or not.

Proof. For any vector ℓ ∈ Li,j , if there is no CBDP trail such that ℓ
Ei,j−−→ em,

according to Theorem 2, the BDPT propagation of D1n

Ki,j ,Li,j
is equivalent to

that of D1n

Ki,j←ℓ,Li,j
on whether em ∈ Kr+1,0 and em ∈ Lr+1,0 or not.

Because Ki,j ← ℓ, the vector ℓ can be removed from Li,j according to
the definition of BDPT. So the BDPT D1n

Ki,j←ℓ,Li,j
is completely equivalent to

D1n

Ki,j←ℓ,Li,j→ℓ.

According to Theorem 2 again, the BDPT propagation of D1n

Ki,j←ℓ,Li,j→ℓ is

equivalent to that of D1n

Ki,j ,Li,j→ℓ on whether em ∈ Kr+1,0 and em ∈ Lr+1,0 or
not. �
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The propagation of CBDP can be efficiently solved by MILP model. There-
fore, the meaning of Theorem 2 and Theorem 3 is that we can use CBDP method
to reduce the BDPT sets Ki,j and Li,j .

3.3 Fast Propagation

Inspired by the notion of “lazy propagation”, we propose a notion called “fast
propagation” to show the balanced information of output bits.

Definition 5. (Fast Propagation). For r-round cipher E = Qr ◦Qr−1 ◦ · · · ◦
Q1, let D1n

Ki,j ,Li,j
be the input BDPT of Ei,j. Under fast propagation, we translate

the BDPT into CBDP D1n

Ki,j
, where Ki,j = Ki,j ∪ Li,j. The output CBDP of Ei,j

is computed from D1n

Ki,j
.

The “fast propagation” removes all vectors from Li,j , and get the union set
Ki,j ∪ Li,j . By its nature, “fast propagation” translate BDPT into CBDP. We
can use the MILP method to solve the CBDP propagation of D1n

Ki,j∪Li,j ,
. Let us

consider the meaning of “fast propagation”. Assuming the input set of Ei,j has
BDPT D1n

Ki,j ,Li,j
, according to the definition of BDPT and CBDP, this set must

also has CBDP D1n

Ki,j∪Li,j ,
. If for any k ∈ Ki,j ∪ Li,j , there is no CBDP trial such

that k
Ei,j−−→ em, then the m-th output bit of Ei,j is balanced.

4 The MILP-aided Method for BDPT

Based on the work of [27], we first simplify the MILP algorithm of searching
integral distinguishers based on CBDP to improve efficiency. Then, we show
three stopping rules and propose an algorithm to search integral distinguishers
based on BDPT.

4.1 Simplify the MILP Method of CBDP

Using the method in the paper [27], we can get a linear inequality set which
describes the r-round CBDP division trails with the given initial CBDP D1n

{k}.
The former CBDP method will return a set of balanced bits. Because only one
bit’s balanced information is needed, our MILP model has no objective function
which is added into the constrains. We can use the solver Gurobi [10] to deter-
mine whether the MILP model has feasible solutions or not. If it has feasible
solutions, it shows that the m-th bit of the output is unknown. Otherwise, the
m-th bit is balanced. The detail information is shown in Algorithm 1.

4.2 Stopping Rules

Based on “lazy propagation” and “fast propagation”, in this subsection, we pro-
pose three stopping rules in searching integral distinguishers based on BDPT.
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Algorithm 1 SCBDP(E,k,m)

Input: The cipher E, the initial CBDP vector k, and the number m
Output: Whether the m-th bit of the output is balanced or not based on CBDP

1 begin

2
L is a linear inequality set which describe the CBDP division trails

such that k
E−→ em

3 if L has feasible solutions do
4 return unknown
5 else
6 return 0
7 end

Stopping Rule 1. For an r-round cipher E = Qr ◦Qr−1 ◦ · · · ◦Q1, let D1n

Ki,j ,Li,j

be the input BDPT of Ei,j. For any vector k ∈ Ki,j, if there is CBDP trail such

that k
Ei,j−−→ em, according to “lazy propagation”, we stop the process and obtain

that the m-th output bit of E is unknown.
After Stopping Rule 1, if the searching procedure doesn’t stop, all the vectors

in Ki,j will be removed according to the pruning technique in Theorem 2. Then,
we consider the following Stopping Rule 2.

Stopping Rule 2. After removing the redundant vectors in the set Li,j by the
pruning technique in Theorem 3, if there is still vector ℓ ∈ Li,j, we cannot stop
the procedure and ℓ should be propagated to next part based on BDPT. If there
is no vector in Li,j, according to “fast propagation”, we can get that the m-th
output bit of E is balanced.

Different from Stopping Rule 1 which shows the m-th bit is unknown, Stop-
ping Rule 2 can show the m-th bit is balanced based on BDPT. If the process
doesn’t stop even we get the output BDPT of E, Stopping Rule 3 can explain
this situation.

Stopping Rule 3. If Kr+1,0 = ∅ and Lr+1,0 = {em}, then we find an inte-
gral distinguisher whose sum of the m-th output bit is 1.

4.3 The MILP-aided Method of Searching Integral Distinguishers
Based on BDPT

The algorithm of searching integral distinguishers often has a given initial BDPT
D1n

K1,0,L1,0
. For an indices set I = {i0, i1, . . . , i|I|−1} ⊂ {0, 1, . . . , n− 1}, attackers

prepare 2|I| chosen plaintexts where variables indexed by I are taking all possible
combinations of values and the other variables are set to constants. The CBDP
of such chosen plaintexts is D1n

{uI}. Then, the BDPT of such chosen plaintexts is

DK1,0,L1,0 , where K1,0 = {u′ ∈ Fn
2 |u′ ≻ uI} and L1,0 = {uI}. We illustrate the

whole framework in Algorithm 2.
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Algorithm 2 BDPT (E,L1,0,K1,0,m)

Input: The cipher E, the input BDPT DK1,0,L1,0 , and the number m
Output: The balanced information of the m-th output bit based on BDPT

1 begin
2 for (i = 1; i ≤ r; i++) do
3 for (j = 0; j ≤ li − 1; j ++) do
4 for k in Ki,j

5 if SCBDP
(
Ei,j ,k,m

)
is unknown

6 return unknown
7 else
8 Ki,j → k
9 end
10 L′

i,j = ∅
11 for ℓ in Li,j do

12 if SCBDP
(
Ei,j , ℓ,m

)
is unknown

13 L′
i,j = L′

i,j ∪ ℓ
14 end
15 end
16 if L′

i,j = ∅
17 return 0
18 end

19 DKi+⌊(j+1)/li⌋,(j+1)modli
,Li+⌊(j+1)/li⌋,(j+1)modli

= BDPTP
(
Qi,j ,D∅,L′

i,j

)
20 end
21 end
22 return 1
23 end

We explain Algorithm 2 line by line:
Line 2-3 The cipher E is divided into small parts.
Line 4-9 For every k ∈ Ki,j , if SCBDP

(
Ei,j ,k,m

)
is unknown (Algorithm 1),

according to Stopping Rule 1, we know that the m-th output bit is unknown
based on BDPT. Otherwise, we remove it from Ki,j according to the pruning
technique in Theorem 2.
Line 10 Initialize L′i,j to be an empty set.

Line 11-15 For any vector ℓ ∈ Li,j , if SCBDP
(
Ei,j , ℓ,m

)
can generate the unit

vector em, we store all these vectors in L′i,j .
Line 16-18 If the set L′i,j is empty set, it satisfies Stopping Rule 2, that is, the
m-th output bit is balanced.
Line 19 If we don’t get the balanced information of the m-th bit, we should use
the propagation rules of BDPT to get the input BDPT of the next part.
Line 22 It triggers Stopping Rules 3, and the sum of the m-th output bit is 1.

The principle of dividing the round function Qi is that the vectors of BDPT
don’t expand too much. Only in this way can we run the searching algorithm
efficiently. Algorithm 2 can show the balanced information of any output bit.
Therefore, we can search the integral distinguishers of cipher in parallel.
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5 Applications to Block Ciphers

In this section, we apply our algorithm to SIMON, SIMECK, PRESENT, RECT-
ANGLE, and LBlock. All the experiments are conducted on the platform: Intel
Core i5-4590 CPU @3,3GHz, 8.00G RAM. And the optimizer we used to solve
MILP models is Gurobi 8.1.0 [10]. For the integral distinguishers, what needs to
be explained is that “a” denotes active bit, “c” denotes constant bit, “?” denotes
the balanced information is unknown, and “b” denotes the balanced bit.

5.1 Applications to SIMON and SIMECK

SIMON is a lightweight block cipher family [2] based on Feistel structure which
only involves bit-wise And, Xor, and Circular shift operations. Let SIMON2n be
the SIMON cipher with 2n-bit block length, where n ∈ {16, 24, 32, 48, 64}. And
the left part of Fig.1 shows the round structure of SIMON2n. The core operation
of round function is represented by the right part of Fig. 1.

&
<<< 1

<<< 2

<<< 8

Å Å

( )1 2 0, , ,i i i

n n
x x x- - ¼

( ) -th round structure of SIMON2a i n ( ) ,The core operation Q
i j

b

( )1 2 0, , ,i i i

n n
y y y- - ¼

( )1 1 1

1 2 0, , ,i i i

n n
x x x

+ + +

- - ¼ ( )1 1 1

1 2 0, , ,i i i

n n
y y y

+ + +

- - ¼

&

Å Å

( )
,

1 mod

i j

j n
x

-

,i j

j
y

( )
, 1

1 mod

i j

j n
x

+

-
, 1i j

j
y

+

( )
,

8 mod

i j

j n
x

- ( )
,

2 mod

i j

j n
x

-

( )
, 1

8 mod

i j

j n
x

+

- ( )
, 1

2 mod

i j

j n
x

+

-

Fig. 1. The structure of SIMON2n

When we apply Algorithm 2 to SIMON2n, we divide one-round SIMON2n
into n+ 1 parts Qi = Qi,n ◦Qi,n−1 ◦ · · · ◦Qi,0. And the input of Qi,j is denoted

as
(
xi,j ,yi,j

)
=

(
xi,j
n−1, . . . , x

i,j
0 , yi,jn−1, . . . , y

i,j
0

)
. When 0 ≤ j ≤ n− 1, we have

Qi,j

(
xi,j ,yi,j

)
=

(
xi,j , yi,jn−1, . . . , y

i,j
j+1, Y

i,j
j , yi,jj−1, . . . , y

i,j
0

)
,

where Y i,j
j =

(
xi,j
(j−1)modn&xi,j

(j−8)modn

)⊕
xi,j
(j−2)modn.

Moreover, Qi,n

(
xi,n,yi,n

)
=

(
yi,n ⊕ ki,xi,n

)
, where ki is the i-th round key

of SIMON2n.
For Qi,j , 0 ≤ j ≤ n−1, when we consider the BDPT propagation rules of the

function BDPTP
(
Qi,j ,D∅,L′

i,j

)
, (2n− 4) bits remain unchanged. Thus, only 4-

bit
(
xi,j
(j−1)mod n, x

i,j
(j−2)modn, x

i,j
(j−8)modn, y

i,j
(j)modn

)
of the BDPT vectors will be
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changed. We can view it as 4-bit S-box and use Theorem 1 to get its accurate
BDPT propagation rules which are in accordance with that in the paper [21].
We show it in Appendix Table 7.

When we use Algorithm 2 to search the integral distinguishers of SIMON2n
based on BDPT, we should call Algorithm 1 to build the MILP model based
on CBDP. The paper [27] has showed us how to model CBDP division trails of
1-round SIMON2n. We introduce it as follows.

1-round Description of SIMON2n. Denote 1-round CBDP trail of SIMON2n
by

(
ain−1, . . . , a

i
0, b

i
n−1, . . . , b

i
0

)
→

(
ai+1
n−1, . . . , a

i+1
0 , bi+1

n−1, . . . , b
i+1
0

)
. In order to

get a linear description of all CBDP trails of 1-round SIMON2n, we intro-
duce four vectors of auxiliary variables which are

(
ui
n−1, . . . , u

i
0

)
,
(
vin−1, . . . , v

i
0

)
,(

wi
n−1, . . . , w

i
0

)
and

(
tin−1, . . . , t

i
0

)
. We denote

(
ui
n−1, . . . , u

i
0

)
the input CBDP of

the left circular shift by 1 bit. Similarly, denote
(
vin−1, . . . , v

i
0

)
and

(
wi

n−1, . . . , w
i
0

)
the input CBDP of the left circular shift by 8 bits and 2 bits, respectively. Let(
tin−1, . . . , t

i
0

)
denote the output CBDP of bit-wise And operation. The following

inequalities are sufficient to model the Copy operation used in SIMON2n:

L1 : aij − ui
j − vij − wi

j − bi+1
j = 0 for j ∈ {0, 1, . . . , n− 1}.

Then, the bit-wise And operation used in SIMON2n can be modeled by:

L2 =


tij − ui

(j−1)modn ≥ 0, for j ∈ {0, 1, . . . , n− 1},

tij − vi(j−8)modn ≥ 0, for j ∈ {0, 1, . . . , n− 1},

tij − ui
(j−1)modn − vi(j−8)modn ≤ 0, for j ∈ {0, 1, . . . , n− 1}.

At last, the Xor operation in SIMON2n can be modeled by:

L3 : ai+1
j − bij − tij − wi

(j−2)modn = 1 for j ∈ {0, 1, . . . , n− 1}.

So far, we get a description {L1,L2,L3} of 1-round CBDP trails.

How to Describe the CBDP Propagation of Partial Round. For Ei,j , the
first round maybe a partial round Qi,li−1 ◦Qi,li−2 ◦ · · · ◦Qi,j . when considering

the CBDP propagation of Qi,j , if add constrain bi+1,j
j = bi,jj , the output vec-

tor is the same with the input vector. Namely, Qi,j is transformed into identity
function.

For 1-round SIMON2n, by adding the following constrains

L4 : ai+1
j − bij = 0 for j ∈ {0, 1, . . . , j − 1},

we obtain a description {L1,L2,L3,L4} of partial roundQi,li−1◦Qi,li−2◦· · ·◦Qi,j .
Then, by repeating the constrains of 1-round (r − i) times, we can get a linear
inequality system L for Ei,j .
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How to Obtain the Output BDPT of Qi,j . After the pruning techniques and
stopping rules, if Algorithm 2 doesn’t stop, we know that Ki,j = ∅ and Li,j ̸= ∅.
In order to help readers understand our algorithm, we show an example of the
propagation of BDPT.

For SIMON32, if the input BDPT of Q1,15 is DK1,15=∅,L1,15={ℓ1,ℓ2}, where ℓ1
= (1,0,1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), ℓ2 =
(1,0,0, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1). The 4 bit-
s of ℓ1 that may be updated by Q1,15 is (0, 1, 1, 0). Then, according to the B-
DPT propagation rules of core operation in Table 7. The output vector set is
L′ = {[0, 1, 1, 0], [0, 1, 0, 1], [0, 1, 1, 1]}. So ℓ1 generates three vectors as:

(1,0,1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

(1,0,0, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

(1,0,1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

In the same way, we can obtain that ℓ2 generates only one vector as

(1,0,0, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) .

According to BDPT Rule 3, the vector (1,0,0, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) should be canceled because it is propagated
from ℓ1 and ℓ2 twice. The output BDPT of Q1,15 is DK1,16=∅,L1,16={ℓ3,ℓ4}, where

ℓ3 = (1,0,1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) ,

ℓ4 = (1,0,1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) .

Then, Q1,16 has round keys Xored operation. So a new vector is generated from
ℓ3 and inserted into K1,16 according to theBDPT Rule 4. Moreover, a vector in
L1,16 becomes redundant because of the new vector of K1,16. After the swapping,
the output BDPT of Q1,16 is DK2,0={k},L2,0={ℓ5}, where

k = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

ℓ5 = (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

The High Efficiency of Our Algorithm. For 14-round SIMON32, we pre-
pare chosen plaintexts such that the leftmost bit is constant and the others are
active. Then, the BDPT of chosen plaintexts is DK={(1,1,1,...,1)},L={(0,1,1,...,1)}.
Table 3 shows the sizes of |K| and |L| in every round. The sizes in the paper
[21] are obtained after removing redundant vectors according to the definition of
BDPT, while the sizes in this paper are obtained after the pruning techniques.
From Table 3, we find that |L| of the 5-th round in this paper becomes 0, it
triggers Stopping Rule 2, and we obtain that the rightmost bit is balanced. Our
pruning techniques can reduce the size of BDPT greatly.
Integral Distinguishers. SIMECK is a family of lightweight block cipher pro-
posed at CHES 2015 [29], and its round function is very similar to that of SIMON
except the rotation constants. We use Algorithm 2 to search the integral dis-
tinguishers of SIMON and SIMECK family based on BDPT. For SIMON32,
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Table 3. Sizes of DK,L in obtaining balanced information of the rightmost output bit

Reference BDPT
Size in every round

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[21]
|L| 1 1 5 19 138 2236 89878 4485379 47149981 2453101 20360 168 8 0 0 0
|K| 1 1 1 6 43 722 23321 996837 9849735 2524718 130724 7483 852 181 32 32

This paper
|L| 1 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0
|K| 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

our MILP algorithm finds the 14-round integral distinguisher that found in
[21] by going through all the BDPT division trails. For 17-round SIMON64,
we find an integral distinguisher with 23 balanced bits which has one more
bit than the previous longest integral distinguisher. For SIMON48/96/128 and
SIMECK32/48/64, the distinguishers we find are in accordance with the previ-
ous longest distinguishers that found in [27]. The detailed integral distinguishers
of SIMON32 and SIMON64 are listed in Table 4. And all the integral distin-
guishers in Table 4 can be extended one more round by the technique in [25].

Table 4. Integral distinguishers of SIMON32 and SIMON64

Cipher Distinguisher

14-SIMON32
In: (caaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaa)

Out: (????????????????, ?b??????b??????b)

17-SIMON64
In: (caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Out: (????????????????????????????????,bbbbbbbbbbb??b??b?????bbbbbbbbbb)

5.2 Applications to PRESENT and RECTANGLE

PRESENT [3] has an SPN structure and uses 80- and 128-bit keys with 64-bit
blocks through 31 rounds. In order to improve the hardware efficiency, it use a
fully wired diffusion layer. Fig. 2 illustrates one-round structure of PRESENT.

Fig. 2. One-round SPN structure of PRESENT
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We divide one-round PRESENT into 17 partsQi = Qi,16◦· · ·◦Qi,0. When 0 ≤
j ≤ 15, we have Qi,j

(
xi,j
0 , . . . , xi,j

63

)
=

(
xi,j
0 , . . . , S

(
xi,j
4j , . . . , x

i,j
4j+3

)
, . . . , xi,j

63

)
,

where S
(
xi,j
4j , . . . , x

i,j
4j+3

)
is the S-box of PRESENT.

Moreover, Qi,16

(
xi,16
0 , . . . , xi,16

63

)
= P

(
xi,16
0 , xi,16

1 , . . . , xi,16
63

)
⊕ ki, where P

is the linear permutation of PRESENT and ki is the i-th round key.
RECTANGLE [31] is very like PRESENT.We apply Algorithm 2 to PRESENT

and RECTANGLE, and the results are listed in Table 5.

Table 5. Integral distinguishers of PRESENT and RECTANGLE

Cipher Distinguisher

9-PRESENT
In: (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaacccc)

Out: (????????????????????????????????,???????????????????b???b???b???b)

9-PRESENT
In: (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac)

Out: (???b???b???bbbbb???b???b???bbbbb, ???b???b???bbbbb???b???b???bbbbb)

9-RECTANGLE
In: (caaaaaaaaaaaaaaa,caaaaaaaaaaaaaaa,caaaaaaaaaaaaaaa,caaaaaaaaaaaaaaa)

Out: (bbbbbbbbbbbbbbbb,bbbb??bb???bbbbb,????????????????,????????????????)

5.3 Applications to LBlock

LBlock is a lightweitht block cipher proposed by Wu and Zhang [24]. The block
size is 64 bits and the key size is 80 bits. It employs a variant Feistel structure
and consists of 32 rounds. One-round structure of LBlock is given in Fig. 3.
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Fig. 3. Round structure of LBlock

We divide one-round LBlock into 9 parts Qi = Qi,8 ◦ · · ·◦Qi,0. And the input

of Qi,j is denoted as
(
xi,j ,yi,j

)
=

(
xi,j
7 , . . . ,xi,j

0 ,yi,j
7 , . . . ,yi,j

0

)
. When 0 ≤ j ≤

7, we have Qi,j

(
xi,j ,yi,j

)
=

(
xi,j ,yi,j

7 , . . . ,yi,j
P (j)+1, Y

i,j
P (j),y

i,j
P (j)−1, . . . ,y

i,j
0

)
,

where Y i,j
P (j) = Sj

(
xi,j
j

⊕
ki,j

)⊕
yi,j
(P (j)−2)mod8, Sj is the j-th S-box of LBlock,

and P (x) is the nibble diffusion function. Moreover,Qi,8

(
xi,8,yi,8

)
=

(
yi,8,xi,8

)
.
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Using Algorithm 2, we find a 17-round integral distinguisher of LBlock which
is in accordance with the previous longest integral distinguisher [8], and a better
16-round integral distinguisher with less active bits. The detail forms of the
integral distinguishers are shown in Table 6.

Table 6. Integral distinguishers of LBlock

Cipher Distinguisher

17-LBlock
In: (caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Out: (????????????????????????????????,??bb??????????????????????????bb)

16-LBlock
In: (aaccaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Out: (????????????????????????????????,??bbbbbbbbbb?b?bb?b?bbbb????????)

6 Using BDPT to Recover the Superpoly in Cube Attack

In this section, we analyze the ANF coefficients of non-blackbox polynomial
and superpoly in cube attack. Then, we show an MILP-aided method based on
BDPT to recover the ANF coefficients of superpoly.

6.1 Analyze the ANF Coefficients of Polynomial

Let f (x,v) be a polynomial, where x ∈ Fn
2 and v ∈ Fm

2 denote the secret and
public variables, respectively. In cube attack, fIv,Jv,Kv (x,v) denotes a function
that the public variables indexed by Iv ⊂ {0, 1, · · · ,m − 1} are chosen as cube
variables, the public variables indexed by Jv ⊂ {0, 1, · · · ,m− 1} − Iv are set to
1, and the remaining public variables Kv = {0, 1, · · · ,m − 1} − Iv − Jv are set
to 0. Then, the ANF of fIv,Jv,Kv (x,v) can be represented as follows

fIv,Jv,Kv (x,v) =
⊕

ux∈Fn
2 ,uv≼uI

a
fIv,Jv,Kv

(ux,uv)
· (x,v)(ux,uv).

where a
fIv,Jv,Kv

(ux,uv)
is the ANF coefficient of term (x,v)

(ux,uv) in fIv,Jv,Kv (x,v).

For polynomial fIv,Jv,Kv (x,v) and an index subset Ix ⊂ {0, 1, · · · , n− 1}, if
fixing all the secret variables {xk|k ∈ {0, 1, · · · , n− 1} − Ix} to 0, we can get a
new polynomial denoted as fIx,Iv,Jv,Kv (x,v).

Definition 6. (Similar Polynomial). For subsets of indices I ′x ⊂ Ix, the poly-
nomial fI′

x,Iv,Jv,Kv (x,v) is called the similar polynomial of fIx,Iv,Jv,Kv (x,v).

Lemma 2. If fI′
x,Iv,Jv,Kv (x,v)is the similar polynomial of fIx,Iv,Jv,Kv (x,v),

then the value of ANF coefficient a
fI′x,Iv,Jv,Kv(
uI′x

,uIv

) in fI′
x,Iv,Jv,Kv (x,v) is equal to

the value of ANF coefficients a
fIx,Iv,Jv,Kv(
uI′x

,uIv

) in fIx,Iv,Jv,Kv (x,v).
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Proof. For fIx,Iv,Jv,Kv (x,v), if all the variables of {xi|i ∈ Ix − I ′x} are as-
signed 0, it becomes the function fI′

x,Iv,Jv,Kv (x,v). Compared with the ANF of
fIx,Iv,Jv,Kv (x,v), the ANF of fI′

x,Iv,Jv,Kv (x,v) only misses terms that contain
any variables of {xi|i ∈ Ix − I ′x}. Moreover, xuI′x doesn’t contain any variables

of {xi|i ∈ Ix − I ′x}, so a
fI′x,Iv,Jv,Kv(
uI′x

,uIv

) = a
fIx,Iv,Jv,Kv(
uI′x

,uIv

) .

6.2 Analyze the ANF Coefficients of Superpoly

The most important part of cube attack is recovering the superpoly. Once the
superpoly is recovered, attackers can compute the sum of encryptions over the
cube and get one equation about secret variables.

Let CIv,Jv,Kv be a cube set defined as Eq. (1) in Sect. 2.5. For polynomial
fIv,Jv,Kv (x,v), where x ∈ Fn

2 and v ∈ Fm
2 , it can be unique represented as

fIv,Jv,Kv (x,v) = vuIv · pIv,Jv,Kv (x)⊕ qIv,Jv,Kv (x,v) . (3)

where pIv,Jv,Kv (x) does not contain any variable in {vi|i ∈ Iv}, and each term of
qIv,Jv,Kv (x,v) is not divisible by vuIv . Then, pIv,Jv,Kv (x) is called the superpoly
of CIv,Jv,Kv in fIv,Jv,Kv (x,v).

Definition 7. Let CIx,Iv,Jv,Kv
be the set of (x,v) satisfying secret variables

{xi|i ∈ Ix} are taking all possible combinations of values, secret variables {xi|i ∈
{0, 1, . . . , n − 1} − Ix} are set to constant 0, public variables {vi|i ∈ Iv} are
taking all possible combinations of values, public variables {vj |j ∈ Jv} are set to
constant 1, and public variables {vk|k ∈ Kv} are set to constant 0.

Here, we propose a method to calculate the ANF coefficient of superpoly.

Proposition 3. For any index subset Ix ⊂ {0, 1, . . . , n−1}, the ANF coefficient
of term xuIx in the superpoly pIv,Jv,Kv (x) can be calculated as

a
pIv,Jv,Kv
uIx

=
⊕

(x,v)∈CIx,Iv,Jv,Kv

fIx,Iv,Jv,Kv (x,v) .

Proof. The ANF of pIv,Jv,Kv
(x) can be presented as

pIv,Jv,Kv (x) =
⊕
u∈Fn

2

a
pIv,Jv,Kv
u · xu.

Then, the ANF of vuIv · pIv,Jv,Kv (x) can be presented as

vuIv · pIv,Jv,Kv (x) =
⊕
u∈Fn

2

a
pIv,Jv,Kv
u · (x,v)(u,uIv ) .

So, the ANF coefficient of (x,v)
(uIx ,uIv ) in vuIv ·pIv,Jv,Kv (x,v) is also a

pIv,Jv,Kv
uIx

.
Because fIv,Jv,Kv (x,v) can be unique represented as Eq. (3) and every ter-

m in qIv,Jv,Kv (x,v) misses at least one variable from {vi|i ∈ Iv}, the term
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(x,v)
(uIx ,uIv ) doesn’t exist in qIv,Jv,Kv (x,v). According to Eq. (3), we obtain

that the ANF coefficient of term (x,v)
uIx ,uIv in fIv,Jv,Kv (x,v) is a

pIv,Jv,Kv
uIx

.
Namely,

a
pIv,Jv,Kv
uIx

= a
fIv,Jv,Kv

(uIx ,uIv )
. (4)

From the Definition 6, we know that fIx,Iv,Jv,Kv is the similar polynomial of
fIv,Jv,Kv

. And according to Lemma 2, we obtain that

a
pIv,Jv,Kv
uIx

= a
fIv,Jv,Kv

(uIx ,uIv )
= a

fIx,Iv,Jv,Kv

(uIx ,uIv )
. (5)

Then, we have⊕
(x,v)∈CIx,Iv,Jv,Kv

fIx,Iv,Jv,Kv (x,v)

=
⊕

(x,v)∈CIx,Iv,Jv,Kv

⊕
ux≼uIx ,uv≼vIv

a
fIx,Iv,Jv,Kv

(ux,uv)
· (x,v)(ux,uv)

= a
fIx,Iv,Jv,Kv

(uIx ,uIv )
= a

pIv,Jv,Kv
uIx

.

�

6.3 The Algorithm to Recover Superpoly

The set CIx,Iv,Jv,Kv can be viewed as a cube set, according to the definition
of BDPT, we know that the BDPT of CIx,Iv,Jv,Kv is D1n

K,L, where K = ∅, and
L = {(uIx ,uv) |uIv ≼ uv ≼ uIv ⊕ uJv}. Then, we can use MILP-aided method
(Algorithm 2) to research the propagation of D1n

K,L. The integral distinguisher
got by BDPT recover the ANF coefficient of xuIx in superpoly pIv,Jv,Kv (x).
For example, if Algorithm 2 BDPT (fIx,Iv,Jv,Kv ,K,L, 0) return 1, it means that⊕
(x,v)∈CIx,Iv,Jv,Kv

fIx,Iv,Jv,Kv (x,v) = 1. According to Proposition 3, we know that

the ANF coefficient of xuIx in superpoly pIv,Jv,Kv (x) equals 1. We illustrate the
whole framework in Algorithm 3.

In order to analyze the ciphers better, we divide them into two categories:
public-update ciphers and secret-update ciphers.

Definition 8. For a function f : Fn
2 → Fm

2 , if the ANF of f is definite, we
call it public function. Let E = Qr ◦Qr−1 ◦ · · · ◦Q1 (x,v) be an r-round cipher,
where Qi is the i-th round update function, x denotes the secret variables, and v
denotes the public variables. If all the round update functions Qi, i ∈ {1, 2, · · · , r}
are public functions, the cipher E is public-update cipher. Otherwise we call it
secret-update cipher.

Proposition 4. For a public-update cipher fIv,Jv,Kv (x,v) and cube set CIv,Jv,Kv ,
the superpoly pIv,Jv,Kv (x) can be fully recovered by the propagation of BDPT.
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Algorithm 3: Recover the ANF coefficient of xuIx in superpoly pIv ,Jv,Kv (x)

1 procedure RecoverCoefficient(Ix, Iv, Jv, Kv)
2 Initial K = ∅, L = {(uIx ,uv) |uIv ≼ uv ≼ uIv ⊕ uJv}
3 if BDPT (fIx,Iv,Jv ,Kv ,K,L, 0) return unknown
4 return unknown
5 else if BDPT (fIx,Iv ,Jv,Kv ,K,L, 0) return 1
6 return 1
7 else
8 return 0
9 end procedure

Proof. The superpoly pIv,Jv,Kv (x) is a function of secret variables x. If for arbi-
trary term xuIx , we can determine its ANF coefficient. Then, the exact superpoly
can be obtained.

Because fIv,Jv,Kv (x,v) is a public-update cipher, fIx,Iv,Jv,Kv (x,v) is also a
public-update cipher. Then, for arbitrary term xuIx , we research the propagation
of BDPT D1n+m

K,L , where K = ∅ and L = {(uIx ,uv) |uIv ≼ uv ≼ uIv ⊕ uJv}. Let
the output BDPT of fIx,Iv,Jv,Kv (x,v) be D1n+m

K′,L′ . The initial K = ∅ means that
there is no division trail from K = ∅ to K′. From Sect. 2.3, we know that for
public function, the BDPT propagation of K and L is independent. Only when
the secret round key is involved, some vectors of L will affect K. That means,
there is no division trail from L to K′ when all the update functions are public.
The output set K′ = ∅ and the return value of Algorithm 3 is constant (0 or 1).
So the ANF coefficient of arbitrary term xuIx can be recovered by BDPT. �

According to Sect. 2.6, for polynomial fIv,Jv,Kv
(x,v) and cube set CIv,Jv,Kv ,

we can use MILP method to evaluate the secret variables involved in the super-
poly and the upper bounding degree of superpoly. We denote the involved secret
variables indices set as I and the upper bounding degree as d. Then, in order
to recover the superpoly, we only need to determine the coefficients a

pIv,Jv,Kv
u

satisfying u ≼ uI and hw (u) ≤ d.
Analysis of Public-update Cipher. According to Proposition 4, we can query

the Algorithm 3
∑d

i=0

(
|I|
i

)
times to recover all the ANF coefficients of super-

poly. The complexity is c ·
∑d

i=0

(
|I|
i

)
, where c is the average computational

complexity of Algorithm 3. Compared with CBDP based cube attack in Sect.
2.6, we can know that when c < 2|Iv|, our method can obtain better results.

Analysis of Secret-update Cipher. Due to the influence of secret keys in
the intermediate rounds, new vectors may be generated from Li and added to
Ki. Therefore, the condition that the output BDPT set K′ = ∅ may not hold.
Namely, only a part of the ANF coefficients in superpoly pIv,Jv,Kv (x,v) can be
obtained by BDPT. If there are N ANF coefficients that cannot be determined
by BDPT, we have to get their ANF coefficients by the method used in the
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CBDP based cube attack. Therefore, the complexity of recovering superpoly is{
c ·

∑d
i=0

(
|I|
i

)
+N · 2|Iv|

}
.

7 Application to Trivium

In order to verify the correctness and effectiveness of our method, we apply it
to Trivium [5] which is a public-update cipher.

7.1 Descriptions of Trivium

Trivium [5] is a bit-oriented stream cipher with 288-bit internal state denoted
by s = (s0, s1, . . . , s287). To outline our technique more conveniently, we de-
scribe Trivium using the following expression. Let x = (x0, x1, · · · , x79) denote
the secret variables (80-bit Key), and v = (v0, v1, · · · , v207) denote the public
variables. For public variables, v13, v14, · · · , v92 are the IV variables whose values
can be chosen by attackers (80-bit IV), {v205, v206, v207} are set to 1, and others
are set to 0. Then, the algorithm would not output any keystream bit until the
internal state is updated 1152 rounds. A complete description of Trivium is given
by the following simple pseudo-code.

(s0, s1, . . . , s92)← (x0, . . . , x79, v0, . . . , v12)

(s93, s94, . . . , s176)← (v13, . . . , v96)

(s177, s178, . . . , s287)← (v97, . . . , v207)

for i = 1 to N do

if i > 1152 then

zi−1152 ← s65 ⊕ s92 ⊕ s161 ⊕ s176 ⊕ s242 ⊕ s287

end if

t1 ← s65 ⊕ s90 · s91 ⊕ s92 ⊕ s170

t2 ← s161 ⊕ s174 · s175 ⊕ s176 ⊕ s263

t3 ← s242 ⊕ s285 · s286 ⊕ s287 ⊕ s68

(s0, s1, . . . , s92)← (t2, s0, . . . , s91)

(s93, s94, . . . , s176)← (t0, s93, . . . , s175)

(s177, s178, . . . , s287)← (t1, s177, . . . , s286)

end for

7.2 The MILP-aided Algorithm for Trivium

Because Trivium is a public-update cipher, during the progress of recovering the
ANF coefficients of superpoly, the set K is always empty. The papers [23, 26]
have showed the method on how to build the CBDP model of Trivium. Here, we
propose Algorithm 4 to get the L’s propagation of Trivium’s round function. The
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Algorithm 4: The propagation of L for the round function

1 procedure CorePropagation(L, i0, i1, i2, i3, i4)
2 Let x = (x0, x1, x2, x3, x4) be the variables
3 Let y be the function of x, and y = (x0, x1, x2, x3, x0x1 + x2 + x3 + x4)
4 L′ = ∅
5 for ℓ in L
6 for all u = (u0, u1, u2, u3, u4) ∈ F5

2 do

7 if yu contains the term x(ℓi0 ,ℓi1 ℓi2 ,ℓi3 ,ℓi4) then
8 ℓ′ = ℓ
9 ℓ′i0 = u0, ℓ

′
i1 = u1, ℓ

′
i2 = u2, ℓ

′
i3 = u3, ℓ

′
i4 = u4

10 L′ x← ℓ′

11 end if
12 end for
13 end for
14 return L′

15 end procedure

1 procedure RoundPropagation(Lr)
2 initial L′ = ∅, L′′ = ∅, L′′′ = ∅, Lr+1 = ∅
3 L′ =CorePropagation(Lr, 65, 170, 90, 91, 92)
4 L′′ =CorePropagation(L′, 161, 163, 174, 175, 176)
5 L′′′ =CorePropagation(L′′, 242, 68, 285, 286, 287)
6 for all ℓ in L′′′ do
7 Lr+1 = Lr+1

∪
{ℓ ≫ 1}

8 end for
9 return Lr+1

10 end procedure

input of procedure RoundPropagation in Algorithm 4 is the r-th round BDPT
set Lr, and the outputs is the (r + 1)-th round BDPT set Lr+1.

At CRYPTO 2017 [23], Todo et al. proposed a CBDP based cube attack
on the 832-round Trivium. Then, at CRYPTO 2018 [26], Wang et al. improved
the result and presented a CBDP based cube attack on 839-round Trivium. But
both methods cannot ensure whether the cube attacks are key recovery attacks
or not. After applying Algorithm 3 to the 832-round and 839-round Trivium, we
have the following results.

Result 1. For cube set CIv,Jv,Kv , where Iv = {13, . . . , 45, 47, . . . , 58, 60, . . . , 92},
no matter what the assignment to the non-cube IVs {46, 59} is, the correspond-
ing superpoly of 839-round Trivium in the paper [26] is constant. So the cube
attack based on CBDP in the paper [26] is not key recovery attack.

Result 2. For the cube set CIv,Jv,Kv , where Iv = {13, 14, . . . , 77, 79, 81, . . . , 91},
the superpolies of some assignments are constant. For example, when Jv =
{205, 206, 207} and Kv = {0, 1, . . . , 207} − Iv − Jv, the superpoly recovered is
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pIv,Jv,Kv (x) = 0. And the superpolies of some assignments are non-constant. For
example, when Jv = {80, 90, 205, 206, 207} and Kv = {0, 1, . . . , 207}−Iv−Jv, the
superpoly recovered is pIv,Jv,Kv (x) = x56x57x58+x32x56+x56x59. In a word, the
assignment to the non-cube IVs will affect whether the cube attack on 832-round
Trivium in the paper [23] is key recovery attack or not.

7.3 Theoretical Result

Result 3. Let CIv,Jv,Kv be a cube set, where Iv = {13, 14, . . . , 89, 91}, Jv =
{205, 206, 207}, and Kv = {0, 1, . . . , 204} − Iv. Using the degree bounding tech-
nique in the paper [26], we can get that the degree of superpoly in 841-round

Trivium is not larger than 10. Then, we have
∑d

i=0

(
|I|
i

)
≤

∑10
i=0

(
80
i

)
≤ 241.

That means we can use no more than 241 MILP-aided propagation of BDPT to
recover the exact superpoly of 841-round Trivium.

Because our computing resources are limited, the exact superpoly of 841-
round Trivium cannot be recovered in practical time. On our common PC (Intel
Core i5-4590 CPU @3.3GHz, 8.00G RAM) , it takes about 18 days to complete
the MILP-aided propagation of BDPT 100 times.

8 Conclusions

This paper is committed to solve the complexity problem of searching integral
distinguishers based on BDPT. In order to make the propagation of BDPT
efficient, we show the pruning techniques which can removing redundant vectors
in time. Then, an algorithm is designed to estimate whether the m-th output
bit is balanced or not based on BDPT. We apply the searching algorithm to
some blocks, and the obtained integral distinguishers are the same or better
than the previous longest integral distinguishers. It should be noted that the
absence of integral distinguishers based on BDPT doesn’t imply the absence of
integral distinguishers. Any improvement on the accuracy of BDPT propagation
may obtain better integral distinguishers. Moreover, our searching algorithm
supposes that all round keys are chosen randomly. If consider the key scheduling
algorithm, we may obtain better integral distinguishers.

Moreover, we apply BDPT to recover the superpoly in cube attack. As far
as we know, this is the first application of BDPT to stream ciphers. For public-
update ciphers, the exact ANF of superpoly can be fully recovered by exploring
the propagation of BDPT. To verify the correctness and effectiveness of our
method, we apply it to Trivium. For the cube attack on the 832-round Trivium
[23], we obtain that only some proper non-cube IV assignments can obtain non-
constant superpolies. For the cube attack on 839-round Trivium [26], our result
shows that the superpoly is always constant. Because our method can determine
the ANF coefficients of superpoly in practical time, we propose a theoretical
superpoly recovery of 841-round Trivium.
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For secret-update ciphers, due to the influence of intermediate round keys,
not all the ANF coefficients can be obtained by BDPT. From this perspective,
when we design stream ciphers, the secret-update ciphers are more secure. How
to recover the superpoly of secret-update ciphers is our future work.
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Table 7. The L propagation of BDPT for the core operation of SIMON

Input D14

K,{ℓ} Output D14

K′,L′

ℓ = [0, 0, 0, 0] L′ = {[0, 0, 0, 0]}
ℓ = [1, 0, 0, 0] L′ = {[1, 0, 0, 0]}
ℓ = [0, 1, 0, 0] L′ = {[0, 1, 0, 0]}
ℓ = [1, 1, 0, 0] L′ = {[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 1], [0, 1, 0, 1], [1, 1, 0, 1]}
ℓ = [0, 0, 1, 0] L′ = {[0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 1, 1]}
ℓ = [1, 0, 1, 0] L′ = {[1, 0, 1, 0], [1, 0, 0, 1], [1, 0, 1, 1]}
ℓ = [0, 1, 1, 0] L′ = {[0, 1, 1, 0], [0, 1, 0, 1], [0, 1, 1, 1]}
ℓ = [1, 1, 1, 0] L′ = {[1, 1, 1, 0], [0, 0, 1, 1], [1, 0, 1, 1], [0, 1, 1, 1], [1, 1, 0, 1]}
ℓ = [ℓ0, ℓ1, ℓ2, 1] L′ = {[ℓ0, ℓ1, ℓ2, 1]}

Experimental Verification

Example 1. For 591-round Trivium and cube set CIv,Jv,Kv , where Iv = {13, 23,
33, 43, 53, 63, 73, 83}, Jv = {14, 29, 32, 205, 206, 207} and Kv = {0, 1, · · · , 207} −
Iv−Jv, we can get that the involved secret variables are {x22, x23, x24, x66}, the
degree of superpoly is not larger than 2. Then, we use Algorithm 3 to recover all
the ANF coefficients of the superpoly, which is in accordance with the practically
recovered superpoly as follows:

pIv,Jv,Kv (x) = x66 + x24 + x23x22 + 1.

Example 2. For 591-round Trivium and cube set CIv,Jv,Kv , where Iv = {13, 23,
33, 43, 53, 63, 73, 83}, Jv = {29, 32, 82, 205, 206, 207}, and Kv = {0, 1, · · · , 207}−
Iv−Jv, we can get that the involved secret variables are {x22, x23, x24, x65, x66},
the degree of superpoly is not larger than 3. Then, we use Algorithm 3 to recover
the superpoly, which is in accordance with the practically recovered superpoly
as follows:

pIv,Jv,Kv (x) = x65x23x22 + x65x24 + x66x65 + x65.


