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Abstract. Non-committing encryption (NCE) was introduced by Canetti
et al. (STOC ’96). Informally, an encryption scheme is non-committing
if it can generate a dummy ciphertext that is indistinguishable from a
real one. The dummy ciphertext can be opened to any message later by
producing a secret key and an encryption random coin which “explain”
the ciphertext as an encryption of the message. Canetti et al. showed
that NCE is a central tool to achieve multi-party computation protocols
secure in the adaptive setting. An important measure of the efficiently
of NCE is the ciphertext rate, that is the ciphertext length divided by
the message length, and previous works studying NCE have focused on
constructing NCE schemes with better ciphertext rates.
We propose an NCE scheme satisfying the ciphertext rate O(log λ) based
on the decisional Diffie-Hellman (DDH) problem, where λ is the security
parameter. The proposed construction achieves the best ciphertext rate
among existing constructions proposed in the plain model, that is, the
model without using common reference strings. Previously to our work,
an NCE scheme with the best ciphertext rate based on the DDH problem
was the one proposed by Choi et al. (ASIACRYPT ’09) that has cipher-
text rate O(λ). Our construction of NCE is similar in spirit to that of
the recent construction of the trapdoor function proposed by Garg and
Hajiabadi (CRYPTO ’18).

Keywords: Non-Committing Encryption, Decisional Diffie-Hellman Prob-
lem, Chameleon Encryption

1 Introduction

1.1 Background

Secure multi-party computation (MPC) allows a set of parties to compute a
function of their inputs while maintaining the privacy of each party’s input.
Depending on when corrupted parties are determined, two types of adversarial
settings called static and adaptive have been considered for MPC. In the static
setting, an adversary is required to declare which parties it corrupts before the
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protocol starts. On the other hand, in the adaptive setting, an adversary can
choose which parties to corrupt on the fly, and thus the corruption pattern can
depend on the messages exchanged during the protocol. Security guarantee in
the adaptive setting is more desirable than that in the static setting since the
former naturally captures adversarial behaviors in the real world while the latter
is somewhat artificial.

In this work, we study non-committing encryption (NCE) which is introduced
by Canetti, Feige, Goldreich, and Naor [4] and known as a central tool to achieve
MPC protocols secure in the adaptive setting. NCE is an encryption scheme that
has a special property called non-committing property. Informally, an encryption
scheme is said to be non-committing if it can generate a dummy ciphertext that
is indistinguishable from real ones, but can later be opened to any message
by producing a secret key and an encryption random coin that “explain” the
ciphertext as an encryption of the message. Cannetti et al. [4] showed how to
create adaptively secure MPC protocols by instantiating the private channels in
a statically secure MPC protocol with NCE.

Previous constructions of NCE and their ciphertext rate. The ability to open
a dummy ciphertext to any message is generally achieved at the price of effi-
ciency. This is in contrast to ordinary public-key encryption for which we can
easily obtain schemes the size of whose ciphertext is n+poly(λ) by using hybrid
encryption methodology, where n is the length of an encrypted message and λ
is the security parameter. The first NCE scheme proposed by Canetti et al. [4]
only needs the optimal number of rounds (that is, two rounds), but it has ci-
phertexts of O(λ2)-bits for every bit of an encrypted message. In other words,
the ciphertext rate of their scheme is O(λ2), which is far from that of ordinary
public-key encryption schemes. Subsequent works have focused on building NCE
schemes with better efficiency.

Beaver [1] proposed a three-round NCE scheme with the ciphertext rate
O (λ) based on the decisional Diffie-Hellman (DDH) problem. Damg̊ard and
Nielsen [8] generalized Beaver’s scheme and achieved a three-round NCE scheme
with ciphertext rate O(λ) based on a primitive called simulatable PKE which in
turn can be based on concrete problems such as the DDH, computational Diffie-
Hellman (CDH), and learning with errors (LWE) problems. Choi, Dachman-
Soled, Malkin, and Wee [7] further improved these results and constructed a
two-round NCE scheme with ciphertext rate O (λ) based on a weaker variant
of simulatable PKE called trapdoor simulatable PKE which can be constructed
the factoring problem.

The first NCE scheme achieving a sub-linear ciphertext rate was proposed
by Hemenway, Ostrovsky, and Rosen [20]. Their scheme needs only two rounds
and achieves the ciphertext rate O (log n) based on the ϕ-hiding problem which
is related to (and generally believed to be easier than) the RSA problem, where
n is the length of messages. Subsequently, Hemenway, Ostrovsky, Richelson,
and Rosen [19] proposed a two-round NCE scheme with the ciphertext rate
poly(log λ) based on the LWE problem. Canetti, Poburinnaya, and Raykova [5]
showed that by using indistinguishability obfuscation, an NCE scheme with the



NCE with Quasi-Optimal Ciphertext-Rate Based on the DDH 3

Rounds Ciphertext rate Assumption

Canetti et al. [4] 2 O
(
λ2

)
Common-domain TDP

Beaver [1] 3 O (λ) DDH

Damg̊ard and Nielsen [8] 3 O (λ) Simulatable PKE

Choi et al. [7] 2 O (λ) Trapdoor simulatable PKE

Hemenway et al. [19] 2 poly(log λ) LWE, Ring-LWE

Hemenway et al. [20] 2 O (logn) Φ-hiding

Canetti et al. [5](∗) 2 1 + o (1) Indistinguishability obfuscation

This work 2 O (log λ) DDH

Table 1. Comparison of existing NCE schemes. The security parameter is denoted
byλ, and the message length n. Common-domain TDP can be instantiated based on
the CDH and RSA problems. Simulatable and trapdoor simulatable PKE can be in-
stantiated based on many computational problems realizing ordinary PKE. (∗) This
scheme uses common reference strings.

asymptotically optimal ciphertext rate (that is, 1 + o(1)) can be constructed.
Their scheme needs only two rounds but was proposed in the common reference
string model.

Despite the many previous efforts, as far as we know, we have only a single
NCE scheme satisfying a sub-linear ciphertext rate based on widely and classi-
cally used problems, that is, the scheme proposed by Hemenway et al. [19] based
on the LWE problem. Since NCE is an important cryptographic tool in con-
structing MPC protocols secure in the adaptive setting, it is desirable to have
more constructions of NCE satisfying a better ciphertext rate.

1.2 Our Contribution

We propose an NCE scheme satisfying the ciphertext rate O (log λ) based on
the DDH problem. The proposed construction achieves the best ciphertext rate
among existing constructions proposed in the plain model, that is, the model
without using common reference strings. The proposed construction needs only
two rounds, which is the optimal number of rounds for NCE. Previously to our
work, an NCE scheme with the best ciphertext rate based on the DDH problem
was the one proposed by Choi et al. [7] that satisfies the ciphertext rate O (λ).
We summarize previous results on NCE and our result in Table 1.

We first show an NCE scheme that we call basic construction, which sat-
isfies the ciphertext rate poly(log λ). Then, we give our full construction sat-
isfying the ciphertext rate O (log λ) by extending the basic construction using
error-correcting codes. Especially, in the full construction, we use a linear-rate
error-correcting code which can correct errors of weight up to a certain constant
proportion of the codeword length.

Our construction of NCE utilizes a variant of chameleon encryption. Chameleon
encryption was originally introduced by Döttling and Garg [10] as an intermedi-
ate tool for constructing an identity-based encryption scheme based on the CDH
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problem. Roughly speaking, chameleon encryption is public-key encryption in
which we can use a hash value of a chameleon hash function and its pre-image
as a public key and a secret key, respectively. We show a variant of chameleon
encryption satisfying oblivious samplability can be used to construct an NCE
scheme with a sub-linear ciphertext rate. Informally, oblivious samplability of
chameleon encryption requires that a scheme can generate a dummy hash key
obliviously to the corresponding trapdoor, and sample a dummy ciphertext that
is indistinguishable from a real one, without using any randomness except the
dummy ciphertext itself.

Need for the DDH assumption. A key and a ciphertext of the CDH based
chameleon encryption proposed by Döttling and Garg [10] together form multiple
Diffie-Hellman tuples. Thus, it seems difficult to sample them obliviously unless
we prove that the knowledge of exponent assumption [18,2] is false. In order to
solve this issue, we rely on the DDH assumption instead of the CDH assump-
tion. Under the DDH assumption, a hash key and a ciphertext of our chameleon
encryption are indistinguishable from independent random group elements, and
thus we can perform oblivious sampling of them by sampling random group
elements directly from the underlying group.

Public key size. As noted above, we first give the basic construction satisfying the
ciphertext rate poly(log λ), and then extend it to the full construction satisfying
the ciphertext rate O (log λ). In addition to satisfying only the ciphertext rate
poly(log λ), the basic construction also has a drawback that its public key size
depends on the length of a message quadratically.

A public key of the basic construction contains ciphertexts of our obliviously
samplable chameleon encryption. The size of those ciphertexts is quadratic in
the length of an input to the associated chameleon hash function similarly to the
construction by Döttling and Garg [10]. Since the input length of the chameleon
hash function is linear in the message length of the basic construction, the public
key size of the basic construction depends on the message length quadratically.

Fortunately, we can remove this quadratic dependence by a simple block-wise
encryption technique. Thus, in the full construction, we utilize such a block-wise
encryption technique in addition to the error-correcting code. By doing so, we
reduce not only the ciphertext rate to O (log λ), but also the public key size to
linear in the length of a message as in the previous constructions of NCE.

Relation with trapdoor function by Garg and Hajiabadi [14]. There has been a
line of remarkable results shown by using variants of chameleon encryption, start-
ing from the one by Cho, Döttling, Garg, Gupta, Miao, and Polychroniadou [6].
This includes results on identity-based encryption [10,9,11,3], secure MPC [6,16],
adaptive garbling schemes [17,15], and so on. Garg and Hajiabadi [14] showed
how to realize trapdoor function (TDF) based on the CDH problem using a
variant of chameleon encryption called one-way function with encryption.3

3 Their technique is further extended by Garg, Gay, and Hajiabadi [13] and Döttling,
Garg, Ishai, Malavolta, Mour, and Ostrovsky [12].
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Our construction of NCE can be seen as an extension of that of TDF by
Garg and Hajiabadi. Our formulation of chameleon encryption is based on that
of one-way function with encryption. Concretely, we define chameleon encryption
so that it has recyclability introduced by Garg and Hajiabadi as a key property
in their work.

1.3 Paper Organization

Hereafter, in Section 2, we first review the definition of NCE. Then, in Section 3,
we provide high-level ideas behind our construction of NCE. In Section 4, we
formally define and construct obliviously samplable chameleon encryption. In
Section 5, using obliviously samplable chameleon encryption, we construct an
NCE scheme that we call the basic construction satisfying the ciphertext rate
poly(log λ). Finally, in Section 6, we improve the basic construction and provide
the full construction that achieves the ciphertext rate O (log λ).

2 Preliminaries

Let PPT denote probabilistic polynomial time. In this paper, λ always denotes
the security parameter. For a finite set X, we denote the uniform sampling

of x from X by x
$← X. y ← A(x; r) denotes that given an input x, a PPT

algorithm A runs with internal randomness r, and outputs y. A function f is
said to be negligible if f(λ) = 2−ω(λ), and we write f(λ) = negl (λ) to denote
that f is negligible. Let Ham (x) denotes the Hamming weight of x ∈ {0, 1}n.
E [X] denotes expected value of X. [n] denotes {1, . . . , n}.

Lemma 1 (Chernoff bound). For a binomial random variable X. If E [X] ≤
µ, then for all δ > 0, Pr [X ≥ (1 + δ)µ)] ≤ e−

δ2

2+δµ holds.

We provide the definition of the DDH assumption and its variants used in
the proof of Theorem 1. We first introduce the leftover hash lemma.

Lemma 2 (Leftover hash lemma). Let X and Y are sets. Let H := {H :
X → Y } be a universal hash family. Then, the distributions (H,H(x)) and (H, y)

are
√

|Y |
4|X| -close, where H

$← H, x $← X, and y
$← Y .

We review some computational assumptions. Below, we let G be a cyclic
group of order p with a generator g. We also define the function dh (·, ·) as
dh

(
ga, gb

)
:= gab for every a, b ∈ Zp. We start with the decisional Diffie-Hellman

(DDH) assumption.

Definition 1 (Decisional Diffie-Hellman Assumption). We say that the
DDH assumption holds if for any PPT adversary A,

|Pr [A (g1, g2, dh (g1, g2)) = 1]− Pr [A (g1, g2, g3) = 1]| = negl (λ)

holds, where g1, g2, g3
$← G.
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We introduce a lemma that is useful for the proof of oblivious samplability of
our chameleon encryption. We can prove this lemma by using the self reducibility
of the DDH problem.

Lemma 3. Let n be a polynomial of λ. Let gi,b
$← G for every i ∈ [n] and

b ∈ {0, 1}. We set M := (gi,b)i∈[n],b∈{0,1} ∈ G2×n.
Then, if the DDH assumption holds, for any PPT adversary A, we have

|Pr [A (M,Mρ) = 1]− Pr [A (M,R) = 1]| = negl (λ) ,

where Mρ = (gρi,b)i∈[n],b∈{0,1} ∈ G2×n and R← G2×n.

We next define the hashed DDH assumption which is a variant of the DDH
assumption.

Definition 2 (Hashed DDH Assumption). Let H = {HG : G→ {0, 1}ℓ} be
a family of hash functions. We say that the hashed DDH assumption holds with
respect to H if for any PPT adversary A,

|Pr [A (HG, g1, g2, e) = 1]− Pr [A (HG, g1, g2, e
′) = 1]| = negl (λ)

holds, where HG
$← H, g1, g2,

$← G, e = HG (dh (g1, g2)), and e′
$← {0, 1}ℓ.

In this work, we use the hashed DDH assumption with respect to a hash
family H whose output length ℓ is small enough such as ℓ = poly(log λ) or
O (log λ). In this case, by using a family of universal hash functions H, we can
reduce the hardness of the hashed DDH problem to that of the DDH problem
by relying on the leftover hash lemma. Formally, we have the following lemma.

Lemma 4. Let H = {HG : G→ {0, 1}ℓ} be a family of universal hash functions,
where ℓ = poly(log λ). Then, if the DDH assumption holds, the hashed DDH
assumption with respect to H also holds by the leftover hash lemma.

Non-Committing Encryption A non-committing encryption (NCE) scheme is a
public-key encryption scheme that has efficient simulator algorithms (Sim1,Sim2)
satisfying the following properties. The simulator Sim1 can generate a simulated
public key pk and a simulated ciphertext CT . Later Sim2 can explain the cipher-
text CT as encryption of any plaintext. Concretely, given a plaintext m, Sim2

can output a pair of random coins for key generation rGen and encryption rEnc,
as if pk was generated by the key generation algorithm with the random coin
rGen, and CT is encryption of m with the random coin rEnc.

Some previous works proposed NCE schemes that are three-round protocols.
In this work, we focus on NCE that needs only two rounds, which is also called
non-committing public-key encryption, and we use the term NCE to indicate it
unless stated otherwise. Below, we introduce the definition of NCE according to
Hemenway et al. [19].

Definition 3 (Non-Committing Encryption). A non-committing encryp-
tion scheme NCE consists of the following PPT algorithms (Gen,Enc,Dec,Sim1,Sim2).
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– Gen
(
1λ; rGen

)
: Given the security parameter 1λ, using a random coin rGen,

it outputs a public key pk and a secret key sk.
– Enc

(
pk,m; rEnc

)
: Given a public key pk and a plaintext m ∈ {0, 1}µ, using

a random coin rEnc, it outputs a ciphertext CT .
– Dec (sk, CT ): Given a secret key sk and a ciphertext CT , it outputs m or
⊥.

– Sim1

(
1λ

)
: Given the security parameter 1λ, it outputs a simulated public key

pk, a simulated ciphertext CT , and an internal state st.
– Sim2 (m, st): Given a plaintext m and a state st, it outputs random coins for

key generation rGen and encryption rEnc.

We require NCE to satisfy the following correctness and security.

Correctness NCE is called γ-correct, if for any plaintext m,

Pr[(pk, sk)← Gen
(
1λ; rGen

)
, CT ← Enc

(
pk,m; rEnc

)
,

m′ = Dec (sk, CT ) ;m = m′] ≥ γ.

When γ = 1 − negl (λ), we call it correct. Note that γ cannot be equal to 1
in the plain model (i.e., the model without using common reference strings).

Security For any stateful PPT adversary A, we define two experiments as fol-
lows.

ExpReal
NCE,A ExpIdealNCE,A

(pk, sk)← Gen
(
1λ; rGen

)
(pk, CT, st)← Sim1

(
1λ

)
m← A (pk) m← A (pk)
CT ← Enc

(
pk,m; rEnc

) (
rGen, rEnc

)
← Sim2 (m, st)

out← A
(
CT, rGen, rEnc

)
out← A

(
CT, rGen, rEnc

)
We say that NCE is secure if

AdvNCE,A (λ) :=
∣∣∣Pr [out = 1 in ExpReal

NCE,A

]
− Pr

[
out = 1 in ExpIdealNCE,A

]∣∣∣ = negl (λ)

holds for every PPT adversary A.

3 Ideas of Our Construction

In this section, we provide high-level ideas behind our construction of NCE.
As a starting point, we review the three-round NCE protocol proposed by

Beaver [1], which contains a fundamental idea to build NCE from the DDH prob-
lem. Next, we show how to extend it and construct a two-round NCE scheme
whose ciphertext rate is O (λ). Then, we show how to reduce the ciphertext
rate to O (log λ), and obtain our main result. Finally, we state that our result-
ing construction can be described by using a variant of chameleon encryption,
and it can be seen as an extension of trapdoor function proposed by Garg and
Hajiabadi [14].
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Sender Receiver

Input: m ∈ {0, 1}
z

$← {0, 1} x
$← {0, 1}

ρz
$← Zp αx

$← Zp

Az = gρz (A0, A1) Bx = gαx

A1−z
$← G −−−−−−−−−−−−−−−−→ B1−x

$← G
(e0, e1), (B0, B1) ex = Ax

αx

←−−−−−−−−−−−−−−−− e1−x
$← G

if Bz
ρz = ez w

w := z⊕m −−−−−−−−−−−−−−−−→ if w ̸= ⊥
else w := ⊥ Output: m = w ⊕ x

Fig. 1. The description of Beaver’s protocol [1].

3.1 Starting Point: Beaver’s Protocol

Beaver’s NCE protocol essentiality executes two Diffie-Hellman key exchange
protocols in parallel. This protocol can send a 1-bit message. The ciphertext
rate is O (λ). We describe the protocol below and in Fig. 1.

Step1. Let G be a group of order p with a generator g. The sender picks a

random bit z
$← {0, 1} and an exponent ρz

$← Zp, and then sets Az = gρz .

The sender also generates a random group element A1−z
$← G obliviously,

i.e., without knowing the discrete log of A1−z. The sender sends (A0, A1) to
the receiver and stores the secret sk = (z, ρz). The random coin used in this
step is (z, ρz, A1−z).

Step2. The receiver picks a random bit x
$← {0, 1} and an exponent αx

$← Zp,

and then sets Bx = gαx . The receiver also obliviously generates B1−x
$← G.

Moreover, the receiver computes ex = Ax
αx and obliviously samples e1−x

$←
G. The receiver sends ((B0, B1), (e0, e1)) to the sender. The random coin
used in this step is (x, αx, B1−x, e1−x).

Step3. The sender checks whether x = z holds or not, by checking if Bz
ρz = ez

holds. With overwhelming probability, this equation holds if and only if x = z.
If x = z, the sender sends w := z⊕m, and otherwise quits the protocol.

Step4. The receiver recovers the message by w ⊕ x.

We next describe the simulator for this protocol.

Simulator The simulator simulates a transcript (A0, A1), ((B0, B1), (e0, e1)),

and w as follows. It generates ρ0, ρ1, α0, α1
$← Zp and sets

((A0, A1), (B0, B1), (e0, e1)) = ((gρ0 , gρ1), (gα0 , gα1), (gρ0α0 , gρ1α1)).

The simulator also generates w
$← {0, 1}.
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The simulator can later open this transcript to both messages 0 and 1. In
other words, for both messages, the simulator can generate consistent sender
and receiver random coins. For example, when opening it to m = 0, the sim-
ulator sets x = z = w, and outputs (w, ρw, A1−w) and (w,αw, B1−w, e1−w)
as the sender’s and receiver’s opened random coins, respectively.

Security Under the DDH assumption on G, we can prove that any PPT adver-
sary A cannot distinguish the pair of transcript and opened random coins
generated in the real protocol from that generated by the simulator. The
only difference of them is that e1−x is generated as a random group ele-
ment in the real protocol, but it is generated as A1−x

α1−x = gρ1−xα1−x in
the simulation. When the real protocol proceeds to Step. 4, we have x = z
with overwhelming probability. Then, the random coins used by the sender
and receiver (and thus given to A) does not contain exponents of A1−x and
B1−x, that is, ρ1−x and α1−x. Thus, under the DDH assumption, A cannot

distinguish randomly generated e1−x
$← G from A1−x

α1−x = gρ1−xα1−x . Thus,
this protocol is a secure NCE protocol.

This protocol succeeds in transmitting a message only when z = x, and
otherwise it fails. Note that even when z ̸= x, the protocol can transmit a
message because in Step. 3, the sender knows the receiver’s secret x. However,
in that case, we cannot construct a successful simulator. In order to argue the
security based on the DDH assumption, we have to ensure that either one pair
of exponents (ρ0, α0) or (ρ1, α1) is not known to the adversary, but when z ̸= x,
we cannot ensure this.

Next, we show how to extend this protocol into a (two-round) NCE scheme
and obtain an NCE scheme with the ciphertext rate O (λ).

3.2 Extension to Two-Round NCE Scheme

As a first attempt, we consider an NCE scheme NCE1lin that is a natural extension
of Beaver’s three-round NCE protocol. Intuitively, NCE1lin is Beaver’s protocol in
which the role of the sender and receiver is reversed, and the sender sends a
message even when z and x are different. Specifically, the receiver generates the
public key pk = (A0, A1) and secret key (z, ρz), and the sender generates the
ciphertext CT = ((B0, B1), (e0, e1), w), where (A0, A1), (B0, B1), (e0, e1), and
w := x⊕m are generated in the same way as those in Beaver’s protocol. When
decrypting the CT , the receiver first recovers the value of x by checking whether
Bρz

z = ez holds or not, and then computes w ⊕ x.
Of course, NCE1lin is not a secure NCE scheme in the sense that we cannot

construct a successful simulator when z ̸= x for a similar reason stated above.
However, we can fix this problem and construct a secure NCE scheme by running
multiple instances of NCE1lin.

In NCE1lin, if z coincides with x, we can construct a simulator similarly to
Beaver’s protocol, which happens with probability 1

2 . Thus, if we run multiple
instances of it, we can construct simulators successfully for some fraction of them.
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Receiver Sender

Input: m ∈ {0, 1}µ

z
$← {0, 1}n x

$← {0, 1}n

∀i ∈ [n], ρi
$← Zp ∀i ∈ [n], αi

$← Zp

Ai,zi = gρi Bi,xi = gαi

Ai,1−zi
$← G

(
A1,0, . . . , An,0

A1,1, . . . , An,1

)
Bi,1−xi

$← G

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ei,xi = Ai,xi
αi

ei,1−xi
$← G

if Bi,zi
ρi = ei,zi

(
B1,0, . . . , Bn,0

B1,1, . . . , Bn,1

)
,

(
e1,0, . . . , en,0

e1,1, . . . , en,1

)
, w w = H(x)⊕m

xi := zi ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
else xi := 1− zi
Output: m = w ⊕H(x)

Fig. 2. The description of NCElin.

Based on this observation, we construct an NCE scheme NCElin as follows. We
also describe NCElin in Fig. 2.

Let the length of messages be µ and n = O (µ). We later specify the concrete

relation of µ and n. The receiver first generates z1 · · · zn = z
$← {0, 1}n. Then,

for every i ∈ [n], the receiver generates a pubic key of NCE1lin, (Ai,0, Ai,1) in
which the single bit randomness is zi. We let the exponent of Ai,zi be ρi, that
is, Ai,zi = gρi . The receiver sends these n public keys of NCE1lin as the public key
of NCElin to the sender. The secret key is (z, ρ1, . . . , ρn).

When encrypting a message m, the sender first generates x1 · · · xn = x
$←

{0, 1}n. Then, for every i ∈ [n], the sender generates ((Bi,0, Bi,1), (ei,0, ei,1)) in
the same way as NCE1lin (and thus Beaver’s protocol) “encapsulates” xi by using
the i-th public key (Ai,0, Ai,1). We call it i-th encapsulation. Finally, the sender
generates w = m ⊕ H(x), where H is a hash function explained later in more
detail.

The resulting ciphertext is((
B1,0, . . . , Bn,0

B1,1, . . . , Bn,1

)
,

(
e1,0, . . . , en,0
e1,1, . . . , en,1

)
, w

)
.

Decryption is done by recovering each xi in the same way as NCE1lin and com-
puting w ⊕H(x).

The simulator for this scheme runs as follows. It first generates z1 · · · zn =

z
$← {0, 1}n and x1 · · · xn = x

$← {0, 1}n. Then, for every index i ∈ [n] such that
zi = xi, it simulates the i-th public key and encapsulation in the same way as
the simulator for NCE1lin (and thus Beaver’s protocol). For every index i ∈ [n]
such that zi ̸= xi, it simply generates i-th public key and encapsulation in the

same way as NCElin does in the real execution. Finally, it generates w
$← {0, 1}µ.



NCE with Quasi-Optimal Ciphertext-Rate Based on the DDH 11

Although the ciphertext generated by the simulator is not “fully non-committing”
about x, it loses the information of bits of x such that xi = zi. Thus, if we can
program the output value of the hash function H freely by programming only
those bits of x, the simulator can later open the ciphertext to any message, and
we see that NCElin is a secure NCE scheme.

To realize this idea, we first set n = 8µ in order to ensure that the simu-
lated ciphertext loses the information of at least µ-bits of x with overwhelming
probability. This is guaranteed by the Chernoff bound. Moreover, as the hash
function H, we use a matrix R ∈ {0, 1}µ×n, such that randomly picked µ out
of n column vectors of length µ are linearly independent. The ciphertext rate
of NCElin is O (λ), that is already the same as the best rate based on the DDH
problem achieved by the construction of Choi et al. [7].

3.3 Reduce The Ciphertext Rate

Finally, we show how to achieve the ciphertext rate O (log λ) by compressing
the ciphertext of NCElin. This is done by two steps. In the first step, we reduce
the size of the first part of a ciphertext of NCElin, that is, {Bi,b}i∈[n],b∈{0,1}. By

this step, we compress it into just a single group element. Then, in the second
step, we reduce the size of the second part of a ciphertext of NCElin, that is,
{ei,b}i∈[n],b∈{0,1}. In this step, we compress each ei,b into a O (log λ)-bit string.

By applying these two steps, we can achieve the ciphertext rate O (log λ).
The second step is done by replacing each group element ei,b with a hash value

of it. In NCElin, they are used to recover the value of xi by checking Bρi

i,zi
= ei,zi .

We can successfully perform this recovery process with overwhelming probability
even if ei,b is hashed to a poly(log λ)-bit string. Furthermore, with the help of an
error-correcting code, we can reduce the length of the hash value to O (log λ)-bit.
In the remaining part, we explain how to perform the first step.

Compressing a matrix of group elements into a single group element. We realize
that we do not need all of the elements {Bi,b}i∈[n],b∈{0,1} to decrypt the cipher-
text. Although the receiver gets both Bi,0 and Bi,1 for every i ∈ [n], the receiver
uses only Bi,zi . Recall that the receiver recovers the value of xi by checking
whether Bρi

i,zi
= ei,zi holds. This recovery of xi can be done even if the sender

sends only Bi,xi , and not Bi,1−xi .
This is because, similarly to the equation Bρi

i,zi
= ei,zi , with overwhelming

probability, the equation Bρi

i,xi
= ei,zi holds if and only if zi = xi. For this reason,

we can compress the first part of the ciphertext on NCElin into (B1,x1 , . . . , Bn,xn).
We further compress (B1,x1 , . . . , Bn,xn) into a single group element generated

by multiplying them, that is, y =
∏

j∈[n] Bj,xj . In order to do so, we modify the

scheme so that the receiver can recover xi for every i ∈ [n] using y instead of
Bi,xi . Concretely, for every i ∈ [n], the sender computes ei,xi as

ei,xi =
∏
j∈[n]

A
αj

i,xi
,
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where αj is the exponent of Bj,xj for every j ∈ [n] generated by the sender. The
sender still generates ei,1−xi as a random group element for every i ∈ [n]. In
this case, with overwhelming probability, the receiver can recover xi by checking
whether ei,zi = yρi holds.

However, unfortunately, it seems difficult to prove the security of this con-
struction. In order to delete the information of xi for indices i ∈ [n] such that
zi = xi as in the proof of NCElin, we have to change the distribution of ei,1−xi

from a random group element to
∏

j∈[n] A
αj

i,1−xi
so that ei,0 and ei,1 are sym-

metrically generated. However, we cannot make this change by relying on the
DDH assumption since all αj are given to the adversary as a part of the sender
random coin. Thus, in order to solve this problem, we further modify the scheme
and construct an NCE scheme NCE as follows.

The resulting NCE scheme NCE. In NCE, the receiver first generates z
$← {0, 1}n

and {Ai,b}i∈[n],b∈{0,1} in the same way as NCElin. Moreover, instead of the sender,
the receiver obliviously generates Bi,b = gαi,b for every i ∈ [n] and b ∈ {0, 1},
and adds them into the public key. Moreover, for every i ∈ [n], the receiver adds

{Bρi

j,b = A
αj,b

i,zi
}j∈[n],b∈{0,1} s.t. (j,b)̸=(i,1−zi)

to the public key. In order to avoid the leakage of the information of z from the
public key, for every i ∈ [n], we have to add

{Aαj,b

i,1−zi
}j∈[n],b∈{0,1} s.t. (j,b)̸=(i,zi)

to the public key. However, the receiver cannot do it since the receiver generates
Ai,1−zi obliviously. Thus, instead, the receiver adds the same number of random
group elements into the public key. At the beginning of the security proof, we can
replace them with {Aαj,b

i,1−zi
}j∈[n],b∈{0,1} s.t. (j,b)̸=(i,zi) by relying on the DDH as-

sumption, and eliminate the information of z from the public key. For simplicity,
below, we suppose that the public key includes {Aαj,b

i,1−zi
}j∈[n],b∈{0,1} s.t. (j,b)̸=(i,zi)

instead of random group elements.

When encrypting a message m by NCE, the sender first generates x
$← {0, 1}n

and computes y =
∏

j∈[n] Bj,xj . Then, for every i ∈ [n], the sender computes
ei,xi as

ei,xi =
∏
j∈[n]

A
αj,xj

i,xi
= yρi

just multiplying A
α1,x1
i,xi

, . . . , A
αn,xn
i,xi

included in the pubic key. Recall that Ai,xi =

gρi . Note that A
αi,1−zi
i,zi

is not included in the public key, but we do not need it to
compute ei,xi . The sender generates ei,xi as a random group element for every
i ∈ [n] as before. The resulting ciphertext is(

y,

(
e1,0, . . . , en,0
e1,1, . . . , en,1

)
, Rx⊕m

)
.
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The receiver can recover xi by checking whether ei,zi = yρi holds, and decrypt
the ciphertext.

By defining the simulator appropriately, the security proof of NCE proceeds
in a similar way to that of NCElin. In NCE, for indices i ∈ [n] such that zi = xi, we
can eliminate the information of xi. We can change ei,1−xi from a random group

element to
∏

j∈[n] A
αj,xj

i,1−xi
by relying on the fact that A

αi,xi
i,1−xi

is indistinguishable
from a random group element by the DDH assumption. By this change, ei,0
and ei,1 become symmetric and the ciphertext loses the information of xi. Then,
the remaining part of the proof goes through in a similar way as that of NCElin
except the following point. In NCE, the first component of the ciphertext, that is,
y =

∏
j∈[n] Bj,xj has the information of x. In order to deal with the issue, in our

real construction, we replace y with gr
∏

j∈[n] Bj,xj , where r
$← Zp. Then, y no

longer leaks any information of x. Moreover, after y is fixed, for any x′ ∈ {0, 1}n,
we can efficiently find r′ such that y = gr

′ ∏
j∈[n] Bj,x′j . This is important to

ensure that the simulator of NCE runs in polynomial time.

3.4 Abstraction by Chameleon Encryption

We can describe NCE by using obliviously samplable chameleon encryption. If we
consider {Bi,b}i∈[n],b∈{0,1} as a hash key k of chameleon hash function, the first

element of the ciphertext gr
∏

j∈[n] Bj,xj can be seen as the output of the hash

H (k, x; r). Moreover, group elements contained in the public key are considered
as ciphertexts of an chameleon encryption scheme. Oblivious samplability of
chameleon encryption makes it possible to deal with the above stated issue of
sampling random group elements instead of {Aαj,b

i,1−zi
}j∈[n],b∈{0,1} s.t. (j,b)̸=(i,zi)

for every i ∈ [n].

Relation with trapdoor function of Garg and Hajiabadi. We finally remark that
the construction of NCE can be seen as an extension of that of trapdoor function
(TDF) proposed by Garg and Hajiabadi [14].

If we do not add the random mask gr to y =
∏

j∈[n] Bj,xj , the key encapsu-
lation part of a ciphertext of NCE, that is,(

y,

(
e1,0, . . . , en,0
e1,1, . . . , en,1

))
is the same as an output of the TDF constructed by Garg and Hajiabadi. The
major difference between our NCE scheme and their TDF is the secret key. A
secret key of their TDF contains all discrete logs of {Ai,b}i∈[n],b∈{0,1}, that is,
{ρi,b}i∈[n],b∈{0,1}. On the other hand, a secret key of our NCE scheme contains
half of them corresponding to the bit representation of z, that is, {ρi,zi}i∈[n]. Garg
and Hajiabadi already stated that their TDF can be inverted with {ρi,zi}i∈[n]

for any z ∈ {0, 1}n, and use this fact in the security proof of a chosen ciphertext
security of a public-key encryption scheme based on their TDF. By explicitly
using this technique in the construction, we achieve non-committing property.
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We observe that construction techniques for TDF seem to be useful for
achieving NCE. Encryption schemes that can recover an encryption random
coin with a message in the decryption process, such as those based on TDFs,
is said to be randomness recoverable. For randomness recoverable schemes, re-
ceiver non-committing property is sufficient to achieve full (that is, both sender
and receiver) non-committing property. This is because an encryption random
coin can be recovered from a ciphertext by using a key generation random coin.

4 Obliviously Samplable Chameleon Encryption

Chameleon encryption was originally introduced by Döttling and Garg [10]. In
this work, we introduce a variant of chameleon encryption satisfying oblivious
samplability.

4.1 Definiton

We start with the definition of the chameleon hash function.

Definition 4 (Chameleon Hash Function). A chameleon hash function con-
sists of the following PPT algorithms

(
K,H,H−1

)
. Below, we let the input space

and randomness space of H be {0, 1}n and RH, respectively, where n = O(λ).

– K
(
1λ

)
: Given the security parameter 1λ, it outputs a hash key k and a trap-

door t.
– H (k, x; r): Given a hash key k and input x ∈ {0, 1}n, using randomness r ∈
RH, it outputs a hash value y.

– H−1 (t, (x, r), x′): Given a trapdoor t, an input to the hash x, randomness for
the hash r and another input to the hash x′, it outputs randomness r′.

A chameleon hash function is required to satisfy the following trapdoor collision
property.4

Trapdoor Collision For all x, x′ ∈ {0, 1}n and hash randomness r ∈ RH,
H (k, x; r) = H(k, x′; r′) holds, where (k, t) ← K

(
1λ

)
, r′ ← H−1 (t, (x, r), x′).

Moreover, if r is sampled uniformly at random, then so is r′.

Next, we define the chameleon encryption.

Definition 5 (Chameleon Encryption). Chameleon encryption (CE) con-
sists of a chameleon hash function

(
K,H,H−1

)
and the following PPT algorithms

(E1,E2,D). Below, we let the input space and randomness space of H are {0, 1}n
and RH, respectively, where n = O(λ). We also let the randomness space of E1

and E2 be RE. Moreover, we let the output space of E2 be {0, 1}ℓ, where ℓ be a
polynomial of λ.

4 Usually, a chameleon hash function is required to be collision resistant, but we omit
it since it is implied by the security of chameleon encryption defined later.
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– E1 (k, (i , b); ρ): Given a hash key k and index i ∈ [n] and b ∈ {0, 1}, using a
random coin ρ ∈ RE, it outputs a ciphertext ct.

– E2 (k, y; ρ): Given a hash key k and a hash value y, using a random coin
ρ ∈ RE, it outputs e ∈ {0, 1}ℓ.

– D (k, (x, r), ct): Given a hash key k, a pre-image of the hash (x, r) and a
ciphertext ct, it outputs e ∈ {0, 1}ℓ or ⊥.

Chameleon encryption must satisfy the following correctness and security.

Correctness For all k output by K
(
1λ

)
, i ∈ [n], x ∈ {0, 1}n, r ∈ RH, and

ρ ∈ RE, E2 (k, y; ρ) = D (k, (x, r), ct) holds, where y ← H (k, x; r) and ct ←
E1(k, (i , xi); ρ).

Security For any stateful PPT adversary A, we define the following experi-
ments.

Exp0CE,A Exp1CE,A
(x, r, i)← A

(
1λ

)
(x, r, i)← A

(
1λ

)
(k, t)← K

(
1λ

)
(k, t)← K

(
1λ

)
ct← E1(k, (i , 1− xi); ρ) ct← E1(k, (i , 1− xi); ρ)

e← E2(k,H(k, x; r); ρ) e
$← {0, 1}ℓ

out← A (k, ct, e) out← A (k, ct, e)

We say CE is secure if

AdvCE,A (λ) :=
∣∣Pr [out = 1 in Exp0CE,A

]
− Pr

[
out = 1 in Exp1CE,A

]∣∣ = negl (λ)

holds for every PPT adversary A.

Remark 1 (On the recyclability). The above definition of chameleon encryption
is slightly different from that of Döttling and Garg [10] since we define it so that
it satisfies a property called recyclability introduced by Garg and Hajiabadi [14]
when defining a primitive called one-way function with encryption that is similar
to chameleon encryption.

More specifically, in our definition, there are two encryption algorithms E1

and E2. E1 outputs only a key encapsulation part and E2 outputs only a ses-
sion key part. In the original definition by Döttling and Garg, there is a single
encryption algorithm that outputs the key encapsulation part and a message
masked by the session key part at once. Importantly, an output of E1 does not
depend on a hash value y. This makes possible to relate a single output of E1

with multiple hash values. (In other words, a single output of E1 can be recycled
for multiple hash values.) We need this property in the construction of NCE and
thus adopt the above definition.

We then introduce our main tool, that is, obliviously samplable chameleon
encryption (obliviously samplable CE).
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Definition 6 (Obliviously Samplable Chameleon Encryption). Let CE =
(K,H,H−1,E1,E2,D) be a chameleon encryption scheme. We define two associ-

ated PPT algorithms K̂ and Ê1 as follows.

– K̂
(
1λ

)
: Given the security parameter 1λ, it outputs only a hash key k̂ without

using any randomness other than k̂ itself.

– Ê1

(
k̂, (i, b)

)
: Given a hash key k̂ and index i ∈ [n] and b ∈ {0, 1}, it outputs

a ciphertext ĉt without using any randomness except ĉt itself.

For any PPT adversary A, we also define the following experiments.

Expos-0CE,A Expos-1CE,A
(k, t)← K

(
1λ

)
k̂← K̂

(
1λ

)
out← AO(·,·) (k) out← AÔ(·,·)

(
k̂
)

The oracles O(·, ·) and Ô(·, ·) are defined as follows.

– O(i, b): Given an index i ∈ [n] and b ∈ {0, 1}, it returns ct← E1 (k, (i , b) ; ρ)
using uniformly random ρ.

– Ô(i, b): Given an index i ∈ [n] and b ∈ {0, 1}, it returns ĉt← Ê1

(
k̂, (i , b)

)
.

We say that CE is obliviously samplable if

AdvosCE,A (λ) :=
∣∣Pr [out = 1 in Expos-0CE,A

]
− Pr

[
out = 1 in Expos-1CE,A

]∣∣ = negl (λ)

holds for every PPT adversary A.

We define another correctness of obliviously samplable CE necessary to assure
the correctness of our NCE.

Definition 7 (Correctness under Obliviously Sampled Keys). An obliv-

iously samplable CE (CE, K̂, Ê1) is correct under obliviously sampled keys if for

all k̂ output by K̂, i ∈ [n], x ∈ {0, 1}n, r ∈ RH, and ρ ∈ RE, E2

(
k̂, (i , b); ρ

)
=

D
(
k̂, (x, r), ct

)
holds, where y← H

(
k̂, x; r

)
and ct← E1

(
k̂, (i , xi); ρ

)
.

4.2 Construction

We construct an obliviously samplable CE CE =
(
K,H,H−1, E1,E2,D, K̂, Ê1

)
based on the hardness of the DDH problem.

Let G be a cyclic group of order p with a generator g. In the construction,
we use a universal hash family H = {HG : G → {0, 1}ℓ}. Below, let HG be a
hash function sampled from H uniformly at random, and it is given to all the
algorithms implicitly.

K
(
1λ

)
:
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– For all i ∈ [n], b ∈ {0, 1}, sample αi,b
$← Zp and set gi,b := gαi,b .

– Output

k :=

(
g,

(
g1,0, . . . , gn,0
g1,1, . . . , gn,1

))
and t :=

(
α1,0, . . . , αn,0

α1,1, . . . , αn,1

)
. (1)

H (k, x; r) :

– Sample r
$←RH = Zp and output y = gr

∏
i∈[n] gi,xi .

H−1 (t, (x, r), x′) :
– Parse t as in equation 1.
– Output r′ := r +

∑
i∈[n]

(
αi,xi − αi,x′i

)
.

E1 (k, (i , b); ρ) :
– Parse k as in equation 1.

– Sample ρ
$←RE = Zp and compute c := gρ.

– Compute ci,b := (gi,b)
ρ
and ci,1−b := ⊥.

– For all j ∈ [n] such that j ̸= i , compute cj,0 := (gj,0)
ρ
and cj,1 := (gj,1)

ρ

– Output

ct :=

(
c,

(
c1,0, . . . , cn,0
c1,1, . . . , cn,1

))
. (2)

E2 (k, y; ρ) :
– Output e← HG (yρ).

D (k, (x, r), ct) :
– Parse ct as in equation 2.

– Output e← HG

(
cr
∏

i∈[n] ci,xi

)
.

K̂
(
1λ

)
:

– For all i ∈ [n] and b ∈ {0, 1}, sample gi,b
$← G.

– Output k̂ :=

(
g,

(
g1,0, . . . , gn,0
g1,1, . . . , gn,1

))
.

Ê1

(
k̂, (i , b)

)
:

– Set ĉi,1−b := ⊥, and sample ĉ
$← G and ĉi,b

$← G.

– For all j ∈ [n] such that j ̸= i, sample ĉj,0
$← G and ĉj,1

$← G.

– Output ĉt :=

(
ĉ,

(
ĉ1,0, . . . , ĉn,0
ĉ1,1, . . . , ĉn,1

))
.

Theorem 1. CE is an obliviously samplable CE scheme assuming the hardness
of the DDH problem.

The trapdoor collision property, correctness, and correctness under oblivi-
ously sampled keys of CE directly follow from the construction of CE. Below, we
first prove the security of CE under the hashed DDH assumption with respect to
H. We then prove the oblivious samplability of CE under the DDH assumption.
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Security. Let A be an adversary against the security of CE. We construct a
reduction algorithm A′ which solves the hashed DDH problem using A.

Given (HG, g1, g2, e),A′ first runs (x, r, i)← A(1λ), and generates k as follows.

For all (j, b) ∈ [n] × {0, 1} such that (j, b) ̸= (i, xi), A′ samples αj,b
$← Zp and

sets gj,b := gαj,b , gi,xi := g1/
(
gr
∏

j ̸=i gj,xj

)
and

k :=

(
g,

(
g1,0, . . . , gn,0
g1,1, . . . , gn,1

))
.

Next, A′ generates ct as follows. A′ first sets c := g2 and ci,xi := ⊥. Then for
all (j, b) ∈ [n]× {0, 1} such that (j, b) ̸= (i, xi), A′ sets cj,b := g2

αj,b . A′ sets the
ciphertext to

ct :=

(
c,

(
c1,0, . . . , cn,0
c1,1, . . . , cn,1

))
.

Finally, A′ outputs what A (k, ct, e) does.
k and ct generated by A′ distribute identically to those output by K

(
1λ

)
and E1 (k, (i , 1− xi); ρ), respectively. A′ perfectly simulates Exp0CE,A to A if e =
HG (dh (g1, g2)) because we have

E2 (k, y; ρ) = HG

dh

gr
∏
i∈[n]

gi,xi , c

 = HG (dh (g1, g2)) = e.

On the other hand, if e
$← {0, 1}ℓ, A′ perfectly simulates Exp1CE,A to the adver-

sary. Thus, it holds that AdvCE,A (λ) = negl (λ) under the hash DDH assumption
with respect to H.

This completes the security proof of CE.

Oblivious Samplability. Let A be an PPT adversary that attacks oblivious
samplability of CE and makes q queries to its oracle. We prove that the probability
that A outputs 1 in Expos-0CE,A is negligibly close to that in Expos-1CE,A. The detailed
description of these experiments is as follows.

Expos-0CE,A: A is given a hash key k output by K and can access to the oracle
O(i, b) = E1 (k, (i , b); ρ), where i ∈ [n], b ∈ {0, 1}, and ρ ← Zp. Concretely,
O(i, b) behaves as follows.
– Sample ρ uniformly from Zp, and let c := gρ. For all j ̸= i , let cj,0 :=

(gj,0)
ρ
and cj,1 := (gj,1)

ρ
, and let ci,b := (gi,b)

ρ
and ci,1−b := ⊥. Return

ct :=

(
c,

(
c1,0, . . . , cn,0
c1,1, . . . , cn,1

))
.

Expos-1CE,A: A is given a hash key k̂ output by K̂ and can access to the oracle

Ô(i, b) = Ê1

(
k̂, (i , b)

)
, where i ∈ [n] and b ∈ {0, 1}. Concretely, Ô(i, b)

behaves as follows.
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– Let ĉi,1−b := ⊥, and sample ĉ, ĉi,b , and ĉj,0 and ĉj,1 for all j ̸= i uniformly

from G. Return ĉt :=

(
ĉ,

(
ĉ1,0, . . . , ĉn,0
ĉ1,1, . . . , ĉn,1

))
.

We define Exp j for every j ∈ {0, . . . , q} that are intermediate experiments
between Expos-0CE,A and Expos-1CE,A as follows. Below, for two experiments Exp X and
Exp Y , we write Exp X ≈ Exp Y to denote that the probability that A outputs
1 in Exp X is negligibly close to that in Exp Y .

Exp j: This experiment is exactly the same as Expos-0CE,A except how queries made
by A are answered. For the j′-th query (i, b) ∈ [n] × {0, 1} made by A, the
experiment returns E1(k, (i, b); ρ) if j < j′, and Ê1 (k, (i , b)) otherwise.

We see that Exp 0 and Exp q are exactly the same experiment as Expos-0CE,A and

Expos-1CE,A, respectively. Note that A is given k output by K
(
1λ

)
and can access to

the oracle Ê1 (k, (i , b)) in Exp q, but on the other hand, A is given k̂ output by

K̂
(
1λ

)
and can access to the oracle Ê1

(
k̂, (i , b)

)
in Expos-1CE,A. However, this is not

a problem since k output by K
(
1λ

)
and k̂ output by K̂

(
1λ

)
distribute identically

in our construction. For every j ∈ [q], Exp j − 1 ≈ Exp j directly follows from
Lemma 3. Therefore, we have Expos-0CE,A ≈ Expos-1CE,A under the DDH assumption.
From the above arguments, CE satisfies oblivious samplability under the DDH
assumption.

This completes the proof of Theorem 1.

5 Basic Construction of Proposed NCE

In this section, we present our NCE scheme with ciphertext rate poly(log λ)
from an obliviously samplable CE. We call this construction basic construction.
In Section 6, improving the basic construction, we describe our full construction
of NCE which achieves ciphertext rate O (log λ).

5.1 Construction

We use three parameters µ, n, and ℓ, all of which are polynomials of λ and
concretely determined later.

Let CE =
(
K,H,H−1,E1,E2,D, K̂, Ê1

)
be an obliviously samplable CE scheme.

We let the input length of H be n and let the output length of E2 (and thus D)
be ℓ. We also let the randomness spaces of H and E1 be RH and RE, respectively.
Below, using CE, we construct an NCE scheme NCE = (Gen,Enc,Dec,Sim1,Sim2)
whose message space is {0, 1}µ.

In the construction, we use a matrix R ∈ {0, 1}µ×n, such that randomly
picked µ out of n column vectors of length µ are linearly independent. A random
matrix satisfies such property except for negligible probability [21].

We first describe (Gen,Enc,Dec) and show the correctness of NCE below. We
also describe a protocol when using NCE in Fig. 3.
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Receiver Sender

z
$← {0, 1}n, k← K̂

(
1λ

)
Input: m ∈ {0, 1}µ

∀i ∈ [n], ρi
$←RE.

cti,zi = E1(k, (i , zi); ρi) x
$← {0, 1}n

cti,1−zi ← Ê1(k, (i , 1− zi)) r
$←RH.(

k,

(
ct1,0, . . . , ctn,0

ct1,1, . . . , ctn,1

))
y← H (k, x; r)

−−−−−−−−−−−−−−−−−−−−−−→ ∀i ∈ [n],
ei,xi = D (k, (x, r), cti,xi )

ei,1−xi
$← {0, 1}ℓ

if ei,zi = E2 (k, y; ρi)

(
y,

(
e1,0, . . . , en,0

e1,1, . . . , en,1

)
, w

)
w = Rx⊕m

xi := zi ←−−−−−−−−−−−−−−−−−−−−−−
else xi := 1− zi
Output: m = w ⊕Rx

Fig. 3. The description of NCE.

Gen
(
1λ; rGen

)
:

– Sample k← K̂
(
1λ

)
and z

$← {0, 1}n.
– For all i ∈ [n], sample ρi

$←RE.
– For all i ∈ [n] and b ∈ {0, 1}, compute

cti,b ←

{
E1 (k, (i , b); ρi) (b = zi)

Ê1 (k, (i , b)) (b ̸= zi)
.

– Output

pk :=

(
k,

(
ct1,0, . . . , ctn,0
ct1,1, . . . , ctn,1

))
and sk := (z, (ρ1, . . . , ρn)) . (3)

The random coin rGen used in Gen is
(
k, z, {ρi}i∈[n], {cti,1−zi}i∈[n]

)
.

Enc
(
pk,m; rEnc

)
:

– Sample x
$← {0, 1}n and r

$←RH.
– Compute y← H (k, x; r).
– For all i ∈ [n] and b ∈ {0, 1}, compute

ei,b ←

{
D (k, (x, r), cti,b) (b = xi)

{0, 1}ℓ (b ̸= xi)
.

– Compute w ← Rx⊕m.
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– Output

CT :=

(
y,

(
e1,0, . . . , en,0
e1,1, . . . , en,1

)
, w

)
. (4)

The random coin rEnc used in Enc is
(
x, r, {ei,1−xi}i∈[n]

)
.

Dec (sk, CT ):
– Parse sk and CT as the equations 3 and 4, respectively.
– For all i ∈ [n], set

xi :=

{
zi (ei,zi = E2 (k, y; ρi))

1− zi (otherwise)
.

– Output m := Rx⊕ w.

By setting ℓ = poly(log λ), NCE is correct. Formally, we have the following
theorem.

Theorem 2. Let ℓ = poly(log λ). If CE is correct under obliviously sampled keys,
then NCE is correct.

Proof. Due to the correctness under obliviously sampled keys of CE, the recovery

of xi fails only when zi ̸= xi happens and ei,1−xi
$← {0, 1}ℓ coincides with

E2 (k, y; ρi). Thus, the probability of decryption failure is bounded by

Pr [m ̸= Dec (sk, CT )]

≤Pr
[
∃i ∈ [n], ei,1−xi

$← {0, 1}ℓ; ei,1−xi = E2 (k, y; ρi)
]
≤ n

2ℓ
.

Note that at the last step, we used the union bound. Since n = O (λ), the
probability is negligible by setting ℓ = poly(log λ). Therefore NCE is correct.

Intuition for the simulators and security proof. The description of the simulators
(Sim1,Sim2) of NCE is somewhat complex. Thus, we give an overview of the
security proof for NCE before describing them. We think this will help readers
understand the construction of simulators.

In the proof, we start from the real experiment ExpReal
NCE,A, where A is an PPT

adversary attacking the security of NCE. We then change the experiment step by
step so that, in the final experiment, we can generate the ciphertext CT given
to A without the message m chosen by A, which can later be opened to any
message. The simulators (Sim1,Sim2) are defined so that they simulate the final
experiment.

In ExpReal
NCE,A, CT is of the form

CT :=

(
y,

(
e1,0, . . . , en,0
e1,1, . . . , en,1

)
, Rx⊕m

)
.
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Informally,

(
y,

(
e1,0, . . . , en,0
e1,1, . . . , en,1

))
encapsulates x ∈ {0, 1}n, and Rx⊕m is a one-

time encryption of m ∈ {0, 1}µ by x. If we can eliminate the information of x
from the encapsulation part, CT becomes statistically independent of m. Thus,
if we can do that, the security proof is almost complete since in that case, CT
can be simulated without m and later be opened to any message. While we
cannot eliminate the entire information of x from the encapsulation part, we can
eliminate the information of µ out of n bits of x from the encapsulation part,
and it is enough to make CT statistically independent of m. Below, we briefly
explain how to do it.

We first change

(
ct1,0, . . . , ctn,0
ct1,1, . . . , ctn,1

)
contained in pk so that every cti,b is gener-

ated as cti,b ← E1 (k, (i , b); ρi,b), and set ρi := ρi,zi , where z ∈ {0, 1}n is a random
string generated in Gen. We can make this change by the oblivious samplability
of CE.

Next, by using the security of CE, we try to change the experiment so that
for every i ∈ [n], ei,0 and ei,1 contained in CT are symmetrically generated in
order to eliminate the information of xi from the encapsulation part. Concretely,
for every i ∈ [n], we try to change ei,1−xi from a random string to

ei,b ← D (k, (x, r), cti,1−xi) = E2 (k, y; ρi,1−xi) .

Unfortunately, we cannot change the distribution of every ei,1−xi because
some of ρi,1−xi is given to A as a part of rGen. Concretely, for i ∈ [n] such that
zi ̸= xi, ρi = ρi,zi = ρi,1−xi is given to A and we cannot change the distribution
of ei,1−xi . On the other hand, for i ∈ [n] such that zi = xi, we can change the
distribution of ei,1−xi .

In order to make clear which index i ∈ [n] we can change the distribution
of ei,1−xi , in the proof, we replace z with z′ = x ⊕ z. Then, we can say that
for i ∈ [n] such that zi = 0, we can change the distribution of ei,1−xi . Since z
is chosen uniformly at random, due to the Chernoff bound, we can ensure that
the number of such indices is greater than µ with overwhelming probability by
setting n and µ appropriately. Namely, we can eliminate the information of µ
out of n bits of x from CT . At this point, CT becomes statistically independent
of m, and we almost complete the security proof. Note that y itself does not have
any information of x. To make this fact clear, in the proof, we add another step
using the trapdoor collision property of CE after using the security of CE.

To complete the proof formally, we have to ensure that CT can later be
opened to any message efficiently (i.e., in polynomial time). This is possible by
using a matrix R ∈ {0, 1}µ×n, such that randomly picked µ out of n column
vectors of length µ are linearly independent. For more details, see the formal
security proof in Section 5.2.

We now show the simulators (Sim1,Sim2).

Sim1

(
1λ

)
:

– Sample (k, t)← K
(
1λ

)
.
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– For all i ∈ [n] and b ∈ {0, 1}, sample ρi,b
$← RE and compute cti,b ←

E1 (k, (i , b); ρi,b).

– Sample z
$← {0, 1}n, x $← {0, 1}n 5, and r

$←RH.

– Compute y← H (k, 0n; r) and sample w
$← {0, 1}µ.

– For all i ∈ [n] and b ∈ {0, 1}, compute

ei,b ←

{
E2 (k, y; ρi,b) (b = xi ∨ zi = 0)

{0, 1}ℓ (b ̸= xi ∧ zi = 1)
.

– Output

pk :=

(
k,

(
ct1,0, . . . , ctn,0
ct1,1, . . . , ctn,1

))
, CT :=

(
y,

(
e1,0, . . . , en,0
e1,1, . . . , en,1

)
, w

)
,

and st := (t, z, x, r).
Sim2 (m, st):

– Sample x′ at random from {0, 1}n under the condition that Rx′ = m⊕w
and xi = x′i hold for every i ∈ [n] such that zi = 1.

– Compute r′ ← H−1 (t, (0n, r) , x′) and z′ := z⊕ x′.
– Output

rGen :=
(
k, z′, {ρi,z′i}i∈[n], {cti,1−z′i}i∈[n]

)
and rEnc :=

(
x′, r′, {ei,1−x′i}i∈[n]

)
.

5.2 Security Proof

In this section, we prove the security of NCE. Formally, we prove the following
theorem.

Theorem 3. Let µ = O (λ) and n = 8µ. If CE is an obliviously samplable CE,
then NCE is secure.

Proof. Let A is a PPT adversary attacking the security of NCE. We define a
sequence of experiments Exp 0,...,Exp 6. Below, for two experiments Exp X and
Exp Y , we write Exp X ≈ Exp Y (resp. Exp X ≡ Exp Y ) to denote that the
probability that A outputs 1 in Exp X is negligibly close to (resp. the same as)
that in Exp Y .

Exp 0: This experiment is exactly the same as ExpReal
NCE,A. The detailed description

is as follows.

1. The experiment first samples k ← K̂
(
1λ

)
and z

$← {0, 1}n. Then, for
all i ∈ [n], it samples ρi

$← RE. Next, for all i ∈ [n] and b ∈ {0, 1}, it
computes

cti,b ←

{
E1 (k, (i , b); ρi) (b = zi)

Ê1 (k, (i , b)) (b ̸= zi)
.

5 Sim1 and Sim2 do not use xi for i such that zi = 0, but for simplicity, we generate
whole x.
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It sets

pk :=

(
k,

(
ct1,0, . . . , ctn,0
ct1,1, . . . , ctn,1

))
and rGen :=

(
k, z, {ρi}i∈[n], {cti,1−zi}i∈[n]

)
.

Finally, it runs m← A (pk). Note that rGen is used in the next step.

2. The experiment samples x
$← {0, 1}n and r

$← RH. It then computes
y← H (k, x; r). For all i ∈ [n] and b ∈ {0, 1}, it also computes

ei,b ←

{
D (k, (x, r), cti,b) (b = xi)

{0, 1}ℓ (b ̸= xi)
.

It sets

CT :=

(
y,

(
e1,0, . . . , en,0
e1,1, . . . , en,1

)
, Rx⊕m

)
and rEnc =

(
x, r, {ei,1−xi}i∈[n]

)
.

Finally, it outputs out← A
(
CT, rGen, rEnc

)
.

Exp 1: This experiment is the same as Exp 0 except the followings. First, pk
is generated together with a trapdoor of the chameleon hash function t as
(k, t)← K

(
1λ

)
instead of k← K̂

(
1λ

)
. Moreover, all ciphertexts of chameleon

encryption cti,b are computed by E1, instead of Ê1. Specifically, for every

i ∈ [n] and b ∈ {0, 1}, the experiment samples ρi,b
$← RE and compute

cti,b ← E1 (k, (i , b); ρi,b). Also, it sets rGen = (k, z, {ρi,zi}i∈[n], {cti,1−zi}i∈[n]).

Lemma 5. Assuming the oblivious samplability of CE, Exp 0 ≈ Exp 1 holds.

Proof. Using A, we construct a reduction algorithm A′O∗(·,·)
that attacks the

oblivious samplability of CE and makes n oracle queries.

1. On receiving a hash key k∗, A′ generates ρi
$←RE for every i ∈ [n] and sets

the public key as pk =

(
k∗,

(
ct1,0, . . . , ctn,0
ct1,1, . . . , ctn,1

))
, where

cti,b ←

{
E1 (k

∗, (i , b); ρi) (b = zi)

O∗(i , b) (b ̸= zi)
.

A′O∗(·,·)
also sets rGen =

(
k, z, {ρi}i∈[n], {cti,1−zi}i∈[n]

)
. Then, A′O∗(·,·)

runs

A(pk) and obtains m.

2. A′O∗(·,·)
simulates the step 2. of Exp 0 and Exp 1, and outputs what A does.

Note that the step 2. of Exp 0 is exactly the same as that of Exp 1.

When playing Expos-0CE,A and Expos-1CE,A, A′ perfectly simulates Exp 0 and Exp 1
for A, respectively. By the oblivious samplability of CE,

|Pr [out = 1 in Exp 0]− Pr [out = 1 in Exp 1]| = AdvosCE,A′ (λ) = negl (λ)

holds. This proves Exp 0 ≈ Exp 1.
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Exp 2: This experiment is the same as Exp 1, except that we replace z contained
in rGen by z′ := z⊕ x.

Because z distributes uniformly at random, so does z′. Therefore, the distri-
bution of the inputs to A does not change between Exp 1 and Exp 2, and thus
Exp 1 ≡ Exp 2 holds.

Exp 3: The essential difference from Exp 2 in this experiment is that when zi = 0,
ei,1−xi is computed by E2 (k, y; ρi,1−xi ) instead of uniformly sampled from
{0, 1}ℓ.
Additionally, each ei,xi is replaced to E2 (k, y; ρi,xi ) from D (k, (x, r), cti,xi ),
though this does not change the distribution due to the correctness of CE.
After all, for every i ∈ [n] and b ∈ {0, 1}, the experiment computes

ei,b ←

{
E2 (k, y; ρi,b) (b = xi ∨ zi = 0)

{0, 1}ℓ (b ̸= xi ∧ zi = 1)
.

Lemma 6. If CE is correct and secure, Exp 2 ≈ Exp 3 holds.

Proof. This proof is done by hybrid arguments. We define Exp 2j for every
j ∈ {0, . . . , n} that are intermediate experiments between Exp 2 and Exp 3 as
follows.

Exp 2j: This experiment is exactly the same as Exp 2 except how ei,b is gen-
erated for every i ∈ [n]. For j < i ≤ n, ei,b is generated as in Exp 2. For
1 ≤ i ≤ j, ei,b is generated as in Exp 3.

Exp 20 is equal to Exp 2, and Exp 2n is equal to Exp 3. In the following, we
show Exp 2j−1 ≈ Exp 2j for all j ∈ [n].

In the case of zj = 1, except negligible probability, ej,xj distributes identi-
cally in Exp 2j−1 and Exp 2j because E2

(
k, y; ρj,xj

)
= D

(
k, (x, r), ctj,xj

)
holds

with overwhelming probability due to the correctness of CE. Moreover, ej,1−xj is
generated in the same way in both experiments. Thus Exp 2j−1 ≈ Exp 2j holds.

In the case of zj = 0, we show Exp 2j−1 ≈ Exp 2j by constructing a reduction
algorithm A′ that uses A and attacks the security of CE. The description of A′

is as follows.

1. A′ samples x
$← {0, 1}n and r

$←RH, outputs (x, r, j), and receives (k∗, ct∗, e∗).

Then, A′ generates pk as follows. A′ first samples z
$← {0, 1}n and sets

z′ = x⊕z. For every (i, b) ∈ [n]×{0, 1} such that (i, b) ̸= (j, 1−xj),A′ samples

ρi,b
$←RE and computes cti,b ← E1 (k, (i , b); ρi,b). A′ sets ctj,1−xj := ct∗,

pk :=

(
k∗,

(
ct1,0, . . . , ctn,0
ct1,1, . . . , ctn,1

))
and rGen =

(
k∗, z′, {ρi,z′i}i∈[n], {cti,1−z′i}i∈[n]

)
.

Finally, A′ runs m ← A (pk). Note that ρj,z′i = ρj,xj⊕zj = ρj,xj since we
consider the case of zj = 0, and thus A′ generates ρi,z′i by itself for every
i ∈ [n].
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2. A′ computes y ← H(k∗, x; r). For j < i ≤ n, A′ computes ei,b as in Exp 2,
and for 1 ≤ i < j, it does as in Exp 3. For i = j, A′ computes ej,xj ←
E2

(
k, y; ρj,xj

)
and sets ej,1−xj := e∗. Finally, A′ sets

CT :=

(
y,

(
e1,0, . . . , en,0
e1,1, . . . , en,1

)
, Rx⊕m

)
and rEnc =

(
x, r, {ei,1−xi}i∈[n]

)
,

and outputs out← A
(
CT, rGen, rEnc

)
.

When playing Exp1CE,A′ , A′ simulates Exp 2j−1 for A. Also, when playing

Exp0CE,A′ , A′ simulates Exp 2j for A. By the security of CE,

|Pr [out = 1 in Exp 2j−1]− Pr [out = 1 in Exp 2j ]| = AdvCE,A′ (λ) = negl (λ)

holds. From the above, we have

|Pr [out = 1 in Exp 2]− Pr [out = 1 in Exp 3]|

≤
∑
j∈[n]

|Pr[out = 1 in Exp 2j−1]− Pr[out = 1 in Exp 2j ]| = negl (λ) .

We can conclude Exp 2 ≈ Exp 3.

Exp 4: This experiment is the same as Exp 3 except how y and r are computed. In
this experiment, y is computed as y← H (k, 0n; r). Moreover, the randomness
r contained in rEnc is replaced with r′ ← H−1 (t, (0n, r) , x).

Due to the trapdoor collision property of CE, the view of A does not change
between Exp 3 and Exp 4. Thus, Exp 3 ≡ Exp 4 holds.

Exp 5: This experiment is the same as Exp 4, except that Rx is replaced with

w
$← {0, 1}µ. Moreover, the experiment computes r′ as r′ ← H−1 (t, (0n, r) , x′),

and replaces x in rEnc with x′, where x′ is a uniformly random string sampled
from {0, 1}n under the following two conditions:
– Rx′ = w holds.
– x′i = xi holds for every i ∈ [n] such that zi = 1.

Before showing Exp 4 ≈ Exp 5, we review a basic lemma on inversion sampling.

Lemma 7. For a function f : X → Y, we define two distributions D1 and D2 as

D1 =
{
(x, y) | x $← X , y = f(x)

}
and D2 =

{
(x′, y) | x $← X , y = f(x), x′ $← f−1(y)

}
,

where f−1(y) denotes the set of pre-images of y. Then, D1 and D2 are identical.

Furthermore, we define a distribution D3 as D3 =
{
(x′, y) | y $← Y, x′ $← f−1(y)

}
.

If f has a property that f(x) distributes uniformly at random over Y if the input
x distributes uniformly at random over X , D1 and D3 are identical.

Lemma 8. Exp 4 ≈ Exp 5 holds.
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Proof. According to the Chernoff bound on z,

Pr
[
Ham (z) ≥ (1 + δ)

n

2

]
≤ e−

δ2

2+δ
n
2

holds for any δ > 0. By taking δ = 1− 2µ
n , we have

Pr [Ham (z) ≥ n− µ] ≤ 2−λ = negl (λ) .

Below, we show that (x, Rx) in Exp 4 has the same distribution as (x′, w) in Exp 5
in the case of Ham (z) < n− µ, and complete the proof of this lemma.

We first introduce some notations. For an integer ordered set I ⊂ [n], we
define RI as the restriction of R to I, that is RI = (r1| · · · |r|I|), where R =
(r1| · · · |rn). We define xI in a similar way.

Fix any z which satisfies Ham (z) < n − µ and set I = {ik ∈ [n] | zik = 0}.
Because |I| ≥ µ, RI is full rank due to the choice of R. Hence, RI ·u is uniformly
random over {0, 1}µ if u is uniformly random over {0, 1}|I|.

Then, from Lemma 7 when setting X := {0, 1}|I|,Y := {0, 1}µ, and f(u) =

RI ·u, the distribution of (xI , RI ·xI) and (u,w) are the same, where x
$← {0, 1}n,

u
$← f−1(w) =

{
u′ ∈ {0, 1}|I| | RI · u′ = w

}
, and w

$← {0, 1}µ. Moreover, we
have Rx = RI · xI ⊕ R[n]\I · x[n]\I . Since x′ sampled in Exp 5 is a bit string
generated by replacing ik-th bit of x with k-th bit of u for every k ∈ [|I|], we see
that (x, Rx) has the same distribution as (x′, w⊕R[n]\I · x[n]\I). (x′, w⊕R[n]\I ·
x[n]\I) also has the same distribution as (x′, w) because w is sampled uniformly
at random, and thus (x, Rx) has the same distribution as (x′, w). This completes
the proof of Lemma 8.

Note that we can sample the above u in polynomial time, by computing
a particular solution v ∈ {0, 1}|I| of RI · v = w, and add a vector sampled
uniformly at random from the kernel of RI .

Exp 6: This experiment is the same as Exp 6 except that w is replaced with
w ⊕m. By this change, CT is of the form

CT :=

(
y,

(
e1,0, . . . , en,0
e1,1, . . . , en,1

)
, w

)
.

Moreover, x′ contained in rEnc is sampled so that Rx′ = m⊕ w holds.

Since w is uniformly at random, so is w ⊕m. Thus, Exp 5 ≡ Exp 6 holds.

We see that Exp 6 is the same as ExpIdealNCE,A. Put all the above arguments
together, we have

AdvNCE,A (λ) ≤ |Pr [out = 1 in Exp 0]− Pr [out = 1 in Exp 6]| = negl (λ) .

Hence NCE is secure. This completes the proof of Theorem 3.
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5.3 Ciphertext Rate

Finally, we evaluate the ciphertext rate of NCE. From Theorem 2, in order to make
NCE correct, it is sufficient to set ℓ = poly(log λ). Moreover, from Theorem 3, in
order to make NCE secure, it is sufficient to set µ = O (λ) and n = 8µ. In this
setting, the ciphertext length of NCE is |CT | = λ+2nℓ+µ. Note that we assume
a group element of G is described as a λ-bit string. Then, the ciphertext rate of
NCE is evaluated as

|CT |
µ

=
λ+ 2nℓ+ µ

µ
= O (ℓ) = poly(log λ).

6 Full Construction of Proposed NCE

In the basic construction, we construct an NCE scheme with correctness γ =
1 − negl (λ), by setting ℓ = poly(log λ) which is the output length of E2 (and
thus D) of the underlying CE. Of course, if we set ℓ to O (log λ), we can make the
ciphertext rate of the resulting NCE schemeO (log λ). However, this modification
also affects the correctness of the resulting NCE scheme. γ is no longer = 1 −
negl (λ), and is at most 1− 1/poly(λ).

Fortunately, we can amplify the correctness of the scheme to 1−negl (λ) from
enough large constant without changing the ciphertext rate. For that purpose,
we use a constant-rate error-correcting code which can correct errors up to some
constant fraction. Concretely, we modify the scheme as follows. In the encryption,
we first encode the plaintext by the error-correcting code and parse it into N
blocks of length µ. Then, we encrypt each block by the γ-correct NCE scheme
for a constant γ using different public keys. The decryption is done naturally,
i.e., decrypt each ciphertext, concatenate them, and decode it. The ciphertext
rate is still O (log λ) because the rate of error-correcting code is constant.

This block-wise encryption technique not only amplifies the correctness but
also reduces the public key size. In the basic construction, the size of a public
key depends on the length of a message quadratically. However, by applying the
block-wise encryption technique, it becomes linear in the length of a message.

The description of the full construction is as follows. Let ECC = (Encode,Decode)
be a constant-rate error-correcting code which can correct errors up to ϵ-fraction
of the codeword where ϵ > 0 is some constant.

Specifically, given a message m ∈ {0, 1}µM , Encode outputs a codeword
−−→
CW ∈ {0, 1}µN . If Ham

(−−→
CW −

−−−→
CW ′

)
≤ ϵµN , Decode

(−−−→
CW ′

)
= m. The rate

of ECC is some constant N/M .
Let NCE = (Gen,Enc,Dec,Sim1,Sim2) be an NCE scheme whose message

space is {0, 1}µ, ciphertext rate is O (log λ), and correctness is γ = 1 − ϵ
2 . We

construct
−−→
NCE = (

−−→
Gen,

−−→
Enc,

−−→
Dec,

−−→
Sim1,

−−→
Sim2) as follows. The message space of

−−→
NCE

is {0, 1}µM .

−−→
Gen

(
1λ;
−−→
rGen

)
:
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– Parse the given random coin to
−−→
rGen =

(
rGen1 , . . . , rGenN

)
.

– For all i ∈ [N ], generate key pairs (pki, ski)← Gen
(
1λ; rGeni

)
.

– Output
−→
pk := (pk1, . . . , pkN ) and

−→
sk := (sk1, . . . , skN ).

−−→
Enc

(−→
pk,m;

−−→
rEnc

)
:

– Parse
−−→
rEnc =

(
rEnc1 , . . . , rEncN

)
.

– Compute
−−→
CW ← Encode (m) and parse

−−→
CW = (CW1, . . . , CWN ).

– For all i ∈ [N ], compute CTi ← Enc
(
pki, CWi; r

Enc
i

)
.

– Output
−→
CT := (CT1, . . . , CTN ).

−−→
Dec

(−→
sk,
−→
CT

)
:

– For all i ∈ [N ], Compute CW ′
i ← Dec (ski, CTi).

– Concatenate them as
−−−→
CW ′ := (CW ′

1, . . . , CW ′
N ).

– Output m← Decode
(−−−→
CW ′

)
.

−−→
Sim1

(
1λ

)
:

– For all i ∈ [N ], compute (pki, CTi, sti)← Sim1

(
1λ

)
,

– Output
−→
pk := (pk1, . . . , pkN ),

−→
CT := (CT1, . . . , CTN ), and

−→
st := (st1, . . . , stN ).

−−→
Sim2

(
m,
−→
st
)
:

– Compute
−−→
CW ← Encode (m) and parse (CW1, . . . , CWN )←

−−→
CW .

– For all i ∈ [N ], compute
(
rGeni , rEnci

)
← Sim2 (CWi, sti).

– Output
−−→
rGen :=

(
rGen1 , . . . , rGenN

)
and
−−→
rEnc :=

(
rEnc1 , . . . , rEncN

)
.

Correctness. We can prove the correctness of
−−→
NCE by the Chernoff bound. For-

mally, we have the following theorem. See the full version for the proof.

Theorem 4. Let ECC be an constant-rate error-correcting code which can correct
errors up to ϵ-fraction of a codeword. Let NCE be a γ-correct NCE scheme, where
γ = 1 − ϵ

2 . If the number of parsed codeword N ≥ poly(log λ), the above
−−→
NCE is

correct.

Security. For the security of
−−→
NCE, we have the following theorem. Since we can

prove it via a straightforward hybrid argument, we omit it.

Theorem 5. If NCE is an secure NCE scheme, then
−−→
NCE is also secure.

Ciphertext rate. Since rate of the error-correcting code N/M is constant, the

ciphertext rate of
−−→
NCE is N |CT |

µM = O (ℓ) = O (log λ).
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