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Abstract. The Learning Parity with Noise (LPN) problem has recently
found many cryptographic applications such as authentication protocols,
pseudorandom generators/functions and even asymmetric tasks includ-
ing public-key encryption (PKE) schemes and oblivious transfer (OT)
protocols. It however remains a long-standing open problem whether
LPN implies collision resistant hash (CRH) functions. Inspired by the
recent work of Applebaum et al. (ITCS 2017), we introduce a general
construction of CRH from LPN for various parameter choices. We show
that, just to mention a few notable ones, under any of the following
hardness assumptions (for the two most common variants of LPN)

1. constant-noise LPN is 2n
0.5+ε

-hard for any constant ε > 0;
2. constant-noise LPN is 2Ω(n/ logn)-hard given q = poly(n) samples;

3. low-noise LPN (of noise rate 1/
√
n) is 2Ω(

√
n/ logn)-hard given q =

poly(n) samples.
there exists CRH functions with constant (or even poly-logarithmic)
shrinkage, which can be implemented using polynomial-size depth-3 cir-
cuits with NOT, (unbounded fan-in) AND and XOR gates. Our technical
route LPN→bSVP→CRH is reminiscent of the known reductions for the
large-modulus analogue, i.e., LWE→SIS→CRH, where the binary Short-
est Vector Problem (bSVP) was recently introduced by Applebaum et
al. (ITCS 2017) that enables CRH in a similar manner to Ajtai’s CRH
functions based on the Short Integer Solution (SIS) problem.

Furthermore, under additional (arguably minimal) idealized assumptions
such as small-domain random functions or random permutations (that
trivially imply collision resistance), we still salvage a simple and elegant
collision-resistance-preserving domain extender combining the best of the
two worlds, namely, maximized (depth one) parallelizability and polyno-

mial shrinkage. In particular, assume 2n
0.5+ε

-hard constant-noise LPN



or 2n
0.25+ε

-hard low-noise LPN, we obtain a collision resistant hash func-
tion that evaluates in parallel only a single layer of small-domain random
functions (or random permutations) and shrinks polynomially.

1 Introduction

1.1 Learning Parity with Noise

Learning Parity with Noise. The computational version of the Learning
Parity with Noise (LPN) assumption with secret size n ∈ N and noise rate
0 < µ < 1/2 postulates that given any number of samples q = poly(n) it is com-
putationally infeasible for any probabilistic polynomial-time (PPT) algorithm

to recover the random secret x
$←− {0, 1}n given (A, A · x + e), where A is a

random q×n Boolean matrix, e follows Bqµ = (Bµ)q, Bµ denotes the Bernoulli
distribution with parameter µ (taking the value 1 with probability µ and the
value 0 with probability 1−µ), ‘·’ and ‘+’ denote (matrix-vector) multiplication
and addition over GF(2) respectively. The decisional version of LPN simply as-
sumes that (A, A · x + e) is pseudorandom. The two versions are polynomially
equivalent [14,39,6].

Hardness of LPN. The computational LPN problem can be seen as the
average-case analogue of the NP-complete problem “decoding random linear
codes” [10]. LPN has been also extensively studied in learning theory, and it was
shown in [33] that an efficient algorithm for LPN would allow to learn several
important function classes such as 2-DNF formulas, juntas, and any function
with a sparse Fourier spectrum. When the noise rate µ is constant (i.e., inde-
pendent of secret size n), Blum, Kalai and Wasserman [15] showed how to solve
LPN with time/sample complexity 2O(n/ logn). Lyubashevsky [45] observed that
one can produce almost as many LPN samples as needed using only q = n1+ε

LPN samples (of a lower noise rate), which implies a variant of the BKW attack
[15] with time complexity 2O(n/ log logn) and sample complexity n1+ε. If one is
restricted to q = O(n) samples, then the best attack has exponential complex-
ity 2O(n) [50]. Under low noise rate µ = 1/

√
n, the best attacks [18,11,42,9]

solve LPN with time complexity 2O(
√
n). The low-noise LPN is mostly believed

a stronger assumption than constant-noise LPN. In noise regime µ = 1/
√
n,

LPN can be used to build public-key encryption (PKE) schemes [2] and obliv-
ious transfer (OT) protocols. Quantum algorithms [32] that build upon Grover
search may achieve a certain level (up to quadratic) of speedup over classic ones
in solving LPN, which does not change the asymptotic order (up to the con-
stant in the exponent) of the complexity of the problem. This makes LPN a
promising candidate for “post-quantum cryptography”. Furthermore, LPN en-
joys simplicity and is more suited for weak-power devices (e.g., RFID tags) than
other quantum-secure candidates such as Learning with Errors (LWE) [58] as
the many modular additions and multiplications in LWE would be simplified to
AND and XOR gates in LPN.
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Symmetric-key cryptography from constant-noise LPN. LPN was
used to build lightweight authentication schemes (e.g. [35,38,39], just to name a
few). Kiltz et al. [41] and Dodis et al. [26] constructed randomized MACs from
LPN, which implies a two-round authentication scheme with security against
active adversaries. Lyubashevsky and Masny [47] gave a more efficient three-
round authentication scheme from LPN and recently Cash, Kiltz, and Tessaro
[19] reduced the round complexity to 2 rounds. Applebaum et al. [4] used LPN
to construct efficient symmetric encryption schemes with certain key-dependent
message (KDM) security. Jain et al. [37] constructed an efficient perfectly bind-
ing string commitment scheme from LPN. We refer to the survey [56] about
cryptography from LPN.

Public-key cryptography and more from low-noise LPN. Alekhnovich
[2] established the feasibility result that public-key encryption (PKE) can be
based on LPN in the low-noise regime of µ = 1/

√
n. Döttling et al. [30] and

Kiltz et al. [40] further showed that low-noise LPN alone already suffices for
PKE schemes with CCA (and KDM [29]) security. Once we obtain a PKE, it
is perhaps not so surprising to build an oblivious transfer (OT) protocol. That
is, LPN-based PKE uses pseudorandom public keys (so that one can efficiently
fake random public keys that are computationally indistinguishable from real
ones) and in this scenario Gertner et al. [34] showed how to construct an OT
protocol in a black-box manner. This observation was made explicit in [23], where
universally composable OT protocols were constructed from low-noise LPN. All
the above schemes are based on LPN of noise rate 1/

√
n. The only exception

seems to be the recent result by Yu and Zhang [64] that PKE and OT can also

be based on constant-noise LPN with hardness 2n
1/2+ε

.

Open problems and recent progress. It remains open [56,46] whether
LPN implies other advanced cryptographic objects, such as fully homomorphic
encryption (FHE) and collision resistant hash (CRH) functions. Brakerski [16] re-
ported some negative result that straightforward LPN-based encryptions are un-
likely to achieve full homomorphism. As for LPN-based CRH, a notable progress
was recently made by Applebaum et al. [5], who showed that 2Ω(n/ logn)-hard
constant-noise LPN implies CRH 8. Based on some ideas (in particular, the b-
SVP assumption) from [5], we introduce a general construction of CRH from
LPN with various tunable trade-offs between the parameters (e.g., noise rate,
hardness, shrinkage), and then present the main feasibility results in commonly
assumed noise regimes.

On the concurrent work of [17]. Concurrently and independent of this
work, Brakerski et al. [17] used essentially the same technique as [5] and ours and
constructed CRH from LPN at the (extremely low) noise rate of µ = log2 n/n,
which can be derived as a special case under our framework.

8 More precisely, [5] obtains a win-win result that either constant-noise LPN implies
CRH or one achieves arbitrary polynomial speedup over the BKW algorithm [15].
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1.2 Cryptographic Hash Functions

A cryptographic hash function {0, 1}∗ → {0, 1}n is a deterministic func-
tion that maps arbitrarily (or at least sufficiently) long bit strings into digests
of a fixed length. The function was originally introduced in the seminal work
of Diffie and Hellman [25] to produce more efficient and compact digital signa-
tures. As exemplified by MD5 and SHA-1/2/3, it is now one of the most widely
used cryptographic primitives in security applications and protocols, such as SS-
L/TLS, PGP, SSH, S/MIME, IPsec and Bitcoin. Merkle [53] formulated three
main security properties (that still remain in use to date) of a cryptographic
hash function: preimage resistance, second preimage resistance and collision re-
sistance, of which collision resistance seems the most essential and suffices for
many aforementioned applications 9. Similar to the mode of operations for data
encryption, the design of cryptographic hash functions proceeds in two step-
s: one first designs a compression function that operates on fixed-length inputs
and outputs, and then applies a domain extender to accept messages of arbitrary
length. This dates back to the independent work of Merkle [55] and Damg̊ard
[22], who proposed a domain extender, and showed that if the underlying com-
pression function is collision resistant then so is the hash function based on
the Merkle-Damg̊ard construction. We refer to [3] for a survey about various
domain extenders for cryptographic hash functions. For the rest of this paper
we will focus on such length-regular collision resistant compression functions,
namely, CRH functions.

Collision Resistant Hashing. Theoretical constructions of CRH function-
s can be based on the hardness of factoring and discrete logarithm (via the
construction of claw-free permutations [21]), which are however far from prac-
tical. Ajtai [1] introduced an elegant and (conceptually) simple construction:
fA : {0, 1}m → Znp that for a random A ∈ Zn×mp and some (at least polynomi-
ally) large p and on input z ∈ {0, 1}m it computes

fA(z) = A · z mod p , (1)

which is collision resistant via a security reduction from the Short Integer So-
lution (SIS) problem, and is thus at least as hard as lattice problems such as
GapSVP and SIVP. Lyubashevsky et al. [48] gave a ring-based variant of Aj-
tai’s construction, called SWIFFT, which admits FFT and precomputation tech-
niques for improved efficiency while preserves an asymptotic security proof from
ideal lattices at the same time. Despite a substantial gap between the claimed
security level and the actual security bounds proved, SWIFFT [48] and its mod-
ified version (as a SHA-3 candidate) SWIFFTX [7] are among the very few hash

9 Unlikely collision resistance whose definition is unique and unambiguous, there are
several variants of (second) preimage resistance for which people strive to find a com-
promise that facilitates security proofs yet captures the needs of most applications.
Some variants of (second) preimage resistance are implied by collision resistance in
the conventional or provisional sense [60].
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function designs combining the best of two worlds (i.e., practical efficiency and
rigorous security proof).

The Expand-then-Compress Approach. Recently, Applebaum et al. [5]
constructed a function hM : {0, 1}k → {0, 1}n keyed by a random n × q binary
matrix M as:

hM(y) = M · Expand(y) , (2)

where Expand is an injective function that expands y into a much longer yet
sparse string, i.e., for every y ∈ {0, 1}k: t = |Expand(y)| < n < k < q. Note that
hM can be viewed as a binary version of Ajtai’s CRH (see fA in (1)), where ma-
trix A over Zp is simplified to a binary matrix M, and binary vector z is further
flattened to a sparse binary vector Expand(y). Thanks to the simplification to
the binary field, hM can be implemented rather efficiently both in the asymptot-
ic sense and in practice. Under certain realizations of Expand (see Lemma 3.1),
hM (for any specified M) can be directly translated to a polynomial-size circuit
of NOT, (unbounded fan-in) XOR and AND gates in depth 3 (or even depth 2
if the input includes not only the individual bits of y but also their respective
complements). Interestingly, the FSB hash proposal [8] and its variant the RFSB
hash [12] fall into concrete (but over optimistic) instantiations of hM.10

Binary SVP. In order to justify the asymptotic security of the EtC hash,
Applebaum et al. [5] introduced the binary Shortest Vector Problem (binary
SVP or bSVP in short). Informally, the bSVP assumption asserts that given a

random matrix distribution11 M
$←− {0, 1}n×q, it is computationally infeasible

to find a non-zero x ∈ {0, 1}q of Hamming weight t � q such that Mx = 0.
From a code-theoretic perspective, M specifies the n× q parity check matrix of
a random binary linear code of rate 1 − n/q, where the rows of M are linearly
independent (except with negligible probability), and therefore the bSVP postu-
lates that finding a short codeword is hard in the average case. We refer to [5] for
discussions about meaningful regimes of (t/q) that give rise to one-way functions
and collision resistant hash functions. Similar to SIS, bSVP immediately implies
CRH as any efficient algorithm that comes up with a collision hM(y) = hM(y′)
for y 6= y′ immediately implies a solution to bSVP, i.e., M · x = 0, where
x = Expand(y)− Expand(y′) has weight no greater than 2t. We mention that in
the worst case, it is NP-hard to compute (or even to approximate by a constant
factor) the distance of a linear code [63,31]. However, as an average-case hard-
ness assumption, bSVP is relatively new and deserves further investigation. A
shortcut and promising direction is to see whether bSVP is reducible from the
learning parity with noise (LPN) problem since they are both related to random
binary linear codes, and the average-case hardness of the latter is well under-
stood. However, the work of [5] only established a weak connection between
bSVP and LPN. That is, they show that at least one of the following is true:

10 However, our results do not immediately constitute security proofs for the FSB-style
hash functions as there remains a substantial gap between the security proved and
security level claimed by the FSB instantiation.

11 M in our consideration has dimension n× q instead of αn× n considered by [5].
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1. One can achieve an arbitrary polynomial speedup over the BKW algorithm
[15], i.e., for every constant ε > 0 there exists an algorithm that solves
constant-noise LPN with time and sample complexity 2

εn
logn for infinitely

many n’s.
2. There exist CRH functions of constant shrinkage and logarithmic degree.

Otherwise stated, assume that the BKW algorithm cannot be further improved
asymptotically, then bSVP (for certain parameters) and CRH are implied.

1.3 The Construction of CRH from LPN

Duality between LPN and bSVP. We explain the high-level intuition of
how LPN relates (and reduces) to bSVP (deferring the choices of non-trivial
parameters to next paragraph), which in turn implies CRH. Under the theme of
“decoding random linear codes” where row vector sT is the message, M is an n×q
generator matrix and sTM is the codeword, the idea is to use a (sparse) column
vector x from the corresponding parity matrix such that any (noisy) codeword
multiplied by x is (biased to) 0, regardless of the value of s. Informally, assume
for contradiction that a useful bSVP solver succeeds in finding a sparse vector
x for an n× q matrix M such that Mx = 0, then this leads to a distinguishing
attack against the LPN instance (M, sTM + eT) by computing

(sTM + eT) · x = eTx

which is a biased bit (and thus distinguishable from uniform) due to the sparse-
ness of x and e. This already constitutes a contradiction to the decisional LPN,
and one can repeat the above on sufficiently many independent samples (with a
majority voting) to gain a constant advantage, and further transform it into a
key-recovery attack using the same number of samples [6].

Main feasibility results. By exploiting the duality between LPN and bSVP,
we present a general framework stated in Theorem 1.1 below (and more formally
in Theorem 3.1) that enables to construct CRH from LPN for various tunable pa-
rameter choices, as stated in Corollary 1.1 (and more formally in Corollary 3.1).
The constructions follow the Expand-then-Compress approach and can be im-
plemented by a polynomial-size depth-3 circuit with NOT, (unbounded fan-in)
AND and XOR gates12. The framework, in particular, when tuned to params #2
and #4 of Corollary 1.1, encompasses the known results obtained in [6] and the
concurrent work of [17]. In addition, it establishes feasibility results for constant-
noise LPN assuming much less hardness (see param #1 of Corollary 1.1) and
for low-noise LPN (see param #3 of Corollary 1.1), which was not previously
known. We remark that the 2Ω(

√
n/ logn)-hardness assumption for low-noise LPN

is quite reasonable as the current best attacks need complexity poly(n) · e
√
n [43]

for which even improving upon the constant in the exponent seems nontrivial.
Further, the 2n

0.501

-hardness assumed for constant-noise LPN offers even more
generous security margins as the best attack goes even beyond 2n

0.999

[15].

12 The circuit falls into the class AC0(MOD2). See Section 2 for a formal definition.
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Theorem 1.1 (main framework, informal). Let n be the security parameter,
and let µ = µ(n), k = k(n), q = q(n), t = t(n) and T = T (n) such that

t2 ≤ q ≤ T ≈ 2
8µt

ln 2(1−2µ) . Assume that the (decisional) LPN problem of size n
and noise rate µ is T -hard given q samples, and let

hM : {0, 1}k → {0, 1}n, hM(y) = M · Expand(y), Expand : {0, 1}k → {0, 1}q,

be functions satisfying the following conditions:

1. (hM is compressing). k > n;
2. (Expand has sparse outputs). for all y ∈ {0, 1}k: |Expand(y)| = t;
3. (Expand is injective). Expand is an injection with k ≈ log

(
q
t

)
= (1 +

o(1)) log(q/t)t > t log q/2 (see Fact 2), where the inequality is due to t ≤ √q.

Then, hM
13 is a CRH function with shrinkage factor n

k .

Rationale. Upon any collision y 6= y′ we get that x = Expand(y)−Expand(y′)
such that eTx, i.e., the XOR sum of up to 2t bits drawn from Bµ is

1

2
+

2−(log
1

1−2µ )2t

2
≥ 1

2
+

2−
4µt

ln 2(1−2µ)

2

biased to 0 by the Piling up lemma (Lemma 2.1) and inequality ln(1 + x) ≤ x.

Otherwise said, the underlying decisional LPN must be 2
Ω(µt)
(1−2µ) -hard to coun-

teract the aforementioned attack. We refer to Theorem 3.1 for a more formal
statement and a rigorous proof. The framework allows for various trade-offs be-
tween µ, q and T (via the intermediate parameter t) and we state a few notable
ones in Corollary 1.1 below. Moreover, the CRH can be contained in AC0(MOD2)
based on a parallel implementation of the underlying function Expand in AC0.

Corollary 1.1 (LPN → CRH). Type LPN with Hardness implies CRH with
Shrinkage in AC0(MOD2), where (Type , Hardness, Shrinkage) can be (but are not
limited to) any of the following:

1. (Constant-noise, less hardness, poly-logarithmic shrinkage).

µ = O(1), T = 2n
0.5+ε

, q = 2n
0.5

and n
k <

16µ
ln 2(1−2µ)nε = 16µ

ln 2(1−2µ) log2ε λ
for

any constant ε > 0.
2. (Constant-noise, more hardness, constant shrinkage).
µ = O(1), T = 2

εn
logn , q = nCε,µ , n

k < 1
2 for any constant ε > 0 and

Cε,µ = max( 32µ
ε ln 2(1−µ) , 2).

3. (Low-noise, more hardness, constant shrinkage).

µ = 1/
√
n, T = 2

ε
√
n

logn , q = nCε,µ , n
k < 1

2 for any constant ε > 0 and
C ′ε,µ = max( 32

ε ln 2 , 2).

13 More strictly speaking, the resulting CRH is either hM itself or its domain-extended
version (by a parallel repetition).
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4. (Extremely low-noise, standard hardness, constant shrinkage).

µ = (logn)2

n , T = q > poly(n) for every poly, and n
k <

1
2 .

Intuitions about parameters choices. The aforementioned parameter
choices are not exhaustive but they follow quite naturally from the respective
noise rates. We explain the underlying intuitions for making such choices (and
refer to Corollary 3.1 and its proof for formal details). For immediate efficien-
cy we set q = poly(n) (s.t. the dimensions of M are polynomially related) and
constant shrinkage factor n

k < 2n
t log q = 1

2 , and therefore t = Ω(n/ log n) and

it requires hardness T = 2Ω(µn/ logn). This yields the parameter settings #2,
#3 and #4 for constant, low and extremely low noise rates respectively. Al-
ternatively, in favor of minimized hardness assumed for constant-noise LPN,
we let the sample complexity be nearly the same as time complexity up to a
factor nε,14 i.e., log(q) = Ω( log T

nε ) = Ω( t
nε ) and thus the injective condition

becomes k = Ω(t2/nε) and n
k < n1+ε

Ω(t2) , which results in param #1 by setting

t = Ω(n0.5+ε). However, now the issue is that the dimensions q and n of M are
not polynomially related and thus it does not immediately give rise to an effi-
cient CRH. This motivates us to switch to another parameter λ = q = 2

√
n such

that hM : {0, 1}Ω(log2+2ε λ) → {0, 1}log2 λ for M ∈ {0, 1}log2 λ×λ is a λΩ(log2ε λ)-
hard CRH function computable in time poly(λ), which further implies a domain-

extended CRH h′M : {0, 1}Ω(λ log2ε λ) → {0, 1}λ by a parallel repetition.

Feasibilities vs. limits. Admittedly, the limits of the framework are obvious:
unless under extremely low noise rate [17] the hardness assumed is much beyond
polynomial (although still reasonable given the current state-of-the-art). More-
over, the parameter-switching technique (that helps to reduce hardness assumed)
dramatically downgrades the security and deteriorates the shrinkage factor from
polynomial to poly-logarithmic. Further, the technique only applies to constant
noise: if the noise rate µ depends on n, e.g., µ = 1/

√
n, then switching to a new

parameter, say λ = 2n
0.25

, yields lifted noise rate µ = 1/ log2 λ. We offer an al-
ternative to avoid the efficiency/security loss by assuming a minimal amount of
heuristics, e.g., a small domain random function. This helps to obtain a polyno-
mially shrinking domain extender that makes only a single layer of evaluations on
the underlying random function. In terms of parallelizability, this beats gener-
ic (collision-resistance-preserving) domain extenders such as Merkle-Damg̊ard
[55,22] and the Merkle-tree [44,54], where to achieve polynomial shrinkage even
the latter needs to evaluate a tree of depth O(log n) on length-halving CRHs. A
price to pay is that we make additional (but reasonable) hardness assumptions,

e.g., that the low-noise LPN problem is 2n
0.25+ε

-hard.

Corollary 1.2 (A polynomially shrinking domain extender, informal).
Assume that (n,µ,q)-DLPN is T -hard and R : {0, 1}log(q) → {0, 1}n with log(q)�
14 By switching to a new security parameter, we eventually obtain a CRH function

with polynomial running time and super-polynomial security for which the nε gap
factor plays a vital role.
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n behaves like a random function, then for y = y1‖ · · · ‖yt parsed as t = k/L
blocks, each of size L = log(q/t), we have

hR : {0, 1}k → {0, 1}n, hR(y) =

t⊕
i=1

R(i‖yi),

is a CRH function with shrinkage n
k , where (µ,T ,q,nk ) can be either below:

1. (Constant-noise, less hardness, polynomial shrinkage).

µ = O(1), T = 2n
0.5+ε

, q = 2n
0.5

and n
k < 16µ

ln 2(1−2µ)nε for any constant
ε > 0.

2. (Low-noise, less hardness, polynomial shrinkage).

µ = 1/
√
n, T = 2n

0.25+ε

, q = 2n
0.25

and n
k <

16
ln 2·nε for any constant ε > 0.

On related heuristic-based approaches. It may seem trivial to obtain
CRHs from idealized heuristics such as random oracles and ideal ciphers, but we
stress that we only make a quite light use of idealism by assuming a small-domain
random function with inputs much shorter than outputs (for which domain ex-
tension is non-trivial), which can be efficiently instantiated from practical objects
such as blockciphers (assuming that a blockcipher on a public random key be-
haves like a random permutation). In contrast, most previous blockcipher-based
compression functions (e.g. [55,57,13]) reside in the (much stronger) Ideal Cipher
Model that a block cipher on every key behaves independently like a random
permutation. Moreover, existing permutation-based solutions either only offer a
constant shrinkage factor (typically 1/2) [62,51], or require permutations with a

large domain (e.g., [28] needs a large permutation over {0, 1}n2

to obtain a CRH
function with shrinkage factor 1/n).

2 Preliminaries

Notations and definitions. Column vectors are represented by bold lower-
case letters (e.g., s), row vectors are denoted as their transpose (e.g., sT), and
matrices are denoted by bold capital letters (e.g., A). |s| refers to the Hamming
weight of binary string s. We use Bµ to denote the Bernoulli distribution with
parameter µ, while Bqµ denotes the concatenation of q independent copies of

Bµ. We use log(·) to denote the binary logarithm. x
$←− X refers to drawing x

from set X uniformly at random, and x ← X means drawing x according to
distribution X. a‖b denotes the concatenation of a and b. A function negl(·)
is negligible if for any constant Nc we have that negl(n) < 1/poly(n) for every
polynomial poly and all sufficiently large n. AC0 refers to the class of polynomial-
size, constant-depth circuit families with unbounded fan-in AND and OR gates,
where NOT gates are allowed only at input level. AC0(MOD2) refers to the class
of polynomial-size, constant-depth circuit families with unbounded fan-in AND,
OR and XOR gates.
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We define decisional and computational LPN problems, and we just use
the decisional one due to their polynomial equivalence. In particular, there are
computational-to-decisional reductions even for the same sample complexity [6].

Definition 2.1 (Learning Parity with Noise). Let n be the security param-
eter, and let µ = µ(n), q = q(n) and T = T (n). The decisional LPN problem
with secret length n, noise rate 0 < µ < 1/2 and sample complexity q, denoted
by (n,µ,q)-DLPN, is T -hard if every probabilistic algorithm D of running time T
we have that the following holds for all sufficiently large n’s

∣∣Pr[D(A, A·x+e) = 1]− Pr[D(A,y) = 1]
∣∣ ≤ 1

T
, (3)

and the computational LPN problem with the same n, µ and q, denoted by
(n,µ,q)-LPN, is T -hard if for every probabilistic algorithm D of running time
T we have that the following holds for all sufficiently large n’s

Pr[ D(A, A·x+e) = x ] ≤ 1

T
, (4)

where q × n matrix A
$←− {0, 1}q×n and x

$←− {0, 1}n, y
$←− {0, 1}q and e← Bqµ.

Standard hardness. We recall that standard polynomial hardness requires

that T > poly(n), q > poly(n) and for every poly and all sufficiently large n’s.

Unlike other primitives (such as one-way functions, pseudorandom generators
and functions) whose security parameter is typically the input/key length, the
security strength of collision resistant hash functions are more often represented
as a function of the output length n and it is upper bounded by 2n/2 due to
birthday attacks. In practice, a fixed output size (e.g. 128, 160) typically corre-
sponds to a single function (e.g., MD5, SHA1) instead of a collection of ones 15.
One can just stick to a hM for some pre-fixed random M.

Definition 2.2 (Collision Resistant Hash Functions). A collection of func-
tions

H =
{
hz : {0, 1}k(n) → {0, 1}n, z ∈ {0, 1}s(n)

}
is a collision-resistant hash (CRH) function if the following hold:

– (Shrinking). The shrinkage factor of H, defined as ratio n
k , is less than 1

for every n.

– (Efficient). There are efficient algorithms H and G: (1) on input z ∈ {0, 1}s
and y ∈ {0, 1}k, H outputs hz(y); and (2) given 1n as input G returns an
index z ∈ {0, 1}s.

15 Recall that a non-uniform attacker can obtain polynomial-size non-uniform advice.
Thus, if every security parameter corresponds to only a single function h then the
attacker can include a pair of x and x′ with h(x) = h(x′) as part of the advice.
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– (Collision-resistant). For every probabilistic polynomial-time (PPT) ad-
versary A

Pr
z←G(1n)

[ (y, y′)← A(z) : y 6= y′ ∧ hz(y) = hz(y
′) ] = negl(n) .

The shrinkage is linear if n/k ≤ 1− ε, and it is poly-logarithmic (resp., polyno-
mial) if n/k ≤ 1/ logε n (resp., n/k ≤ 1/nε) for some positive constant ε > 0.
T -hardness. For T = T (n) we call H a T -hard CRH if no probabilistic ad-

versary A of running time T finds any collision with probability more than 1/T .

The indifferentiability framework [49,20] is widely adopted to analyze and
prove the security of the construction of one idealized primitive from another,
typically in settings where the underlying building blocks have no secrets.

Definition 2.3 (Indifferentiability [20]). A Turing machine C with oracle
access to an ideal primitive P is (q, σ, t, ε)-indifferentiable from an ideal prim-
itive R, if there exists a simulator S with oracle access to R such that for any
distinguisher D that makes at most q queries, it holds that∣∣∣∣Pr[DCP ,P = 1]− Pr[DR,SR = 1]

∣∣∣∣ ≤ ε,
where S makes σ queries and runs in time t when interacting with D and R.

The implication is that CP can securely replace R in many scenarios. We refer
to [59,24] for discussions on the (in)applicability of indifferentiability results.

Lemma 2.1 (Piling-up lemma). For 0 < µ < 1/2 and random variables E1,
E2, · · · , E` that are i.i.d. to Bµ we have

Pr
[⊕̀
i=1

Ei = 0
]

=
1

2
(1 + (1− 2µ)`) =

1

2
+ 2−cµ`−1 ,

where cµ = log 1
1−2µ .

Fact 1 For any 0 ≤ x ≤ 1 it holds that log(1 + x) ≥ x; and for any x > −1 we
have log(1 + x) ≤ x/ ln 2.

Fact 2 For k = o(n) we have log
(
n
k

)
= (1 + o(1))k log n

k .

3 Collision Resistant Hash Functions

3.1 The Expand-then-Compress Construction

We give a high-level overview about the EtC construction from [5]. Fix a ran-
dom n× q matrix M which specifies the function. On input y, hM first stretches
it into a long-but-sparse vector, i.e., Expand(y), and then multiply it with M,

10



which compresses into n bits. There are many ways to instantiate hM and we
use the following one which fulfills all properties needed by our framework (cf.
Theorem 1.1). In addition, Expand is highly parallel and can be efficiently im-
plemented by a single layer of (unbounded fan-in) AND gates (assuming input
includes both the individual bits of y and also their respective complements),
and therefore hM simply builds upon Expand by adding a layer of XOR gates.
Furthermore, the Expand function can be efficiently instantiated with idealized
heuristics (see Lemma 3.3).

Lemma 3.1 (A realization of the expanding function [5]). Let n be the
security parameter and let k ≤ poly(n), L = O(log n), t = t(n), q = q(n) be
integer-valued functions such that k = L · t, q = t · 2L. Let Expand : {0, 1}k →
{0, 1}q be a function that parses the k-bit input into L-bit blocks as

y = y1 · · · yL‖yL+1 · · · y2L‖ · · · ‖yL(t−1)+1 · · · yLt

and produces as output

Expand(y) = DeMul(y1 · · · yL)‖ · · · ‖DeMul(yL(t−1)+1 · · · yLt)

where DeMul : {0, 1}L → {0, 1}2L is a demultiplexer function that on input
z ∈ {0, 1}L outputs a 2L-bit string which is 1 in exactly the z-th location (and 0
everywhere else). Then, we have that

1. (Expand has sparse outputs). for all y ∈ {0, 1}k: |Expand(y)| = t;
2. (Expand is injective). Expand is injection with k = L · t = log(q/t)t.
3. (Expand is parallelizable). Expand is contained in AC0.

Our framework is based on the following expand-then-compress construction.

Construction 3.1 Let k = k(n) and q = q(n) be integer valued functions,
and let Expand : {0, 1}k → {0, 1}q be an expanding function as in Lemma 3.1.
A collection of functions Hk,n = {hM : {0, 1}k → {0, 1}n,M ∈ {0, 1}n×q} is
defined as

hM(x) = M · Expand(x)

where the key-sampler G(1n) samples an n× q matrix M
$←− {0, 1}n×q.

3.2 The Main Framework of LPN-based CRH

We state our main framework in Theorem 3.1 and then derive the main feasibility
results in Corollary 3.1.

Theorem 3.1 (The main framework). Let n be the security parameter, and
let µ = µ(n), k = k(n), q = q(n), t = t(n) and T = T (n) such that t2 ≤ q ≤ T =

2
8µt

ln 2(1−2µ) . Assume that the (n,µ, q)-DLPN problem is T -hard, and let hM and
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Expand be defined as in Lemma 3.1 and Construction 3.1 respectively. Then, for

every probabilistic adversary A of running time T ′ = 2
4µt

ln 2(1−2µ)
−1

Pr
M

$←−{0,1}n×q
[ (y,y′)← A(M) : y 6= y′ ∧ hM(y) = hM(y′) ] ≤ 1

T ′
.

We do not say “hM is a T ′-hard CRH” as it may not be poly(n)-time computable.

Proof. Suppose for contradiction that A finds out a collision with probability
more than 1/T ′ s.t. y 6= y′ and hM(y) = hM(y′), then we have M ·x = 0, where
x = Expand(y)− Expand(y′) 6= 0 due to the distinctiveness of Expand, and

|x| ≤ |Expand(y)|+ |Expand(y′)| ≤ 2t .

We define in Algorithm 1 below an LPN distinguisher D that on input (MT,

z), where MT $←− {0, 1}q×n, and either z = MTs + e (for e ← Bqµ) or z
$←−

{0, 1}q, invokes A on M, and if a collision (y,y′) is found, it outputs xTz for
x = Expand(y) − Expand(y′), and otherwise it outputs a uniform random bit.
On a successful collision, we have by Lemma 2.1 and Fact 1

Pr[xTz = xTe = 0] ≥ 1

2
+

2−(log
1

1−2µ )2t

2
≥ 1

2
+

2−
4µt

ln 2(1−2µ)

2
.

Therefore, D achieves an overall advantage of

Pr[D(MT,MTs + e) = 0]− Pr
z

$←−{0,1}q
[D(MT, z) = 0]

>
1

T ′
· 2−

4µt
ln 2(1−2µ)

2
≥ 2−

8µt
ln 2(1−2µ) ,

which is a contradiction to the assumption.

Algorithm 1 A distinguisher D for (n,µ, q)-DLPN

Input: (MT, z), where MT ∈ {0, 1}q×n and z ∈ {0, 1}q
(y,y′)← A(M);
x = y − y′;
if 0 < |x| ≤ 2t ∧Mx = 0 then
v = xTz

else
v

$←− {0, 1}
end if
Output: v

Corollary 3.1 (Main feasibility results). Assume that (n,µ, q)-DLPN is T -
hard, then T ′-hard CRH functions with shrinkage n

k exist in AC0(MOD2), where
(µ,T ,q,T ′,nk ) can be any of the following:

12



1. (Constant-noise, less hardness, poly-logarithmic shrinkage).

µ = O(1), T = 2n
0.5+ε

, q = 2n
0.5

, T ′ ≈ 2n
0.5+ε/2 = λlog

2ε λ/2 and n
k <

16µ
ln 2(1−2µ)nε = 16µ

ln 2(1−2µ) log2ε λ
for any constant ε > 0.

2. (Constant-noise, maximal efficiency, constant shrinkage).
µ = O(1), T = 2

εn
logn , q = nCε,µ , T ′ ≈ 2

εn
2 logn , n

k <
1
2 for any constant ε > 0

and Cε,µ = max( 32µ
ε ln 2(1−µ) , 2).

3. (Low-noise, maximal efficiency, constant shrinkage).

µ = 1/
√
n, T = 2

ε
√
n

logn , q = nCε,µ , T ′ ≈ 2
ε
√
n

2 logn , n
k <

1
2 for any constant ε > 0

and C ′ε,µ = max( 32
ε ln 2 , 2).

4. (Extremely-low-noise, standard hardness, constant shrinkage).

µ = (logn)2

n , T = q > poly(n) and T ′ > poly(n) for every poly, and n
k <

1
2 .

Proof. Recall that T = 2
8µt

ln 2(1−2µ) and n
k = n

log(q/t)t <
2n

t log q . To prove param

#1, we let 8µt
ln 2(1−2µ) = n0.5+ε and thus t = ln 2(1− 2µ)n0.5+ε/8µ, and then with

q = 2
√
n we get

n

k
<

2
√
n

t
<

16µ

ln 2(1− 2µ)nε
.

However, hM that corresponds to param #1 is not computable in poly(n),
and we need to switch to security parameter λ = 2

√
n s.t. n = log2 λ, k =

Ω(n1+ε) = Ω(log2+2ε λ), T ′ = λlog
2ε λ/2. The resulting hM : {0, 1}Ω(log2+2ε λ) →

{0, 1}log2 λ is a T ′-hard CRH function on security parameter λ but only oper-
ates on small inputs and outputs, and we use parallel repetition (Lemma 3.2)

to get a domain/range-extended CRH h′M : {0, 1}Ω(λ log2ε λ) → {0, 1}λ for

M ∈ {0, 1}log2 λ×λ, which is T ′-hard and is computable in time poly(λ). Now

proceed to params #2 and #3: set 8µt
ln 2(1−2µ) to εn

logn for µ = O(1) or to ε
√
n

logn for

µ = 1/
√
n, and let 2n

t log q = 1
2 so that

t = ln 2·ε(1−2µ)n
8µ logn , log q =

32µ log n

ε ln 2(1− 2µ)
for µ = O(1) ;

t = ln 2·ε·n
8 logn , log q =

32 log n

ε ln 2
for µ = 1/

√
n .

Note that we also need q ≥ n2 in respect of the t ≤ √q condition. Finally, param

#4 is seen by the following: for µ = (logn)2

n , any q = poly(n) and t satisfying
2n

t log q = 1/2 we have that T = 2
8µt

ln 2(1−2µ) is another polynomial in n.

Lemma 3.2 (Parallel repetitions of CRH). Let k = k(λ), d = d(λ) and
T = T (λ) be integer valued functions. If Hk,λ = {hs : {0, 1}k → {0, 1}λ, s ∈
{0, 1}poly(λ)} is a T -hard CRH function, then H′dk,dλ = {h′s : {0, 1}dk → {0, 1}dλ,
s ∈ {0, 1}poly(λ)}, where

h′s(y1, · · · ,yd) =
(
hs(y1), · · · , hs(yd)

)
, y1, · · · ,yd ∈ {0, 1}k ,

is a (T/d)-hard CRH function.
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3.3 Assume Less, Shrink More and in Parallel at the Same Time

Although already assuming much less hardness than previously known, the CRH
immediately implied by constant-noise LPN (as specified by param #1 of Corol-
lary 3.1) is inefficient as M is of dimension n× 2

√
n and thus the resulting hash

function has computation time far beyond polynomial. The solution by switch-
ing to another parameter λ = 2

√
n makes the hash function computable in time

polynomial in λ but at the same time it dramatically downgrades the security

from 2Ω(n1/2+ε) to λΩ(log2ε λ), and deteriorates the shrinkage factor from polyno-
mial to poly-logarithmic. Otherwise said, we mainly establish feasibility results
about basing CRH on constant-noise LPN with minimal hardness possible.

LPN+RF → more efficient domain extenders. In this subsection, we
discuss an alternative to void the security/efficiency loss, i.e., to preserve secu-
rity, polynomial shrinkage and efficiency at the same time. In addition to LPN,
the construction relies on (arguably minimal) idealized assumptions such as a
small-domain random function (whose domain is much smaller than the range)
or a random permutation (which can be instantiated with a block cipher keyed
by a random public string). Unlike the parameter-switching technique, this ap-
proach applies also to low-noise LPN with even reduced hardness. Note that
idealized heuristics such as a RF trivially implies collision resistance, e.g., a RF
R : {0, 1}` → {0, 1}n with ` > n (or otherwise truncating the output to make
it compressing) is collision resistant. Therefore, based on a small-domain RF
(with `� n) our main contribution is a simple and elegant collision-resistance-
preserving domain extender combining the best of the two worlds: maximized
(depth-1) parallelizability and polynomial shrinkage. More specifically, simply
parse the input y into polynomially many blocks y1, . . ., yt, evaluate R on them
independently and in parallel, and output the XOR sum as below:

R : {0, 1}` → {0, 1}n (`� n)

hR : {0, 1}k → {0, 1}n (k = n1+ε)

hR(y) =

t⊕
i=1

R(i‖yi) ,

which yields a domain extender with polynomially shrinkage, i.e., n/k < 1/nΩ(1).

An idealized realization of hM. We recall that hM(y) = M · Expand(y)
for an n × (q = t · 2L) matrix M and that Expand parses y into t = k/L
blocks and produces same number of output blocks accordingly. We also parse
M into t equal-size submatrices M1, · · · , Mt, each of dimension n × 2L. Let
R : {0, 1}log(q) → {0, 1}n be a random function that describes M, i.e., for every
j ∈ {0, 1}log(q) the output R(j) corresponds to the j-th column of M. Thus,

hM(y) =
[
M1 · · · Mt

]︸ ︷︷ ︸
M

·

DeMul(y1)
...

DeMul(yt)


︸ ︷︷ ︸

Expand(y)

=

t⊕
i=1

R(i‖yi) (5)
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where R(i‖yi) = Mi · DeMul(yi) simply follows the definition of R and DeMul.
Therefore, computing hM is now reduced to instantiating a small-domain random
function R : {0, 1}log(q) → {0, 1}n for log(q) � n, where the access to the huge
amount of randomness in M is efficiently implemented by R, as stated below.

Lemma 3.3 (An idealized realization of hM). Let k = k(n), t = t(n),
q = q(n) and L = L(n) be integer valued functions such that q/t = 2L. Assume
that R : {0, 1}log(q) → {0, 1}n behaves like a random function, then hR(y) =⊕t

i=1R(i‖yi) as defined in (5) perfectly realizes hM specified in Construction 3.1.

With the idealized realization of hM, we immediately obtain a simple and
efficient way to extend the domain of random functions polynomially while pre-
serving collision resistance, stated below as a corollary of Theorem 3.1.

Corollary 3.2 (A polynomially-shrinking domain extender). Let n be
the security parameter, and let µ = µ(n), k = k(n), q = q(n), t = t(n) and

T = T (n) such that t2 ≤ q ≤ T = 2
8µt

ln 2(1−2µ) . Assume that (n,µ,q)-DLPN is
T -hard and R : {0, 1}log(q) → {0, 1}n behaves like a random function , then for
y = y1‖ · · · ‖yt parsed as t = k/L blocks, each of size L = log(q/t), we have

hR : {0, 1}k → {0, 1}n, hR(y) =

t⊕
i=1

R(i‖yi),

is a T ′-hard CRH function with shrinkage n/k, where (µ,T ,q,T ′,nk ) can be either
of the following:

1. (Constant-noise, less hardness, polynomial shrinkage).

µ = O(1), T = 2n
0.5+ε

, q = 2n
0.5

, T ′ ≈ 2n
0.5+ε/2 and n

k < 16µ
ln 2(1−2µ)nε for

any constant ε > 0.
2. (Low-noise, less hardness, polynomial shrinkage).

µ = 1/
√
n, T = 2n

0.25+ε

, q = 2n
0.25

, T ′ ≈ 2n
0.25+ε/2 and n

k <
16

ln 2·nε for any
constant ε > 0.

Proof. First, assume that hR is functionally equivalent to hM. Then, param #1
is the same as the counterpart in Corollary 3.1 but we refrain from switching

to a new security parameter. To prove param #2, we recall that T = 2
8µt

ln 2(1−2µ)

and n
k = n

log(q/t)t <
2n

t log q (see Theorem 3.1). Let 8µt
ln 2(1−2µ) = n0.25+ε and thus

t ≈ ln 2 · n0.75+ε/8, and then with q = 2n
0.25

we get

n

k
<

2n0.75

t
<

16

ln 2 · nε
.

The conclusion then follows from Lemma 3.3 that hR perfectly instantiates hM.

One may want to instantiate R with a pseudorandom function (with key
made public), but the security cannot be achieved with a standard reducibil-
ity argument due to the distinction between public-coin and secret-coin CRH
functions [36]. We thus resort to random permutations or idealized blockciphers.
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Random functions vs. permutations. The small-domain random function
(to be instantiated) is not commonly found in practice, but it is implied by a
large-domain random function for free, i.e., R(x) = F (0l‖x) is a random function
if F is a random one. Thus, we simply consider a length-preserving random
function, which can be in turn based on a random permutation (and instantiated
with block ciphers). For example, for random permutations π, π1, π2, we have
that π ⊕ π−1 [27] (or π1 ⊕ π2 [52]) is indifferentiable from a length-preserving
random function. This means that R on input x can be instantiated as

AESk(0l‖x)⊕ AES−1k (0l‖x) or AESk1(0l‖x)⊕ AESk2(0l‖x)

where l = n − dlog(q)e bits are padded to fit into a permutation, k, k1, and k2
are public random keys. Intuitively, the XOR of a permutation and its inverse
(or two independent permutations) is to destroy the permutation structure as its
inversibility could give the adversary additional advantages in collision finding.
The former instantiation relies on the assumption that a practical block cipher
like AES on a random key behaves like a random permutation. We reproduce
below the results by Dodis et al. [27] that π ⊕ π−1 is indifferentiable from a
(length-preserving) random function. Therefore, instantiation of a random func-
tion with a blockcipher only incurs a factor of 2 in the number of calls to the
underlying primitive.

Lemma 3.4 (Lemma 4 from [27]). Let n be the security parameter, let q =
q(n) and let π be a random permutation over {0, 1}n. We have that π ⊕ π−1 is

(q, q, O(nq), O( q
2

2n ))-indifferentiable from an n-to-n-bit random function.

On related works. We offer a new and simple construction of polynomi-
ally shrinking domain extenders from random functions/permutations/ fixed-
key block ciphers. Compared with the traditional blockcipher-based compression
functions, e.g. [55,57,13], our solution avoids the key-setup costs and eliminates
the need for related-key security on a large space of keys. That is, (using AES-
128 as an example) we only assume that “AES on a single random key behaves
like a random permutation”, instead of that “AES on 2128 keys yields 2128 in-
dependent random permutations”, as imposed by the Ideal Cipher Model. On
the other hand, existing permutation-based solutions either only offer a constan-
t shrinkage factor (typically 1/2) [62,51], or require permutations with a large
domain (e.g., [28] needs a large permutation on n2-bit strings to obtain a CRH
function with shrinkage factor 1/n), and in contrast our construction runs in
parallel and compresses polynomially.

4 Concluding Remarks

We construct CRH from LPN for a broad spectrum of parameter choices, and
thus resolve the problem whether CRH functions can be based on the (rea-
sonable) hardness of LPN. We also discuss how to improve the efficiency using
idealized heuristics. We leave it as future work to investigate more efficient in-
stantiation (based on Ring-LPN), and to compare it with SWIFFT/SWIFFTX.
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