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Abstract. We study a relaxed notion of lattice trapdoor called approx-
imate trapdoor, which is defined to be able to invert Ajtai’s one-way
function approximately instead of exactly. The primary motivation of
our study is to improve the efficiency of the cryptosystems built from
lattice trapdoors, including the hash-and-sign signatures.
Our main contribution is to construct an approximate trapdoor by modi-
fying the gadget trapdoor proposed by Micciancio and Peikert [Eurocrypt
2012]. In particular, we show how to use the approximate gadget trap-
door to sample short preimages from a distribution that is simulatable
without knowing the trapdoor. The analysis of the distribution uses a
theorem (implicitly used in past works) regarding linear transformations
of discrete Gaussians on lattices.
Our approximate gadget trapdoor can be used together with the existing
optimization techniques to improve the concrete performance of the hash-
and-sign signature in the random oracle model under (Ring-)LWE and
(Ring-)SIS assumptions. Our implementation shows that the sizes of the
public-key & signature can be reduced by half from those in schemes
built from exact trapdoors.

1 Introduction

In the past two decades, lattice-based cryptography has emerged as one of
the most active areas of research. It has enabled both advanced cryptographic
capabilities, such as fully homomorphic encryption [29]; and practical post-
quantum secure public-key encryptions and signatures, as observed in the on-
going NIST post-quantum cryptography (PQC) standardization procedure [4].
A large fraction of the lattice-based cryptosystems uses lattice trapdoors. Those
cryptosystems include basic primitives like public-key encryption and signature
schemes [33,39,38,31], as well as advanced primitives such as identity-based en-
cryption [31,1,19], attribute-based encryption [34], and graded encodings [30].

In this work, we focus on the trapdoor for the lattice-based one-way func-
tion defined by Ajtai [2], and its application in digital signatures [31]. Given a
wide, random matrix A, and a target vector y, the inhomogeneous short integer
solution (ISIS) problem asks to find a short vector x as a preimage of y, i.e.

A · x = y (mod q).
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Without a trapdoor for the matrix A, finding a short preimage is proven to be
as hard as solving certain lattice problems in the worst case [2]. A trapdoor for
the matrix A, on the other hand, allows its owner to efficiently produce a short
preimage. An explicit construction of the trapdoor for Ajtai’s function was first
given in [3] and later simplified by [9,42].

Towards the proper use of lattice trapdoors in cryptography, what really gives
the trapdoor a punch is the work of Gentry, Peikert and Vaikuntanathan [31].
They show how to sample a short preimage from a distribution that is simu-
latable without knowing the trapdoor, instead of a distribution which may leak
information about the trapdoor (as observed by the attacks [32,46] on the initial
attempts of building lattice-based signatures [33,38]). Such a preimage sampling
algorithm allows [31] to securely build a hash-and-sign signature as follows. Let
the matrix A be the public verification key, the trapdoor of A be the secret sign-
ing key. To sign a message m, first hash it to a vector y, then use the trapdoor to
sample a short preimage x as the signature. The secret signing key is guaranteed
to be hidden from the signatures, since the signatures are simulatable without
using the trapdoor.

Despite its elegant design, the hash-and-sign signature based on Ajtai’s func-
tion suffers from practical inefficiency due to its large key size and signature
size. Indeed, all the three lattice-based signature candidates that enter the sec-
ond round of NIST PQC standardization [4] are built from two alternative ap-
proaches — Falcon [27] is based on the hash-and-sign paradigm over NTRU
lattices; Dilithium [26] and qTESLA [8] are based on the rejection sampling
approach [40,11]. The suggested parameters for the three candidates lead to
competitive performance measures. For example, for 128-bit security, the sizes
of the public keys & signatures for all the three candidates are below 5 kB & 4
kB (respectively). By contrast, for the hash-and-sign signature based on Ajtai’s
function, the sizes of the public keys & signatures are more than 35 kB & 25 kB
according to the implementation benchmarks of [13,14,36].

1.1 Summary of our contributions

In this paper we develop new techniques to bring down the sizes of the public keys
& signatures of the hash-and-sign signature based on Ajtai’s one-way function.
We define a relaxed notion of lattice trapdoor called approximate trapdoor, which
can be used to solve the ISIS problem approximately instead of exactly. With
a relaxation of the correctness requirement, it is possible to generate smaller
public matrices, trapdoors, and preimages for Ajtai’s function, which translate to
smaller public-keys, secret-keys, and signatures for the hash-and-sign signature
scheme.

Our main technical contribution is to show that the gadget trapdoor proposed
by Micciancio and Peikert [42] can be modified to an approximate trapdoor.
In particular, we show how to use the approximate gadget trapdoor to sample
preimages from a distribution that is simulatable without knowing the trapdoor.
The analysis of the distribution uses a theorem (implicitly used in past works)
regarding linear transformations of discrete Gaussians on lattices.
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Our approximate gadget trapdoor can be used together with all existing
optimization techniques, such as using the Hermite normal form and using a
bigger base in the gadget, to improve the concrete performance of the hash-
and-sign signature in the random oracle model under RingLWE and RingSIS
assumptions. Our proof-of-concept implementation shows that the sizes of the
public-key & signature can be reduced to 5 kB & 4.45 kB for an estimation of 88-
bit security, and 11.25 kB & 9.38 kB for an estimation of 184-bit security. Those
are much closer to the sizes of the signatures based on the rejection sampling
approach [40,11,26,8]. More details of the parameters are given in §1.3 and §5.2.

1.2 Technical overview

Given a public matrix A ∈ Zn×mq where m = O(n log q), and a target y, we call
a vector x ∈ Zm an approximate short preimage of y if

A · x = y + z (mod q)

for some z ∈ Zn, and both x and z are short. An approximate trapdoor for A
is defined to be a string that allows its owner to efficiently find an approximate
short preimage given a target y.

Of course, to make sense of the word “trapdoor”, we first need to argue that
solving the approximate version of ISIS is hard without the trapdoor. Under
proper settings of parameters, we show the approximate ISIS problem is as hard
as the standard ISIS problem, or no easier than LWE. The reductions extensively
use the Hermite normal form (HNF) and are pretty straightforward.

The approximate ISIS problem and the approximate trapdoor are natural
generalizations of their exact variants. Indeed, both notions have been used in
the literature, at least on an informal level. For example, the approximate ISIS
problem was used in the work of Bai et al. [12] to improve the combinatorial
algorithms of the exact ISIS problem.

It is well-known that an exact trapdoor of a public matrix in the HNF, say
a trapdoor for A = [In | A′], can be used as an approximate trapdoor for A′.
Such a method was often used in the implementation of signatures to decrease
the sizes of the public key and the signature by a dimension of n. Our goal is thus
to further reduce the sizes compared to the HNF approach, while preserving the
quality of the trapdoor, i.e. at least not increasing the norm of the preimage.

Approximate gadget trapdoor. Our main contribution is to show that the gadget
trapdoor (G-trapdoor) proposed by Micciancio and Peikert [42] can be modified
to an approximate trapdoor, in a way that further reduces the sizes of the public
matrix, the trapdoor, and the preimage.

Recall the core of the G-trapdoor is a specific “gadget” matrix of base b,

G := In ⊗ gt := In ⊗ (1, b, ..., bk−1) ∈ Zn×(nk),

where k := dlogb qe. The base b is typically chosen to be 2 for simplicity, or a
larger value in practical implementations.
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Micciancio and Peikert [42] show how to generate a random matrix A to-
gether with a matrix D of small norm such that A ·D = G (mod q). In partic-
ular, A is designed to be

A = [Ā|G− ĀR],

where R is a matrix with small entries and is the actual trapdoor. The matrix

D is then equal to

[
R
Ink

]
. Since the kernel of the G matrix has a public short

basis, one can first solve the ISIS problem under the public matrix G, then use
D to solve the ISIS problem under the public matrix A.

We observe that if we drop a few (say l) entries corresponding to the small
powers of b from the gadget matrix G, i.e. let the following F matrix be a
modified gadget matrix

F := In ⊗ f t := In ⊗ (bl, ..., bk−1) ∈ Zn×n(k−l),

then we are still able to solve the ISIS problem w.r.t. the public matrix F up to a
bl-approximation of the solution (i.e., the norm of the error vector is proportional
to bl). Replacing G by F in A gives

A = [Ā|F− ĀR]. (1)

Then the dimensions of the trapdoor R and the public matrix A can be reduced.

Sampling from a distribution that is simulatable without knowing the trapdoor.
Given a public matrix A together with its approximate G-trapdoor R, finding
an arbitrary approximate short preimage of a given target u is quite straightfor-
ward, but sampling the preimage from a distribution that is simulatable without
knowing the trapdoor turns out to be non-trivial. As mentioned earlier, the abil-
ity to sample from such a distribution is fundamental to most of the trapdoor
applications including digital signatures.

We provide an algorithm that samples an approximate short preimage from
a distribution that is simulatable without knowing the trapdoor. The algorithm
itself is a fairly simple generalization of the perturbation-based discrete Gaussian
sampler from [42], but the analyses of the preimage distribution from [42] are not
easy to generalize. Our analyses of the preimage distribution and the approxima-
tion error distribution extensively use a linear transformation theorem on lattice
distributions (cf. Lemma 4, or Theorem 1, implicitly used in [42,43,15,25]).

The details of the analyses are quite technical. Here let us mention the dif-
ference in the way of obtaining the main result of ours compared to the ones
from [31,42]. The approach taken by [31,42] is to first spell out the distributions
of the preimages for all the target images u ∈ Znq , then show the distributions are
simulatable for uniformly random target images. For the approximate preimage
sampling, we are only able to simulate the distributions of the preimages and the
errors for uniformly random targets, without being able to spell out the mean-
ingful distributions for all the targets an intermediate step. Still, simulating the
preimages of uniform targets suffices for the application of digital signatures.
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To briefly explain the reason behind the difference, let us point out that the
methods we have tried to analyze the preimage distribution for all the target
images require significant increases in the smoothing parameters of the lattice
intersections required in the linear transformation theorem (Theorem 1). In other
words, the norm of the resulting preimage increases significantly rendering the
result meaningless.

1.3 Improvement in the efficiency compared to the exact trapdoor

We now explain the efficiency gain of using our approximate trapdoor compared
to the exact trapdoor and the other existing optimization techniques, with a
focus on the signature application. Our goal is to set the parameters to achieve
the following “win-win-win” scenario:

1. Save on the size of the preimage (i.e., the signature).
2. Save on the size for the public matrix A.
3. Retain, or even gain, concrete security, which is related to the discrete Gaus-

sian width of the preimage and the norm of the error term.

Parameters Exact G-trapdoor Approximate G-trapdoor

m n(2 + k) n(2 + (k − l))
σ

√
b2 + 1 · ω(

√
logn)

√
b2 + 1 · ω(

√
logn)

s C · τ · (
√
m+ 2

√
n) · σ C · τ · (

√
m+ 2

√
n) · σ

ν 0 bl · σ

Fig. 1. A brief comparison of the parameters. The parameters in the table are derived
under a fixed lattice dimension n, a fixed modulus q ≥

√
n, and a fixed base b. Let

k = dlogb qe. Let l denote the number of entries removed from g (1 ≤ l < k). Then
we list m as the dimension of the public matrix and the preimage; σ as the width
of the gadget preimage distribution; s as the width of the final preimage distribution
(where C > 0 is a universal constant); τ as the width, or subgaussian parameter, of
the distribution of the entries in the trapdoor matrix R; ν as the length bound of the
error for each entry in the image.

Let us start with an understanding of the dependency of the savings on the
variable l, i.e, the number of entries dropped from the gadget g. In Figure 1
we provide a comparison of the parameters between the exact G-trapdoor of
[42] and the approximate G-trapdoor samplers in this paper. In both cases the
public matrices are instantiated in the pseudorandom mode. For the approximate
trapdoor, the dimension of the trapdoor decreases from nk to n(k − l). The
dimension m of the public matrix and the preimage decreases. The width s of
the preimage distribution also decreases slightly following the decreasing of m.
However, the norm of the error factor in the image grows with l. So in the
concrete instantiation of the hash-and-sign signature discussed later, we need to
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coordinate the value of l with the norms of the preimage and the error, which
will determine the cost of the attacks together.

Our algorithm inherits the O(log q)-space, O(n log q)-time G-preimage sam-
ple subroutine from [42,28]. So the saving of space and time in the sampling of
the perturbation is proportional to the saving in the dimension m.

Concrete parameters for the signatures. We give a proof-of-concept imple-
mentation of the hash-and-sign signature based on our approximate trapdoor.
The security is analyzed in the random oracle model, assuming the hardness of
RingLWE for the pseudorandomness of the public key and RingSIS for the un-
forgeability of the signature. Here we provide a short summary and leave more
details in Section 5.2.

Let us first remark that different implementation results of the hash-and-sign
signatures [13,14,36] possibly use different ways of measuring sizes and security,
and not all the details behind the parameters are recoverable from these papers.
So we also implementation the exact trapdoor as a reference. For an estimation
of 88-bit security, our reference implementation for the exact trapdoor under the
modulus q ≈ 224 and base b = 2 matches the parameters reported in [13].

We also use smaller moduli and bigger bases to reduce the size and increase
the security level. The parameters in Figure 2 suggest that for the 3 choices of q
and b, using the approximate gadget trapdoor by setting l = d(logb q)/2e saves
about half of the sizes in the public key and signatures comparing to using the
exact trapdoor, with even a slight increase in the expected cost for the attacking
algorithms. Let us mention that some schemes in the literature (like [23]) use
an extremely large base of size b ≈ √q (the resulting gadget is g = [1,

√
q]).

However, for the small moduli like 216 or 218, such large bases lead to Gaussian
widths larger than the moduli. So we only use moderately large bases.

Params Exact Approx Approx Exact Approx Approx Exact Approx Approx

n 512 512 512 512 512 512 512 512 512
dlog2 qe 24 24 24 16 16 16 16 16 16
b 2 2 2 2 2 2 4 4 4
l 0 12 15 0 7 9 0 2 4
τ 40 40 40 2.6 2.6 2.6 2.6 2.6 2.6
s 38317.0 29615.3 26726.3 2170.7 1756.3 1618.2 3114.2 2833.3 2505.6
m 13312 7168 5632 9216 5632 4608 5120 4096 3072
‖x‖2 4441737.7 2521387.0 2035008.5 211100.9 133305.5 109339.1 223740.1 183004.9 138145.7
‖z‖2 0 374014.0 2118987.6 0 11897.9 46428.4 0 1402.3 19807.1
PK 37.50 19.50 15.00 17.00 10.00 8.00 9.00 7.00 5.00
Sig 25.68 13.53 10.51 13.16 7.83 6.30 7.62 5.94 4.45
LWE 100.0 100.0 100.0 104.7 104.7 104.7 104.7 104.7 104.7
AISIS 80.2 85.8 81.1 83.7 89.0 88.1 82.8 85.5 87.8

Fig. 2. Summary of the concrete parameters. The size of PK and Sig are measured in
kB. ‖x‖2, ‖z‖2 are the upper-bounds of the norms of the preimage and the error term.
LWE and AISIS refer to the estimations of security levels for the pseudorandomness
of the PK and finding a short approximate preimage.
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Our implementation shows that the sizes of the public-key & signature can
be reduced to 5 kB & 4.45 kB for an estimation of 88-bit security, and 11.25 kB
& 9.38 kB for an estimation of 184-bit security. Those are much closer to the
sizes of the signatures based on the rejection sampling approach [40,11,26,8]. As
a reference, the sizes of the public-key & signature for qTESLA [8] are 4.03 kB
& 3.05 kB for an estimation of 128-bit security, and 8.03 kB & 6.03 kB for an
estimation of 192-bit security. The sizes for Dilithium [26] are even smaller. Let us
remark that our implementation has not adapted possible further optimizations
used in Dilithium [26] and qTESLA [8]. So it is reasonable to expect we have more
room to improve after adding making further optimizations. The parameters for
Falcon [27] are the smallest due to the use of NTRU lattices, so they are rather
incomparable with the ones based on RingLWE. As a side note, we do not know
how to construct approximate trapdoors for NTRU lattices, and we leave it as
an interesting question to investigate in future.

Using approximate trapdoors in the advanced lattice cryptosystems. Finally, let
us briefly mention the possible applications of the approximate trapdoors in the
cryptosystems built from the dual-Regev approach [31,1,19,34] and the GGH15
approach [30,17,18,35,52,21].

To use approximate trapdoors in the schemes based on the dual-Regev ap-
proach, we need to sample the LWE secret term with a small norm instead of
from the uniform distribution to maintain the correctness of the schemes. For
many of these schemes, the security analyses require the extensions of the Bonsai
techniques in the approximate setting. We leave the extensions to future works.

For the schemes based on the GGH15-approach, the correctness of the schemes
holds without any changes. The security also holds, except for the schemes in [21]
which requires the extension of the Bonsai techniques. Let us remark that the
saving in the dimension m is of significant importance to the applications built
on the GGH15 graded encoding scheme (implemented in [37,20]). In those ap-
plications, the modulus q is proportional to md (where d ∈ N is the number
of “levels” of the graded encodings; larger d supports richer functionalities). So
reducing the dimension m would dramatically reduce the overall parameter.

Organizations. The rest of the paper is organized as follows. Section 2 pro-
vides the necessary background of lattices. Section 3 provides the definition and
the hardness reductions of the approximate ISIS problem. Section 4 presents
the approximate gadget trapdoors. Section 5 provides an instantiation of the
hash-and-sign signature scheme under the approximate trapdoor, with concrete
parameters.

2 Preliminaries

Notations and terminology. In cryptography, the security parameter (denoted as
λ) is a variable that is used to parameterize the computational complexity of the
cryptographic algorithm or protocol, and the adversary’s probability of breaking
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security. An algorithm is “efficient” if it runs in (probabilistic) polynomial time
over λ.

When a variable v is drawn uniformly random from the set S we denote
as v ← U(S). We use ≈s and ≈c as the abbreviations for statistically close
and computationally indistinguishable. For two distributions D1, D2 over the

same support X , we denote D1
ε
≈ D2 to denote that each x ∈ X has D1(x) ∈

[1± ε]D2(x) and D2(x) ∈ [1± ε]D1(x).
Let R,Z,N be the set of real numbers, integers and positive integers. Denote

Z/qZ by Zq. For n ∈ N, [n] := {1, ..., n}. A vector in Rn (represented in column
form by default) is written as a bold lower-case letter, e.g. v. For a vector v,
the ith component of v will be denoted by vi. For an integer base b > 1, we
call a positive integer’s “b-ary” decomposition the vector (q0, q1, . . . , qk−1) ∈
{0, . . . , b− 1}k where k := dlogb qe, and q =

∑
qib

i.
A matrix is written as a bold capital letter, e.g. A. The ith column vector

of A is denoted ai. The length of a vector is the `p-norm ‖v‖p := (
∑
vpi )1/p,

or the infinity norm given by its largest entry ‖v‖∞ := maxi{|vi|}. The length
of a matrix is the norm of its longest column: ‖A‖p := maxi ‖ai‖p. By default
we use `2-norm unless explicitly mentioned. When a vector or matrix is called
“small” or “short”, we refer to its norm but not its dimension, unless explicitly
mentioned. The thresholds of “small” or “short” will be precisely parameterized
in the article when necessary.

2.1 Linear Algebra

Let {ei}ni=1 be the canonical basis for Rn, with entries δ(j, k) where δ(j, k) = 1
when j = k and 0 otherwise. For any set S ⊆ Rn, its span (denoted as span(S))
is the smallest subspace of Rn containing S. For a matrix, M ∈ Rn×m, its span is
the span of its column vectors, written as span(M). We write matrix transpose
as Mt. Let B̃ denote the Gram-Schmidt orthogonalization of B. The GSO of
an ordered basis B = [b1, . . . ,bk] is assumed to be from left to right, b̃1 = b1,
unless stated otherwise.

Recall M’s singular value decomposition (SVD), i.e. M = VDW ∈ Rn×m
where V ∈ Rn×n along with W ∈ Rm×m are unitary, and D ∈ Rn×m is a
triangular matrix containing M’s singular values. Further, let q = min{n,m}
and Dq = diag(s1, . . . , sq) be the diagonal matrix containing M’s singular values
si = si(M). Throughout the paper, we are concerned with random, subgaussian
[51] matrices M with {s1 ≥ . . . ≥ sq > 0}. Then, D = Dq when n = m,

D = [Dq 0] when m > n, and D =

[
Dq

0

]
in the case m < n.

A symmetric matrix Σ ∈ Rn×n is positive semi-definite if for all x ∈ Rn,
we have xtΣx ≥ 0. It is positive definite, Σ > 0, if it is positive semi-definite
and xtΣx = 0 implies x = 0. We say Σ1 > Σ2 (≥) if Σ1 − Σ2 is positive-
(semi)definite. This forms a partial ordering on the set of positive semi-definite
matrices, and we denote Σ ≥ αI often as Σ ≥ α for constants α ∈ R+. For any
positive semi-definite matrix Σ, we write

√
Σ to be any full rank matrix T such
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that Σ = TTt. We say T is a square root of Σ. For two positive semi-definite
matrices, Σ1 and Σ2, we denote the positive semi-definite matrix formed by their
block diagonal concatenation as Σ1 ⊕Σ2. Let M∗ denote Hermitian transpose.
The (Moore-Penrose) pseudoinverse for matrix M with SVD M = VDW is
M+ = WD+V∗ where D+ is given by transposing D and inverting M’s nonzero
singular values. For example, T = sI and T+ = s−1I for a covariance Σ = s2I.
(An analogous T+ = T−1 is given for the non-spherical, full-rank case Σ > 0
using Σ’s diagonalization.)

2.2 Lattices background

An n-dimensional lattice Λ of rank k ≤ n is a discrete additive subgroup of Rn.
Given k linearly independent basis vectors B = {b1, ...,bk ∈ Rn}, the lattice
generated by B is

Λ(B) = Λ(b1, ...,bk) = {
k∑
i=1

xi · bi, xi ∈ Z}.

Given n,m ∈ N and a modulus q ≥ 2, we often use q-ary lattices and their
cosets, denoted as

for A ∈ Zn×mq , denote Λ⊥(A) or Λ⊥q (A) as {x ∈ Zm : A · x = 0 (mod q)};

for A ∈ Zn×mq ,w ∈ Znq , denote Λ⊥w(A) as {x ∈ Zm : A · x = w (mod q)}.

Gaussians on lattices. For any s > 0 define the Gaussian function on Rn with
parameter s:

∀x ∈ Rn, ρs(x) = e−π‖x‖
2/s2 .

For any c ∈ Rn, real s > 0, and n-dimensional lattice Λ, define the discrete
Gaussian distribution DΛ+c,s as:

∀x ∈ Λ+ c, DΛ+c,s(x) =
ρs(x)

ρs(Λ+ c)
.

The subscripts s and c are taken to be 1 and 0 (respectively) when omitted.
For any positive semidefinite Σ = T ·Tt, define the non-spherical Gaussian

function as
∀x ∈ span(T) = span(Σ), ρT(x) = e−πx

tΣ+x,

and ρT(x) = 0 for all x 6∈ span(Σ). Note that ρT(·) only depends on Σ but not
the specific choice of the T, so we may write ρT(·) as ρ√Σ(·).

For any c ∈ Rn, any positive semidefinite Σ, and n-dimensional lattice Λ such
that (Λ + c) ∩ span(Σ) is non-empty, define the discrete Gaussian distribution
DΛ+c,

√
Σ as:

∀x ∈ Λ+ c, DΛ+c,
√
Σ(x) =

ρ√Σ(x)

ρ√Σ(Λ+ c)
.



10 Yilei Chen and Nicholas Genise and Pratyay Mukherjee

Smoothing parameter. We recall the definition of smoothing parameter and
some useful facts.

Definition 1 (Smoothing parameter [44]). For any lattice Λ and positive
real ε > 0, the smoothing parameter ηε(Λ) is the smallest real s > 0 such that
ρ1/s(Λ

∗ \ {0}) ≤ ε.
Notice that for two lattices of the same rank Λ1 ⊆ Λ2, the denser lattice

always has the smaller smoothing parameter, i.e. ηε(Λ2) ≤ ηε(Λ1).
We will need a generalization of the smoothing parameter to the non-spherical

Gaussian.

Definition 2. For a positive semi-definite Σ = TTt, an ε > 0, and a lattice Λ
with span(Λ) ⊆ span(Σ), we say ηε(Λ) ≤

√
Σ if ηε(T

+Λ) ≤ 1.

When the covariance matrix Σ > 0 and the lattice Λ are full-rank,
√
Σ ≥

ηε(Λ) is equivalent to the minimum eigenvalue of Σ, λmin(Σ), being at least
η2
ε(Λ).

Lemma 1 ([44]). For any n-dimensional lattice Λ of rank k, and any real ε > 0,

ηε(Λ) ≤ λk(Λ) ·
√

log(2k(1 + 1/ε))/π.

Lemma 2 ([44]). Let Λ be a lattice, c ∈ span(Λ). For any Σ ≥ 0, if
√
Σ ≥

ηε(Λ) for some ε > 0, then

ρ√Σ(Λ+ c) ∈
[

1− ε
1 + ε

, 1

]
· ρ√Σ(Λ)

The following is a generalization of [31, Corollary 2.8] for non-spherical Gaus-
sian.

Corollary 1 (Smooth over the cosets). Let Λ, Λ′ be n-dimensional lattices
s.t. Λ′ ⊆ Λ. Then for any ε > 0,

√
Σ ≥ ηε(Λ′), and c ∈ span(Λ), we have

∆(DΛ+c,
√
Σ mod Λ′, U(Λ mod Λ′)) < 2ε

Lemma 3 ([49,44]). Let B be a basis of an n-dimensional lattice Λ, and let
s ≥ ‖B̃‖ · ω(log n), then Prx←DΛ,s [‖x‖ ≥ s ·

√
n ∨ x = 0] ≤ negl(n).

Linear Transformations of Discrete Gaussians. We will use the following general
theorem, implicitly used in [42,43,15], regarding the linear transformation, T, of
a discrete Gaussian. It states that as long as the original discrete Gaussian over
a lattice Λ is smooth enough in the lattice intersect the kernel of T (Λ∩ker(T)),
then the distribution transformed by T is statistically close to another discrete
Gaussian.

Theorem 1 ([41]). For any positive definite Σ, vector c, lattice coset A :=
Λ+a ⊂ c+span(Σ), and linear transformation T, if the lattice ΛT = Λ∩ker(T)
satisfies span(ΛT) = ker(T) and ηε(ΛT) ≤

√
Σ, then

T(DA,c,
√
Σ)

ε̄
≈ DTA,Tc,T

√
Σ

where ε̄ = 2ε/(1− ε).
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We remark that if T is injective (i.e. ker(T) is trivial), then T(DA,c,
√
Σ) =

DTA,Tc,T
√
Σ .

Let us also remark that at the time of writing this article, the following lemma
(which is a special case of Theorem 1) has already been proven in [25]. This
lemma is suitable for all of our proofs using a non-injective linear transformation
of a discrete gaussian.

In what follows, the max-log distance between two distributions with the
same support S is ∆ML(X ,Y) = maxs∈S | logX (s)− logY(s)| [45].

Lemma 4 (Lemma 3, [25]). Let T ∈ Zn×m such that TZm = Zn and Λ⊥(T) =
{x ∈ Zm : Tx = 0 ∈ Zn}. Let Σ = TTt. For ε ∈ (0, 1/2), ε̂ = ε + O(ε2),
r ≥ ηε(Λ⊥(T)), the max-log distance between T ·DZm,r and DZn,r

√
Σ is at most

4ε̂.

2.3 Gadgets, or G-Lattices

Let G = In⊗gt ∈ Zn×nkq with gt = (1, b, . . . , bk−1), k = dlogb qe. G is commonly

referred to the gadget matrix. The gadget matrix’s q-ary lattice, Λ⊥q (G), is the

direct sum of n copies of the lattice Λ⊥q (gt). Further, Λ⊥q (gt) has a simple basis,

Bq =


b q0

−1
. . .

...
. . . b qk−2

−1 qk−1


where (q0, . . . , qk−1) ∈ {0, 1, . . . , b−1}k is the b-ary decomposition of the modu-
lus, q. When q = bk, we cheat by having q0 = q1 = . . . = qk−2 = 0 and qk−1 = b.
Either way, the integer cosets of Λ⊥q (gt) can be viewed as the syndromes of gt as
a check matrix, in the terminology of coding theory. These cosets are expressed
as Λ⊥u (gt) = {x ∈ Zk : gtx = u mod q} = Λ⊥q (gt) + u where u can be any coset

representative. A simple coset representative of Λ⊥u (gt) is the b-ary decompo-
sition of u. The integer cosets of Λ⊥q (G) are expressed through the direct-sum

construction, Λ⊥u (G) = Λ⊥u1
(gt)⊕ . . .⊕Λ⊥un(gt) where u = (u1, . . . , un) ∈ Znq . We

call G a gadget matrix since the following problems, SIS and LWE, are easily
solved on the matrix G [42].

2.4 SIS, LWE, and the trapdoor

We first recall the short integer solution (SIS) problem.

Definition 3 (SIS [2]). For any n,m, q ∈ Z and β ∈ R, define the short integer
solution problem SISn,m,q,β as follows: Given A ∈ Zn×mq , find a non-zero vector
x ∈ Zm such that ‖x‖ ≤ β, and

Ax = 0 mod q.
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Definition 4 (ISIS). For any n,m, q ∈ Z and β ∈ R, define the inhomogeneous
short integer solution problem ISISn,m,q,β as follows: Given A ∈ Zn×mq , y ∈ Znq ,
find x ∈ Zm such that ‖x‖ ≤ β, and

Ax = y mod q.

Lemma 5 (Hardness of (I)SIS based on the lattice problems in the
worst case [2,44,31]). For any m = poly(n), any β > 0, and any sufficiently
large q ≥ β · poly(n), solving SISn,m,q,β or ISISn,m,q,β (where y is sampled uni-
formly from Znq ) with non-negligible probability is as hard as solving GapSVPγ
and SIVPγ on arbitrary n-dimensional lattices with overwhelming probability, for
some approximation factor γ = β · poly(n).

All the (I)SIS problems and their variants admit the Hermite normal form

(HNF), where the public matrix A is of the form [In | A′] where A′ ∈ Zn×(m−n)
q .

The HNF variant of (I)SIS is as hard as the standard (I)SIS. This can be seen by
rewriting A ∈ Zn×mq as A =: [A1 | A2] = A1 · [In | A−1

1 ·A2] (we always work
with n, q such that A1 ← U(Zn×nq ) is invertible with non-negligible probability).

Learning with errors. We recall the decisional learning with errors (LWE) prob-
lem.

Definition 5 (Decisional learning with errors [50]). For n,m ∈ N and
modulus q ≥ 2, distributions for secret vectors, public matrices, and error vectors
θ, π, χ ⊆ Zq. An LWE sample is obtained from sampling s ← θn, A ← πn×m,
e← χm, and outputting (A,yt := stA + et mod q).

We say that an algorithm solves LWEn,m,q,θ,π,χ if it distinguishes the LWE
sample from a random sample distributed as πn×m × U(Zmq ) with probability
greater than 1/2 plus non-negligible.

Lemma 6 (Hardness of LWE based on the lattice problems in the
worst case [50,47,16,48]). Given n ∈ N, for any m = poly(n), q ≤ 2poly(n).
Let θ = π = U(Zq), χ = DZ,s where s ≥ 2

√
n. If there exists an efficient (pos-

sibly quantum) algorithm that breaks LWEn,m,q,θ,π,χ, then there exists an effi-
cient (possibly quantum) algorithm for solving GapSVPγ and SIVPγ on arbitrary
n-dimensional lattices with overwhelming probability, for some approximation
factor γ = Õ(nq/s).

The next lemma shows that LWE with the secret sampled from the error
distribution is as hard as the standard LWE.

Lemma 7 ([10,16]). For n,m, q, s chosen as was in Lemma 6,
LWEn,m′,q,DZ,s,U(Zq),DZ,s is as hard as LWEn,m,q,U(Zq),U(Zq),DZ,s for m′ ≤ m −
(16n+ 4 log log q).

Trapdoor. A trapdoor for a public matrix A ∈ Zn×mq is a string that allows its
owner to efficiently solve both the (I)SIS and LWE problems w.r.t. A.
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3 The Approximate Trapdoor for Ajtai’s Function

Given a matrix A ∈ Zn×mq , define an approximate trapdoor of A as anything
that allows us to efficiently solve the approximate version of the ISIS problem
w.r.t. A. We first define the approximate ISIS problem.

Definition 6 (Approximate ISIS). For any n,m, q ∈ N and α, β ∈ R, define
the approximate inhomogeneous short integer solution problem
Approx.ISISn,m,q,α,β as follows: Given A ∈ Zn×mq , y ∈ Znq , find a vector x ∈ Zm
such that ‖x‖ ≤ β, and there is a vector z ∈ Zn satisfying

‖z‖ ≤ α and Ax = y + z (mod q).

Let us remark that the approximate ISIS is only non-trivial when the bounds
α, β are relatively small compared to the modulus q. Also, our definition chooses
to allow the zero vector to be a valid solution, which means when ‖y‖ ≤ α, the
zero vector is trivially a solution. Such a choice in the definition does not cause
a problem in the application, since the interesting case in the application is to
handle all the y ∈ Znq , or y sampled uniformly random from Znq .

Definition 7 (Approximate trapdoor). A string τ is called an
(α, β)-approximate trapdoor for a matrix A ∈ Zn×mq if there is a probabilistic
polynomial time algorithm (in n, m, log q) that given τ , A and any y ∈ Znq ,
outputs a non-zero vector x ∈ Zm such that ‖x‖ ≤ β, and there is a vector
z ∈ Zn satisfying

‖z‖ ≤ α and Ax = y + z (mod q).

3.1 Hardness of the approximate ISIS problem

To make sense of the approximate trapdoor, we argue that for those who do
not have the trapdoor, the approximate ISIS problem is a candidate one-way
function under proper settings of parameters.

First, we observe a rather obvious reduction that bases the hardness of solv-
ing approximate ISIS (given an arbitrary target) on the hardness of decisional
LWE with low-norm secret (e.g. when the secret is sampled from the error dis-
tribution). In the theorem statement below, when the norm symbol is applied
on a distribution D, i.e. ‖D‖, it denotes the lowest value v ∈ R+ such that
Prd←D[‖d‖ < v] > 1− negl(λ).

Theorem 2. For n,m, q ∈ Z, α, β ∈ R+, θ, χ be distributions over Z such that
q > 4(‖θ‖ · (α+ 1) + ‖θn‖ ·α ·

√
n+ ‖χm‖ · β ·

√
m). Then LWEn,m,q,θ,U(Zq),χ ≤p

Approx.ISISn,m,q,α,β.

Proof. Suppose there is a polynomial time adversary A that breaks
Approx.ISISn,m,q,α,β , we build a polynomial time adversary B that breaks deci-
sional LWE.
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Let r = bαe + 1. Given an LWE challenge (A,w) ∈ Zn×mq × Zmq , where
w is either an LWE sample or sampled uniformly from Zmq . B picks a vector

y := (r, 0, ..., 0)
t ∈ Znq , sends A and y to the adversary A as an approximate

ISIS challenge. A replies with x ∈ Zm such that ‖x‖ ≤ β, and there is a vector
z ∈ Zn satisfying

‖z‖ ≤ α and Ax = y + z (mod q).

Note that x 6= 0 since ‖y‖ > α.
B then computes v := 〈w,x〉. If wt = stA + et for s← θn, e← χm, then

v = (stA + et)x = st(y + z) + etx ⇒
‖v‖ ≤ ‖θ‖ · r + ‖θn‖ · α ·

√
n+ ‖χm‖ · β ·

√
m < q/4.

Otherwise v distributes uniformly random over Zq. So B can compare v with
the threshold value and wins the decisional LWE challenge with probability 1/2
plus non-negligible.

Alternatively, we can also prove that the approximate ISIS problem is as hard
as the standard ISIS. The reductions go through the HNFs of the ISIS and the
approximate ISIS problems. All the reductions in the following theorem works
for uniformly random target vectors.

Theorem 3. ISISn,n+m,q,β ≥p Approx.ISISn,m,q,α+β,β; ISISn,n+m,q,α+β ≤p
Approx.ISISn,m,q,α,β.

Proof. We will show ISIS = HNF.ISIS = HNF.Approx.ISIS = Approx.ISIS under
proper settings of parameters.

Recall that ISISn,m,q,β = HNF.ISISn,m,q,β as explained in the preliminary.
Also, HNF.ISISn,m,q,β ≥p HNF.Approx.ISISn,m,q,α,β for any α ≥ 0 by definition.
It remains to show the rest of the connections.

Lemma 8. HNF.ISISn,m,q,α+β ≤p HNF.Approx.ISISn,m,q,α,β.

Proof. Suppose there is a polynomial time algorithm A that solves
HNF.Approx.ISISn,m,q,α,β , we build a polynomial time algorithm B that solves
HNF.ISISn,m,q,α+β . Given an HNF.ISIS instance [In | A] ∈ Zn×mq , y, B passes
the same instance to A, gets back a vector x such that

[In | A] · x = y + z (mod q).

where ‖x‖ ≤ β, ‖z‖ ≤ α. Now write x =: [xt1 | xt2]t where x1 ∈ Zn, x2 ∈ Zm.
Then x′ := [(x1 − z)t | xt2]t satisfies

[In | A] · x′ = y (mod q),

and ‖x′‖ ≤ α+ β. So x′ is a valid solution to HNF.ISIS.

Lemma 9. HNF.Approx.ISISn,n+m,q,α,β ≤p Approx.ISISn,m,q,α,β.
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Proof. Suppose there is a polynomial time algorithm A that solves
Approx.ISISn,m,q,α,β , we build a polynomial time algorithm B that solves

HNF.Approx.ISISn,n+m,q,α,β . Given [In | A] ∈ Zn×(n+m)
q , y ∈ Znq as an

HNF.Approx.ISIS instance, B passes A ∈ Zn×mq , y to A, gets back a short vector
x ∈ Zm. Then [0tn | xt]t is a valid solution to the HNF.Approx.ISIS instance.

Lemma 10. HNF.Approx.ISISn,n+m,q,α,β ≥p Approx.ISISn,m,q,α+β,β.

Proof. Suppose there is a polynomial time algorithm A that solves
HNF.Approx.ISISn,n+m,q,α,β , we build a polynomial time algorithm B that solves
Approx.ISISn,m,q,α+β,β . Given an Approx.ISIS instance A ∈ Zn×mq , y ∈ Zn, B

passes [In | A] ∈ Zn×(n+m)
q , y as an HNF.Approx.ISIS instance to A, gets back

an answer x ∈ Zm+n such that

[In | A] · x = y + z (mod q), (2)

where ‖x‖ ≤ β, ‖z‖ ≤ α.
Now write x =: [xt1 | xt2]t where x1 ∈ Zn, x2 ∈ Zm. Rewriting Eqn. (2) gives

A · x2 = y + z− x1 (mod q),

so x2 is a valid solution to Approx.ISISn,m,q,α+β,β .

Theorem 3 then follows the lemmas above.

The following statement immediately follows the proof of Lemma 10.

Corollary 2. An (α, β)-approximate trapdoor for [I | A] is an (α + β, β)-
approximate trapdoor for A.

4 Approximate Gadget Trapdoor

We present an instantiation of an approximate trapdoor based on the gadget-
based trapdoor generation and preimage sampling algorithms of Micciancio and
Peikert [42] (without the tag matrices). In short, we show how to generate a
pseudorandom A ∈ Zn×mq along with an approximate trapdoor R with small
integer entries.

In the rest of this section, we first recall the exact G-trapdoor from [42], then
present the approximate trapdoor generation algorithm and the approximate
preimage sampling algorithm. Finally we show that the preimage and the error
distributions for uniformly random targets are simulatable.

4.1 Recall the G-trapdoor from [42]

Let b ≥ 2 be the base for the G-lattice. Let q be the modulus, k = dlogb qe. b
is typically chosen to be 2 for simplicity, but often a higher base b is used for
efficiency trade-offs in lattice-based schemes.
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Recall the gadget-lattice trapdoor technique from [42]: the public matrix is

A = [Ā|G− ĀR]

where G is the commonly used gadget matrix, G := In⊗gtk, gtk := (1, b, . . . , bk−1),
and R is a secret, trapdoor matrix with small, random entries. A is either statis-
tically close to uniformly random or pseudorandom, depending on the structure
of Ā and the choice of χ (in the pseudorandom case χ ⊆ Z is chosen to be
a distribution such that LWEn,n,q,χ,U(Zq),χ is hard). In this paper we focus on
the pseudorandom case since the resulting public matrix A and preimage have
smaller dimensions.

In order to sample a short element in Λ⊥u (A), we use the trapdoor to map
short coset representatives of Λ⊥q (G) to short coset representatives of Λ⊥q (A) by
the relation

A

[
R
I

]
= G.

Using the trapdoor as a linear transformation alone leaks information about the
trapdoor. Therefore, we perturb the sample to statistically hide the trapdoor. Let

Σp be a positive definite matrix defined as Σp := s2I− σ2

[
RRt Rt

R I

]
where σ is

at least ηε(Λ
⊥
q (G)). The perturbation can be computed offline as p← DZm,

√
Σp

.

We then sample a G-lattice vector in a coset dependent on p as z ← DΛ⊥v (G),σ

and v = u−Ap ∈ Znq . Finally, the preimage is set to be

y := p +

[
R
I

]
z.

4.2 The algorithms of the approximate G-trapdoor

As mentioned in the introduction, the main idea of obtaining an approximate
trapdoor is to adapt the algorithms from [42] with a gadget matrix without the
lower-order entries. Let 0 < l < k be the number of lower-order entries dropped
from the gadget vector g ∈ Zkq . Define the resulting approximate gadget vector

as f := (bl, bl+1, ..., bk−1)t ∈ Z(k−l)
q . Let w = n(k − l) be the number of columns

of the approximate gadget F := In ⊗ f t ∈ Zn×w. Then the number of columns
of A will be m := 2n+ w.

Once we replace the gadget matrix G with its truncated version, F, our ap-
proximate trapdoor generation and approximate preimage sampling algorithms
match the original gadget-based algorithms. The generation and preimage algo-
rithms are given as Algorithms 2 and 3, respectively. Algorithm 1 represents our
approximate F-sampling algorithm. It simply runs the G-lattice preimage sam-
pling algorithm and drops the first l entries from the preimage. The covariance
of the perturbation in Algorithm 3 is chosen as

Σp := s2Im − σ2

[
RRt R
Rt I

]
.
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Algorithm 1: Gsamp.Cut(v, σ)

Input: v ∈ Zq, σ ∈ R+

Output: z ∈ Zk−l
1 Sample x ∈ Zk from DΛ⊥v (gt),σ

2 Let z be the last k − l entries of x
3 return z.

Algorithm 2: Approx.TrapGenχ
Input: Security parameter λ
Output: matrix-approximate

trapdoor pair (A,R).
1 Sample a uniformly random

Â← U(Zn×nq ).

2 Let Ā := [In, Â].
3 Sample the approximate

trapdoor R← χ2n×w.
4 Form A := [Ā|F− ĀR] ∈ Zn×mq .
5 return (A,R).

Algorithm 3: Approx.SamplePre.

Input: (A,R,u, s) as in Thm. 4.
Output: An approximate preimage

of u for A, y ∈ Zm.
1 Sample a perturbation

p← DZm,
√
Σp

.

2 Form v = u−Ap ∈ Znq .
3 Sample the approximate gadget

preimage z ∈ Zn(k−l) as
z← Gsamp.Cut(v, σ).

4 Form y := p +

[
R
I

]
z ∈ Zm.

5 return y.

Fig. 3. Pseudocode for the approximate trapdoor sampling algorithm in Subsection 4.3.
We abuse notation and let Gsamp.Cut(v, σ) denote n independent calls to Algorithm 1
on each entries of v ∈ Znq , and then concatenate the output vectors. The distribution
χ ⊆ Z is chosen so that LWEn,n,q,χ,U(Zq),χ is hard.

The results of this section are summarized in the following theorem.

Theorem 4. There exists probabilistic, polynomial time algorithms Approx.TrapGen(·)
and Approx.SamplePre(·, ·, ·, ·) satisfying the following.

1. Approx.TrapGen(n) takes as input a security parameter n and returns a
matrix-approximate trapdoor pair (A,R) ∈ Zn×mq × Z2n×n(k−l).

2. Let A be generated with an approximate trapdoor as above and let approx.A−1(·)
denote the approximate preimage sampling algorithm, Approx.SamplePre(A,R, s, ·).
The following two distributions are statistically indistinguishable:

{(A,y,u, e) : u← U(Znq ), y← approx.A−1(u), e = u−Ay mod q}

and

{(A,y,u, e) : y← DZm,s, e← DZn,σ
√

(b2l−1)/(b2−1)
mod q,u = Ay+e mod q}
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for any σ ≥
√
b2 + 1 · ω(

√
log n) and s &

√
b2 + 1

s21(R)
s2n(R)ηε(Z

nk)3. Further-

more, in the second distribution, A is computationally indistinguishable from
random assuming LWEn,n,q,χ,U(Zq),χ.

4.3 Simulate the preimage and error distributions

This subsection is dedicated to proving Theorem 4. For the convenience of ex-
planation, in this subsection we redefine the gadget G by permuting the columns
so that the columns of smaller entries are all on the left, i.e.

G := [M|F] := [In ⊗ (1, b, . . . , bl−1)|F]

Let x = (x1,x2) ∈ Znl × Zn(k−l) denote the short preimage of v := u−Ap
(mod q) under the full gadget matrix G, i.e. Gx = v (mod q).

The first attempt of proving Theorem 4 is to first show that the joint distribu-
tion of (p,x) produced in Algorithm 3 is statistically close toD

Λ⊥u [A,G],
√
Σp⊕σ2Ink

for any u ∈ Znq , then apply the linear transformation theorem on (p,x) to ob-
tain the distributions of the preimage y and the error term e. However, applying
the linear transformation theorem directly on the lattice coset Λ⊥u [A,G] leads
to a technical problem. That is, the intermediate lattice intersections ΛT re-
quired in Theorem 1 have large smoothing parameters, which means even if we
go through that route, the Gaussian width of the resulting preimage would blow
up significantly.

Instead, we work only with a uniformly random target u instead of an arbi-
trary target, and directly construct the simulation algorithm. We show that if
the simulation algorithm produces (p,x) ← DZm+nk,

√
Σp⊕σ2Ink

, then it is able

to simulate the distributions of y and e correctly without using the trapdoor.
Now the support of (p,x) is the integer lattice Zm+nk. Working with the integer
lattice is important for two reasons. First, it allows us to treat x1 and x2 as
statistically independent samples; and second, it gives us short vectors in the
kernels summoned when using Lemma 4 or Theorem 1.

Formally, let ε = negl(λ) > 0. We first prove three lemmas.

Lemma 11. For any σ ≥ ηε(Λ
⊥(G)), the following two distributions are sta-

tistically close.

1. First sample v← U(Znq ), then sample x← DΛ⊥v (G),σ, output (x,v);
2. First sample x← DZnk,σ, then compute v = Gx (mod q), output (x,v).

Proof. The proof follows directly from det(Λ⊥q (G)) = qn and Corollary 1. Alter-
natively, one can use two applications of the fact ρr(Γ+c) ∈ (1±ε)σn/det(Γ ) for

any r ≥ ηε(Γ ). The latter yields Pr{Process returns x} ∈
(

1−ε
1+ε ,

1+ε
1−ε

)
·DZnk,σ(x).

3 We remark that the ratio s1(R)
s2n(R)

is a small constant for commonly-used subgaussian

distributions for R’s entries [51].
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Lemma 12. The following random processes are statistically close for any σ ≥√
b2 + 1·ω(

√
log n) ≥ ηε(gt): sample x1 ← DZl,σ and return e = [1, b, . . . , bl−1]x1;

or, return e← DZ,σ
√

(b2l−1)/(b2−1)
.

Proof. We use Lemma 4 or Theorem 1 where [1, b, . . . , bl−1] is the linear transfor-
mation. Notice that the kernel of [1, b, . . . , bl−1] is the linear span of [b1, . . . ,bl−1]
where

b1 = (b,−1, 0, . . . , 0),b2 = (0, b,−1, 0, . . . , 0), . . . ,bl−1 = (0, . . . , 0, b,−1) ∈ Zl.

The support of x1, Zl, contains the (l − 1)-dimensional lattice, Γ = Zl ∩
Ker([1, b, . . . , bl−1]), spanned by [b1, . . . ,bl−1]. Further, σ ≥ ηε(g

t) implies σ
is larger than the smoothing parameter of Γ since ‖bi‖ ≤

√
b2 + 1 for i =

1, . . . , l−1. Finally by routine calculation on the Gaussian width (and support),
we have e = [1, b, . . . , bl−1]x1 ≈s DZ,σ

√
(b2l−1)/(b2−1)

.

Let R′ :=

[
R

In(k−l)

]
. Next, we analyze the distribution given by the linear

transformation representing the convolution step:

y = p + R′x2 = [Im|R′]
(

p
x2

)
for (p,x2) ← DZm+n(k−l),

√
Σp⊕σ2In(k−l)

. Let L := [Im|R′] in Lemma 13 and its

proof below.

Lemma 13. For
√
Σp ⊕ σ2In(k−l) ≥ ηε

(
Λ

(
R′

−In(k−l)

))
, LDZm+n(k−l),

√
Σp⊕σ2In(k−l)

is statistically close to DZm,s. Further,
√
Σp ⊕ σ2In(k−l) ≥ ηε

(
Λ

(
R′

−In(k−l)

))
is satisfied when s &

√
b2 + 1

s21(R)
s2n(R)ηε(Z

nk).

Proof. The range and covariance are immediate. Next, we use Theorem 1. The
kernel of L is given by all vectors (a,b) where b ∈ Rn(k−l) and a = −R′b. The
integer lattice Zm+n(k−l) contains all such integer vectors so ΛL := Zm+n(k−l) ∩

ker(L) spans L’s kernel. So

(
R′

−In(k−l)

)
is a basis of ΛL. Given that

√
Σp ⊕ σ2In(k−l) ≥

ηε

(
Λ

(
R′

−In(k−l)

))
, the lemma follows Theorem 1. Lastly, the implication that√

Σp ⊕ σ2In(k−l) ≥ ηε

(
Λ

(
R′

−In(k−l)

))
whenever s &

√
b2 + 1

s21(R)
s2n(R)ηε(Z

nk) is

proved in Appendix A.

We are now ready to prove Theorem 4.

Proof. (of Theorem 4) The proof’s overview is given via the following. Let

– p← DZm,
√
Σp

be a perturbation,
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– u ∈ Znq be the input target coset,
– v = u−Ap ∈ Znq be the G-lattice coset,
– x = (x1,x2) ← DZnk,σ (G-lattice randomized over uniform coset v and
σ ≥ ηε(gt), Lemma 11)

– e← DZn,σ
√

(b2l−1)/(b2−1)
be the concatenation of the errors, e, in Lemma 12,

– and y← DZm,s as in Lemma 13.

The proof is best summarized via the sequence of hybrids below:

u = v + Ap

≈s Gx + Ap

= Mx1 + Fx2 + Ap

≈s e + Fx2 + Ap

= e + AR′x2 + Ap

= e + AL

(
p
x2

)
≈s e + Ay.

The first ≈s is through swapping the order of sampling u and v uniformly
at random, then using the fact that σ ≥ ηε(G) (Lemma 11). The next ≈s is
given by Lemma 12. Finally, the last ≈s is given by concatenating (p,x2) ←
DZm+n(k−l),

√
Σp⊕σ2In(k−l)

and using Lemma 13.

We remark that the key in the equivalences above is that we can separate x
into two statistically independent samples, x1 and x2, concatenate p and x2, then
perform two instances of Theorem 1 (Lemma 4) on the statistically independent
samples L(p,x2) and Mx1. The statistical independence of x1 and x2 is due
to the orthogonality of Znk and the same cannot be said if x ∼ DΛ⊥v (G),σ for a
fixed v (via a fixed u). This difference highlights why we must argue security for
a uniformly random input coset u (and v).

Real distribution: The real distribution of {(A,y,u, e)} is:
A, u ← U(Znq ), p ← DZm,

√
Σp

, v := u − Ap, x = (x1,x2) ← DΛ⊥v (G),σ,

e = Mx1, and y = L(p,x2).

Hybrid 1: Here we swap the order of sampling u and v. Let v ← U(Znq ),
p ← DZm,

√
Σp

, u = v + Ap. We keep x, e, and y unchanged: x = (x1,x2) ←
DΛ⊥v (G),σ, e = Mx1, and y = L(p,x2). Then, the real distribution and Hybrid
1 are the same.

Hybrid 2: Instead of sampling a uniform v ∈ Znq and a G-lattice sample
x = (x1,x2) ← DΛ⊥v (G),σ, we sample x ← DZnk,σ and let v = Gx ∈ Znq . The
rest remains the same:
A, x ← DZnk,σ, v = Gx, p ← DZm,

√
Σp

, u = v + Ap, e = Mx1, and

y = L(p,x2). Lemma 11 implies Hybrid 1 and Hybrid 2 are statistically close.
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Hybrid 3: We combine p,x2 into the joint distribution (p,x2)← DZm+n(k−l),
√
Σp⊕σ2I

:

A, (p,x2) ← DZm+n(k−l),
√
Σp⊕σ2I

, e = Mx1, y = L(p,x2), v = Gx, and

u = v + Ap.

Hybrid 4: Here we apply the linear transformation theorem on L and M.
A, e← DZnl,σ

√
(b2l−1)/(b2−1)

, y← DZm,s, v = Ay + e.

Lemmas 12 and 13 imply Hybrids 3 and 4 are statistically close.

Final distribution: Sample A← U(Zn×mq ) and keep the rest of the vectors
from the same distribution as Hybrid 4 (notice that the trapdoor R of A is
not used to sample p, x, e and y). The final distribution is computationally
indistinguishable from Hybrid 4 assuming LWEn,n,q,χ,U(Zq),χ.

5 Hash-and-Sign Signature Instantiated with the
Approximate Trapdoor

We spell out the details of the hash-and-sign signature scheme from [31] instan-
tiated with the approximate G-trapdoor instead of an exact trapdoor.

Recall the parameters from the last section. We set k = dlogb qe, set l to
be the number of entries dropped from the G-trapdoor such that 1 ≤ l < k
and m = n(2 + (k − l)). Let σ, s ∈ R+ be the discrete Gaussian widths of the
distributions over the cosets of Λ⊥q (G) and Λ⊥q (A) respectively. Let χ be the
distribution of the entries of the trapdoor R chosen so that LWEn,n,q,χ,U(Zq),χ is
hard.

Construction 5 Given an approximate trapdoor sampler from Theorem 4, a
hash function H = {Hλ : {0, 1}∗ → Rλ} modeled as a random oracle, we build
a signature scheme as follows.

– Gen(1λ): The key-generation algorithm samples A ∈ Zn×mq together with its

(α, β)-approximate trapdoor R from Approx.TrapGen(1λ). Let the range
Rλ of H be Znq . It outputs A as the verification key, keeps R as the secret
signing key.

– Sig(R,m): The signing algorithm checks if the message-signature pair (m,xm)
has been produced before. If so, it outputs xm as the signature of m; if
not, computes u = H(m), and samples an approximate preimage xm ←
Approx.SamplePre(A,R,u, s). It outputs xm as the signature and stores
(m,xm) in the list.

– Ver(A,m,x): The verification algorithm checks if ‖x‖ ≤ β and ‖A · x −
H(m)‖ ≤ α. If so, it outputs accept; otherwise, it outputs reject.

5.1 Security analysis

In the security analysis we use the following property on the distributions pro-
duced by Approx.SamplePre proven in Theorem 4. That is, the preimage and
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error term for a random target can be simulated from distributions denoted by
Dpre and Derr. Both of them are independent of the public key A and the secret
key R.

To prove that the signature satisfies the strong EU-CMA security, we need
an additional “near-collision-resistance” property for Ajtai’s function, which can
be based on the standard SIS assumption. Let us remark that without this
property, we can still prove the signature scheme satisfies static security based
on the hardness of the approximate ISIS problem, which is tighter by a factor
of two according to Theorem 3.

Lemma 14 (The near-collision-resistance of Ajtai’s function). For any
n,m, q ∈ N and α, β ∈ R. If there is an efficient adversary A that given A ←
U(Zn×mq ), finds x1 6= x2 ∈ Zm such that

‖x1‖ ≤ β and ‖x2‖ ≤ β and ‖Ax1 −Ax2 (mod q)‖ ≤ 2α

Then there is an efficient adversary B that solves SISn,n+m,q,2(α+β).

Proof. Suppose B gets an HNF.SISn,n+m,q,2(α+β) challenge (which is as hard as
SISn,n+m,q,2(α+β)) with the public matrix [In | A], B sends A to A, gets back
x1 6= x2 ∈ Zm such that

‖x1‖ ≤ β and ‖x2‖ ≤ β and ‖y := Ax1 −Ax2 (mod q)‖ ≤ 2α

B then sets z := [−yt | (x1 − x2)t]t as the solution. z is then non-zero and
satisfies ‖z‖ ≤ 2(α+ β) and [In | A]z = 0 (mod q).

Theorem 6. Construction 5 is strongly existentially unforgeable under a chosen-
message attack in the random oracle model assuming the hardness of SISn,n+m,q,2(α+β)

and LWEn,n,q,χ,U(Zq),χ.

Proof. Suppose there is a polynomial time adversary A that breaks the strong
EU-CMA of the signature scheme, we construct a polynomial time adversary B
that breaks the near-collision-resistance of Ajtai’s function, which is as hard as
SISn,n+m,q,2(α+β) due to Lemma 14.

To start, B sends Ajtai’s function A to A as the public key for the signature
scheme. Once A makes a random oracle query w.r.t. a message m, B samples
x ← Dpre, computes u := Ax + Derr (mod q) as the random oracle response
on m. B then replies u to A and stores (m,u) in the random oracle storage,
(m,x) in the message-signature pair storage. Once A makes a signing query on
the message m (wlog assume m has been queried to the random oracle before,
since if not B can query it now), B finds (m,x) in the storage and reply x as
the signature. The signatures and the hash outputs produced by B are indis-
tinguishable from the real ones due to the properties of the distributions Dpre

and Derr, and the assumption that a real public key is indistinguishable from
random under LWEn,n,q,χ,U(Zq),χ.

Without loss of generality, assume that before A tries to forge a signature
on m∗, A has queried H on m∗. Denote the pair that B prepares and stores
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in the random oracle storage as (m∗,u∗), and the pair in the signature storage
as (m∗,x∗). Finally A outputs x as the forged signature on m∗. So we have
‖A(x− x∗) (mod q)‖ ≤ 2α. It remains to prove that x 6= x∗ so as to use them
as a near-collision-pair. If m∗ has been queried to the signing oracle before, then
x 6= x∗ by the definition of a successful forgery; if m∗ has not been queried to
the signing oracle before, then x∗ is with high min-entropy by the settings of the
parameter, so x 6= x∗ with overwhelming probability.

5.2 Concrete parameters

We provide a proof-of-concept implementation of the signature. Experiments
are performed over several groups of parameters using different dimensions n,
moduli q, bases b, targeting different security level (mainly around 80 to 90-bit
and 170 to 185-bit security). In each group of parameters, we use fixed n, q, b,
and compare the use of exact trapdoor (under our reference implementation)
versus approximate trapdoor. In Figures 4 and 5 we list 6 groups of parameters.

Params Exact Approx Approx Exact Approx Approx Exact Approx Approx

n 512 512 512 512 512 512 512 512 512
dlog2 qe 24 24 24 20 20 20 16 16 16
b 2 2 2 2 2 2 2 2 2
l 0 12 15 0 10 12 0 7 9
τ 40 40 40 10 10 10 2.6 2.6 2.6
s 38317.0 29615.3 26726.3 8946.4 6919.8 6416.4 2170.7 1756.3 1618.2
m 13312 7168 5632 11264 6144 5120 9216 5632 4608
‖x‖2 4441737.7 2521387.0 2035008.5 956758.1 545470.5 464022.0 211100.9 133305.5 109339.1
‖x‖∞ 184653 111909 94559 38507 25275 24762 8848 6853 6334
‖z‖2 0 374014.0 2118987.6 0 94916.6 343682.9 0 11897.9 46428.4
‖z‖∞ 0 46895 346439 0 13265 52789 0 1439 7213
PK 37.50 19.50 15.00 26.25 13.75 11.25 17.00 10.00 8.00
Sig 25.68 13.53 10.51 18.87 10.01 8.29 13.16 7.83 6.30
LWE 100.0 100.0 100.0 102.8 102.8 102.8 104.7 104.7 104.7
AISIS 80.2 85.8 81.1 82.0 87.5 84.3 83.7 89.0 88.1
δ 1.00685 1.00643 1.00678 1.00670 1.00631 1.00653 1.00658 1.00621 1.00628
k 174 193 177 180 199 188 186 204 201

Fig. 4. Summary of the concrete parameters, with base b = 2, aiming at around 80 to
90-bit security. The sizes of PK and Sig are measured in kB. τ is the Gaussian width
of the secret matrix R. s is the Gaussian width of the preimage. “LWE” refers to the
security level of the pseudorandomness of the PK. “AISIS” refers to the security level
of breaking approximate ISIS. δ and k are the variables used in the AISIS security
estimation.

Methods for security estimation. Let us first explain how we make the secu-
rity estimations. The concrete security estimation of lattice-based cryptographic
primitive is a highly active research area and more sophisticated methods are
proposed recently. Here we use relatively simple methods to estimate the pseudo-
randomness of the public-key (henceforth “LWE security”), and the hardness of
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Params Exact Approx Approx Exact Approx Approx Exact Approx Approx

n 512 512 512 1024 1024 1024 1024 1024 1024
dlog2 qe 16 16 16 18 18 18 18 18 18
b 4 4 4 8 8 8 4 4 4
l 0 2 4 0 2 3 0 4 5
τ 2.6 2.6 2.6 2.8 2.8 2.8 2.8 2.8 2.8
s 3114.2 2833.3 2505.6 8861.1 7824.8 7227.9 5118.8 4297.8 4015.5
m 5120 4096 3072 8192 6144 5120 11264 7168 6144
‖x‖2 223740.1 183004.9 138145.7 805772.9 604711.5 516446.3 552713.4 369981.2 311153.9
‖x‖∞ 13320 11868 8948 35348 28823 30435 19274 18283 14927
‖z‖2 0 1402.3 19807.1 0 7316.5 54379.8 0 29958.0 115616.4
‖z‖∞ 0 174 2448 0 905 6680 0 3025 12070
PK 9.00 7.00 5.00 15.75 11.25 9.00 22.50 13.50 11.25
Sig 7.62 5.94 4.45 13.70 10.14 8.36 18.74 11.09 9.38
LWE 104.7 104.7 104.7 192.7 192.7 192.7 192.7 192.7 192.7
AISIS 82.8 85.5 87.8 165.3 172.9 174.9 175.8 185.7 183.7
δ 1.00664 1.00645 1.00629 1.0036 1.00347 1.00343 1.00342 1.00326 1.00329
k 183 192 200 462 488 495 498 532 525

Fig. 5. Summary of the concrete parameters, with base b ≥ 4, aiming at around 80 to
90-bit and 170 to 184-bit security.

breaking approximate ISIS (henceforth “AISIS security”). Let us remark that our
estimations may not reflect the state-of-art, but at least provide a fair compari-
son of the parameters for the exact trapdoor versus the approximate trapdoor.

LWE security depends on the choices of q, n, and the Gaussian width τ of
the trapdoor R. The estimation of LWE security was done with the online LWE
bit security estimator with BKZ as the reduction model4 [5].

For the approximate ISIS problem, the only direct cryptanalysis result we are
aware of is the work of Bai et al. [12], but it is not clearly applicable to the param-
eters we are interested. Instead we estimate AISIS through ISISn,m,q,α+β follow-
ing the reduction in Lemma 8, where α and β are the upper-bounds of l2 norm
of the error z and preimage x. We estimate the security level of ISISn,m,q,α+β

based on how many operations BKZ would take to find a vector in the lattice
Λ⊥q (A) of length α + β. Further, we can throw away columns in A. We choose
to only use 2n columns of A as done in [14], denoted A2n, since Minkowski’s
theorem5 tells us Λ⊥q (A2n) has a short enough vector. Following [7,5], we use

sieving as the SVP oracle with time complexity 2.292k+16.4 in the block size,
k. BKZ is expected to return a vector of length δ2ndet1/2n for a lattice of di-
mension 2n. Hence, we found the smallest block size k achieving the needed δ
corresponding to forging a signature, α+β√

q = δ2n. Finally, we used the heuris-

tic δ ≈ ( k
2πe (πk)1/k)1/2(k−1) to determine the relation between k and δ, and

we set the total time complexity of BKZ with block-size k, dimension 2n as
8 · 2n · time(SV P ) = 8 · 2n · 2.292k+16.4 [22,7]. Here we use the “magic eight tour
number” for BKZ to keep consistency with the LWE online estimator. We have

4 https://bitbucket.org/malb/lwe-estimator
5 For any lattice L, λ1 ≤

√
r det(L)1/r where r is the rank of the lattice.

https://bitbucket.org/malb/lwe-estimator
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not incorporated the more recent developments in [24] and [6] in the security
estimation.

The comparison. For an estimation of 80-bit6 security, our reference implementa-
tion for the exact trapdoor under the modulus q ≈ 224 and base b = 2 matches
the parameters reported in [13] (the parameters in the other implementation
[14,36] are possibly measured in different ways). We also use smaller moduli and
bigger bases to reduce the size and increase the security level. The parameters in
Figures 4 and 5 suggest that for all the choices of q and b, using the approximate
gadget trapdoor by setting l = d(logb q)/2e saves about half of the sizes in the
public key and signatures comparing to using the exact trapdoor, with even a
slight increase in the security estimation.

Our implementation shows that the sizes of the public-key & signature can
be reduced to 5 kB & 4.45 kB for an estimation of 88-bit security, and 11.25
kB & 9.38 kB for an estimation of 184-bit security. Those are still larger than,
but much closer to the sizes for the signatures based on the rejection sampling
approach [40,11,26,8]. As a reference, the sizes of the public-key & signature for
qTESLA [8] are 4.03 kB & 3.05 kB for an estimation of 128-bit security, and
8.03 kB & 6.03 kB for an estimation of 192-bit security.
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A The Smoothing Parameter of ΛL

Recall the notations that R′ =

[
R

In(k−l)

]
∈ Zm×(n(k−l)), Σp := s2Im −R′(R′)t.

Here we derive the conditions of s so that
√
Σp ⊕ σ2In(k−l) ≥ ηε(ΛL) holds,

where ΛL is the lattice generated by

B :=

[
−R′

In(k−l)

]
.

We do this in three steps: first we write out the dual basis of B, then we reduce√
Σp ⊕ σ2In(k−l) ≥ ηε(ΛL) to a statement about the smoothing parameter of

Zn(k−l), and finally we find when
√
Σp ⊕ σ2In(k−l) ≥ ηε(ΛL) as a function of s.

Dual basis, B∗: LetΣ = Σp⊕σ2In(k−l). By definition, we need ρ(
√
Σ
t
Λ∗L) ≤

1 + ε. In general, the dual basis Λ∗ is generated by the dual basis B(BtB)−1. In
the case of ΛL, we can write the dual basis as

B∗ :=

[
−R′

In(k−l)

] [
RtR + 2I

]−1
.

Reducing to ηε(Zn(k−l)): Next, the gaussian sum ρ(
√
Σ
t
Λ∗L) is equal to∑

x∈Zn(k−l)

exp(−πxt(B∗)tΣB∗x).

This reduces to showing
√

(B∗)tΣB∗ ≥ ηε(Zn(k−l)).
Now we write out the matrix product (B∗)tΣB∗,

(B∗)tΣB∗ =
[
RtR + 2I

]−t [−(R′)t I
] [Σp 0

0 σ2I

] [
−R′

I

] [
RtR + 2I

]−1

=
[
RtR + 2I

]−t [
(R′)tΣpR

′ + σ2I
] [

RtR + 2I
]−1

.

Before we continue, we consider the structure of the middle matrix:

Σs := (R′)tΣpR
′ =

[
Rt I

](
s2I− σ2

[
R
I

] [
Rt I

]) [R
I

]
=
[
RtR + I

] (
s2I− σ2

[
RtR + I

])
.

Derive the condition for s: Now we will derive the condition for s so that[
RtR + 2I

]−t
[Σs + σ2I]

[
RtR + 2I

]−1 ≥ η2
ε (Zn(k−l)).

Claim. All invertible matrices of the form (RtR+αI)i for i ∈ Z, α ∈ R commute.

Proof. Let QSVt be R’s singular value decomposition. Now, RtR + αI =
VDVt + V(αI)Vt where D = StS = diag(s2

i (R)) since V,Q are orthogonal.
Equivalently, we have RtR + αI = VDαVt where Dα = diag(s2

i (R) + α) =
StS + αI2n. By induction, we have (RtR + αI)i = VDi

αVt, i ∈ Z. Finally,
Di
α is a diagonal matrix so Di

α and Dj
α′ commute for all α, α′ since diagonal

matrices commute. The result follows from the orthogonality of V (VtV = I).
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Claim A allows us to lower-bound the smallest eigenvalue of

(B∗)tΣB∗ =
[
RtR + 2I

]−2 ([
RtR + I

] [
s2I− σ2

[
RtR + I

]]
+ σ2I

)
=
[
RtR + 2I

]−2 (
s2[RtR + I]− σ2[2RtR + (RtR)2]

)
.

Viewing these matrices as their diagonal matrices of eigenvalues, we see
(B∗)tΣB∗’s least eigenvalue is lower-bounded by

λlb(s,R) :=
s2(s2

2n(R) + 1)− σ2(s4
1(R) + 2s2

1(R))

(s2
1(R) + 2)2

.

Next, we assume σ =
√
b2 + 1ηε(Znk) ≥ ηε(Λ

⊥
q (G)) and solve for s using

λlb(s,R) ≥ η2
ε (Zn(k−l)),

s2 ≥ s2
1(R) + 1

s2
2n(R) + 1

η2
ε (Zn(k−l)) +

(b2 + 1)(s4
1(R) + 2s2

1(R))

s2
2n(R) + 1

η2
ε (Znk).

This is

s &
√
b2 + 1

s2
1(R)

s2n(R)
ηε(Znk).

We remark that the ratio s1(R)
s2n(R) is a constant for commonly-used subgaussian

distributions for R’s entries [51].
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