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Abstract. In this paper, we propose a Multi-Key Homomorphic En-
cryption (MKHE) scheme by generalizing the low-latency homomorphic
encryption by Chillotti et al. (ASIACRYPT 2016). Our scheme can eval-
uate a binary gate on ciphertexts encrypted under different keys followed
by a bootstrapping.
The biggest challenge to meeting the goal is to design a multiplication
between a bootstrapping key of a single party and a multi-key RLWE
ciphertext. We propose two different algorithms for this hybrid product.
Our first method improves the ciphertext extension by Mukherjee and
Wichs (EUROCRYPT 2016) to provide better performance. The other
one is a whole new approach which has advantages in storage, complexity,
and noise growth.
Compared to previous work, our construction is more efficient in terms of
both asymptotic and concrete complexity. The length of ciphertexts and
the computational costs of a binary gate grow linearly and quadratically
on the number of parties, respectively. We provide experimental results
demonstrating the running time of a homomorphic NAND gate with
bootstrapping. To the best of our knowledge, this is the first attempt in
the literature to implement an MKHE scheme.

Keywords: Multi-key homomorphic encryption · Bootstrapping.

1 Introduction

Cryptographic primitives for secure computation have been actively studied
in recent years. Homomorphic Encryption (HE) and Multi-Party Computation
(MPC) are the most promising solutions with different models and performance
trade-offs. HE is useful for outsourcing the storage and computation to a public
cloud, but all data providers should agree on the same public key generated by
a secret key owner. In MPC, multiple parties can build an interactive proto-
col to evaluate a circuit without revealing an auxilarity information beyond the
computation result, but it usually suffers from a high communication and round
complexity.

López-Alt et al. [28] proposed the notion of Multi-Key Homomorphic En-
cryption (MKHE) which is a variant of HE supporting computation on cipher-
texts encrypted under different keys. This attractive primitive can address the



aforementioned issues of HE and MPC, and it has many applications such as
round-efficient MPC (e.g. [18, 2, 24, 33, 30]) and spooky encryption [19]. There
have been several researches (e.g. [17, 30, 7, 31, 10]) on MKHE. However, all the
previous works were purely abstract and far from practical. In particular, the
efficiency of MKHE remained an open question for years because there has been
no study to implement or compare the MKHE schemes empirically.

Chillotti et al. [13] proposed an HE scheme (called TFHE) based on the
learning with errors (LWE) [32] assumption and its ring variant (RLWE) [29].
This HE scheme can evaluate an arbitrary binary gate on encrypted bits followed
by a bootstrapping. TFHE has advantages in running time and usability com-
pared to other HE schemes. Its bootstrapping has a low-latency and it makes
simpler the task of implementing a binary circuit without background knowledge
on HE (every gate of the plaintext circuit can be automatically replaced by its
bootstrapped homomorphic version).

The TFHE scheme supports an operation called external product, which mul-
tiplies a Ring GSW (RGSW) ciphertext to an RLWE ciphertext and returns an
RLWE ciphertext. A bootstrapping key consists of several RGSW encryptions,
and each of them is recursively multiplied to an RLWE ciphertext to refresh it.
In the multi-key case, the main difference is that we take a multi-key ciphertext
as the input of bootstrapping. Hence we should be able to multiply a bootstrap-
ping key, which is generated by a single party, to a multi-key ciphertext, which
is associated with multiple parties.

We propose an RGSW-like cryptosystem and present two methods to mul-
tiply a single-key encryption to a multi-key RLWE ciphertext. The first algo-
rithm consists of two phases: generation of a multi-key RGSW ciphertext and
multi-key external product. It is similar to previous ciphertext extension method
(firstly proposed by Clear and McGoldrick [17] and simplified by Mukherjee and
Wichs [30]), but our scheme is simpler, lighter and faster. Our second algo-
rithm for hybrid product is a completely different approach to achieve the same
functionality. A single-key ciphertext directly acts on a multi-key RLWE cipher-
text without any expensive multi-key RGSW operation. It achieves even better
asymptotic complexity and less noise growth, and thereby improves the overall
performance.

In summary, the length of ciphertext and the computational costs of a single
binary gate grow linearly and quadratically on the number of involved parties,
respectively (see Table 1 for comparison). Furthermore, our scheme is easy to
implement and compatible with existing techniques for advanced functionalities
such as the threshold decryption [26, 3], circuit bootstrapping [14], and plaintext
packing [4, 8].

Finally, we provide a proof-of-concept implementation with concrete param-
eter sets. For example, it took about 0.27, 1.45 and 7.16 seconds to evaluate a
bootstrapped NAND gate when the number of parties is 2, 4 and 8, respectively,
on a personal computer.

Overview of our scheme. We adapt the formalization of (R)LWE over the real
torus T = R (mod 1) from Chillotti et al. [13]. We generalize TFHE to support
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the homomorphic computation on ciphertexts encrypted under independently
generated keys. Let R = Z[X]/(XN + 1) and T = T[X]/(XN + 1) for a power-
of-two integer N . We use a gadget vector g = (B−1, . . . , B−d) ∈ Zd for some
base B and degree d.

Each party (of index i) independently generates the LWE secret si ∈ {0, 1}n
and the RLWE secret zi ∈ R. A multi-key encryption of m ∈ {0, 1} is a vector of
the form ct = (b,a1, . . . ,ak) ∈ Tkn+1 such that b+ 〈a1, s1〉+ · · ·+ 〈ak, sk〉 ≈ 1

4m
(mod 1) where k denotes the number of involved parties and si = (si,j)1≤j≤n
are their LWE secrets. The homomorphic evaluation of a NAND gate consists
in an initial linear combination followed by a bootstrapping that takes care of
the non-linear part of the gate together with the noise reduction. In particular,
the noise reduction is performed by homomorphically computing the decryption
formula (on the exponent of X) and by selecting the correct output of the boot-
strapping encoded in a fixed test polynomial. The following three steps describe
in more detail the NAND evaluation idea: for more details on the original TFHE
bootstrapping we refer to [15].

First, we evaluate the linear combination for the NAND gate m = m1 Zm2

on encrypted bits m1,m2 and return a ciphertext ct
′

= (b′,a′1, . . . ,a
′
k) satisfying

b′ +
∑k
i=1〈a′i, si〉 ≈

1
2m (mod 1). The evaluation is done after arranging the

entries and extending the dimension of input ciphertexts to share the same secret.

In the second step, we extract the most significant bits b̃ = b2N · b′e and

ãi = b2N · a′ie, and initialize the accumulator c = (− 1
8X

b̃ · h(X),0) ∈ T k+1 for
the testing polynomial h(X) =

∑
−N/2<d<N/2X

d which is a multi-key RLWE

encryption with respect to the concatenated RLWE secret z = (1, z1, . . . , zk) ∈
Rk+1. Then, we evaluate Mux gates (data selector) recursively to obtain an

RLWE encryption of − 1
8X

b̃+
∑k

i=1〈ãi,si〉 · h(X) using encryptions of si,j ∈ {0, 1}.
Finally, from the output of accumulator, we extract an LWE encryption

ct
∗

= (b∗,a∗1, . . . ,a
∗
k) such that b∗ +

∑k
i=1〈a∗i , z∗i 〉 ≈

1
4m (mod 1) where z∗i ∈

ZN is a permuted coefficient vector of zi. Finally, we perform the multi-key-
switching procedure from (z∗1, . . . , z

∗
k) to (s1, . . . , sk) by repeating the ordinary

key-switching procedure from z∗i to si.

The main difference between TFHE and our multi-key variant is in the second
step. In the multi-key case, the i-th bootstrapping key (encryptions of si,j for
1 ≤ j ≤ n) is generated by a single party but we should multiply it to a multi-key
RLWE ciphertext. We propose an RLWE-based scheme (called uni-encryption)
which supports this hybrid product. In the key generation phase, each party
takes a Common Reference String (CRS) a ∈ T d and set a public key bi ≈
−zi · a (mod 1). A party i can uni-encrypt a plaintext µi ∈ R into a ciphertext
(di,Fi = [fi,0|fi,1]) ∈ T d × T d×2 such that di ≈ ri · a + µi · g (mod 1) and
f0 + zi · f1 ≈ ri · g (mod 1). Our hybrid product function multiplies a uni-
encryption of µi to a multi-key RLWE encryption c ∈ T k+1 and returns a multi-
key RLWE ciphertext, i.e., the output c′ ∈ T k+1 satisfies that 〈c′, z〉 ≈ µi · 〈c, z〉
(mod 1). We propose two different algorithms to achieve this functionality.

Our first hybrid product algorithm is an improvement of the GSW extension
algorithm in previous work [17, 30, 7]. It aims to transform a uni-encryption
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Scheme
Space Time

Bootstrap
Type Complexity Type Complexity

CZW17 [10]
EvalKey Õ(k3n) EvalKey Gen Õ(k3n)

No
Ciphertext Õ(kn) Hom Mult Õ(k3n)

PS16 #2 [31]
PK Õ(kn4)

Hom Mult Õ(k2.37n2.37) No
Ciphertext Õ(k2n2)

BP16 [7]
PK Õ(kn3)

Hom NAND poly(k, n) Yes
Ciphertext Õ(kn)

This work Eval Key Õ(k2n2) Eval Key Gen Õ(k2n2)
Yes

(Method 1) Ciphertext Õ(kn) Hom NAND Õ(k2n2)

This work
Ciphertext Õ(kn) Hom NAND Õ(k2n2) Yes

(Method 2)

Table 1. Memory (bit-size) and computational costs (number of scalar operations) of
MKHE schemes. k denotes the number of parties and n is the dimension of the (R)LWE
assumption. PK and EVK denote the public and evaluation (or bootstrapping) keys,
respectively.

of µi into a multi-key RGSW encryption Di ∈ T d(k+1)×(k+1) of the same mes-
sage under the concatenated key z ∈ Rk+1 satisfying Diz ≈ µi · (Ik+1 ⊗ g) in
T d(k+1). Then, we can perform the multi-key external product between c and
Di to multiply them. Compared to previous algorithm, we reduce the dimen-
sion of ciphertexts from 2k down to (k + 1) by merging duplicated components
(1, z1, . . . , 1, zk) into z = (1, z1, . . . , zk). In addition, we observe that the uni-
encryption is not used for encrypting real messages, but only for generating
a bootstrapping key. Hence we propose a symmetric key encryption to reduce
the size of ciphertexts and complexity of extension algorithm. However, the first
method does not change the asymptotic complexity O(kd2 ·N logN) of extension
process (see Section 3.2 for details).

We propose a new framework in our second algorithm for hybrid product.
The previous GSW extension is done independently from the input multi-key
RLWE ciphertext c. Instead, we work on c directly to avoid expensive multi-
key RGSW operations. There are two main advantages of this approach: its
complexity O(kd · N logN) is asymptotically better and the noise variance is
reduced by a factor of O(d ·B2). For these reasons, we used the second algorithm
in our implementation.

Related works. López-Alt et al. [28] firstly proposed an MKHE scheme based
on the NTRU assumption. Clear and McGoldrick [17] introduced an LWE-based
construction, and it was significantly simplified by Mukherjee and Wichs [30].
These schemes are single-hop for keys where the list of parties has to be known
before the computation starts. This work was improved in concurrent researches
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by Peikert-Shiehian [31] and Brakerski-Perlman [7] which design multi-hop (dy-
namic for keys) MKHEs. Chen, Zhang and Wang [10] constructed a scheme
which can encrypt a ring element compared to a single bit of prior works. Un-
fortunately, there have been no research with implementation results because all
previous schemes were impractical.

We summarize the performance of relatively efficient MKHE schemes in Ta-
ble 1. We only consider the second (main) one between two schemes described
in [31]. All existing schemes except [7] and [10] use variants of the GSW scheme
to encrypt plaintexts. Therefore, the size of ciphertexts grows at least quadrac-
tically on the number k of parties in the computation.

Similar to our scheme, [7] encrypts a bit in a single LWE ciphertext. However,
they proposed a purely abstract bootstrapping based on the evaluation of a
huge branching program of length L = poly(k, n) representing the NAND gate
followed by LWE decryption. A memory-complexity tradeoff was proposed to
keep a linear storage requirement on k, but even the asymptotic complexity of
bootstrapping is not analyzed in the paper.

The construction of a batched MKHE scheme is an orthogonal research issue.
Chen et al. [10] proposed a multi-key variant of BGV [6] with a larger plaintext
space. However, it is a leveled scheme so a large constant (depending on the
maximum level of a circuit to be evaluated) is hidden in the Õ(·) notation.
Moreover, the space and time complexity of homomorphic multiplication grow
rapidly as the number of parties increases. Its complexity is quasi-linear on the
security parameter, however, our scheme can be implemented using a smaller
parameter.

Since [7] and [10] use the GSW extension to generate evaluation (bootstrap-
ping) keys, our improved (compact and symmetric) method can be directly ap-
plied to these schemes for better performance.

2 Background

2.1 Notation

All logarithms are in base two unless otherwise indicated. We denote vectors in
bold, e.g. a, and matrices in upper-case bold, e.g. A. We denote by 〈·, ·〉 the usual
dot product of two vectors. For a real number r, bre denotes the nearest integer
to r, rounding upwards in case of a tie. We use x ← D to denote the sampling
x according to distribution D. For a finite set S, U(S) denotes the uniform
distribution on S. For a real α > 0, Dα denotes the Gaussian distribution of
variance α2. We let λ denote the security parameter throughout the paper: all
known valid attacks against the cryptographic scheme under scope should take
Ω(2λ) bit operations. For a positive integer k, [k] = {1, 2, . . . , k} denotes the
index set.

2.2 Multi-key Homomorphic Encryption

A multi-key homomorphic encryption MKHE consists of five PPT algorithms
Setup, KeyGen, Enc, Dec, and NAND.
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• pp ← MKHE.Setup(1λ): Given the security parameter λ, returns a public
parameter pp.

• (sk, pk) ← MKHE.KeyGen(pp): Generates its secret and public keys. We as-
sume that each party has its own ID (index) mapped to the keys.

• ct ← MKHE.Enc(m; pk): Given a bit m ∈ {0, 1}, returns a ciphertext ct ∈
{0, 1}∗. We assume that every ciphertext contains IDs of relevant parties.

• m ← MKHE.Dec(ct; {ski}i∈[k]): Given a ciphertext ct, let {ski}i∈[k] be the
sequence of secret keys of relevant parties. Decrypts the ciphertext into a bit
m ∈ {0, 1}.

• ct
′ ← MKHE.NAND(ct1, ct2, {pki}i∈[k]): Given ciphertexts ct1 and ct2, let k

be the number of parties relevant to either ct1 or ct2, and {pki}i∈[k] be
the sequence of their public keys. Evaluates the NAND gate and returns a
ciphertext ct

′
. The output ciphertext implicitly includes k indices of related

parties.

An MKHE scheme is called secure if its encryption is semantically secure.
The output ct

′ ← MKHE.NAND(ct1, ct2, {pki}i∈[k]) of homomorphic NAND should

satisfy MKHE.Dec(ct
′
, {ski}i∈[k]) = m1 Zm2 with an overwhelming probability if

ct1 and ct2 are encryptions of m1 and m2, respectively.

2.3 TLWE and TRLWE

The TFHE scheme, presented for the first time in [13], is based on the TLWE
(resp. TRLWE) problem, which is the torus variant of the LWE (resp. RLWE)
problem. Instead of working over Z/qZ, or over the ring Z[X]/(XN + 1) modulo
q in the ring variant, in TFHE we work over the real Torus T = R mod 1 and
over T = T[X]/(XN + 1), the set of cyclotomic polynomials over T for a power-
of-two integer N . In this section and in the following one we present an overview
of the TFHE scheme: for more details we refer to [15].

We denote by R = Z[X]/(XN + 1) the set of cyclotomic polynomials over
Z. Then, we observe that T and T are modules over Z and R, respectively. This
means that they are groups with respect to the addition and they are provided
with an external product by an integer or an integer polynomial.

A TLWE sample is a pair (b,a) ∈ Tn+1, where a is sampled uniformly over
Tn and b = 〈a, s〉 + e. The secret key s and error e are sampled from a key
distribution χ on Zn and a Gaussian with standard deviation α > 0.

By following the same path, a TRLWE sample is a pair of polynomials (b, a) ∈
T 2, where a is sampled uniformly from T and b = a · z + e (mod 1) for an error
e. The secret key z is an integer polynomial of degree N sampled from a key
distribution ψ on R and the error polynomial e is sampled from a Gaussian
distribution with standard deviation β. We will set ψ as the uniform distribution
on the set of polynomials of R with binary coefficients in {0, 1}. For a, b ∈ R
(resp. T ), we denote by a ≈ b (mod 1) if a = b + e (mod 1) for a small error
e ∈ R (resp. R[X]/(XN + 1)).

We can then define two problems for both TLWE and TRLWE:
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– Decision problem: for a fixed TLWE secret s (resp. TRLWE secret z), distin-
guish the uniform distribution over Tn+1 (resp. T 2) from the TLWE (resp.
TRLWE) samples.

– Search problem: given arbitrarily many samples from the TLWE (resp. TRLWE)
distribution, find the secret s (resp. z).

TLWE samples can be used to encrypt Torus messages. By fixing the message
space as a discrete subsetM⊆ T, a message µ ∈M can be encrypted by adding
the trivial TLWE sample (µ,0) to a TLWE sample generated as described in
previous paragraphs. Then, the corresponding ciphertext ct is a pair (b,a) ∈
Tn+1, with b = −〈a, s〉+ e+µ. In order to decrypt, we compute the phase ϕs of
the ciphertext ct, which is equal to ϕs(ct) = b+ 〈a, s〉, and we approximate it to
the nearest message possible inM to retrieve µ. By following the same footstep,
we can use TRLWE samples to encrypt torus polynomial messages in T .

Thanks to the Z-module structure of the torus and to the R-module structure
of T , the TLWE and TRLWE samples have additive homomorphic properties.
The external integer homomorphic multiplication can be performed thanks to
the TRGSW ciphertexts we define in the next section.

2.4 TRGSW and External Product

For a base integer B ≥ 2 and a degree d, we call g = (B−1, . . . , B−d) the gadget
vector. For an integer k ≥ 1, the gadget matrix is defined by

Gk = Ik ⊗ g =


g 0 . . . 0
0 g . . . 0
...

...
. . .

...
0 0 . . . g

 ∈ Tdk×k.

For any u ∈ Tk, we define its base decomposition by a dk-dimensional vector
v = G−1k (u) with coefficients in Z∩(−B/2, B/2] which minimizes ‖vT ·Gk − uT ‖∞.
The decomposition error ‖vT ·Gk − uT ‖∞ is bounded by 1

2B
−1.

We identify an arbitrary element of T to the vector of its coefficients in TN ,
and naturally extend the base decomposition G−1k (·) to a function T k → Rdk

by applying the basic decomposition function coefficient wisely.
Then, we can define the TRGSW samples as the torus variant of RGSW

samples, in the same way as we did in previous section3. For a fixed TRLWE
secret s ∈ R, we define a TRGSW sample as C = Z + µ ·G2, where each line of
the matrix Z ∈ T d×2 is a TRLWE encryption of 0, G2 is the gadget matrix and
the message µ ∈ R is an integer polynomial.

TRGSW samples are homomorphic with respect to the addition and to an in-
ternal multiplication. Furthermore, an external product, noted �, with TRLWE
can be defined as A� b = G−12 (b) ·A, for all TRLWE samples b and TRGSW

3 We define only the Ring version TRGSW, since this is the only sample we need in
this paper. TGSW can be defined in the same way. For more details we refer to [15].
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samples A encrypted with the same secret key. In the following sections, we
define a variant of the TRGSW samples and an adapted external product. The
internal product between two TRGSW samples A and B encrypted with the
same secret key can be defined as a list of independent external products be-
tween the cipher A and the lines composing the cipher B.

The scheme TFHE has been implemented and is publicly available at [16].
In Section 5 we present some experimental results we obtained by implementing
our Multi-Key scheme on top of the TFHE library.

In the rest of the paper, in order to lighten the notations, we will abandon
the ‘T’ notation in front of LWE, RLWE and RGSW.

3 Basic Schemes

In this section, we present the LWE [32] and RGSW [23, 20] schemes and describe
some extended algorithms that will be used in our MKHE scheme.

3.1 Multi-Key-Switching on LWE Ciphertexts

We first describe the standard LWE-based scheme and generalize its key-switching
algorithm to the multi-key case.

• LWE.Setup(1λ): It takes the security parameter as input and generates the LWE
dimension n, key distribution χ, error parameter α. Set the decomposition base
B′ and degree d′ for gadget vector g′ = (B′−1, . . . , B′−d

′
). Return the public

parameter ppLWE = (n, χ, α,B′, d′).

An LWE secret s is sampled from the distribution χ. We use the key-switching
gadget vector g′ = (B′−1, . . . , B′−d

′
). Recall that the base decomposition algo-

rithm with respect to g′ transforms an element a ∈ T into the d′-dimensional
vector g′−1(a) with coefficients in ZB′ which minimizes |a− 〈g′−1(a),g′〉|.

We assume that the following LWE algorithms implicitly takes ppLWE as an
input.

• LWE.KeyGen(): Sample the LWE secret s← χ.

• LWE.Enc(m, s): This is a standard LWE encryption which takes a bit m ∈ {0, 1}
as an input. It samples a ← U(Tn) and e ← Dα, and returns the ciphertext
ct = (b,a) ∈ Tn+1 where b = −〈a, s〉+ 1

4m+ e (mod 1).

Note that the scaling factor is 1/4, as in FHEW [20] or TFHE [13]. We de-
scribed a symmetric encryption for simplicity, but this algorithm can be replaced
by any LWE-style encryption schemes such as public key encryption [27]. The
only requirement is that the output ciphertext should be a vector ct = (b,a) ∈
Tn+1 satisfying b+ 〈a, s〉 ≈ 1

4m (mod 1).

• LWE.KSGen(t, s): Given LWE secrets t ∈ ZN and s ∈ Zn, it returns the key-

switching key KS = {Kj}j∈[N ] ∈ (Td′×(n+1))N from t to s. For each j ∈ [N ],
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the j-th entry is generated by sampling Aj ← U(Td′×n) and ej ← Dd′

β , and
returning Kj = [bj |Aj ] where bj = −Ajs + ej + tj · g′ (mod 1).

We can transform an LWE ciphertext corresponding to t into another LWE
encryption of the same message under the secret s using a key-switching key
KS← LWE.KSGen(t, s).

We consider the notion of extended LWE encryption and the multi-key-
switching procedure. For k LWE secrets s1, . . . , sk ∈ Zn, an extended ciphertext
ct = (b,a1, . . . ,ak) ∈ Tkn+1 will be called an encryption of m ∈ {0, 1} with re-

spect to the concatenated secret s = (s1, . . . , sk) if 〈ct, (1, s)〉 = b+
∑k
i=1〈ai, si〉 ≈

1
2m (mod 1).

• LWE.MKSwitch(ct, {KSi}i∈[k]): Given a ciphertext ct = (b,a1, . . . ,ak) ∈ TkN+1

and a sequence of the key-switching keys KSi = {Ki,j}j∈[N ], compute (b′i,a
′
i) =∑N

j=1 g′−1(ai,j) ·Ki,j (mod 1) for all i ∈ [k] and let b′ = b +
∑k
i=1 b

′
i (mod 1).

Return the ciphertext ct
′

= (b′,a′1, . . . ,a
′
k) ∈ Tkn+1.

This multi-key-switching algorithm takes as the input an extended ciphertext
ct ∈ TkN+1 corresponding to t = (t1, . . . , tk) and a sequence of key-switching
keys from ti to si and returns an encryption of the same message under s =
(s1, . . . , sk).

Security. The j-th component Kj of a key-switching key KS = {Kj}j∈[N ] from
t ∈ ZN to s ∈ Zn is generated by adding tj · g′ to the first column of a ma-

trix in Td′×(n+1) whose rows are LWE instances under the secret s. Therefore,
KS← LWE.KSGen(t, s) is computationally indistinguishable from the uniform dis-
tribution over (Td′×(n+1))N under the LWE assumption with parameter (n, χ, β)
if s is sampled according to χ.

Correctness. We show that if ct = (b,a1, . . . ,ak) is an LWE ciphertext en-
crypted by t = (t1, . . . , tk) and {KSi}i∈[k] are key-switching keys from ti ∈ ZN
to si ∈ Zn, then the output ciphertext encrypts the same message under the
concatenated secret s = (s1, . . . , sk). The correctness of this algorithm is simply
shown by the following equation:

〈ct′, (1, s)〉 = b+

k∑
i=1

(b′i + 〈a′i, si〉)

≈ b+

k∑
i=1

N∑
j=1

〈g′−1(ai,j), ti,j · g′〉 ≈ 〈ct, (1, t)〉 (mod 1).

Therefore, KS = {KSi}i∈[k] can be considered as a key-switching key from t ∈
ZkN to s ∈ Zkn.

3.2 Multi-key RLWE and Hybrid Product

In this section, we present a ring-based scheme supporting two algorithms UniEnc
and Prod. First, UniEnc is a single-key symmetric encryption which can encrypt
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a ring element. We can multiply a uni-encryption to a multi-key RLWE ciher-
text using the hybrid product algorithm Prod. In fact, we provide two differ-
ent methods to perform this operation. We will explain their performance and
(dis)advantages later.

• RLWE.Setup(1λ): It takes as input the secret parameter λ.

1. Set the RLWE dimension N which is a power of two.
2. Set the key distribution ψ over R and choose the error parameter α.
3. Set the base integer B ≥ 2 and the decomposition degree d for the gadget

vector g = (B−1, . . . , B−d).
4. Generate a random vector a← U(T d).

Return the public parameter ppRLWE = (N,ψ, α,B, d,a).

Our RLWE-based scheme is based on the CRS model since the public pa-
rameter ppRLWE contains a CRS a ∈ T d. The parameter should be chosen appro-
priately so that the RLWE problem with parameter (N,ψ, α) achieves at least
λ-bit security level. We assume that the following RLWE algorithms implicitly
takes ppRLWE as an input.

• RLWE.KeyGen(): Sample the secret z ← ψ and set z = (1, z). Sample an error

vector e ← Dd
α and set the public key as b = −z · a + e (mod 1). Return

(z,b) ∈ R× T d.

• RLWE.UniEnc(µ, z): For an input plaintext µ ∈ R and a secret key z, it generates

and returns the ciphertexts (d,F) ∈ T d × T d×2 as follows:

1. Sample r ← ψ and an error e1 ← Dd
α. Output the vector d = r·a+µ·g+e1 ∈

T d.
2. Sample f1 ← U(T d) and e2 ← Dd

α. Output the ciphertext F = [f0|f1] ∈ T d×2
where f0 = −z · f1 + r · g + e2 (mod 1).

A uni-encryption consists of three polynomial vectors of dimension d, three-
fourth the size of ordinary RGSW ciphertexts in T 2d×2. The first component d
and the CRS a together form an encryption of µ under the randomness r. We
can consider F as an encryption of r under the secret z. In the following, we
describe two different algorithms for hybrid product.

• RLWE.Prod(c, (di,Fi), {bj}j∈[k]): Given a multi-key RLWE ciphertext c ∈ T k+1

and the public keys of k parties associated to c, multiply a uni-encryption (di,Fi)
encrypted by the i-th party to c as follows. We use the notation z0 = 1 and
b0 = −a in this algorithm (in the context of bj ≈ −zj · a).

Method 1. The first method consists of two steps. We first generate an extended
RGSW ciphertext Di ∈ T d(k+1)×(k+1) by combining a uni-encryption (di,Fi)
and the set of public keys {bj}j∈[k], then multiply it to c using the multi-key
external product.

Step 1. Ciphertext extension. Di ← RLWE.Extend((di,Fi), {bj}j∈[k]):
For 0 ≤ j ≤ k, compute the vectors xj ,yj ∈ RdQ by xj [`] = 〈g−1(bj [`]), f0〉
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and yj [`] = 〈g−1(bj [`]), f1〉 for all ` ∈ [d], i.e., [xj |yj ] = MjFi ∈ T d×2 where
Mj ∈ Rd×d is the matrix of which `-th row vector is g−1(bj [`]).

Return the expanded ciphertext

Di =



di + x0 0 · · · y0 · · · 0

x1 di · · · y1 · · · 0
...

...
. . .

...
. . .

...

xi 0 · · · di + yi · · · 0
...

...
. . .

...
. . .

...

xk 0 · · · yk · · · di


∈ T d(k+1)×(k+1).

Step 2. Multi-key GSW external product. c′ ← c�Di: For a multi-key
RLWE ciphertext c ∈ T k+1 and a multi-key RGSW ciphertext Di ∈ T d(k+1)×(k+1),
return the ciphertext c′ = G−1k+1(c) ·Di (mod 1).

Method 2. Given a multi-key RLWE ciphertext c = (c0, c1, . . . , ck) ∈ T k+1, we
first compute the following polynomials for all 0 ≤ j ≤ k:

uj = 〈g−1(cj),di〉,
vj = 〈g−1(cj),bj〉,

wj,0 = 〈g−1(vj), fi,0〉,
wj,1 = 〈g−1(vj), fi,1〉.

Then, we return the multi-key RLWE ciphertext c′ = (c′0, . . . , c
′
k) ∈ T k+1 where

c′0 = u0 +
∑k
j=0 wj,0 (mod 1), c′i = ui +

∑k
j=0 wj,1 (mod 1), and c′j = uj for

j ∈ [k]\{i}.
Security. We claim that the distribution

D0 = {(a,b,d,F) : ppRLWE ← RLWE.Setup(1λ),

(z,b)← RLWE.KeyGen(), (d,F)← RLWE.UniEnc(µ, z)}

is computationally indistinguishable from the uniform distribution over T d×5 for
any µ ∈ R under the RLWE assumption with parameter (N,ψ, α). We consider
the following distributions: First, we can switch (b,a) and F = [f0|f1] into in-
dependent uniform distributions on T d×2 using the RLWE assumption of the
secret z. Hence D0 is computationally indistinguishable from

D1 = {(a,b,d,F) :a,b← U(T d),F← U(T d×2),

r ← ψ, e1 ← Dd
α,d = r · a + µ · g + e1 (mod 1)}.

Then, d is changed to a uniform distribution using the RLWE assumption of
secret r again. Therefore, D1 is indistinguishable from the distribution

D2 = {(a,b,d,F) : a,b,d← U(T d),F← U(T d×2)}.

11



Since D2 is independent from µ, our RLWE scheme is semantically secure.

Correctness of method 1. Let (zj ,bj) be the RGSW key of the j-th party
for j ∈ [k]. Suppose that (di,Fi = [fi,0|fi,1]) is a uni-encryption of µi ∈ R of the
i-th party, i.e., di ≈ ri · a + µi · g (mod 1) and fi,0 + zi · fi,1 ≈ ri · g (mod 1) for
some ri ← ψ.

We call D ∈ T d(k+1)×(k+1) a multi-key RGSW encryption of µ ∈ R under
the concatenated secret z = (1, z1, . . . , zk) ∈ Rk+1 if D · z ≈ µ ·Gk+1z (mod 1).
We first claim that Di ← RLWE.Extend((di,Fi), {bj}j∈[k]) is a valid RGSW
encryption of µi corresponding to z. It suffices to show that xj +zi ·yj +zj ·di ≈
µizj · g (mod 1) for all 0 ≤ j ≤ k. We can combine the following equations to
obtain the desired result:

xj + zi · yj = MjFizi ≈Mj(r · g) ≈ ri · bj (mod 1),

zj · di ≈ rizj · a + µizj · g ≈ −ri · bj + µizj · g (mod 1).

The multi-key external product � is a natural generalization of the ordi-
nary external product between RLWE and RGSW ciphertexts to the multi-
key setting [7, 13]. Let us suppose that c ∈ T k+1 is an RLWE ciphertext
and Di ∈ T d(k+1)×(k+1) is an RGSW encryption of µi with respect to the se-
cret z ∈ Rk+1, i.e., Diz ≈ µi · Gk+1z (mod 1). Then their external product
c′ = c�Di satisfies that 〈c′, z〉 = G−1k+1(c)·Diz ≈ G−1k+1(c)·µiGk+1z ≈ µi ·〈c, z〉
(mod 1), as desired.

Correctness of method 2. We note that c′ is generated by adding
∑k
j=0 wj,0

and
∑k
j=0 wj,1 to the zeroth and i-th components of (u0, . . . , uk). Hence we have

〈c′, z〉 =
∑k
j=0 uj · zj +

∑k
j=0 (wj,0 + wj,1 · zi) (mod 1).

From the definition of uj , vj , wj,0 and wj,1, we obtain

k∑
j=0

uj · zj ≈
k∑
j=0

〈g−1(cj), ri · a + µi · g〉 · zj ≈ µi · 〈c, z〉 − ri ·
k∑
j=0

vj (mod 1),

k∑
j=0

(wj,0 + wj,1zi) =

k∑
j=0

〈g−1(vj), fi,0 + zi · fi,1〉 ≈ ri ·
k∑
j=0

vj (mod 1),

and conclude that 〈c′, z〉 ≈ µi · 〈c, z〉, as desired.

Performance. In the first method, the Extend algorithm transforms a uni-
encryption (di,Fi) generated by the i-th party into a valid multi-key RGSW
ciphertext Di encrypting the same message under the concatenated secret z =
(1, z1, . . . , zk) ∈ Rk+1. It can be viewed as a variant of RGSW extension of
previous work [17, 30, 10]. However, we improve its performance by reducing
the dimension of extended ciphertexts by almost half from 2k down to (k + 1).
Moreover, we proposed a symmetric encryption since uni-encryption is not used
for plaintext encryption but only for generating the bootstrapping keys of our
MKHE scheme. Therefore, our uni-encryption, extension and thereby external
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product algorithms are better in terms of size, complexity, and noise growth.
Our solution can be directly applied to [10] to improve its key-switching key
generation in the same context. We note that Extend requires 2(k + 1)d2 =
O(kd2) polynomial multiplications to generate xj , xj for 0 ≤ j ≤ k and we
can store an extended ciphertext using (2k + 3)d = O(kd) polynomials due to
its sparsity. In addition, the external product (Step 2) takes (3k + 1)d = O(kd)
polynomial multiplications since Di is a sparse matrix generated by the extension
algorithm.

Meanwhile, our second method updates the input multi-key RLWE cipher-
text c without generating any multi-key GSW ciphertext. It requires only 4(k+
1)d = O(kd) polynomial multiplications, and also enjoys a comparative advan-
tage in terms of noise growth. Roughly speaking, it computes the same function
at the plaintext level, but uses a different circuit representation.4 The next para-
graph will explain more about it in detail.

Comparison. The first method is asymptotically slower than the second method,
however, we note that the ciphertext extension depends only on (di,Fi) and
{bj}j∈[k]. The extended ciphertext Di can be pre-computed and reused in the
multiplications with different multi-key RLWE ciphertexts. In particular, Step
2 requires less number of polynomial multiplication than Method 2 (about 3/4
times) so one can take an advantage of complexity from this pre-processing.

On the other hand, we point out that the second method introduces a much
smaller noise. We denote by VB ≈ B2/12 the variance of a uniform distribution
on ZB . We show in Appendix A that the first method outputs a ciphertext
satisfying

〈c′, z〉 = µi · 〈c, z〉+ e (mod 1)

for some error e of variance V1 ≈ (k+ 1)d2 ·N2 ·V 2
B ·β2 while the second method

holds the same equation but with different error variance V2 ≈ 1
2 (kd + k + 1) ·

N2 · VB · β2 ≤ (d · VB)−1 · V1.

In summary, the first method with pre-processing can have an advantage in
complexity (by a factor of about 3/4) by making a trade-off between storage
and complexity. Meanwhile, the second method has a smaller noise growth. In
other words, one may use a smaller parameter while achieving the same level of
noise. For these reasons, the second method is more practical than the first one
in almost all aspects.

The controlled selector gate (called CMux in [15]) is one direct application
of hybrid product. It aims to securely choose cµ = (1− µ) · c0 + µ · c1 between
two multi-key RLWE ciphertexts c0 and c1 using an encrypted bit µ ∈ {0, 1}.
The CMux gate is a core operation in the bootstrapping of our scheme.

4 For the reader who is familiar with the GSW scheme, let us cite a similar example. For
GSW ciphertexts Ci, we denote by � the multiplication between GSW ciphertexts.
Both C1 � (C2 �C3) and (C1 �C2)�C3 are computing the same function (product
of three plaintexts) but latter one introduces a much smaller error.
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• RLWE.CMux(c0, c1, (di,Fi), {bj}j∈[k]): Given multi-key ciphertexts c0, c1 ∈ T k+1,

a uni-encryption (di,Fi) (encrypting a bit µi ∈ {0, 1}) and the set of public keys
{bj}1≤j≤k, compute and return c′ ← c0+RLWE.Prod(c1−c0, (di,Fi), {bj}j∈[k]).

4 Multi-key Variant of TFHE

4.1 Description

In this section, we explicitly describe an MKHE scheme based on the LWE and
RGSW schemes. Our scheme can bootstrap a ciphertext after the evaluation of
a binary gate as in TFHE [13], but it requires to pre-compute the bootstrapping
key corresponding to the set of parties involved in a computation.

• MKHE.Setup(1λ):

– Run LWE.Setup(1λ) to generate the parameter ppLWE = (n, χ, α,B′, d′).
– Run RLWE.Setup(1λ) to generate the parameter ppRLWE = (N,ψ, β,B, d,a).
– Return the generated public parameters ppMKHE = (ppLWE, ppRLWE).

We assume that all other algorithms of MKHE implicitly take ppMKHE as an input.

• MKHE.KeyGen(): Each party i independently generates its keys as follows.

– Sample the LWE secret by si ← LWE.KeyGen().
– Run (zi,bi)← RLWE.KeyGen() and set the public key as PKi = bi. We write

z∗i = (zi,0,−zi,N−1, . . . ,−zi,1) ∈ ZN for zi = zi,0+zi,1X+ · · ·+zi,N−1XN−1.
– Generate (di,j ,Fi,j) ← RLWE.UniEnc(si,j , zi) for j ∈ [n] and set the boot-

strapping key as BKi = {(di,j ,Fi,j)}j∈[n].
– Generate the key-switching key KS← LWE.KSGen(z∗i , si).
– Return the secret key si. Publish the triple (PKi,BKi,KSi) of public, boot-

strapping, and key-switching keys.

We remark that for any a = a0 +a1X+ · · ·+aN−1X
N−1 ∈ T and the vector

of its coefficients (a0, . . . , aN−1) ∈ TN , the constant term of a · z ∈ T is equal to
〈a, z∗〉 modulo 1.

• MKHE.Enc(m): For an input bit m ∈ {0, 1}, run LWE.Enc(m) and return an LWE

encryption with the scaling factor 1/4. The output ciphertext ct = (b,a) ∈ Tn+1

satisfies b+ 〈a, s〉 ≈ 1
4m (mod 1).

The dimension of a ciphertext increases after homomorphic computations.
The indices of related parties should be stored together with a ciphertext for the
correct decryption and homomorphic operations.

• MKHE.Dec(ct, {si}i∈[k]): For a ciphertext ct = (b,a1, . . . ,ak) ∈ Tkn+1 and a

tuple of secrets (s1, . . . , sk), return the bit m ∈ {0, 1} which minimizes |b +∑k
i=1〈ai, si〉 −

1
4m|.

• MKHE.NAND(ct1, ct2, {(PKi,BKi,KSi)}i∈[k]): Given two LWE ciphertexts ct1 ∈
Tk1n+1 and ct2 ∈ Tk2n+1, let k be the number of parties that are associated
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with either ct1 or ct2. For i ∈ [k], PKi = bi, BKi = {(di,j ,Fi,j)}j∈[n] and KSi
are the public key, bootstrapping key and key-switching key of the j-th party,
respectively.

This algorithm consists of three phases. The first step expands the input
LWE ciphertexts and evaluate the NAND gate m = m1 Zm2 homomorphically
on encrypted bits.

1-1. Extend ct1 and ct2 to the ciphertexts ct
′
1, ct

′
2 ∈ Tkn+1 which encrypt the

same messages under the concatenated secret key s = (s1, . . . , sk) ∈ Zkn.
It is simply done by rearranging the components and putting zeros in the
empty slots.

1-2. Compute ct
′

= ( 5
8 ,0, . . . ,0)− ct

′
1 − ct

′
2 (mod 1).

To be precise, if an input ciphertext cti = (bi,ai,1, . . . ,ai,ki) is an encryp-
tion corresponding to a tuple (j1, . . . , jki) ∈ [k]k1 of indices, then (1-1) re-

turns ct
′
i = (bi,a

′
i,1, . . . ,a

′
i,k) where a′i,j =

{
ai,` if j = j` for some ` ∈ [ki],

0 otherwise;
for

j ∈ [k]. It is clear from the definition that 〈cti, (1, sj1 , . . . , sjki
)〉 = 〈ct′i, (1, s)〉 for

s = (s1, . . . , sk).
If 〈ct′i, (1, s)〉 = 1

4mi + ei (mod 1) for some errors ei ∈ R, then the output

ciphertext satisfies that 〈ct′, (1, s)〉 = 1
2m + e′ (mod 1) for m = m1 Z m2 and

e′ = ± 1
8 − e1 − e2 which is bounded by 1

4 when |ei| ≤ 1
16 . The next step,

called homomorphic accumulator [20], is to evaluate the decryption circuit of
an extended LWE ciphertext using the external product of RGSW scheme for
bootstrapping.

2-1. Let ct
′

= (b′,a′1, . . . ,a
′
k) ∈ Tkn+1. Compute b̃ = b2N · b′e and ãi = b2N · a′ie.

Initialize the RLWE ciphertext as c = (− 1
8h(X) · X b̃,0) ∈ T k+1 where

h =
∑
−N

2 <j<
N
2
Xj = 1 +X + · · ·+X

N
2 −1 −X N

2 +1 − · · · −XN−1.

2-2. Let ãi = (ãi,j)j∈[n] for i ∈ [k]. Compute

c← RLWE.CMux(c, X ãi,j · c, (di,j ,Fi,j), {b`}`∈[k])

recursively for all i ∈ [k] and j ∈ [n].
2-3. Return c← ( 1

8 ,0) + c (mod 1).

The accumulator c is initialized in (2-1) as the trivial RLWE encryption of

− 1
8h(X) · X b̃. The main computation is done in (2-2) using the Mux gate. In

each step, it homomorphically selects one of c and X ãi,` · c using the encryption
(di,j ,Fi,j) of si,j ∈ {0, 1}. The output is a multi-key RLWE ciphertext satisfying

〈c, z〉 ≈ −1

8
h(X) ·X b̃+

∑k
i=1〈ãi,si〉

= −1

8

 ∑
−N

2 <j<
N
2

Xj

 ·X b̃+
∑k

i=1〈ãi,si〉 (mod 1).
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Since b̃+
∑k
i=1〈ãi, si〉 ≈ (2N) · 〈ct′, (1, s)〉 ≈ N ·m (mod 2N), the constant term

of 〈c, z〉 is approximately equal to either − 1
8 (if m = 0) or 1

8 (otherwise; m = 1),
which is 1

4m−
1
8 . Finally, the term 1

8 is cancelled out in (2-3).
We stress that we proposed two different algorithms for the underlying hybrid

product algorithm of CMux.

3-1. For c = (c0, c1, . . . , ck) ∈ T k+1, let b∗ be the constant term of c0 and a∗i
be the coefficient vector of ci for i ∈ [k]. Construct the LWE ciphertext
ct
∗

= (b∗,a∗1, . . . ,a
∗
k) ∈ TkN+1.

3-2. Let KS = {KSi}i∈[k]. Run the multi-key-switching algorithm and return the

ciphertext ct
′′ ← LWE.MKSwitch(ct

∗
,KS).

In the last step, we transform c into an LWE ciphertext and run the multi-key-
switching algorithm. As we noted above, 〈a∗i , z∗i 〉 (mod 1) is equal to the constant
term of ci · zi for i ∈ [k]. Hence, (3-1) returns an LWE ciphertext ct

∗
satisfying

〈ct∗, (1, z∗)〉 ≈ 1
4m (mod 1) for z∗ = (z∗1, . . . , z

∗
k). Finally, (3-2) switches the

LWE key into s so the output LWE ciphertext satisfies that 〈ct, (1, s)〉 ≈ 1
4m

(mod 1), as desired.

Security. Our scheme is semantically secure under the (R)LWE assumption
described in the previous section, so the parameters ppLWE and ppRLWE should be
chosen properly to achieve at least λ-bit of security level.

We note that each party publishes uni-encryptions of s1, . . . , sn encrypted
by z as well as a key-switching key from z∗ = (z0,−zN−1, . . . ,−z1) to s. Similar
to TFHE [13] and all other bootstrappable (fully) HE schemes [22] such as
[20, 25, 9, 11], our scheme requires an additional circular security assumption.

Correctness conditions. Our scheme should satisfy the following requirements
to guarantee its correctness:

– In (2-1), the quantized ciphertext (b̃, ã1, . . . , ãk) ∈ Zkn+1
2N should satisfy b̃+∑k

j=1〈ãj , sj〉 = N ·m+ ẽ for some ẽ ∈ Z with |ẽ| < N/2. This noise ẽ consists

of two parts ẽ = 2N · e′ + e′′ for e′ = ± 1
8 − e1 − e2 from the step (1-2) and

a rounding error e′′ = (b̃− 2N · b′) +
∑k
j=1〈ãj − 2N · a′j , sj〉.

– The error e ∈ R of an output LWE ciphertext ct should be small enough
for the correct decryption and further computations. It is the sum of the
constant term of an RLWE error which is accumulated from the external
products during (2-3), and the multi-key-switching error from (3-2).

We provide a rigorous noise estimation in Appendix A. We refer the reader to
Section 5 for a recommended parameter set.

Performance. The accumulation step (2-2) is the most expensive part of the
whole pipeline and all other algorithms including multi-key-switching are asymp-
totically faster. We run the CMux algorithm k ·n times, each of which has almost
the same complexity as the hybrid product RLWE.Prod described in Section 3.2.
The computing server can choose one of two proposed algorithms and inherit
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their (dis)advantages. The performance of gate bootstrapping would be k · n
times of the chosen hybrid product algorithm.

If the first method is chosen, we can pre-compute the extended RGSW cipher-
texts Di,j ← RLWE.Extend((di,j ,Fi,j), {b`}`∈[k]) and set BK := {Di,j}i∈[k],j∈[n]
as a shared bootstrapping key which can be reused in the evaluation of an arbi-
trary Boolean gate on the same set of k parties. However, it requires more space
(O(k2nd) polynomials) to store BK.

4.2 Discussion

We presented a multi-key variant of the TFHE scheme. However, we can simply
design some variants of this basic scheme with better functionality and versatil-
ity.

More bootstrapped gates. We described only the Multi-Key bootstrapped
NAND gate in the previous section, but any arbitrary binary bootstrapped gate
(such as AND, OR, XOR, etc.) can be evaluated in the same way, as it is done
in TFHE: it is sufficient to modify the initial linear combination before boot-
strapping.

Time-space trade-off. Brakerski and Perlman [7] suggested a method to reduce
down the memory requirement by generating a temporary evaluation key in each
step. Since our first method generates an expanded bootstrapping key BK whose
size grows quadratically with the number of parties, we can apply this idea to
have a linearly-growing space complexity. In this case, we lose the reusability
of a expanded bootstrapping key which is the only advantage of first method
compared to the second solution. Therefore, we do not have any motivation to
adapt this optimization technique.

Distributed decryption. HE has some attractive applications in the construc-
tion of advanced cryptographic primitives such as round-efficient MPC [18, 2, 24,
33, 30]. In particular, the distributed property of threshold HE [26, 3] makes an
important role to achieve this functionality. Any secure multi-party protocol can
be built between key owners to evaluate the decryption circuit, but we introduce
a simple example in this paragraph.

Since our MKHE scheme is based on the standard LWE encryption, the tech-
niques for threshold decryption such as noise smudging (a.k.a. noise flooding) [2]
can be directly applied to our scheme. The noise distribution, parametrized by
a constant γ > 0, should have a medium size which is smaller than 1 but suf-
ficiently larger than the error of an input ciphertext to prevent the leakage of
extra information beyond the decrypted value. See [2] for parameter choice and
security proof.

• MKHE.PartDec(ct, si): For a ciphertext ct = (b,a1, . . . ,ak) ∈ Tkn+1 and the
i-th secret si, sample an error ei ← Dγ and return the value pi = 〈ai, si〉 + ei
(mod 1).
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• MKHE.Merge(b, {pj}j∈[k]): For the first entry b of an input ciphertext and the

partial decryptions {pj}j∈[k], output the bit m ∈ {0, 1} which minimizes |b +∑k
j=1 pj −

1
4m|.

Faster evaluation of a look-up table (LUT). There have been some pro-
gresses in TFHE-type schemes to accelerate the evaluation of a LUT. For ex-
ample, Chillotti et al. [14] suggested a vertical packing method for TRLWE
combined with a circuit bootstrapping algorithm which gives a speed-up com-
pared to the gate-by-gate bootstrapping, while Bonnoron et al. [4] (see also [8])
suggested a method to encrypt more than one bit in a single ciphertext. It is
easy to see that these techniques are directly applicable to our MKHE scheme.

5 Experimental Results

We present a proof-of-concept implementation to convince the reader that our
scheme is practical. The implementation took a few days of coding and it is
based on the TFHE library [16]. Our source code is publicly available at https:
//github.com/ilachill/MK-TFHE.

Set
LWE RLWE (RGSW)

n α B′ d′ N β B d

I

560 3.05 · 10−5 22 8 1024 3.72 · 10−9
29 3

II 28 4

III 26 5
Table 2. Recommended parameter sets.

In Table 2, we present three candidate parameter sets. We increase the di-
mensions of LWE and RLWE to have a more conservative parameter.5 Our
parameters achieve at least 110-bit security level according to the LWE Estima-
tor [1], which is a common reference in the domain.6

As mentioned before, we used the second hybrid product algorithm in imple-
mentation. We set the LWE/RLWE secret distributions χ and ψ as the uniform
distributions over the set of binary vectors in Zn and over the polynomials in R
with binary coefficients, respectively.

We show in Appendix A that the standard deviation of bootstrapping error
grows linearly on the number of parties. Hence the growth of parameter with

5 In [15], the authors recommend to take more conservative parameters for the original
TFHE scheme as well. This new parameter set will affect their gate bootstrapping
timing by making it increase of a few milliseconds with respect to the original given
execution timing of about 13 ms.

6 https://bitbucket.org/malb/lwe-estimator/src/master/
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respect to the maximal number of involved parties is very slow. We control the
noise by changing the decomposition degree and exponent which do not affect
the security level.

We adapt a space-time trade-off technique in [20, 13] which reduces the com-
plexity of key-switching procedure by publishing all LWE encryptions of a·B′i ·tj
for i ∈ [d′], j ∈ [N ], and a ∈ ZB′ , compared to the encryptions of B′i · tj in the
scheme description. Hence our implementation of multi-key-switching is purely
represented by a summation of LWE vectors. It does not make any change in
asymptotic complexity.

Set KG BK KS ct k ct NAND

I 1.1 s 0.62 MB 70.1 MB 2.19 KB 2 4.38 KB 0.27 s

II 1.2 s 0.82 MB 70.1 MB 2.19 KB
2 4.38 KB 0.43 s

4 8.77 KB 1.45 s

III 1.3 s 1.03 MB 70.1 MB 2.19 KB

2 4.38 KB 0.50 s

4 8.77 KB 1.90 s

8 17.32 KB 7.16 s

Table 3. Performance of our implementation. k denotes the number of parties in
computation.

Our experimental results are summarized in Table 3. All experiments are
performed on a Intel Core i7-4910MQ at 2.90GHz laptop, running on a single
thread, which takes 13ms to execute a gate bootstrapping of the TFHE library.
On the left sides of table, we describe the local complexity of our scheme such as
key generation timing of each party. This part is independent from k. The other
side presents the global performance corresponding to the multi-key operation.
The parameter sets I, II and III support homomorphic computation on any
number of parties up to 2, 4 and 8, respectively. A smaller parameter has a
better performance but a larger one makes the scheme more flexible because
more parties can join the computation dynamically. We believe that the code
has space for optimization. This, with a more accurate choice of the parameters
could produce better execution timings.

6 Conclusion

We designed a practical MKHE scheme by generalizing the gate bootstrapping
of TFHE to the multi-key case. Our main technical contribution is to establish
a new hybrid product between single-key and multi-key ciphertexts which pro-
vides better storage, computational cost and noise growth. We implemented our
scheme to present its concrete performance.
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As we discussed in Section 4.2, one future direction is to implement advanced
functionalities of TFHE in the multi-key setting. Another direction is to design a
practical MKHE scheme from another HE system (e.g. BFV [5, 21], CKKS [12])
which has advantages in amortized complexity. Finally, one primary open prob-
lem in this area is how to construct an MKHE scheme without the CRS model.
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A Noise Estimation

For the decomposition base B and degree d, let ε2 = 1/(12B2d) be the variance
of uniform distribution over the interval (− 1

2B
−d, 12B

−d]. We denote by VB ={
1
12 (B2 − 1) if B is odd,
1
12 (B2 + 2) if B is even;

the mean square of a uniform distribution over Z ∩

(−B/2, B/2]. We similarly define ε′2 and VB′ based on the parameter B′ and d′

for the key-switching algorithm. We set the RGSW and LWE secret distributions
χ, ψ as uniform distributions over {0, 1}N and {0, 1}n, respectively.

The variance of a random variable e over R is denoted by Var(e). For a
random variable e over R[X]/(XN + 1), it denotes the variance of a coefficient
when all coefficients have the same variance. If e is a vector of random variables,
Var(e) denotes the maximum of its entries’ variances.

We mainly compute the variance of a noise. Our average-case analysis is based
on the heuristic assumption that a noise behaves like a Gaussian distribution,
which has been empirically shown in the previous work (Fig. 10, [15]).

Hybrid product method 1.
Step 1: Ciphertext extension. Let us suppose that

bj = −zj · a + ej (mod 1) for j ∈ [k],

di = ri · a + µi · g + ei,1 (mod 1),

fi,0 + zi · fi,1 = ri · g + ei,2 (mod 1) for some µ ∈ R and

Di ← RLWE.Extend
(
(di,Fi), {bj}j∈[k]

)
.

We let e0 = 0 for simplicity. Then for any 0 ≤ j ≤ k, the j-th row of Di satisfies
that

xj + zi · yj = Mj · (ri · g + ei,2) = ri · bj + (ri · e′j + Mj · ei,2) (mod 1)

for the decomposition error e′j ∈ Rd such that e′[`] = 〈g−1(bj [`]),g〉 − bj [`] for
` ∈ [d], and

zj · di = rizj · a + µizj · g + zj · ei,1
= − ri · bj + µizj · g + (ri · ej + zj · ei,1) (mod 1).
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Therefore, the j-th row is decrypted into µizj · g + ei,j for the GSW extension
error ei,j = ri · (ej + e′j) + zj · ei,1 + Mj · ei,2.

Its variance is bounded by

Vexp ≤ (N/2)ε2 + (1 + d · VB) ·Nβ2

since Var(ri) = Var(zj) = 1/2, Var(ej) ≤ Var(ei,1) = Var(ei,2) = β2, Var(e′j) = ε2

and Var(Mj · ei,2) = dN · VB · β2.

Step 2: Multi-key GSW external product. Let c and D be multi-key
RLWE and RGSW ciphertexts. Suppose that D satisfies Dz = µ ·Gk+1z + e for
a plaintext µ ∈ R and an error vector e. We denote by VarErr(D) = Var(e). The
external product outputs an RLWE ciphertext c′ satisfying

〈c′, z〉 = G−1k+1(c) ·Dz (mod 1)

= G−1k+1(c) · (µ ·Gk+1z + e) (mod 1)

= µ · 〈c, z〉+
(
µ · 〈e′, z〉+ G−1k+1(c) · e

)
(mod 1)

for the decomposition error e′ = G−1k+1(c) ·Gk+1 − c. Therefore, the variance of

external product error eep = µ · 〈e′, z〉+ G−1k+1(c) · e is

Vep = µ2 · ε2(1 + kN/2) + (k + 1)dN · VB · VarErr(D)

since Var(e′) = ε2 and Var(G−1k+1(c)) = VB .

In our case, D = Di is an extended RGSW ciphertext whose error variance
is Vexp ≤ (N/2)ε2 + (1 + d · VB) · Nβ2. As a result, our first method returns a
ciphertext whose noise variance is

V1 = µ2
i · ε2(1 + kN/2) + (k + 1)dN · VB · Vexp.

In our MKHE scheme, the decomposition error ε2 can be easily controlled.
Hence the extension error is mainly dominated by Vexp ≈ dN ·VB ·β2. Similarly,
the noise of hybrid product is dominated by V1 ≈ (k + 1)dN · VB · Vexp ≈
(k + 1)d2 ·N2 · V 2

B · β2.

Hybrid product method 2. As shown earlier, the output c′ of the second
multiplication algorithm satisfies 〈c′, z〉 =

∑k
j=0 uj · zj +

∑k
j=0(wj,0 + wj,1 · zi).

The first term is

k∑
j=0

uj · zj =

k∑
j=0

〈
g−1(cj), ri · a + µi · g + ei,1

〉
· zj (mod 1)

=µi · 〈c, z〉+ µi · e′ + ri ·
k∑
j=0

〈g−1(cj), zj · a〉+

k∑
j=0

〈g−1(cj), ei,1〉 · zj (mod 1)

=µi · 〈c, z〉 − ri ·
k∑
j=0

vj + µi · e′ + ri ·
k∑
j=0

〈g−1(cj), ej〉+

〈
k∑
j=0

zj · g−1(cj), ei,1

〉
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for the decomposition error e′ =
∑k
j=0

(
〈g−1(cj),g〉 − cj

)
· zj , while the second

term is

k∑
j=0

(wj,0 + wj,1zi) =

k∑
j=0

〈g−1(vj), fi,0 + zi · fi,1〉 (mod 1)

=

k∑
j=0

〈g−1(vj), ri · g + ei,2〉 = ri ·
k∑
j=0

vj + ri · e′′ +

〈
k∑
j=0

g−1(vj), ei,2

〉
(mod 1)

for e′′ =
∑k
j=0

(
〈g−1(vj),g〉 − vj

)
. Note that Var(e′) = ε2(1+kN/2) and Var(e′′) =

ε2(k + 1).
Therefore, the noise of c′ is

µi · e′ + ri ·
k∑
j=0

〈g−1(cj), ej〉+

〈
k∑
j=0

zj · g−1(cj), ei,1

〉
+ ri · e′′ +

〈
k∑
j=0

g−1(vj), ei,2

〉
,

and its variance

V2 = µ2
iNε

2(1 + kN/2) + (N2/2)(k + 1)VBβ
2 + dN(1 + kN/2)VBβ

2

+(N/2)ε2(k + 1) + (k + 1)NVBβ
2,

is dominated by V2 ≈ 1
2 (kd+ k + 1) ·N2 · VB · β2.

Rounding Error. In (2-2), we compute b̃ = b2N · b′e and ãi = b2N · a′ie. We
assume that each of the rounding errors behaves like a uniform random variable
on the interval R (mod 1) = (−0.5, 0.5]. Therefore, the total rounding error

(b̃− b2N · b′e) +
∑k
j=1〈ãj − b2N · a′je, sj〉 has the variance of 1

12 (1 + kn/2).

Mux Gate. Suppose that c0, c1 are RLWE ciphertexts and C is an RGSW
encryption of µ ∈ {0, 1} with error e. The mux gate is to compute c = c0 +
RLWE.Prod(c1 − c0,C) to choose cµ homomorphically:

〈c, z〉 = 〈c0, z〉+ G−1k+1(c1 − c0) · (µ ·Gk+1z + e) (mod 1)

= (1− µ) · 〈c0, z〉+ µ · 〈c1, z〉+
(
µ · 〈e′, z〉+ G−1k+1(c1 − c0) · e

)
(mod 1),

for the decomposition error e′ = G−1k+1(c1 − c0) ·Gk+1 − (c1 − c0). The noise

has the variance of µ2 · ε2(1 + kN/2) + (k + 1)dN · VB · VarErr(C), exactly the
same as external product.

Accumulation. The initial RLWE ciphertext has no noise. All bootstrapping
keys Ci,` have the same variance of noise VarErr(Ci,`) = (N/2)ε2 + (1 + N +
dNVB)β2 from the expansion algorithm. We recursively evaluate the mux gate k·
n times and an encrypted secret si,` is sampled uniformly from {0, 1}. Therefore,
the output of accumulator has an error of variance

1

2
kn · ε2(1 + kN/2) + (k + 1)kdnN · VB ·

(
(N/2)ε2 + (1 +N + dNVB)β2

)
. (1)
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Multi-Key Switching. Let ct = (b,a1, . . . ,ak) be an input LWE ciphertext
and ct

′
= (b′,a′1, . . . ,a

′
k) be the output of multi-key-switching algorithm. Then,

we have

〈ct′, (1, s)〉 = b+

k∑
i=1

(b′i + 〈a′i, si〉) (mod 1)

= b+

k∑
i=1

N∑
j=1

〈g′−1(ai,j), ti,j · g′ + ei,j〉 (mod 1)

= 〈ct, (1, t)〉+

k∑
i=1

N∑
j=1

(
ti,j · e′i,j + 〈g′−1(ai,j), ei,j〉

)
(mod 1)

for the decomposition error e′i,j = 〈g′−1(ai,j),g〉 − ai,j . As a result, the variance

of a multi-key-switching error eks =
∑k
i=1

∑N
j=1

(
ti,j · e′i,j + 〈g′−1(ai,j), ei,j〉

)
is

obtained by

Var(eks) = kN

(
1

2
ε′2 + d′ · VB′ · α2

)
. (2)

We note that this term does not include the error of input LWE ciphertext. If
〈ct′, (1, t)〉 = 1

4m + e (mod 1) for a bit m ∈ {0, 1} and an error e ∈ R, then ct′

will be an encryption of the same message m with error e′ = e+ eks.

Multi-Key Switching (modified). Different from the previous algorithm, the
key-switching key of the i-th party consists of LWE encryptions of a · B′` · ti,j
for 1 ≤ j ≤ N , 0 ≤ ` < d′ and a ∈ ZB′ encrypted under the secret si. For an
input LWE ciphertext ct = (b,a1, . . . ,ak), the (modified) multi-key switching
algorithm computes g′−1(ai,j) = (ai,j,`)0≤`<d′ for each 1 ≤ i ≤ k and 1 ≤ j ≤ N ,
and then compute the summation of LWE encryptions of ai,j,` · B′` · ti,j for
1 ≤ i ≤ k, 1 ≤ j ≤ N and 0 ≤ ` < d′. Therefore, the output ciphertext ct

′

satisfies that

〈ct′, (1, s)〉 = b+

k∑
i=1

N∑
j=1

d′−1∑
`=0

g′−1(ai,j)[`] ·B′` · ti,j + ei,j,ai,j,` (mod 1)

= b+

k∑
i=1

N∑
j=1

(ai,j + e′i,j) · ti,j +

k∑
i=1

N∑
j=1

d′−1∑
`=0

ei,j,ai,j,` (mod 1)

= 〈ct, (1, t)〉+

 k∑
i=1

N∑
j=1

ti,j · e′i,j +

k∑
i=1

N∑
j=1

d′−1∑
`=0

ei,j,ai,j,`

 (mod 1),

for the decomposition error e′i,j = 〈g′−1(ai,j),g
′〉−ai,j . As a result, the variance

of a multi-key-switching error eks =
∑k
i=1

∑N
j=1 ti,j ·e′i,j+

∑k
i=1

∑N
j=1

∑d′−1
`=0 ei,j,ai,j,`

is obtained by

Var(eks) = kN

(
1

2
ε2K + d′α2

)
, (3)
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which is smaller than that of standard key-switching error (2).

Bootstrapping. The bootstrapping noise is simply the sum of the accumulation
and multi-key-switching errors so that it has the variance of (1) + (3).
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