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Abstract. We revisit the problem of universally composable (UC) se-
cure multiparty computation in the stateless hardware token model.
– We construct a three round multi-party computation protocol for

general functions based on one-way functions where each party sends
two tokens to every other party. Relaxing to the two-party case,
we also construct a two round protocol based on one-way functions
where each party sends a single token to the other party, and at the
end of the protocol, both parties learn the output.

– One of the key components in the above constructions is a new two-
round oblivious transfer protocol based on one-way functions using
only one token, which can be reused an unbounded polynomial num-
ber of times.

All prior constructions required either stronger complexity assumptions,
or larger number of rounds, or a larger number of tokens.
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1 Introduction

Hardware Token Model. The seminal work of Katz [Kat07] initiated the
study of Universally Composable (UC) [Can01] protocols using tamper-proof
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hardware tokens. In this model, each party can create hardware tokens that
compute functions of its choice such that an adversary that has access to these
tokens does not learn anything more than their input/output behavior. The main
appeal of this model is that its security relies on a physical assumption and does
not require all the players to trust a common entity. Instead each player can
construct its own tokens or rely on its own token manufacturer.

Over the years, two different versions of the hardware token model have
been studied: stateful tokens, and stateless (a.k.a. resettable) tokens. The latter
model is more realistic, and, in practice, places weaker requirements on the
token manufacturer. This makes it appealing from both theoretical and practical
viewpoints. In this work, we focus on the stateless hardware token model.

Minimizing Complexity. There are three main parameters in the study of UC
secure multiparty computation (MPC) in the stateless hardware token model:
complexity assumption, number of rounds in the protocol, and the number of to-
kens. Since the introduction of the stateless hardware token model [CGS08], sev-
eral works [CGS08,GIS+10,CKS+14,DKMN15a,HPV16] have investigated vari-
ous trade-offs between these three parameters (see Section 1.2 for details). How-
ever, in the multiparty setting, the best known protocols based on the minimal
assumption of one-way functions4 require O(d) rounds [HPV16], where d is the
depth of the circuit being computed. This leaves open the following question
(w.r.t. any polynomial number of tokens):

Does there exist a constant round UC secure multiparty computation protocol
for general functions based on one-way functions in the stateless hardware

token model?

Token Reusability. Since tamper-proof hardware tokens can be expensive to
manufacture, it is very desirable to allow reuse of tokens across multiple sessions.
Indeed, for this reason, the reusable token model was put forth by [CKS+14],
where a set of tokens can be reused across multiple protocol executions (for
different function evaluations, on different set of inputs) between the same set of
parties, a.k.a. concurrent self composition. While the ability to reuse a setup for
concurrent self composition typically comes for free in setup models such as the
common reference string model, it is not the case for the hardware token model.
As such, it was put forth as an explicit goal by [CKS+14].

In the setting of two-party computation, [HPV16] constructed round-optimal
(i.e., two-round) protocols based on one-way functions, with unlimited token
reusability (even in the stronger Global UC model [CDPW07,CJS14]). However,
their protocol requires a polynomial number of tokens. The concurrent work of
[DKMN15a] requires only one token, but does not support unlimited token reuse.
This leaves open the following question:

4 One-way function is a necessary assumption in the stateless hardware token model
since an unbounded adversary can simply “learn” a stateless token [GIS+10].
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Does there exist a two round UC secure two-party computation protocol for
general functions based on one-way functions in the reusable stateless token

model?

In this work, we resolve both of the aforementioned questions in the affirma-
tive.

1.1 Our Results

We continue the study of UC secure computation in the stateless hardware token
model.

Multiparty Computation. Our first result is a three-round UC-secure multi-
party computation protocol based on the minimal assumption of one-way func-
tions. Our protocol requires each party to send two tokens to every other party.

Theorem 1 (Informal). Assuming one-way functions, there exists a three-
round UC multiparty computation protocol in the stateless hardware token model.

If we restrict our attention to the case of two parties, where the parties
communicate over simultaneous broadcast channels5, we can further reduce the
round-complexity of our protocol to two-rounds. We emphasize that at the end
of the protocol, both parties learn the output. Our protocol requires each party
to send only one token to the other party. Prior to our work, no such two-party
computation protocol was known in the literature.

Theorem 2 (Informal). Assuming one-way functions, there exists a two-round
UC two-party computation protocol over simultaneous broadcast channels, in the
stateless hardware token model.

We emphasize that the protocols in Theorem 1 and 2 allow for unlimited
token reuse across multiple sessions between the same set of parties.

Oblivious Transfer. A key component in our constructions is a new two-round
UC oblivious transfer protocol in the stateless hardware token model based on
one-way functions, and relying upon a single token. Crucially, unlike [DKMN15a]
who support an a priori bounded number of uses of the token, our protocol
supports unlimited token reuse.

Theorem 3 (Informal). Assuming one-way functions, there exists a two-round
UC oblivious transfer protocol in the reusable stateless hardware token model, us-
ing a single token.

5 This is the standard model for multiparty computation, where in each round, every
party simultaneously broadcasts a message to the other parties. However, a rush-
ing adversary may wait to receive the honest party’s message in any round before
deciding its own message.

3



By combining the above theorem with the work of Ishai et al. [IKO+11], we can
obtain a two-round secure two-party computation protocol in the unidirectional-
message model based on one-way functions with one reusable token. Unlike The-
orem 2, however, only one of the two parties learns the output at the end of the
protocol.

Discussion and Future Work. The work of Hazay et al. [HPV16] puts forth
GUC security as a more desirable notion of security for protocols in the hardware
token model. Our protocols do not achieve GUC security, and it is an interesting
open problem to extend our results to the stronger model of [HPV16].

Further, unlike the work of [HPV16], who construct black-box protocols, our
protocols make non-black-box use of one-way functions due to the use of ZK
arguments. It is an interesting open problem to construct optimal black-box
protocols in the hardware token model.

1.2 Related Work

Katz established the first feasibility results for UC secure multiparty computa-
tion (MPC) using stateful hardware tokens. Subsequently, this model was ex-
tensively explored in several directions with the purpose of improving upon the
complexity assumptions, round-complexity of protocols and the number of re-
quired tokens [MS08,GKR08,Kol10,DKM11,DKM12].

The study of UC-secure protocols in the stateless hardware token model was
initiated by Chandran et al. [CGS08]. They constructed a polynomial round pro-
tocol for multi-commitment functionality where each party exchanges one token
with the other party, based on enhanced trapdoor permutations. Subsequent to
their work, Goyal et al. [GIS+10] constructed constant-round protocols assuming
collision-resistant hash functions (CRHFs). However, these improvements were
achieved at the cost of requiring a polynomial number of tokens. Choi et al.
[CKS+14] subsequently improved upon their result by decreasing the number of
required tokens to only one, while still using only constant rounds and CRHFs.

Recently, Hazay et al. [HPV16] constructed two rounds two-party computa-
tion protocols based on one-way functions, and three-round MPC protocols based
on oblivious transfer in the Global UC model. They also construct a multiparty
protocol from one-way functions where the round complexity is linear in the
depth of the circuit being computed. All of their protocols require a polynomial
number of tokens. In a concurrent work, Döttling et al. [DKMN15a] construct
two-round oblivious transfer from stateless tokens based on one-way functions,
but their protocol does not support unbounded token reuse. Badrinarayanan et
al. [BJOV18] constructed a non-interactive UC-secure two party computation
protocol in the stateless hardware token model based on one way functions.

Döttling et al. [DKMN15b] construct information-theoretic UC-secure proto-
cols in a model where the tokens can be reset only a bounded number of times.
In a different work, Döttling et al. [DMMN13] construct UC-secure protocols for
resettable functionalities using stateless tokens. In contrast, we focus on securely
computing general functionalities using stateless tokens in this work.
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The work of Agrawal et al. [AAG+14] proves lower bounds on the number of
token queries necessary for secure computation in the stateless hardware token
model. We do not seek to optimize the query complexity of tokens in this work.

Niles [Nil15] and Mechler et al. [MMN16] provide a new formulation for
tamper-proof hardware tokens that can be reused across different protocol ex-
ecutions. Their security definition is different from GUC security studied in
[HPV16].

Recently, Hazay et al. [HPV17] constructed constant round adaptively se-
cure protocols in the stateless token model. In this work, we focus on static
corruptions.

2 Technical Overview

We first describe the techniques used in our new two round oblivious transfer
protocol in the next subsection. In the subsequent subsection, we describe the
techniques for the two party computation protocol. We then build upon these
techniques to construct the MPC protocol and discuss this in the final subsection.

2.1 Two-Round Oblivious Transfer (OT)

We design a new two-round OT protocol based on one-way functions where
the sender S sends a single token T to the receiver R. Our protocol combines
multiple ideas from prior works to address some standard issues that arise when
dealing with stateless tokens, together with our new ideas for improving upon
the parameters achieved in prior works. Below, we discuss our approach for the
case where the token is only used for a single execution. However, our approach
easily extends to allow for resuability of token.

Our starting approach is to divide the computation into two parts: in the
first part, the receiver R performs a random OT execution with the token T. In
the second part, R interacts with the sender S to perform standard OT using
the random OT instance. In more detail, the sender embeds two random strings
(r0, r1) in the token T and sends it to R. The receiver secret-shares its input
bit b into two parts (s, z) s.t. s ⊕ z = b, and then uses z to learn rz from T.
At the same time, R sends s = b ⊕ z to the sender S to obtain (M0,M1) s.t.
M0 = (m0 ⊕ r0), M1 = (m1 ⊕ r1) if s = 0 and M0 = (m0 ⊕ r1), M1 = (m1 ⊕ r0)
otherwise. Using the mask rz learned from the token, R appropriately unmasks
one of the two values (M0,M1) to learn mb.

The immediate problem with this naive approach is that an adversarial re-
ceiver can simply reset the stateless token and run it two times on different
inputs to learn both r0 and r1. Using these masks, the receiver can then recover
both (m0,m1), completely breaking the security.

We address this issue in a similar manner as many prior works such as
[GIS+10,CKS+14,DKMN15a]. The basic idea is to require S to authenticate
R’s query to the token. Namely, R commits to its query z and then obtains a
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signature σ on the commitment from S.6 In order to query T on z, the receiver
must provide σ and the appropriate decommitment information. The unforge-
ability of the signature scheme ensures that an adversarial receiver cannot query
the token more than once.

Input-dependent aborts. Unfortunately, this modification introduces a subtle
problem: a malicious sender can subliminally communicate s to the token by
embedding bit s into the signature value σ. This allows the token to learn the
receiver’s input bit b. It can now decide whether or not to abort based on this
input bit, which effectively signals the bit b back to the sender, breaking the
security of the protocol.

Similar to [DKMN15a], we address this problem by hiding the signature
from the token. Specifically, instead of sending σ to T, R proves knowledge
of σ via a zero-knowledge argument of knowledge. Since T is stateless, we re-
quire this argument of knowledge to be resettably sound [BGGL01]. Recent
works have constructed such argument systems based on one-way functions
[CPS13,BP13,COPV13,COP+14,BP15,CPS16].

While this modification prevents subliminal communication from the sender
to the token, unfortunately, the protocol still remains susceptible to input-
dependent aborts. In particular, an adversarial token can simply decide to abort
or not based on the random bit z. This effectively signals z back to the sender,
who combines it with s to learn the receiver’s input b.

A natural idea to prevent such an attack is to secret-share z into two parts
and query the token on each part separately. The hope here would be that the
adversarial token can only signal back one of the two secret shares of z back to
the sender, which does not suffice for learning b. Unfortunately, this idea im-
mediately fails since an adversarial token may be stateful, and therefore have a
joint view of all the queries made by the receiver.

Leakage-resilient secret-sharing. Our first step to address the problem of
input-dependent aborts is to employ leakage-resilient secret-sharing sharing.
Roughly, R secret-shares its input b into 2n random bits b1, . . . , b2n s.t. b is
the inner product of (b1, . . . , bn) with (bn+1, . . . , b2n). Each bit bi is further
secret shared into (si, zi) s.t. bi = (si ⊕ zi).

The main idea is that due to the leakage-resilient properties of inner product,
even given all of the bits (z1, . . . , z2n), an adversarial token cannot signal back
any one bit of information to S that is sufficient for learning b.

Unfortunately, however, it is not immediately clear how to integrate the above
secret-sharing scheme with the rest of the protocol. In particular, while our strat-
egy of performing OT via a random OT is compatible with the XOR-based secret
sharing, it does not seem to be compatible with inner-product based secret shar-

6 For simplicity, here we assume a non-interactive commitment scheme. In order to
use a two-round commitment scheme based on one-way functions, we use the token
T to generate the first commitment message.
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ing.

Delegation of Computation. Towards building a solution, let us first assume
that we have a trusted third party that computes the following function G: it
takes as input the bits b1, . . . , b2n, recomputes b and then outputs one of the
two hardcoded values (m0,m1), depending upon b.

Clearly, given access to such a third party, performing OT is straightforward.
Our main idea is to implement such a party via garbled circuits. Namely, we
augment the functionality of the token T to compute a garbled circuit for G and
send it to the receiver R so that it can evaluate it on its own. In other words,
the token delegates the computation of G to R.

Note, however, that to evaluate the garbled circuit, the receiver needs to
obtain input wire labels via OT. Thus, it may seem that we come back in a full
circle and not made any progress at all.

The crucial observation is that the input wire labels for the garbled circuit
can be obtained in the same manner as earlier, without leaking any information
about b. In particular, the receiver uses the same process as described earlier
to obtain one of the two wire labels for each bit bi. Namely, it first queries the
token on a random bit zi to learn a random mask ri. At the same time, it obtains
the masked input wire labels for the ith input from S. It then uses the mask
ri to recover the wire label corresponding to bit bi. This process is repeated in
parallel for every position i.

Since the garbled circuit gets a full view of the input of the receiver, we require
the token to prove its well-formedness via a resettable zero-knowledge argument
of knowledge [CGGM00,COPV13]. This ensures that the garbled circuit can-
not do an input-dependent abort and signal the bit b back to S. Note that a
similar proof could not have been given by the sender S about the physical token.

Trapdoor Mechanism. A crucial issue that arises while proving UC security of the
protocol is the following: when R is corrupted, the proof of well-formedness of
the garbled circuit given by the token T must be simulated in order to “force”
the correct output. However, the UC simulator cannot rewind the adversary,
nor does it have access to its code! To get around this issue, we implement the
following trapdoor generation mechanism that allows the simulator to recover a
trapdoor that can then be used to perform straight-line simulation. In the first
round, along with the other messages,R also sends a random string x. The sender
S then sends y = OWF(x), where OWF is a one-way function, and a signature
on y along with the other messages in the second round. Upon being queried
with y, the token proves, via a resettable witness-indistinguishable argument
of knowledge7 (RWIAOK), that either the garbled circuit is well-formed or it
knows an inverse of y. Here, we crucially rely on the asymmetry between the
simulator and the adversary: since an honest sender’s token is implemented by
the simulator, it already knows the trapdoor x that was sent by the adversarial

7 Such argument systems can be constructed from one-way functions [COPV13].
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receiver during the protocol. In contrast, once an adversarial sender learns x in
the protocol execution, it has no way of signaling it to its token. At this juncture,
we remark that this trapdoor mechanism is crucially used in all our other secure
computation protocols as well.

We refer the reader to the technical sections for further details about our OT
protocol.

2.2 Two-Party Computation

A Cloning Strategy. Consider parties P1 and P2 with inputs x1 and x2 re-
spectively who wish to securely evaluate a function f in two rounds such that
both parties learn the output. The main idea at the heart of our protocol is
the following: instead of running a two-party computation protocol between re-
mote players that would require several rounds of interaction, we ask a player
to construct a clone of itself in the form of a stateless token that can then be
remotely activated by its creator to perform the actual two-party computation.
We explain this in more detail below.

P1 creates a clone of itself in the form of a stateless token T1 and sends it
to P2. P2 does the same thing by sending a token T2 to P1. Then, P2 can sim-
ply execute a secure two-party computation protocol Π for f locally with T1,
while P1 can do the same with T2. An immediate problem with this idea is that
since the tokens are stateless, an adversarial P2, for example, can simply reset
the token T1 during the execution of Π, which may completely break its security.

Input Authentication. We solve this issue by allowing the sender to remotely
activate the token only for one input of the other party, in a similar manner as
in our OT protocol. We describe the strategy for P1. Upon being activated, P2’s
token first outputs a commitment to P2’s input, and proves the knowledge of
the committed value using a resettable zero-knowledge argument of knowledge
(RZKAOK). Party P1 then signs this commitment and sends it to P2. In the
course of the two-party computation with token T1, P2 proves that its behavior
is correct with respect to the input inside the signed commitment.

Implementing Two-Party Computation. We implement the actual two-
party computation between the token T1 and P2 via garbled circuits and OT.
(The two-party computation between T2 and P1 is implemented in a symmetric
manner.) In more detail, the token T1 prepares and outputs a garbled circuit
for the functionality f(x1, ·) and proves its well-formedness via a RZKAOK. In
order to evaluate this garbled circuit, P2 needs the wire labels corresponding to
its input x2, which in turn requires the use of OT.

Instead of performing OTs with the token T1, P2 runs multiple parallel ex-
ecutions of OT with P1, where P2 plays the receiver and P1 plays the sender.
The role of the OT token in this protocol is played by T1. By using our new
two-round OT protocol, we are able to ensure that the communication between
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P1 and P2 only requires two rounds. Barring several details concerning the se-
curity proof (see below), this already yields a two-round two-party computation
protocol.

We now briefly discuss some of the steps in the security proofs of the above
protocol. Consider a malicious P∗2. The simulator can extract its input using the
non-black-box extractor of RZKAOK given by token T2. Here, the extractor
requires the code of the token T2 which is not an issue since T2 is disconnected
from its creator P∗2 and the environment. Once it obtains the output y2 from the
ideal functionality, it can simulate the two-party computation protocol between
token T1 and P∗2. Here, we will need to simulate the proof of the well-formedness
of the garbled circuit and we will rely on the trapdoor generation mechanism
used in the OT protocol to achieve this task.

Simulating Input Commitment. Another issue that arises is how does the
simulator generate the proofs for the input commitment? That is, in the ideal
world, consider the setting where the party P1 is corrupted. Now, the simula-
tor’s token T2 on behalf of honest party P2, while interacting with P1 will have
to prove via a RZKAOK that it indeed knows the honest party’s input inside
the commitment. In the ideal world, P2 does not know the honest party’s input
and so the commitment will be just to some random string. However, we can
not simulate the RZKAOK argument given by the token as we don’t have the
code of the environment that it is interacting with in the setting of UC secu-
rity. Neither can we use the trapdoor mechanism as the trapdoor is generated
only much later after interacting with the adversary’s token. We overcome this
issue by noting that we actually don’t need the full power of zero knowledge
here and instead, all we require is a resettable strong witness indistinguishable
argument of knowledge. That is, we just require that the input commitment
being used is changed honestly to an indistinguishable one (a commitment to
a random string) and simultaneously can change the proof to prove knowledge
of this committed value. As a result, we do the following: in the reduction, we
first simulate the RZKAOK argument. Here, we crucially use the fact that this
happens only inside the security reduction and the final UC simulator does not
need the environment’s code. We then switch the input commitment to be a
commitment of a random string by relying on the hiding property and finally,
switch the proof back to honestly prove knowledge of the committed value.

The above discussion ignores several subtleties that arise in the proof. A more
detailed explanation of our protocol and proof can be found in Section 5.

2.3 Multiparty Computation

We now describe the techniques used in our MPC protocol. At a high level, we
follow the same recipe as in the two party case: that is, each party creates a clone
of itself that can then be remotely activated by the creator to perform the actual
MPC. As in the two party setting, we will also use the trapdoor mechanism
described in the OT section to help simulate the resettable arguments in the
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security proof. However, there are several additional challenges that arise in the
context of MPC and we describe them below.

First, lets describe the approach in more detail. Consider a set of n parties
P1, . . . ,Pn. Now, in order to offload the heavy computation of an actual MPC
protocol to remote players, we would require each party Pi to interact with
a set of (n − 1) tokens - one each from every other party, in an actual MPC
protocol. Unlike the two party setting where we essentially performed a two
party computation between a party and a token, here, the tokens can not talk
to each other! Therefore, each party Pi has to facilitate as the channel through
which the messages are exchanged between all these tokens taking party in the
MPC.

The next question is what sort of MPC protocol do we run amongst Pi and
the (n − 1) tokens? Recall that our goal is to base the security of our entire
protocol only on the existence of one way functions. In the two party setting, we
overcame this issue by running a semi-honest two party protocol based on gar-
bled circuits and oblivious transfer (OT) and composing it with appropriately
resettable arguments. We then used our new two round OT protocol to compute
the OTs required by the semi-honest construction. Taking a similar approach,
we would need to run a semi-honest secure MPC protocol that can be based on
just OT and one way functions. While there are several such protocols in liter-
ature, a crucial issue that arises is that we would need to instantiate it with an
MPC protocol where all the OT executions can be made in parallel once before
the execution of the rest of the protocol. We know of protocols in the OT hybrid
model[Bea96,Kil88,IPS08,IKO+11] assuming just one way functions that satisfy
this structure and we use such an MPC protocol and use our two round OT
protocol to run the OT executions. As in the two party setting, we perform the
input authentication and trapdoor generation before running the MPC protocol
and this help facilitates the proof.

Extra Round. The description so far seems to suggest that the protocol runs in
only two rounds. However, unlike the two party setting, we need an extra round
for the following reason. Let’s recall how the actual MPC is computed. Consider
party Pi. In order to run the underlying MPC protocol, the (n − 1) tokens in
possession of Pi do act as the OT receiver in some executions of the initial parallel
OT calls. As a result, the tokens need to know the output of the OT invocations
before proceeding with the rest of the computation. However, its not at all clear
how to deliver this output to the tokens. To illustrate the issue more clearly with
an example, consider two tokens T1 and T2 in the presence of party Pi. Let’s
suppose that in some OT invocation, T1 is the sender and T2 is the receiver.
Now, clearly, the OT has to be performed “externally” via their token creators as
the respective sender and receiver and not amongst the tokens themselves using
Pi as the channel because our OT protocol is not resettably secure. Therefore,
lets suppose we perform the OT protocol amongst their respective creators P1

and P2. At the end of this OT, the party P2 only learns the output. However,
we need to transmit this to its token T2. To solve this, in the third round, we
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have P2 send the OT outputs in an encrypted (and signed) form which is then
relayed to T2 via the party Pi.

At this point, we stop and reflect why this was not an issue in the two party
setting. There, recall that the only OT to be performed involved the party Pi
as the receiver and the corresponding token (of the other party) as the sender.
Therefore, by just running the two round OT protocol, Pi learns the output and
we avoid this extra round.

Finally, to ease the exposition and simplify the proof, unlike in the two party
setting, we treat the token that computes the MPC different from the one that
takes part in the OT protocol. Hence, we require every party to send two tokens
to every other party. We refer the reader to the technical section for more details.

3 Preliminaries

UC Secure Computation. The UC framework, introduced by [Can01] offers
advanced security guarantees since it deals with the security of protocols that
may be arbitrarily composed. We include the formal definitions in the full ver-
sion.

OT. Ideal 2-choose-1 oblivious transfer (OT) is a two-party functionality that
takes two inputs m0,m1 from a sender and a bit b from a receiver. It outputs
mb to the receiver and ⊥ to the sender. We use Fot to denote this functionality.
The ideal oblivious transfer(OT) functionality Fot is formally defined in the sup-
plementary material. Given UC oblivious transfer, it is possible to obtain UC
secure two-party computation of any functionality [IPS08,IKO+11].

Token functionality. We model a tamper-proof hardware token as an ideal
functionality FWRAP in the UC framework, following Katz[Kat07]. A formal def-
inition of this functionality can be found in the full version. Note that our ideal
functionality models stateful tokens. Although all our protocols use stateless to-
kens, an adversarially generated token may be stateful.

Cryptographic primitives. We use the following primitives all of which can be
constructed from one way functions: pseudorandom functions, digital signatures,
commitments, garbled circuits.[GGM86,Yao86,Rom90,Nao91]. Additionally, we
use the following advanced primitives recently constructed based on one way
functions: resettable zero knowledge argument of knowledge, resettably sound
zero knowledge argument of knowledge, resettable witness indistinguishable ar-
gument of knowledge and resettably sound witness indistinguishable argument of
knowledge. [CGGM00,BGGL01,CPS13,BP13,COPV13,COP+14,BP15,CPS16].

Interactive proofs for a “stateless” player. We consider the notion of an in-
teractive proof system for a “stateless” prover/verifier. By “stateless”, we mean
that the verifier has no extra memory that can be used to remember the tran-
script of the proof so far. Consider a stateless verifier. To get around the issue
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of not knowing the transcript, the verifier signs the transcript at each step and
sends it back to the prover. In the next round, the prover is required to send this
signed transcript back to the verifier and the verifier first checks the signature
and then uses the transcript to continue with the protocol execution. Without
loss of generality, we can also include the statement to be proved as part of
the transcript. It is easy to see that such a scenario arises in our setting if the
stateless token acts as the verifier in an interactive proof with another party.

4 Oblivious Transfer

In this section, we construct a two round UC oblivious transfer protocol with
unbounded reusability based on one-way functions using only one stateless hard-
ware token. The token is sent by the OT sender to the OT receiver in an initial
token transfer phase.

We first describe our protocol for the case where the token sent by the OT
sender can only be used for a single OT protocol execution. We then describe
a modification to make the token reusable, such that it can be used to perform
an unbounded polynomial number of OT executions between the same pair of
parties, with different pairs of inputs.

Formally, we show the following theorem:

Theorem 4. Assuming one-way functions exist, there exists a two round UC
secure unbounded OT protocol in the stateless hardware token model.

Combining this with the result of Ishai et al. [IKO+11], we obtain the fol-
lowing corollary:

Corollary 5 Assuming one-way functions exist, there exists a two round UC
secure two-party computation protocol using one stateless hardware token where
only one party learns the output.

4.1 Overview

Consider a sender S with inputs (m0,m1) and a receiver R with choice bit b who
wish to run an OT protocol.

Token transfer phase. Initially, as part of the token transfer phase, S creates
a stateless token T that has a prf key kS and a signing key and verification key
pair (sk, vk) for a signature scheme hardwired into it. Additionally, S chooses
two random strings (r0, r1) and creates a circuit C that, given input b1, . . . , b2n,
outputs rb where b = 〈(b1, . . . , bn), (bn+1, . . . , b2n)〉. (Here, 〈x, y〉 denotes the
inner product of x and y.) The sender creates a garbled version of this circuit
C̃ and hardwires it into the token, together with the randomness used to create
the garbled circuit. S sends the token T to R.

Round 1. R picks a key kR for a pseudorandom function and sends c which is a
commitment to this key. Also, R picks 2n bits b1, . . . , b2n uniformly at random

12



such that 〈B1,B2〉 = b where B1 = (b1, . . . , bn) and B2 = (bn+1, . . . , b2n). Then,
for each i ∈ [2n], R sends si = (bi ⊕ zi) where zi = PRF(kR, i).

Round 2. S computes a signature σ = Signsk(c). Also, for each i ∈ [2n], S
computes Ai,0 = PRF(kS , i, 0) and Ai,1 = PRF(kS , i, 1). Looking ahead, Ai,0 and
Ai,1 will be the token’s output when queried with zi = 0 or zi = 1 respectively.
Let the pair of labels for the ith input wire to the garbled circuit be Li,0 and
Li,1. If si = 0, S computes Zi,0 = (Li,0 ⊕ Ai,0) and Zi,1 = (Li,1 ⊕ Ai,1). On the
other hand, if si = 1, S computes Zi,0 = (Li,1 ⊕ Ai,0) and Zi,1 = (Li,0 ⊕ Ai,1).
Also, S computes α0 = (m0 ⊕ r0) and α1 = (m1 ⊕ r1). S sends (Zi,0,Zi,1) for
each i ∈ [2n] along with (α0, α1, σ).

Output Computation. First, R aborts if Verifyvk(c, σ) = 0. Now, for each
i ∈ [2n], R queries the token T using input (zi, c, i) along with a resettably
sound zero-knowledge argument of knowledge (RSZKAOK) for the following
NP statement:

There exists (kR, σ) such that c = Commit(kR), Verifyvk(c, σ) = 1 and
zi = PRF(kR, i).

T first verifies the proof. It aborts if the proof doesn’t verify. Then, T outputs
Ai,zi = PRF(kS , i, zi) and σi = Signsk(i). Now, for each i, R computes the label
value as Li,bi = Zi,zi ⊕ Ai,zi .

After this, R queries the token with the 2n signatures - σ1, . . . , σ2n and
receives a garbled circuit C̃ in response along with a resettable zero knowledge
(RZK) argument that it was generated correctly. In order to facilitate simulation
of this proof, we actually implement it via a resettable witness indistinguishable
argument of knowledge (RWIAOK) which can be proven by using a “trapdoor
witness” that is generated as follows: R, in the first round of the protocol, picks
a random x and sends it to S. In the second round, S computes y = OWF(x) and
a signature σy = Signsk(y). Now, when R queries the token to get the garbled
circuit, he also sends y and gives a RSZKAOK that he knows a signature on y
with respect to the verification key vk. The token, via the RWIAOK proves that
either the garbled circuit was correctly generated or that it knows a pre-image
of y. Using the corresponding label values, R evaluates the garbled circuit to
recover its output rb. R then uses this value along with αb to recover mb.

The correctness of the protocol follows by inspection. Below, we provide a
brief overview of the security proofs against malicious receivers and malicious
senders.

Security Against a Malicious Receiver. Consider a malicious receiver R∗. For
each i, let’s supposeR∗ queries T with (zi, c, i) and a valid RSZKAOK argument.
First, from the security of the pseudorandom function, observe that the output
of T for a query containing index i′ gives no information at all about its output
for index i 6= i′. Therefore, we now need to argue that R∗ can not query the
token with (1 − zi, c

′, i) and receive a valid output. If R∗ produces a different
(c′) that would break the security of the signature scheme. Fixing (c′) = (c),
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we observe that, from the statistical binding property of the commitment, there
is a unique kR and hence a unique value of zi = PRF(kR, i). Therefore, if R∗
produces a valid argument for z′i 6= zi, then that would violate the soundness of
the RSZKAOK system.

The simulation strategy in the ideal world is as follows: the simulator first
retrieves all the zi values by observing the queries to T. It then extracts the
receiver’s input b from the set of zi and si values. The simulator forwards b to
the ideal OT functionality to receive mb. It then computes a simulated garbled
circuit as output of the token. Note that by using additional signatures on each
output of the token, we force the receiver to query for the garbled circuit from
the token only after it gets all the label keys and messages from the sender. This
ensures that the simulator has enough time to extract the adversary’s input and
produce a simulated garbled circuit. Further, the simulator observes the query x
from the receiver in the first round and uses that as the witness in the RWIAOK
given by the token.

Security Against a Malicious Sender. To prove security against a malicious
sender S∗, the simulator, which receives the token’s code M from the ideal func-
tionality when the token is created, runs the code M on both zi = 0 and zi = 1
for every i by producing simulated RSZKAOK arguments as input. Note that
in order to produce simulated RSZKAOK arguments, the simulator requires the
code of the verifier which in our case is the token. Observe that this does not
violate UC security since the simulator only needs the code of the token (which it
does receive as per the model) and not the environment’s code. In its interaction
with the sender S∗, the simulator picks σi uniformly at random and not as the
output of a PRF. Using the sender’s responses Ai,0,Ai,1 along with the outputs
from the token - (Zi,0,Zi,1) on both zi = 0 and zi = 1, the simulator can com-
pute both the label values for each input wire to the garbled circuit. Further,
the simulator sends a random y as input to receive the garbled circuit C̃ and
produces a simulated RSZKAOK of the signature. Then, from the soundness of
the RWIAOK, the simulator is guaranteed that C̃ was indeed garbled correctly
using two messages (r0, r1). Finally, the simulator can extract both m0 and m1

using the garbled circuit C̃, all the labels and the messages α0, α1.8

Further, note that due to the “leakage resilience” of the inner product, S∗
doesn’t learn anything about b even if the malicious token selectively aborts.
That is, S∗ can’t learn b unless it learns all the bi values. For this, the token has
to signal information about each zi by selectively aborting to help S∗ recover the
respective bi and this can happen only with negligible probability since the zi’s
are essentially picked uniformly at random. That is, in the proof, the situation
where the simulator fails to extract both messages while the honest party doesn’t
abort happens only with negligible probability.

In the above protocol description, we treated the RSZKAOK and RWIAOK
argument systems as non-interactive protocols, but in reality they are interactive

8 An alternate proof strategy is for the simulator to directly extract the values r0 and
r1 using the extractor of the RWIAOK but we won’t delve further into that.
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proofs. This doesn’t increase the round complexity of our protocol since these
protocols are only executed between the receiver and the token. However, since
the token is stateless, it can’t “remember” anything about the proof. We fix
this by simply having the token sign the statement and transcript along with its
message in every round.

4.2 Construction

Notation. Let n denote the security parameter. Let OWF : {0, 1}n → {0, 1}2n
be a one-way function, PRF : {0, 1}n×{0, 1}n+1 → {0, 1}n and PRF1 : {0, 1}n×
{0, 1}n → {0, 1} be two pseudorandom functions, Com = (Commit,Decommit) be
a non-interactive 9computationally hiding and statistically binding commitment
scheme that uses n bits of randomness to commit to one bit, let (Gen,Sign,Verify)
be a signature scheme, (RSZKAOK.Prove,RSZKAOK.Verify) be a resettably-sound
zero-knowledge(RSZKAOK) argument of knowledge system for a “stateless veri-
fier” and (RWIAOK.Prove,RWIAOK.Verify) be a resettable witness indistinguish-
able (RWIAOK) argument of knowledge system for a “stateless prover” as de-
fined in Section 3. Let (Garble,Eval) be a garbling scheme for poly sized circuits
that take inputs of length (2n) bits and produces an output of length n bits.
Let’s say the sender S has private inputs (m0,m1) ∈ {0, 1}2n and receiver R has
private input b ∈ {0, 1}.

Note that all these primitives can be constructed assuming the existence of
one-way functions.

NP languages. We will use the following NP languages in our OT protocol.

1. NP language LOT1 characterized by the following relation ROT1 .
Statement : st = (z, i, c)
Witness : w = (kR, r, σ)
ROT1 (st,w) = 1 if and only if :
– z = PRF1(kR, i) AND
– Verifyvk(c, σ) = 1
– c = Commit(kR; r)

2. NP language LOT2 characterized by the following relation ROT2 .
Statement : st = (y)
Witness : w = (σy)
ROT2 (st,w) = 1 if and only if :
– Verifyvk(y, σy) = 1

3. NP language LOT3 characterized by the following relation ROT3 .
Statement : st = (C̃, y)
Witness : w = (C, k, r0, r1x)
ROT3 (st,w) = 1 if and only if :

9 To ease the exposition, we use non-interactive commitments that are based on in-
jective one-way functions. We describe later how the protocol can be modified to
use a two-round commitment scheme that relies only on one-way functions without
increasing the round complexity of the protocol.

15



– Either
• C̃ = Garble(C, k) (AND)
• circuit C on input (b1, . . . , b2n), outputs rb where
b = 〈(b1, . . . , bn), (bn+1, . . . , b2n)〉.

(OR)
– y = OWF(x).

OT Protocol. We now describe our two round OT protocol πOT .

– Token Exchange Phase:

S picks two random keys {kS , kV}
$← {0, 1}2n for the function PRF and

computes (sk, vk) ← (Gen(n)). Then, S creates a single token TS con-
taining the codes in Figure 1 and Figure 2. S picks two random values
r0, r1. Consider a circuit C that, given input b1, . . . , b2n, outputs rb where
b = 〈(b1, . . . , bn), (bn+1, . . . , b2n)〉. S creates a garbled version of this circuit
- C̃ using keys {Li,b} for all i ∈ [2n] and b ∈ {0, 1}. This is hardwired into
the token. S sends vk and TS to the receiver R.

– Oblivious Transfer Phase:
1. Round 1: R does the following:

• Choose a random key kR
$← {0, 1}n for the function PRF1 and a

random string x
$←{0, 1}n. Compute y = OWF(x).

• Compute c = Commit(kR; r) using a random string r
$←{0, 1}n2

.
• Pick 2n bits b1, . . . , b2n uniformly at random such that 〈B1,B2〉 = b

where B1 = (b1, . . . , bn) and B2 = (bn+1, . . . , b2n). Then, for each
i ∈ [2n], compute si = (bi ⊕ zi) where zi = PRF1(kR, i).
• Send c, x and {si}2ni=1 to S.

2. Round 2: S does the following:
• Compute y = OWF(x), σ = Signsk(c; r

′) and σy = Signsk(y).
• For each i ∈ [2n], compute Ai,si = PRF(kS , i, si).
• Compute α0 = (m0 ⊕ r0) and α1 = (m1 ⊕ r1).
• Send ({Ai,si}2ni=1, σ, σy) along with (α0, α1) to R.

– Output Computation Phase: R does the following:
• Abort if Verifyvk(c, σ) = 0 or Verifyvk(y, σy) = 0.
• For each i ∈ [2n], query TS with input (zi, i, c, “prove”). Using the prover

algorithm (RSZKAOK.Prove), engage in an execution of an RSZKAOK
argument with TS (who acts as the verifier) for the statement st1 =
(zi, i, c) ∈ LOT1 using witness w1 = (kR, r, σ). That is, as part of the
RSZKAOK, if the next message of the prover is msg, query TS with
input (zi, i, c,msg) in that round.

• Let {(Zi,zi , σi)}2ni=1 be the outputs received from TS . For each i, compute
Li,bi = (Zi,si ⊕ Ai,si).

• Query TS with input (σ1, . . . , σ2n, y, “prove1”). Using the prover algo-
rithm (RSZKAOK.Prove), engage in an execution of an RSZKAOK ar-
gument with TS (who acts as the verifier) for statement (st2 = y) ∈ LOT2

using witness w2 = (σy). That is, as part of the RSZKAOK, if the prover’s
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next message is msg, query TS with input (σ1, . . . , σ2n, y,msg) in that
round.

• Let (C̃, σC̃,y) be the output of TS . Using the algorithm (RWIAOK.Verify),
engage in an execution of a RWIAOK with TS (who acts as the prover)
for the statement st3 = (C̃, y) ∈ LOT3 . As part of the RWIAOK, if the
next message of the verifier is msg, query TS with input (C̃, y, σC̃,y,msg)

in that round. Initially, query with (C̃, y, σC̃,y, “prove”). Abort if the ar-
gument doesn’t verify.

• Using the keys {Li,bi}2ni=1 and the garbled circuit C̃, run the algorithm
Eval to recover the value rb.

• Then, compute mb = (αb ⊕ rb)

Remarks:

1. To be more precise, we use a 2-round commitment scheme where the first
message is actually sent by the token (acting on behalf of the receiver of the
commitment) independent of the value being committed to. This has been
abstracted out as part of the commitment scheme.

2. The verification key vk can be output by the token itself instead of being sent
by S along with the token. This would then strictly imply that the token
exchange phase has no communication messages.

4.3 Token Reusability

Observe that the sender’s input messages (m0,m1) don’t appear in the token at
all. For each execution, the token just evaluates a garbled circuit C̃ generated
using a circuit C that contains two random strings (r0, r1). In the current con-
struction, the strings (r0, r1) and the garbled circuit C̃ were hardwired into the
token. Instead, we can just hardwire two PRF keys - kr and kC̃ in the token.
Then, the token can use the first key kr to generate the pair of random strings
(r0, r1) and thereby the circuit C for each execution. Similarly, the second key kC̃
can be used to generate the randomness required to garble the circuit for that
execution. Thus, the same token can be re-used to run an unbounded number
of oblivious transfer executions between the same pair of sender and receiver.

4.4 Security

We defer the formal proof of security to the full version of the paper.

5 Two Round Two-Party Computation

In this section, we study two-party computation in the simultaneous broadcast
channel using stateless hardware tokens. We first construct a two round UC se-
cure two-party computation protocol for general functions in this model based
on one-way functions using two tokens. Specifically, each party sends a single
token to the other party in a token exchange phase prior to the protocol com-
munication phase. Formally, we show the following theorem:
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Constants: (kV , kS , vk, sk, C̃, {Li,b})
Case 1: If Input =(zi, i, c,msg):

– If msg = “prove”, the token does the following:
1. Consider a random tape defined by PRF(kV , i, 0).
2. Using the above randomness and the verifier algorithm (RSZKAOK.Verify),

initiate an execution of a RSZK argument with the querying party playing
the role of the prover for the statement st1 = (zi, i, c) ∈ LOT

1 . Output the
first message of the verifier.

– If msg 6= “prove”, the token does the following:
1. Consider a random tape defined by PRF(kV , i, 0).
2. Using the above randomness and msg as the message sent by the prover, run

the verifier algorithm (RSZKAOK.Verify) to continue an execution of a RSZK
argument with the querying party playing the prover’s role for the statement
st1 = (zi, i, c) ∈ LOT

1 .
3. Compute the next message msg′ of the verifier.
4. If msg′ /∈ {accept, reject}, output msg′. If msg′ = reject, abort.
5. If msg′ = accept:

If zi = 0, compute Zi,0 = (Li,0 ⊕ Ai,0) and Zi,1 = (Li,1 ⊕ Ai,1). If zi = 1,
compute Zi,0 = (Li,1 ⊕ Ai,0) and Zi,1 = (Li,0 ⊕ Ai,1). Output (Zi,0,Zi,1, σi =
Signsk(i)).

Case 2: If Input =(σ1, . . . , σ2n, y,msg):

– Abort if Verifyvk(i, σi) = 0 for any i ∈ [2n].
– If msg = “prove”, the token does the following:

1. Consider a random tape defined by PRF(kV , 1
n+1).

2. Using the above randomness and the verifier algorithm (RSZKAOK.Verify),
initiate an execution of a RSZKAOK with the querying party playing the
role of the prover for the statement st2 = y ∈ LOT

2 . Output the first message
of the verifier.

– If msg 6= “prove”, the token does the following:
1. Consider a random tape defined by PRF(kV , 1

n+1).
2. Using the above randomness and msg as the message sent by the prover,

run the verifier algorithm (RSZKAOK.Verify) to continue an execution of a
RSZKAOK with the querying party playing the prover’s role for the state-
ment st2 = y ∈ LOT

2 .
3. Compute the next message msg′ of the verifier.
4. If msg′ /∈ {accept, reject}, output msg′. If msg′ = reject, abort.
5. If msg′ = accept, output (C̃, σC̃,y = Signsk(C̃, y)).

Continues in Figure 2.

Fig. 1: Code of token TS

Theorem 6. Assuming one-way functions exist, there exists a two round UC-
secure two-party computation protocol over simultaneous broadcast channels for
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Continuing from Figure 1.
Case 3: If Input =(C̃, y, σC̃,y,msg):

– Abort if Verifyvk(C̃, y, σC̃,y) = 0.
– If msg = “prove”, the token does the following:

1. Consider a random tape defined by PRF(kV , 0
n+1).

2. Using the above randomness and the prover algorithm (RWIAOK.Prove),
initiate an execution of a RWIAOK with the querying party playing the role
of the verifier for the statement st3 = (C̃, y) ∈ LOT

3 using witness w3 =
(C, {Li,0, Li,1}, r0, r1,⊥) where i ∈ [2n], b ∈ {0, 1}. Output the first message
of the prover.

– If msg 6= “prove”, the token does the following:
1. Consider a random tape defined by PRF(kV , 0

n+1).
2. Using the above randomness and msg as the message sent by the prover,

run the prover algorithm (RWIAOK.Prove) to continue an execution of a
RWIAOK with the querying party playing the verifier’s role for the statement
st3 ∈ LOT

3 .

Fig. 2: Continuing code of token TS

any functionality f in the stateless hardware token model where each party sends
one token.

5.1 Construction

Let f be any two-party functionality. Consider two parties P1 and P2 with inputs
x1 ∈ {0, 1}n and x2 ∈ {0, 1}n respectively who wish to compute f on their joint
inputs. Below, we describe a two round protocol Π2pc for securely computing f .

Notation. Let n denote the security parameter and OWF : {0, 1}n → {0, 1}poly(n)
be a one-way function. Let PRF : {0, 1}n × {0, 1}n+1 → {0, 1}n be a pseudoran-
dom function, Com = (Commit,Decommit) be a non-interactive 10 statistically
binding commitment scheme that uses n bits of randomness to commit to one bit
and (Gen,Sign,Verify) be a signature scheme. Let RZKAOK = (RZKAOK.Prove,
RZKAOK.Verify) be a resettable zero-knowledge argument of knowledge for a
“stateless prover”, RWIAOK = (RWIAOK.Prove,RWIAOK.Verify) be a resettable
witness indistinguishable argument of knowledge for a “stateless prover” and
RSZKAOK = (RSZKAOK.Prove,RSZKAOK.Verify) be a resettably-sound zero-
knowledge argument of knowledge for a “stateless verifier” as defined in Sec-
tion 3. Let (Garble,Eval) be a garbling scheme for poly sized circuits that take
inputs of length (n) bits and produces outputs of length n bits.

10 To ease the exposition, we use non-interactive commitments that are based on in-
jective one-way functions. We describe later how the protocol can be modified to
use a two-round commitment scheme that relies only on one-way functions without
increasing the round complexity of the protocol.
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Let (OT1,OT2,OT3) denote the 2-message oblivious transfer protocol from
Section 4. That is, the algorithm OT1 is used by the receiver to compute the
first message ot1. The algorithm OT2 is used by the sender to compute the
second message ot2 and the algorithm OT3 is used by the receiver to compute
the output.

NP languages. We will use the following NP languages in our protocol.

– Language L1 characterized by the following relation R1. Statement : st =
(b, c)
Witness : w = (a, x, r)
R1(st,w) = 1 if and only if :

• b = OWF(a) AND
• c = Commit(x; r)

– Language L2 characterized by the following relation R2:
Statement : st = (C̃, b, c)
w = (x, rc, C, k, a)
R2(st,w) = 1 if and only if :

• Either

∗ c = Commit(x; rc) AND
∗ C̃ = Garble(C, k) AND
∗ circuit C, on any input α, outputs f(x, α).

(OR)
• b = OWF(a)

– NP language L3 characterized by the following relation R3.
Statement : st = (c, vk1, b, vk2)
Witness : w = (σc, σb)
R3(st,w) = 1 if and only if :

• Verifyvk(c, σc) = 1 AND
• Verifyvk(b, σb) = 1

The Protocol. We now describe protocol Π2pc for UC secure two-party com-
putation in the stateless hardware token model. Let party P1 have input x1 and
P2 have input x2. Recall that function to be computed is denoted by f .

– Token Exchange Phase:
P1 does the following:

• Compute (skc2 , vkc2) ← Gen(n), (skb2 , vkb2) ← Gen(n), (sk1, vk1) ←
Gen(n). Pick keys {krzk1 , krszk1 , krwi1 }

$←{0, 1}3n for the PRF.
• Choose a random string a1 and compute b1 = OWF(a1). Also, compute
c1 = Commit(x1; rc1) using a random string rc1 .

• Consider a circuit C1 that, given an n-bit input (α), outputs f(x1, α).
Create a garbled version of this circuit - C̃1 using keys {L1i,b} for all
i ∈ [n] and b ∈ {0, 1}. This is hardwired into the token. Compute σC̃1 =

Signsk1(C̃1; rC̃1) using a random string rC̃1 .
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• Create a token T2pc
1 containing the codes in Figure 3 and Figure 4. Note

that this involves performing steps carried out in the token exchange
phase of the OT protocol in Section 4.

• P1 sends the token T2pc
1 to P2.

The protocol is symmetric. That is, P2 sends T2pc
2 to P1.

– Communication Phase:
1. Round 1:

P1 does the following:
• For each i ∈ [n], compute ot1→2

1,i = OT1(x1,i) where x1,i denotes the

ith bit of xi. Here the superscript denotes that its sent from P1 to
P2.

• Send (b1, c1, vkb2 , vkc2 , {ot1→2
1,i }ni=1) to P2 where b1, c1 were computed

in the token exchange phase.
P2 performs the same operations symmetrically and sends (b2, c2, vkb1 , vkc1 ,
{ot2→1

1,i }ni=1) to P1.
2. Round 2:

P1 does the following:
• Using the verifier algorithm (RZKAOK.Verify), engage in an execu-

tion of a RZKAOK with the token T2pc
2 (who acts as the prover)

for the statement that (st1) ∈ L1 where st2 = (b2, c2). This is
done by querying token T2pc

2 with input (“activate”). As part of
the RZKAOK, if the next message of the verifier is msg, query the
token with input (msg) in that round.

• Abort if the above argument doesn’t verify.
• Compute σc2 = Signskc2 (c2; rc2) and σb2 = Signskb2 (b2; rb2) using ran-

dom strings rc2 and rb2 .
• For each i ∈ [n], compute ot1→2

2,i = OT2(L1i,0, L
1
i,1, ot

2→1
1,i ) where L1i,0

and L1i,1 are the labels of the garbled circuit C̃1.

• Send (σc2 , σb2 , ot
1→2
2,1 , . . . , ot1→2

2,n ) to P2.
P2 symmetrically sends (σc1 , σb1 , ot

2→1
2,1 , . . . , ot2→1

2,n ) to P1.
– Output Computation:

P1, does the following :
• For each i ∈ [n], run the “Output computation phase” of the OT protocol

using input x1,i and ot2→1
2,i as the messages from the sender. For any query

msg to be made to the token in the OT protocol, query token T2pc
2 using

input (“OT”,msg). Compute output L2i,x1,i for each i ∈ [n].

• Query T2pc
2 using input (c1, b1, “2pc”). Using the prover algorithm

(RSZKAOK.Prove), engage in an execution of an RSZKAOK argument
with T2pc

2 (who acts as the verifier) for statement st3 = (c1, b1, vkc1 , vkb1)
∈ L3 using witness w3 = (σc1 , σb1). That is, as part of the RSZKAOK, if
the next message of the prover is msg, query T2pc

2 with input (c1, b1,msg)
in that round.

• Let (C̃2, σC̃2) be the output of T2pc
2 . Then, using the verifier algorithm

(RWIAOK.Verify), engage in an execution of a RWIAOK with T2pc
2 (who

acts as the prover) for the statement st2 = (C̃2, b1, c1) ∈ L2. As part
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of the RWIAOK, if the verifier’s next message is msg, query T2pc
2 with

input (C̃2, σC̃2 ,msg) in that round. Initially, query with (C̃2, σC̃2 , “prove”).
Abort if the argument doesn’t verify.

• Using the keys {L2i,x1,i}
n
i=1, and the garbled circuit C̃2, run the algorithm

Eval to recover the output y1.

P2 performs the same operations symmetrically to receive output y2.

Note: For better understanding of the rest of the protocol, this figure actually de-
scribes the code of token T2pc

2 created by P2. The code of T2pc
1 is symmetrical.

Constants: (C̃2, σC̃2 , {L2
i,0, L

2
i,1}ni=1, x2, c2, rx2 , a2, b2, k

rzk
2 , krszk2 , krwi

2 ,PRF
(skc1 , vkc1), (skb1 , vkb1), (sk2, vk2))

1. If input = (“OT”,msg), respond as done by the token in Section 4 using input
as msg.

2. If input = (“activate”), do the following: using a random tape defined by
PRF(krzk2 , 0n+1) and the prover algorithm (RZKAOK.Prove), initiate an execu-
tion of a RZKAOK with the querying party playing the role of the verifier for
the statement (st1) ∈ L1 where st1 = (b2, c2) using witness (a2, x2, rx2). Output
the first message of the prover.

3. If input = (msg), do the following: using a random tape defined by
PRF(krzk2 , 0n+1) and the prover algorithm (RZKAOK.Prove), continue an exe-
cution of a RZKAOK with the querying party playing the role of the verifier for
the statement (st1) ∈ L1 where st2 = (b2, c2) using witness (a2, x2, rx2). Output
the next message of the prover.

Continues in Figure 4.

Fig. 3: Code of token T2pc
2

Remark: In the above description, we were assuming non-interactive commit-
ments (which require injective one way functions) to ease the exposition. In
order to rely on just one way functions, we switch our commitment protocol to
a two-round one where the receiver sends the first message. Now, we tweak our
protocol as follows: after receiving the token, P1 receives the first round of the
commitment from the token T2 and uses that to compute c1. P2 does the same
thing symmetrically after interacting with T1.

Reusability: If we want to allow our tokens to be reused an unbounded number
of times for performing multiple two party computation protocols between the
same pair of parties, we can tweak the protocol as follows: instead of hardwiring
P1’s input x1 and the garbled circuit C̃1 inside the token T2pc

1 , we can just
hardwire an encryption key ek1 for a symmetric encryption scheme. Now, in
this setting, the tokens are exchanged apriori in an initial token exchange phase.
Then, in the first round, when P1 sends c1 = Commit(x1) and message b1 to
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Continuing from Figure 3.

4. If input = (c1, b1, “2pc”), do the following:
– If msg = “prove”, the token does the following: Using a random tape defined

by PRF(kRSZK2 , 1n+1) and the verifier algorithm (RSZKAOK.Verify), initiate
an execution of a RSZKAOK with the querying party playing the role of
the prover for the statement st3 = (c1, b1, vkc1 , vkb1) ∈ L3. Output the first
message of the verifier.

– If msg 6= “prove”, the token does the following:
(a) Using a random tape defined by PRF(kRSZK2 , 1n+1) and msg as the mes-

sage sent by the prover, run the verifier algorithm (RSZKAOK.Verify) to
continue an execution of a RSZKAOK with the querying party playing
the prover’s role for the statement st3 = (c1, b1) ∈ L3.

(b) Compute the next message msg′ of the verifier.
(c) If msg′ /∈ {accept, reject}, output msg′. If msg′ = reject, abort.
(d) If msg′ = accept, output (C̃2, σC̃2).

5. if input = (C̃2, σC̃2 , “prove”)
– Abort if the signature σC̃2 doesn’t verify.
– using a random tape defined by PRF(krwi

2 , 0n+1) and the prover algorithm
(RWIAOK.Prove), initiate an execution of a RWIAOK with the querying
party playing the role of the verifier for the statement st2 = (C̃2, b1, c1) ∈ L2

using witness (x2, rc2 , C2, {L2
i,0, L

2
i,1}ni=1,⊥) .

– Output the first message of the prover.
6. If input = (C̃2, σC̃2 ,msg), do:

– Abort if the signature σC̃2 doesn’t verify.
– Using a random tape defined by PRF(krwi

2 , 0n+1) and the prover algorithm
(RWIAOK.Prove), continue an execution of a RWIAOK with the querying
party playing the role of the verifier for the statement st2 = (C̃2, b1, c1) ∈ L2

using witness (x2, rc2 , C2, {L2
i,0, L

2
i,1}ni=1,⊥).

– Output the next message of the prover.

Fig. 4: Code of token T2pc
2

party P2, it also sends ct1 = encek1(x1) and σct1 = Sign(ct1). That is, it sends
an encryption of its input and a signature on this encryption. Party P2 is now
expected to also query the token with (ct1, σct1) along with c1, b1. The token
T2pc

1 verifies the signature, decrypts the message to learn the input x1 and then
proceeds to use it for the rest of the computation as before. A similar procedure is
also performed with respect to P2’s initial messages and T2pc

2 ’s token responses.

5.2 Security

We formally prove security in the full version of the paper.
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6 Three Round MPC

In this section, we use our unbounded reusable OT protocol to construct a three
round UC secure MPC protocol for general functions in the stateless hardware
token model amongst n parties based on one-way functions. In this protocol, each
party sends two tokens to every other party in a token exchange phase prior to
the protocol communication phase. Formally, we show the following theorem:

Theorem 7. Assuming one-way functions exist, there exists a three round pro-
tocol that UC-securely realizes any n-party functionality f in the stateless hard-
ware token model where each party sends two tokens to every other party.

6.1 Construction

Let f be any functionality. Consider n parties P1, . . . ,Pn with inputs inp1, . . . ,
inpn respectively who wish to compute f on their joint inputs. Below, we describe
a three round protocol Πmpc for securely computing f .

Notation. We first list some notation and the primitives used.

– Let λ denote the security parameter.
– Let OWF : {0, 1}λ → {0, 1}poly(λ) be a one-way function. Let PRF : {0, 1}λ×
{0, 1}λ+1 → {0, 1}λ be a pseudorandom function, Com = (Commit,Decommit)
be a non-interactive statistically binding commitment scheme that uses λ
bits of randomness to commit to one bit, (Gen,Sign,Verify) be a signature
scheme and (setup, enc, dec) be a private key encryption scheme.

– Let RWIAOK = (RWIAOK.Prove, RWIAOK.Verify) be a resettable witness in-
distinguishable argument of knowledge for a “stateless prover” and RZKAOK
= (RZKAOK.Prove,RZKAOK.Verify) be a resettable zero-knowledge argu-
ment of knowledge for a “stateless prover” as defined in Section 3.

– Let (OT1,OT2,OT3) denote the 2-message oblivious transfer protocol from
Section 4. That is, the algorithm OT1 is used by the receiver to compute
the first message ot1. The algorithm OT2 is used by the sender to compute
the second message ot2 and the algorithm OT3 is used by the receiver to
compute the output.

– Let π denote a semi-malicious secure MPC protocol in the correlated ran-
domness model where the correlated randomness is the following: between
every pair of parties, there exists an OT channel. That is: between every pair
of parties Pi, Pj , there exists a set of tuples {s0,k, s1,k, bk}k∈[p(λ)] for some
fixed polynomial p such that Pi knows {s0,k, s1,k}k∈[poly(λ)] and Pj knows
{bk}k∈[poly(λ)]. We know that such a protocol can be constructed assuming
just the existence of one way functions [Bea96,Kil88,IPS08,IKO+11]. Lets
say its an ` round protocol. Let π.Roundi denote the algorithm used by any
party to generate the message in round i and let π.Out denote the algorithm
used to compute the final output. Let Simπ denote the simulator for this pro-
tocol. We require that Simπ can generate simulated correlated randomness
without knowing the output of the protocol or the input and randomness of
the corrupted parties.
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NP languages. We will use the following NP languages in our protocol.

– Language L1 characterized by the following relation R1. Statement : st =
(b, c)
Witness : w = (a, x, r)
R1(st,w) = 1 if and only if :

• b = OWF(a) AND
• c = Commit(x; r)

– Language L2 characterized by the following relation R2:
Statement : st = (b, c,Trans,msg, i)
w = (x, rc, cor.rand, a)
R2(st,w) = 1 if and only if :

• Either

∗ c = Commit(x; rc) AND
∗ msg = π.Roundi(x,Trans, cor.rand)

(OR)
• b = OWF(a)

The Protocol. We now describe protocol Πmpc in the stateless hardware token
model. Recall that each party Pi has input inpi and the function to be computed
is denoted by f .

– Token Exchange Phase:
Each party Pi does the following:

1. For each party Pj , create token Ti→j
ot as done in Section 4.

2. Compute (ski, vki) ← Gen(λ), eki ← setup(λ). Pick keys {krzki , krwii }
$←

{0, 1}2n for the PRF.
3. Choose a random string ai and compute bi = OWF(ai).
4. Pick a random string ri to run the MPC protocol π. Set xi = (inpi||ri).

Compute ci = Commit(xi; rci) using a random string rci .
5. For each party Pk, create a token Ti→k

mpc containing the code in Figure 5.
6. Pi broadcasts all the tokens created above.

– OT Phase:

1. For each k ∈ [n], every pair of parties Pi and Pj with i > j perform a
set of p(λ) executions of the Oblivious Transfer protocol from Section 4
using the token Ti→j

ot . Here, Pi picks random inputs (s0, s1) for each
execution independently and Pj picks a random bit b in each execution
independently. This process takes two rounds.

2. In round 3, every party Pi does the following: For each k ∈ [n], for each
j ∈ [n] and each OT execution t with party Pj , do:

(a) If i > j, compute ct = enc(ek, {s0,t, s1,t}) and σct = Signsk(ct). Out-
put (ct, σct).

(b) If i < j, compute ct = enc(ek, {b, sb,t}) and σct = Signsk(ct). Output
(ct, σct).

– Input Commitment Phase:
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1. Round 1:
Each party Pi broadcasts (bi, ci) where bi, ci were computed in the token
exchange phase.

2. Round 2:
Each party Pi does the following:

• For each j ∈ [n], using the verifier algorithm (RZKAOK.Verify), en-
gage in an execution of a RZKAOK with the token Tj→i

mpc (who acts
as the prover) for the statement that (stj) ∈ L1 where stj = (bj , cj).
As part of the RZKAOK, if the next message of the verifier is msg,
query the token with input (“RZKAOK”,msg) in that round.
• Abort if the above argument doesn’t verify.
• For each j ∈ [n], compute and broadcast σcj = Signsk(cj) and σbj =
Signsk(bj).

– Computation Phase:
Each party Pi does the following :

1. Run an execution of the MPC protocol π amongst itself and the (n− 1)
“MPC” tokens it received. That is, protocol π is executed amongst the n

parties T1→i
mpc, . . . ,T

(i−1)→i
mpc ,Pi,T

(i+1)→i
mpc , . . . ,Tn→i

mpc for the functionality

f where the kth party uses input inpi, randomness ri and correlated ran-
domness as the decrypted values in the set of authenticated ciphertexts
ct broadcast by party Pk in the OT phase.11 Initiate the protocol by
sending “MPC” to each token.

2. Here, Pi acts as the channel and sends the messages broadcast by any
party (aka token) to all the other parties (aka tokens). Along with each
message, to each token Tj→i

mpc, Pi also sends the following:

• The set of ct, σct broadcast by party Pj in the OT phase. This is the
encryption of the correlated randomness for the token Tj→i

mpc in the
protocol π.
• For each k ∈ [n], (bk, ck, σbk , σck) which are the authenticated input

commitments.

3. Whenever a token Tj→i
mpc sends a message msgj in round t, addition-

ally it also acts as a prover in an execution of a RWIAOK argument
with every other token Tk→i

mpc as the verifier for the statement stj,t =
(bk, cj ,Trans,msgj , t) ∈ L2 using witness wj,t = (xj , rcj , cor.rand,⊥).
Here, Trans denotes the transcript of the protocol upto round (t − 1)
and cor.rand is the decryption of all the ct it receives. Once again Pi acts
as the channel.

4. Finally, compute and output out = π.Out(xi,Trans) where Trans denotes
the transcript of the protocol.

Remark: In the above description, we were assuming non-interactive commit-
ments (which require injective one way functions) to ease the exposition. In order

11 To ease the exposition, we assume that xk and rk are hardwired inside each token.
Instead, we can have each party broadcast encrypted signed versions of them which
are sent to the respective token along with the other messages.
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Note: For better understanding of the rest of the protocol, this figure actually
describes the code of token Tj→i

mpc created by party Pj and sent to Pi. The code of
Ti→j

mpc is symmetrical.

Constants: (xj , cj , rxj , aj , bj , k
rzk
j , krwi

j ,PRF, (sk, vk), ek)

1. If input = (“RZKAOK”,msg): using a random tape defined by PRF(krzkj , 0n+1)
and the prover algorithm (RZKAOK.Prove), engage in an execution of a RZKAOK
with the querying party playing the role of the verifier for the statement (stj) ∈ L1

where stj = (bj , cj) using witness (aj , xj , rcj ) where msg is the next message of
the verifier in the protocol. Output the next message of the prover.

2. If input = (“MPC”, {ct, σct}, {bk, ck, σbk , σck}), do the following:
(a) If the signatures verify, engage in an execution of the MPC protocol π with

(n − 1) other parties for the functionality f using input inpj , randomness
rj and correlated randomness as the set of decryptions of {ct}. Here, the
querying party acts as the channel.

(b) In round t, if party Pk sends a message msg, also engage in an execution
of a RWIAOK argument acting as the verifier with party Pk as the prover
for the statement stk,t = (bj , ck,Trans,msg, t) ∈ L2 where Trans denotes the
transcript of the protocol upto round (t− 1).

(c) In round t, after sending a message msg, for every other party Pk, engage in
an execution of a RWIAOK argument using the prover algorithm with party
Pk acting as the verifier for the statement stj,t = (bk, cj ,Trans,msg, t) ∈ L2

using witness wj,t = (xj , rcj , cor.rand,⊥) where Trans denotes the transcript
of the protocol upto round (t − 1) and cor.rand is the decryption of the set
of ct using the secret key ek.

Fig. 5: Code of token Tj→i
mpc

to rely on just one way functions, we switch our commitment protocol to a two-
round one where the receiver sends the first message.

Reusability: If we want to allow our tokens to be reused an unbounded number
of times for performing multiple MPC protocols between the same set of parties,
we can tweak the protocol as follows: instead of hardwiring Pi’s input xi =
(inpi, ri) inside the tokens Ti→j

mpc sent by Pi, we can just hardwire an encryption
key eki for a symmetric encryption scheme. Now, in this setting, the tokens are
exchanged apriori in an initial token exchange phase. Then, in the first round,
when Pi sends ci = Commit(xi) and message bi, it also sends cti = enceki(xi) and
σcti = Sign(cti). That is, it sends an encryption of its input and a signature on
this encryption. Every party Pj is now expected to also query the token Ti→j

mpc

with (cti, σcti) along with ci, bi in every query. The token verifies the signature,
decrypts the message to learn the input xi and then proceeds to use it for the
rest of the computation.
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6.2 Security

We formally prove security in the full version of the paper.
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DMMN13. Nico Döttling, Thilo Mie, Jörn Müller-Quade, and Tobias Nilges. Im-
plementing resettable uc-functionalities with untrusted tamper-proof
hardware-tokens. In TCC, 2013.

GGM86. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. J. ACM, 1986.

GIS+10. Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and
Akshay Wadia. Founding cryptography on tamper-proof hardware tokens.
In TCC, 2010.

GKR08. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time
programs. In CRYPTO, 2008.

HPV16. Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venki-
tasubramaniam. Composable security in the tamper-proof hardware
model under minimal complexity. In TCC 2016-B, 2016.

HPV17. Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venki-
tasubramaniam. Constant round adaptively secure protocols in the
tamper-proof hardware model. In PKC, 2017.

IKO+11. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and
Amit Sahai. Efficient non-interactive secure computation. In EURO-
CRYPT, 2011.

IPS08. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography
on oblivious transfer - efficiently. In CRYPTO, 2008.

Kat07. Jonathan Katz. Universally composable multi-party computation using
tamper-proof hardware. In EUROCRYPT, 2007.

Kil88. Joe Kilian. Founding cryptography on oblivious transfer. In STOC, 1988.

Kol10. Vladimir Kolesnikov. Truly efficient string oblivious transfer using reset-
table tamper-proof tokens. In TCC, 2010.

MMN16. Jeremias Mechler, Jörn Müller-Quade, and Tobias Nilges. Univer-
sally composable (non-interactive) two-party computation from untrusted
reusable hardware tokens. IACR Cryptology ePrint Archive, 2016:615,
2016.

MS08. Tal Moran and Gil Segev. David and goliath commitments: UC compu-
tation for asymmetric parties using tamper-proof hardware. In EURO-
CRYPT, 2008.

Nao91. Moni Naor. Bit commitment using pseudorandomness. J. Cryptology,
1991.

Nil15. Tobias Nilges. The Cryptographic Strength of Tamper-Proof Hardware.
PhD thesis, Karlsruhe Institute of Technology, 2015.

29



Rom90. John Rompel. One-way functions are necessary and sufficient for secure
signatures. In Proceedings of the twenty-second annual ACM symposium
on Theory of computing, pages 387–394. ACM, 1990.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In FOCS, 1986.

30


	UC-Secure Multiparty Computation from One-Way Functions using Stateless Tokens

