
Indifferentiability of Truncated Random
Permutations

Wonseok Choi, Byeonghak Lee, and Jooyoung Lee?

{krwioh,lbh0307,hicalf}@kaist.ac.kr

KAIST, Korea

Abstract. One of natural ways of constructing a pseudorandom func-
tion from a pseudorandom permutation is to simply truncate the output
of the permutation. When n is the permutation size and m is the number
of truncated bits, the resulting construction is known to be indistinguish-
able from a random function up to 2

n+m
2 queries, which is tight.

In this paper, we study the indifferentiability of a truncated random
permutation where a fixed prefix is prepended to the inputs. We prove
that this construction is (regularly) indifferentiable from a public random
function up to min{2

n+m
3 , 2m, 2`} queries, while it is publicly indifferen-

tiable up to min{max{2
n+m

3 , 2
n
2 }, 2`} queries, where ` is the size of the

fixed prefix. Furthermore, the regular indifferentiability bound is proved
to be tight when m+ `� n.
Our results significantly improve upon the previous bound ofmin{2

m
2 , 2`}

given by Dodis et. al (FSE 2009), allowing us to construct, for instance,
an n

2
-to-n

2
bit random function that makes a single call to an n-bit per-

mutation, achieving n
2
-bit security.

Keywords: random permutation, random function, truncation, indifferentia-
bility, chi-square method

1 Introduction

A block cipher is typically modeled as a pseudorandom permutation in a prov-
able security setting: no distinguisher should be able to distinguish the block
cipher from a truly random permutation by making a certain number of encryp-
tion and decryption queries in a black-box manner. However, for some modes of
operation, one might want the block cipher to behave like a pseudorandom func-
tion. A variety of cryptographic protocols (such as signature schemes, random
number generators, key derivation schemes, etc.) provide provable security in
the random oracle model. This observation motivates the problem of construct-
ing a pseudorandom function from pseudorandom permutations. Sometimes this
? Jooyoung Lee was supported by a National Research Foundation of Korea (NRF)
grant funded by the Korean government (Ministry of Science and ICT), No. NRF-
2017R1E1A1A03070248.

problem is called “Luby-Rackoff backward” [2]: the Feistel network transforms a
set of (not necessarily one-to-one) functions into a permutation, and this prob-
lem considers its opposite direction. In this direction, two approaches are natural
and straightforward; one is to xor multiple independent random permutations
and the other is to simply truncate the output of the permutation.

In this work, we will focus on the security of a truncated random permutation.
One advantage of this construction (over xoring multiple permutations) is its
minimality; it is based on a single permutation, using only a single call to the
permutation. We will study the security of a truncated random permutation
in the indifferentiability framework. In this framework, we will fix some of the
input bits to the permutation, since otherwise one can easily differentiate the
construction from a public random function F by making a backward query v to
the simulator S, and then checking out if F(S−1(v)) = v. Later we will discuss
this attack in more detail.

Truncated Permutation. Let n, `, m be positive integers such that `,m < n.
Our construction is precisely defined as

TRP[P]
def
= Trm(P(c ‖ ·)),

where c ∈ {0, 1}` is an `-bit prefix, P is an n-bit permutation (modeled as a
random permutation oracle), and

Trm : {0, 1}n −→ {0, 1}n−m

x 7−→ xR,

when x ∈ {0, 1}n is written as xL ‖ xR for xL ∈ {0, 1}m and xR ∈ {0, 1}n−m.
(So Trm truncates the first m bits of the input.) In this way, we obtain an
(n− `)-to-(n−m) bit function from an n-bit permutation.

In order to prove that this construction is indifferentiable from a public ran-
dom function F, one should present a simulator S that emulates P having access
to F so that it is infeasible to distinguish two systems (F,S[F]) and (TRP[P],P).

As far as we know, the indifferentiability of TRP has been studied only in [6],
where the adversarial differentiating advantage is upper bounded by

(qF + qS)
2

2n
+
qF qS
2m

+
qS
2`
,

where qF and qS denote the number of function queries and the number of
simulator queries, respectively.

Our Contribution. In the indifferentiability framework, we consider two dif-
ferent notions; (regular) indifferentiability and public indifferentiability. With
respect to regular indifferentiability, we present a simulator S such that any dis-
tinguisher is able to distinguish (F,S[F]) and (TRP[P],P) with probability at
most (

(qF + qS)
3

2n+m−1

) 1
2

+
(3 ln qF + 3(n−m) + 1)qS

2m−1
+

5qS
2`−1

.

2

We also prove that the regular indifferentiability bound is tight when m+`� n.
With respect to public indifferentiability, we present a simulator S such that

any distinguisher is able to distinguish (F,S[F]) and (TRP[P],P) with probability
at most (

(qF + qS)
3

2n+m−1

) 1
2

+
qS
2`−1

if qF + qS < 2m, and (
5(qF + qS)

2

2n+1

) 1
2

+
qS
2`−1

,

otherwise. Figure 1 compares our bounds and the bound from [6] in terms of the
threshold number of queries q (in log base 2), where q = qF+qS ; TRP is regularly
indifferentiable (resp. publicly indifferentiable) from a public random function up
to min{2n+m

3 , 2m, 2`} (resp. min{max{2n+m
3 , 2

n
2 }, 2`}) queries, improving upon

the previous bound of min{2m
2 , 2`}.

Our results allow us to construct an n-to-n bit random function that makes
a single call to a wider 2n-bit permutation, achieving n-bit security. This con-
struction is comparable to the sum of two independent permutations, P1 ⊕ P2,
that makes two calls to the underlying n-bit permutations P1 and P2 to achieve
n-bit security. For each simulator query, our simulator makes at most one call
to the public random function F, while the simulator for P1 ⊕ P2 (given in [3])
might possibly make n calls to F.

By letting qS = 0, an indifferentiability bound of TRP is reduced to an
indistinguishability bound of TRP. Without any simulator query, we can make
our computation even tighter, recovering the optimal indistinguishability bound
of TRP given in [8]. See Appendix A.

We remark that efficient and secure construction of a fixed-input-length ran-
dom oracle (FIL-RO) can be of practical relevance. As a FIL-RO, TRP founds
various applications; a public finalization function for MACs, a non-compressing
primitive for compression functions [21], a key derivation function, etc. A key
derivation function in GCM-SIV was also proposed to use TRP [9,10], although
later studies offered alternatives [12,21]. We already have large and secure permu-
tations at hand, including KECCAK and GIMLI, that can be used to construct
a FIL-RO with reasonable size and security.

Related Work. The sum of two random permutations was first considered by
Bellare et al. [2] in the indistinguishability framework. Subsequently, a series of
works improved this seminal result [1, 4, 14, 19, 20], culminating with the proof
by Dai et al. [5] that the sum of two n-bit random permutations is (fully) secure
up to 2n queries.

In the indifferentiability model, Mandal et al. [15] proved that the sum of
two public random permutations is secure up to 2

2n
3 queries, and later Mennink

and Preneel [19] pointed out a flaw in their security proof and fixed it. Lee [13]
proved that the sum of k independent random permutations is secure up to
2

(k−1)n
k queries. Finally, Bhattacharya and Nandi [3] proved that the sum of two

random permutations is secure up to 2n queries.

3

m

log2 q

n
2

2n
3

n
2

n

n

0

Fig. 1: Our regular and public indifferentiability bounds for TRP as a function of
m (ignoring `). For all parameters below the dashed line (resp. the dotted line),
TRP is regularly indifferentiable (resp. publicly indifferentiable) from a public
random function. The solid and dash-dotted lines represent the indistinguisha-
bility bound [8] and the previous indifferentiability bound [6], respectively.

Truncating a random permutation was first considered by Hall et al. [11],
where they proved the security of TRP (with ` = 0) up to min{2n+m

2 , 2
2(n−m)

3 }
queries in terms of indistinguishability. Bellare and Impagliazzo [1] improved
this bound up to min{22m, 2n+m

2 }. Recently, Gilboa et al. [8] proved that TRP is
indistinguishable from a random function up to 2

n+m
2 queries. This bound turns

out to be tight as they also present matching attacks. Mennink [18] generalized
truncation functions used in TRP, and showed that the security of such con-
structions (in terms of indistinguishability) cannot exceed that of the original
TRP.

As mentioned before, Dodis et al. [6] proved the security of TRP up to
min{2m

2 , 2`} queries in terms of indifferentiability, and used it to build the MD6
hash function. Precisely, the MD6 hash function uses TRP with n = 5696, ` = 960
and m = 4672.

2 Preliminaries

Notation. Throughout this work, we fix positive integers n, m, ` such that
m, ` < n to denote the size of the underlying permutation P, the number of
truncated bits and the prefix size of TRP, respectively. We also fix c ∈ {0, 1}` to
denote the prefix of TRP. We will write C = {c ‖ x : x ∈ {0, 1}n−`}.

4

Regular and Public Indifferentiability. In the indifferentiability frame-
work, a distinguisher is given two systems (C[P],P) and (F,S[F]), where P is an
ideal primitive, C[P] is a bigger construction using P as a building block, F is
another ideal primitive with the same interface as C[P], and S[F] is a probabilistic
Turing machine with the same interface as P that has oracle access to F. The
goal of the simulator S[F] is to emulate the ideal primitive P so that no distin-
guisher can tell apart the two systems (F,S[F]) and (C[P],P) with a significant
probability, based on their responses to queries that the distinguisher may send.
We say that the construction C[P] is indifferentiable from the ideal primitive F
if the existence of such a simulator is proved. The indifferentiability guarantees
universal composability of C[P]: if C[P] is indifferentiable from F, then C[P] can
replace F in any cryptosystem, and the resulting cryptosystem is at least as se-
cure under the assumption that P is ideal as under the assumption that F is
ideal.

More precisely, in an information-theoretic sense, a construction C with oracle
access to an ideal primitive P is said to be (qF , qS , ε)-regular indifferentiable from
an ideal primitive F if there exists a simulator S with oracle access to F such that
for any distinguisher Amaking exactly qF queries to the outer construction (C[P]
or F) and exactly qS queries to the inner primitive (P or S[F]),1 it holds that

Advreg
C,S(A)

def
=
∣∣∣Pr [1← AC[P],P

]
− Pr

[
1← AF,S[F]

]∣∣∣ < ε.

See [17] for more detail on indifferentiability.
Public indifferentiability has been introduced in [7,22] and formalized in [16]

as a variant of indifferentiability, where the simulator knows all queries made by
the distinguisher to the primitive it tries to simulate. This weaker notion is useful
to argue the security of cryptosystems where all the queries to the ideal primitive
are public (as e.g., in many digital signature schemes). The adversarial public-
differentiating advantage Advpub

C,S(A) is similarly defined for any distinguisher A,
and hence (qF , qS , ε)-public indifferentiability.

The χ2 Method. We give here all the necessary background on the χ2 method [5]
that we will use throughout this paper.

We fix a set of random systems, a deterministic distinguisher A that makes
q oracle queries to one of the random systems, and a set Ω that contains all
possible answers for oracle queries to the random systems. For a random system
S and i ∈ {1, . . . , q}, let ZS,i be the random variable over Ω that follows the
distribution of the i-th answer obtained by A interacting with S. Let

ZiS
def
= (ZS,1, . . . , ZS,i),

and let
piS(z)

def
= Pr

[
ZiS = z

]
for z ∈ Ωi. For i < q and z = (z1, . . . , zi−1) ∈ Ωi−1 such that pi−1S (z) > 0, the
probability distribution of ZS,i conditioned on Zi−1S = z will be denoted pzS,i(·),
1 We can assume that A is deterministic since it is computationally unbounded.

5

namely for z ∈ Ω,

pzS,i(z)
def
= Pr

[
ZS,i = z | Zi−1S = z

]
.

For two random systems S0 and S1, and for i < q and z = (z1, . . . , zi−1) ∈
Ωi−1 such that pi−1S0 (z), pi−1S1 (z) > 0, the χ2-divergence for pzS0,i(·) and pzS1,i(·)
is defined as follows.

χ2
(
pzS1,i(·), p

z
S0,i(·)

) def
=

∑
z∈Ω such that
pzS0,i(z)>0

(
pzS1,i(z)− pzS0,i(z)

)2
pzS0,i(z)

.

We will simply write χ2 (z) = χ2
(
pzS1,i(·), p

z
S0,i(·)

)
when the random systems

are clear from the context. If the support of pi−1S1 (·) is contained in the support
of pi−1S0 (·), then we can view χ2

(
pzS1,i(·), p

z
S0,i(·)

)
as a random variable, denoted

χ2
(
Zi−1S1

)
, where z follows the distribution of Zi−1S1 .

Then A’s distinguishing advantage is upper bounded by the total variation
distance of pqS0(·) and pqS1(·), denoted ‖p

q
S0(·)− pqS1(·)‖, and we also have

‖pqS0(·)− pqS1(·)‖ ≤

(
1

2

q∑
i=1

Ex
[
χ2
(
Zi−1S1

)])1/2

. (1)

See [5] for the proof of (1).

3 Indifferentiability of TRP

We will assume that a distinguisher A has access to an oracle O with three types
of queries; O(x, 0) for x ∈ {0, 1}n−`, O(u,+) and O(v,−) for u, v ∈ {0, 1}n,
which are called a function query, a forward query and a backward query, re-
spectively. Forward and backward queries will be also called simulator queries.
In the real world, an n-bit permutation P is chosen uniformly at random, and
queries O(u,+) and O(v,−) are answered with P(u) and P−1(v), respectively,
and a query O(x, 0) is answered with TRP[P](x). In the simulated world, an
(n − `)-to-(n −m) bit function F is chosen uniformly at random, and a query
O(x, 0) is answered with F(x) for any x ∈ {0, 1}n−`. On the other hand, queries
O(u,+) and O(v,−) will be answered by a simulator S that has oracle access to
F.

3.1 Regular Indifferentiability of TRP

We define a simulator S without using any information on the adversarial queries
of type O(·, 0). Simulator S is stateful, keeping variables O(u) and O−1(v) for
every u and v ∈ {0, 1}n, all initialized as ⊥, meaning “undefined”,2 as well as
sets D, R, and Ry for each y ∈ {0, 1}n−m, all initialized as empty. It behaves as
follows.
2 We uses O to denote both oracle interfaces and variables by slight abuse of notation.

6

– On a forward query O(u,+), S does the following.
1. If O(u) = ⊥, then

(a) obtain y = F(x) via an oracle query to F if u = c ‖ x for some
x ∈ {0, 1}n−`, and choose y uniformly at random from {0, 1}n−m
otherwise;

(b) choose w uniformly at random from {0, 1}m \ Ry;
(c) assign w ‖ y and u to O(u) and O−1(w ‖ y), respectively;
(d) updateD,R andRy asD∪{u},R∪{w‖y} andRy∪{w}, respectively.

2. Return O(u).
– On a backward query O(v,−), S does the following.

1. If O−1(v) = ⊥, then
(a) choose u uniformly at random from {0, 1}n \ (D ∪ C);
(b) assign u and v to O−1(v) and O(u), respectively;
(c) update D, R and Ry as D∪{u}, R∪{v} and Ry∪{w}, respectively,

where v = w ‖ y for w ∈ {0, 1}m and y ∈ {0, 1}n−m.
2. Return O−1(v).

By definition, our simulator consistently answers redundant queries. So we can
assume that A makes no redundant query; if A obtains O(u,+) = v (resp.
O(v,−) = u), then it would not make a query O(v,−) (resp. O(u,+)). A will
not make a function query F(x) once it has made a forward query O(c ‖ x,+).
On the other hand, A is allowed to make a forward query O(c ‖ x,+) after it
obtains F(x).

Theorem 1. Let S be the simulator defined as above, and let qF and qS be
positive integers such that qF +qS ≤ 2n−1. Then for any distinguisher A making
qF queries to the outer construction and qS queries to the inner primitive,

AdvregTRP,S(A) ≤
(
(qF + qS)

3

2n+m−1

) 1
2

+
(3 ln qF + 3(n−m) + 1)qS

2m−1
+

5qS
2`−1

.

Proof. We can assume that qS ≤ 2m−1 since otherwise the upper bound trivially
holds.

Let S0 = (F,S[F]) and S2 = (TRP[P],P) denote the simulated world and the
real world, respectively. We cannot directly apply the χ2 method to S0 and S2
since the support of pi−1S2 (·) is not contained in the support of pi−1S0 (·) (and vice
versa) for any i = 1, . . . , q; S does not return any element of C on a backward
query O(·,−). For this reason, we introduce an intermediate world, denoted S1,
that has the same oracle interface as S0 and S2.

This random system uses two flags, denoted bad1 and bad2, all initialized
as false, and a sampling procedure P∗ as a subroutine. The procedure P∗ keeps
variables P∗(u) and (P∗)−1(v) for every u and v ∈ {0, 1}n, all initialized as ⊥,
meaning “undefined”, and also keeps sets D∗ and R∗, all initialized as empty.
This procedure accepts oracle queries of types P∗(·,+) and P∗(·,−).

7

– On a query P∗(u,+), P∗ does the following.

1. If P∗(u) = ⊥, then
(a) choose v uniformly at random from {0, 1}n \ R∗;
(b) assign v and u to P∗(u) and (P∗)−1(v), respectively;
(c) update D∗ and R∗ as D∗ ∪ {u} and R∗ ∪ {v}, respectively.

2. Return P∗(u).

– On a query P∗(v,−), P∗ does the following.

1. If (P∗)−1(v) = ⊥, then
(a) choose u uniformly at random from {0, 1}n \ D∗;
(b) if u ∈ C, then set bad1 to true, and choose u uniformly at random

from {0, 1}n \ (D∗ ∪ C);
(c) assign v and u to P∗(u) and (P∗)−1(v), respectively;
(d) update D∗ and R∗ as D∗ ∪ {u} and R∗ ∪ {v}, respectively.

2. If (P∗)−1(v) = u′(6= ⊥) where v = w ‖ y for w ∈ {0, 1}m and y ∈
{0, 1}n−m, then

(a) set bad2 to true;
(b) choose u uniformly at random from {0, 1}n \ (D∗ ∪ C);
(c) assign v and u to P∗(u) and (P∗)−1(v), respectively;
(d) choose v′ uniformly at random from

{w ‖ y : w ∈ {0, 1}m} \ R∗;

(e) assign v′ and u′ to P∗(u′) and (P∗)−1(v′), respectively;
(f) update D∗ and R∗ as D∗ ∪ {u} and R∗ ∪ {v′}, respectively.

3. Return (P∗)−1(v).

Note that {0, 1}n \ (D∗∪C) is always nonempty since qF +qS+2n−` ≤ 2n. Using
this sampling procedure, oracle queries to S1 are answered as follows.

– On a function queryO(x, 0), S1 obtains w‖y = P∗(c‖x,+) where w ∈ {0, 1}m
and y ∈ {0, 1}n−m, and returns y.

– On a forward query O(u,+), S1 obtains v = P∗(u,+) and returns v.
– On a backward query O(v,−), S1 obtains u = P∗(v,−) and returns u.

So S1 behaves like the real world S2 with the inner permutation replaced by
the sampling procedure P∗. Again, P∗ behaves like a truly random permutation
except that it never samples any element of C on a backward query P∗(·,−).

Note that P∗(v,−) is queried on an element v such that (P∗)−1(v) 6= ⊥ only
when (P∗)−1(v) is fixed via a function query O(x, 0) for some x ∈ {0, 1}n−`
(since we are assuming that a distinguisher never makes redundant queries).
When P∗(c ‖ x) = v is fixed via a function query, a distinguisher would not

8

obtain any information on the leftmost m bits of v. Namely, when v = w ‖ y
for w ∈ {0, 1}m and y ∈ {0, 1}n−m, the distinguisher has P∗(u) = ? ‖ y for
unknown ?. When a backward query P∗(v,−) is made later during the attack,
w is replaced by a new element w′ and (P∗)−1(v) is also given a new element u′
outside D∗. In this way, every oracle query will add a new element to D∗ and
R∗.

Let q = qF + qS denote the total number of queries. Then we have

Advreg
TRP,S(A) ≤ ‖p

q
S0 (·)− pqS2 (·) ‖

≤ ‖pqS0 (·)− pqS1 (·) ‖+ ‖p
q
S1 (·)− pqS2 (·) ‖. (2)

Once A obtains the first i − 1 answers z = (z1, . . . , zi−1) via oracle queries,
they (partially) determine all the corresponding evaluations of P∗. For a fixed
j ∈ {1, . . . , i− 1}, the j-th query is associated with (uj , vj , σj), where

– if zj has been obtained by a function query on x, then σj = 0, uj = c ‖ x,
and vj = ? ‖ zj (with ? meaning “unknown”).

– if zj has been obtained by a forward query on u, then σj = +, uj = u, and
vj = zj .

– if zj has been obtained by a backward query on v, then σj = −, uj = zj ,
and vj = v.

With this notation, we will consider random variables Vy, Sy, Fy for each y ∈
{0, 1}n−m, where

Vy = |{uj : vj = w ‖ y for some w ∈ {0, 1}m}| ,
Sy = |{uj : σj ∈ {+,−} and vj = w ‖ y for some w ∈ {0, 1}m}| ,
Fy = Vy − Sy.

In words,

– Vy counts the number of elements u where P∗(u) has been determined by
A’s function/simulator queries and P∗(u) = w ‖ y for some w ∈ {0, 1}m,

– Sy counts the number of elements u where P∗(u) has been determined by
A’s simulator queries and P∗(u) = w ‖ y for some w ∈ {0, 1}m,

– Fy counts the number of elements u where P∗(u) has been partially de-
termined only by A’s function queries and P∗(u) = ? ‖ y with unknown
? ∈ {0, 1}m.

Let V =
∑
y∈{0,1}n−m Vy. At any point during the attack, V = |D∗| = |R∗|.

Suppose that z determines P∗(u) = ?‖y for u ∈ {0, 1}n and y ∈ {0, 1}n−m (with
unknown ?). Then for w ∈ {0, 1}m such that z does not determine (P∗)−1(w‖y),
the conditional probability that ? = w given z is 1/Sy. (Note that we can define a
set of candidate permutations which are compatible with (uj , vj , σj) for all j < i;
the distribution of the next query answer z from S1 is the same as the distribution
one would get by drawing one of those compatible permutations uniformly at

9

random conditioned on backward queries not falling in C, and using it to answer
the query in the obvious way.)

Upper bounding ‖pqS1 (·) − pqS2 (·) ‖. The procedure P∗ behaves exactly like a
truly random permutation without any of the bad flags being set to true. So we
can upper bound ‖pqS1 (·)− pqS2 (·) ‖ by the probability that either bad1 or bad2
is set to true.

For i = 1, . . . , qS , let E1,i (resp. E2,i) be the event that the i-th simulator
query set bad1 (resp. bad2) to true. Since |C| = 2n−` and |D∗| ≤ q ≤ 2n−1, we
have

Pr [E1,i] =
|C|

2n − |D∗|
≤ 2n−`

2n−1
=

1

2`−1

for each i = 1, . . . , qS .
When the i-th simulator query O(v,−) is made (in the backward direction)

with v = w ‖ y, the conditional probability that bad2 is set to true (conditioned
on the previous queries) is upper bounded by

Fy
2m − Sy

,

where Fy and Sy can be viewed as random variables determined by the previous
queries. Since y can be chosen adversarially and Sy ≤ 2m−1, the conditional
probability that the i-th simulator query sets bad2 to true is upper bounded by

maxy∈{0,1}n−m Fy

2m−1
.

Therefore, we have

Pr [E2,i] ≤
Exi

[
maxy∈{0,1}n−m Fy

]
2m−1

,

where the expectation is taken over the interaction of A and S1 until the i-th
simulator query is made. We also have

Exi

[
max
y

Fy

]
≤ qF

2n−m−2
+ 3 ln qF + 3(n−m) + 1. (3)

The proof of (3) is deferred to the end of this section. Overall, we have

‖pqS1(·)− pqS2(·)‖ ≤ Pr

[
qS∨
i=1

(E1,i ∨ E2,i)

]

≤
qS∑
i=1

Pr [E1,i] +

qS∑
i=1

Pr [E2,i]

≤ qS
2`−1

+
qF qS
2n−3

+
(3 ln qF + 3(n−m) + 1)qS

2m−1

≤ 5qS
2`−1

+
(3 ln qF + 3(n−m) + 1)qS

2m−1
, (4)

10

where the last inequality holds since qF ≤ 2n−`.

Upper bounding ‖pqS0(·) − pqS1(·)‖. For the intermediate system S1, we can
easily check that the support of pi−1S1 (·) is contained in the support of pi−1S0 (·) for
i = 1, . . . , q, allowing us to use the χ2 method.

Let Ω = {0, 1}n ∪ {0, 1}n−m. For fixed i ∈ {1, . . . , q} and z ∈ Ωi−1 such
pi−1S1 (z) > 0, we will compute

χ2(z) =
∑

z∈Ω such that
pzS0,i(z)>0

(
pzS1,i(z)− pzS0,i(z)

)2
pzS0,i(z)

.

The previous queries z ∈ Ωi−1 will determine the type of the next query. We will
distinguish four cases: a function query, a “fresh” forward query, a forward query
on an element where a function query already has been made, and a backward
query.

Suppose that the i-th query is a function query. For any z ∈ {0, 1}n−m, we
have

pzS0,i(z) =
1

2n−m
,

pzS1,i(z) =
2m − Vz
2n − V

since V = |R∗| and Vz = |{v ∈ R∗ : v = w ‖ z for some w ∈ {0, 1}m}|. Therefore
we have

χ2(z) =
∑

z∈{0,1}n−m

(2n−mVz − V)2

2n−m(2n − V)2
. (5)

Suppose that the i-th query is a forward query O(u,+), where either u /∈ C or
u = c ‖x for some x ∈ {0, 1}n−` and O(x, 0) has not been queried. Let z = w ‖ y
for w ∈ {0, 1}m and y ∈ {0, 1}n−m, where (P ∗)−1(w ‖ y) is not fixed by z. Then
it is easy to see that

pzS0,i(z) =
1

2n−m
· 1

2m − Sy
.

In S1,⊥‖y is chosen with probability (2m−Vy)/(2n−V) conditioned on z (with⊥
meaning “undetermined”), and then ⊥ becomes w with probability 1/(2m−Sy).
Therefore we have

pzS1,i(z) =
2m − Vy
2n − V

· 1

2m − Sy
,

and hence,

χ2(z) =
∑

y∈{0,1}n−m

(2n−mVy − V)2

2n−m(2n − V)2
, (6)

since the number of w ∈ {0, 1}m such that (P ∗)−1(w ‖ y) is fixed by z is Sy for
each y ∈ {0, 1}m.

11

Suppose that the i-th query is a forward query O(u,+), where u = c ‖ x for
some x ∈ {0, 1}n−` and y = O(x, 0) has been obtained by a previous function
query. Let z = w ‖ y where w ∈ {0, 1}m. Then we have

pzS0,i(z) = pzS1,i(z) =
1

2m − Sy
,

and hence
χ2(z) = 0. (7)

Suppose that the i-th query is a backward query O(v,−). It is easy to see
that

pzS0,i(z) = pzS1,i(z) =
1

2n − |D∗ ∪ C|
for any z ∈ {0, 1}n \ (D∗ ∪ C), and hence

χ2(z) = 0. (8)

By (5), (6), (7), (8), we have

‖pqS0(·)− pqS1(·)‖ ≤

(
1

2

q∑
i=1

Ex
[
χ2(z)

]) 1
2

≤

1

2

q∑
i=1

Ex

 ∑
y∈{0,1}n−m

(2n−mVy − V)2

2n−m(2n − V)2

 1
2

. (9)

Since
∑
y∈{0,1}n−m Vy = V ≤ qF + qS and V ≤ 2n−1, we have

∑
y∈{0,1}n−m

(2n−mVy − V)2

2n−m(2n − V)2
=

∑
y∈{0,1}n−m

22n−2mV 2
y − 2n−m+1VyV + V 2

2n−m(2n − V)2

=
2n−m

(2n − V)2

 ∑
y∈{0,1}n−m

V 2
y −

V 2

2n−m


≤ 1

2n+m−2

 ∑
y∈{0,1}n−m

Vy

2

≤ (qF + qS)
2

2n+m−2
,

and by (9),

‖pqS0(·)− pqS1(·)‖ ≤

(
q∑
i=1

(qF + qS)
2

2n+m−1

) 1
2

=

(
(qF + qS)

3

2n+m−1

) 1
2

. (10)

By (2), (4), (10), the proof is complete. ut

12

When qS = 0, we can obtain a tighter upper bound on ‖pqS0(·)−pqS1(·)‖ than the
one obtained above, recovering the optimal indistinguishability bound of TRP
given in [8]. See Appendix A.

Proof of (3). For any function query O(x, 0) and for any y ∈ {0, 1}n−m, the
probability that O(x, 0) = y is upper bounded by

2m

2n − (qF + qS)
≤ 1

2n−m−1
.

Let X be a random variable that follows the binomial distribution with param-
eters qF and p = 1/2n−m−1, namely,

Pr [X = j] =

(
qF
j

)
pj(1− p)qF−j

for j = 0, . . . , qF . Then for any y ∈ {0, 1}n−m, we have

Pr [Fy ≥ j] ≤ Pr [X ≥ j] .

By the Chernoff bound, we have

Pr [X ≥ j] ≤ e−
j−pqF

3 ≤ p

2qF

for any j ≥ 2pqF + 3 ln 2qF
p . Therefore we have

Ex

[
max
y

Fy

]
=
∑
j≥1

Pr

[
max
y

Fy ≥ j
]

≤ 2pqF + 3 ln
2qF
p

+
∑

j>2pqF+3 ln
2qF
p

Pr

[
max
y

Fy ≥ j
]

= 2pqF + 3 ln
2qF
p

+
∑

j>2pqF+3 ln
2qF
p

Pr

 ∨
y∈{0,1}n−m

Fy ≥ j


≤ 2pqF + 3 ln

2qF
p

+
∑

y∈{0,1}n−m

∑
j>2pqF+3 ln

2qF
p

Pr [X ≥ j]

≤ 2pqF + 3 ln
2qF
p

+ 2n−m · qF ·
p

2qF

≤ qF
2n−m−2

+ 3 ln qF + 3(n−m) + 1.

3.2 Public Indifferentiability of TRP

We define a simulator S which is stateful, keeping variables O(u) and O−1(v)
for every u and v ∈ {0, 1}n, all initialized as ⊥, meaning “undefined”, as well as
sets D, R, and Ry for each y ∈ {0, 1}n−m, all initialized as empty. It also uses a
special symbol ~ (not in {0, 1}n−m). We will call oracle queries O(u,+) (resp.
O(v,−)) fresh if O(u) = ⊥ (resp. O−1(v) = ⊥).

13

– On a fresh forward query O(u,+), S does the following.

1. If u = c ‖x for some x ∈ {0, 1}n−` (i.e., u ∈ C), then obtain y = F(x) via
an oracle query to F.
(a) If Ry 6= {0, 1}m, then

i. choose w uniformly at random from {0, 1}m \ Ry;
ii. assign w ‖ y and u to O(u) and O−1(w ‖ y), respectively;
iii. update D, R and Ry as D ∪ {u}, R ∪ {w ‖ y} and Ry ∪ {w},

respectively;
iv. return O(u).

(b) If Ry = {0, 1}m, then return ~ ‖ y.
2. If u /∈ C, then

(a) choose v uniformly at random from {0, 1}n \ R;
(b) assign v and u to O(u) and O−1(v), respectively;
(c) update D, R and Ry as D∪{u}, R∪{v} and Ry∪{w}, respectively,

where v = w ‖ y for w ∈ {0, 1}m and y ∈ {0, 1}n−m;
(d) return O(u).

– On a fresh backward query O(v,−), S does the following.

1. Choose u uniformly at random from {0, 1}n \ (D ∪ C).
2. Assign v and u to O(u) and O−1(v), respectively.
3. Update D, R and Ry as D ∪ {u}, R ∪ {v} and Ry ∪ {w}, respectively,

where v = w ‖ y for w ∈ {0, 1}m and y ∈ {0, 1}n−m.
4. Return O−1(v).

– On a forward query O(u,+) (resp. a backward query O(v,−)) which is not
fresh, S returns O(u) (resp. O−1(v)).

In the public indifferentiability model, the simulator knows all queries made by
the distinguisher to F. When a distinguisher makes a function query O(x, 0), S
will behave exactly in the same manner as it would have done with a forward
query O(c ‖ x,+), except returning the response.

Theorem 2. Let S be the simulator defined as above, and let qF and qS be
positive integers such that qF +qS ≤ 2n−1. Then for any distinguisher A making
qF queries to the outer construction and qS queries to the inner primitive,

AdvpubTRP,S(A) ≤


(

(qF+qS)3

2n+m−1

) 1
2

+ qS
2`−1 if qF + qS < 2m,(

5(qF+qS)2

2n+1

) 1
2

+ qS
2`−1 otherwise.

Proof. By the definition of the simulator, we can assume that A makes a for-
ward query O(c ‖ x,+) and then truncates the leftmost m bits (or ~) of the

14

response when it wants to obtain O(x, 0); this modification would not degrade
the adversarial distinguishing advantage. So we can remove the oracle interface
O(·, 0) in both the simulated world and the real world. Instead, the number of
forward queries and backward queries should be upper bounded by qF + qS and
qS , respectively. We can still assume that A does not make redundant queries.

Let S0 = S[F] and S2 = P denote the simulated world and the real world,
respectively. As in the regular indifferentiability proof, we introduce an interme-
diate world, denoted S1, that has the same oracle interface as S0 and S2. This
random system uses a flag, denoted bad and initialized as false, and keeps sets
D and R, all initialized as empty. Oracle queries to S1 are answered as follows.

– On a forward query O(u,+), S1 does the following.

1. Choose v uniformly at random from {0, 1}n \ R.
2. Update D and R as D ∪ {u} and R∪ {v}, respectively.
3. Return v.

– On a backward query O(v,−), S1 does the following.

1. Choose u uniformly at random from {0, 1}n \ D.
2. if u ∈ C, then set bad to true, and choose u uniformly at random from
{0, 1}n \ (D ∪ C).

3. Update D and R as D ∪ {u} and R∪ {v}, respectively.
4. Return u.

So S1 behaves like a truly random permutation except that it does not sample
any element of C on a backward query O(·,−). Let q = qF + qS denote the total
number of queries. Then we have

Advpub
TRP,S(A) ≤ ‖p

q
S0 (·)− pqS2 (·) ‖

≤ ‖pqS0 (·)− pqS1 (·) ‖+ ‖p
q
S1 (·)− pqS2 (·) ‖. (11)

We will consider a random variable Vy for each y ∈ {0, 1}n−m, where

Vy = |{v ∈ {0, 1}n : v = w ‖ y ∈ R for some w ∈ {0, 1}m}| .

We also define random variables

V =
∑

y∈{0,1}n−m

Vy,

H = |{y : Vy = 2m}| .

It is easy to see that V = |D| = |R| at any point during the attack.

Upper bounding ‖pqS1 (·) − pqS2 (·) ‖. The system S1 behaves exactly like the
real world S2 without the bad flag bad being set to true. So we can upper bound
‖pqS1 (·)− pqS2 (·) ‖ by the probability that bad is set to true.

15

For i = 1, . . . , qS , let Ei be the event that the i-th backward query sets bad
to true. Since |C| = 2n−` and |D| ≤ q ≤ 2n−1, we have

Pr [Ei] =
|C|

2n − |D|
≤ 2n−`

2n−1
=

1

2`−1

for each i = 1, . . . , qS . Therefore, we have

‖pqS1(·)− pqS2(·)‖ ≤ Pr

[
qS∨
i=1

Ei

]
≤

qS∑
i=1

Pr [Ei] ≤
qS
2`−1

. (12)

Upper bounding ‖pqS0(·) − pqS1(·)‖. For the intermediate system S1, we can
easily check that the support of pi−1S1 (·) is contained in the support of pi−1S0 (·) for
i = 1, . . . , q, allowing us to use the χ2 method. Any element of {~}× {0, 1}n−m
is returned only in S0.

Let Ω = {0, 1}n ∪ ({~} × {0, 1}n−m). For fixed i ∈ {1, . . . , q} and z ∈ Ωi−1
such pi−1S1 (z) > 0, we will compute

χ2(z) =
∑

z∈Ω such that
pzS0,i(z)>0

(
pzS1,i(z)− pzS0,i(z)

)2
pzS0,i(z)

.

The previous queries z ∈ Ωi−1 determine random variables H, V (= i − 1)
as well as the type of the next query. We will distinguish three cases: a forward
query O(u,+) for u ∈ C, a forward query O(u,+) for u /∈ C, and a backward
query O(v,−).

Suppose that the i-th query is a forward query O(u,+), where u ∈ C. If
z = ~ ‖ y for y ∈ {0, 1}n−m such that |Ry| = 2n−m, then

pzS0,i(z) =
1

2n−m
,

pzS1,i(z) = 0.

If z ∈ {0, 1}n \ R, then

pzS0,i(z) =
1

2n−m
· 1

2m − Vy
,

pzS1,i(z) =
1

2n − V
.

Since the number of elements y ∈ {0, 1}n−m such that |Ry| = 2n−m is H, we
have

χ2(z) =
H

2n−m
+

∑
z∈{0,1}n\R

(2n−mVy − V)2

(2n − V)2(2n − 2n−mVy)
. (13)

16

For each y ∈ {0, 1}n−m, the number of elements w ∈ {0, 1}m such that w ‖ y ∈
{0, 1}n \R is 2m−Vy. Furthermore,

∑
y∈{0,1}n−m Vy = V and Vy ≤ 2m for every

y ∈ {0, 1}n−m. Therefore we have∑
z∈{0,1}n\R

(2n−mVy − V)2

(2n − V)2(2n − 2n−mVy)
=

∑
y∈{0,1}n−m

(2n−mVy − V)2

2n−m(2n − V)2

=
2n−m

(2n − V)2

 ∑
y∈{0,1}n−m

V 2
y −

V 2

2n−m


≤ 1

2n+m−2

∑
y∈{0,1}n−m

V 2
y

≤ min{V 2, 2mV }
2n+m−2

≤ min{q2, 2mq}
2n+m−2

. (14)

Since H ≤ b V2m c and V ≤ q, we have H
2n−m = 0 if q < 2m, and H

2n−m ≤ q
2n

otherwise. By (13) and (14), we conclude that

χ2(z) ≤


q2

2n+m−2 if q < 2m,

5q
2n otherwise.

(15)

Suppose that the i-th query is a forward query O(u,+), where u /∈ C. For
any z ∈ {0, 1}n \ R we have

pzS0,i(z) = pzS1,i(z) =
1

2n − V
,

and hence
χ2(z) = 0. (16)

Suppose that the i-th query is a backward queryO(v,−). For any z ∈ {0, 1}n\
(D ∪ C) we have

pzS0,i(z) = pzS1,i(z) =
1

2n − |D ∪ C|
,

and hence
χ2(z) = 0. (17)

By (15), (16), (17), we have

‖pqS0(·)− pqS1(·)‖ ≤

(
1

2

q∑
i=1

Ex
[
χ2(z)

]) 1
2

≤


(

q3

2n+m−1

) 1
2

if q < 2m,(
5q2

2n+1

) 1
2

otherwise.

(18)

17

By (11), (12), (18), the proof is complete. ut

4 Tightness of Regular Indifferentiability

We can prove that our regular indifferentiability bound is tight with respect
to the total number of queries q = qF + qS when m + ` � n. Note that if
m+ `� n then min{m, `} ≤ n+m

3 . We will assume that the number of F-queries
that a simulator makes for each query of the distinguisher is a polynomial in n,
denoted poly(n).

First, suppose that m ≤ `. In this case, we consider a distinguisher A that
begins the attack by obtaining y = F(x) for a random element x via a function
query to F. Then A makes 2m backward queries at w ‖ y, where w ∈ {0, 1}m.
With high probability, A should be able to obtain c ‖ x for some x ∈ {0, 1}n−`
as a response if the simulator faithfully reproduces (TRP[P],P). Furthermore, it
should be the case that F(x) = y, while it is infeasible for the simulator to find
a preimage of y under F (without any information of the adversarial function
query) using at most 2m queries to F if poly(n) ·2m � 2n−`. So we conclude that
if m+ `� n then there is no simulator which is secure against any distinguisher
that makes about 2m simulator queries.

Next, suppose that ` ≤ m. In this attack, a distinguisher A randomly chooses
an element y ∈ {0, 1}n−m, and makes 2` backward queries at w ‖ y, where
w ∈ {0, 1}m. With high probability, A will obtain c‖x for some x ∈ {0, 1}n−` as
a response if the simulator behaves like a random permutation. Furthermore, it
should be the case that F(x) = y. In this way, A is able to find a preimage of y
under F using at most 2` queries to F, which is infeasible if poly(n) ·2` � 2n−m.
So we conclude that if m + ` � n then there is no simulator which is secure
against any distinguisher that makes about 2` simulator queries. Note that the
second attack holds even in the public indifferentiability setting.

References

[1] M. Bellare and R. Impagliazzo. A Tool for Obtaining Tighter Security Analyses of
Pseudorandom Function Based Constructions, with Applications to PRP to PRF
Conversion. In IACR Cryptology ePrint Archive 1999/024, 1999.

[2] M. Bellare, T. Krovetz, and P. Rogaway. Luby-Rackoff backwards: Increasing
security by making block ciphers non-invertible. In K. Nyberg, editor, EURO-
CRYPT’98, pages 266–280, 1998.

[3] S. Bhattacharya and M. Nandi. Full Indifferentiable Security of the Xor of Two or
More Random Permutations Using the χ2 Method. In J. B. Nielsen and V. Rijmen,
editors, EUROCRYPT 2018, pages 387–412, 2018.

[4] B. Cogliati, R. Lampe, and J. Patarin. The Indistinguishability of the XOR of k
Permutations. In C. Cid and C. Rechberger, editors, FSE 2014, pages 285–302,
2015.

[5] W. Dai, V. T. Hoang, and S. Tessaro. Information-Theoretic Indistinguishability
via the Chi-Squared Method. In J. Katz and H. Shacham, editors, CRYPTO
2017, pages 497–523, 2017.

18

[6] Y. Dodis, L. Reyzin, R. L. Rivest, and E. Shen. Indifferentiability of Permutation-
Based Compression Functions and Tree-Based Modes of Operation, with Appli-
cations to MD6. In O. Dunkelman, editor, FSE 2009, pages 104–121, 2009.

[7] Y. Dodis, T. Ristenpart, and T. Shrimpton. Salvaging Merkle-Damgård for prac-
tical applications. In Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, pages 371–388, 2009.

[8] S. Gilboa, S. Gueron, and B. Morris. How Many Queries are Needed to Distin-
guish a Truncated Random Permutation from a Random Function? Journal of
Cryptology, 31(1):162–171, Jan 2018.

[9] S. Gueron, A. Langley, and Y. Lindell. AES-GCM-SIV: Specification and Analysis.
IACR Cryptology ePrint Archive, 2017:168, 2017.

[10] S. Gueron and Y. Lindell. GCM-SIV: Full nonce misuse-resistant authenticated
encryption at under one cycle per byte. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pages 109–119, 2015.

[11] C. Hall, D. Wagner, J. Kelsey, and B. Schneier. Building PRFs from PRPs. In
H. Krawczyk, editor, CRYPTO’98, pages 370–389, 1998.

[12] T. Iwata and Y. Seurin. Reconsidering the security bound of AES-GCM-SIV.
IACR Transactions on Symmetric Cryptology, pages 240–267, 2017.

[13] J. Lee. Indifferentiability of the Sum of Random Permutations Toward Optimal
Security. IEEE Transactions on Information Theory, 63(6):4050–4054, 2017.

[14] S. Lucks. The Sum of PRPs Is a Secure PRF. In B. Preneel, editor, EUROCRYPT
2000, pages 470–484, 2000.

[15] A. Mandal, J. Patarin, and V. Nachef. Indifferentiability beyond the Birthday
Bound for the Xor of Two Public Random Permutations. In G. Gong and K. C.
Gupta, editors, INDOCRYPT 2010, pages 69–81, 2010.

[16] A. Mandal, J. Patarin, and Y. Seurin. On the Public Indifferentiability and Cor-
relation Intractability of the 6-Round Feistel Construction. In R. Cramer, editor,
TCC 2012, pages 285–302, 2012.

[17] U. Maurer, R. Renner, and C. Holenstein. Indifferentiability, Impossibility Results
on Reductions, and Applications to the Random Oracle Methodology. In M. Naor,
editor, TCC 2004, pages 21–39, 2004.

[18] B. Mennink. Linking Stam’s Bounds with Generalized Truncation. In M. Matsui,
editor, CT-RSA 2019, pages 313–329, 2019.

[19] B. Mennink and B. Preneel. On the XOR of Multiple Random Permutations. In
T. Malkin, V. Kolesnikov, A. B. Lewko, and M. Polychronakis, editors, ACNS
2015, pages 619–634, 2015.

[20] J. Patarin. A Proof of Security in O(2n) for the Xor of Two Random Permutations.
In R. Safavi-Naini, editor, ICITS 2008, pages 232–248, 2008.

[21] T. Shrimpton and M. Stam. Building a collision-resistant compression function
from non-compressing primitives. In International Colloquium on Automata, Lan-
guages, and Programming, pages 643–654, 2008.

[22] K. Yoneyama, S. Miyagawa, and K. Ohta. Leaky Random Oracle. In J. Baek,
F. Bao, K. Chen, and X. Lai, editors, ProvSec 2008, pages 226–240, 2008.

A Indistinguishability of TRP

A hypergeometric random distribution HGN,M,q, parameterized by N , M , and
q, is a probability distribution that describes the probability that exactly k
elements are selected from a subset of M “good” elements when q elements are

19

selected from the universe of N elements without replacement; this probability
is precisely

(
M
k

)(
N−M
n−k

)
/
(
N
n

)
.

If a distinguisher makes no simulator query (namely, qS = 0) when it inter-
acts with S1 in the regular indifferentiability setting, then Vy would follow the
hypergeometric distribution with N = 2n, M = 2m and q = i− 1(= V). In this
case, it is well known that

Ex[Vy] =
V

2n−m
,

Var[Vy] =
2m(2n − 2m)(2n − V)V

22n(2n − 1)
.

Since
Var[Vy] = Ex[V 2

y]−Ex[Vy]
2,

and ∑
y∈{0,1}n−m

Var[Vy] ≤ 2n−m
(
2m(2n − 2m)(2n − V)V

22n(2n − 1)

)

≤ 2m(2n − 2m)V

2n+m

≤ V ≤ qF ,

we have

Ex

[∑
y

(2n−mVy − V)2

2n−m(2n − V)2

]
≤ 1

2n+m−2

∑
y∈{0,1}n−m

(
Ex
[
V 2
y

]
−Ex [Vy]

2
)

≤ qF
2n+m−2

.

Plugging this into (9), we obtain the indistinguishability bound of TRP as follows.

Advind
TRP(A) ≤

q

2
n+m−1

2

,

for any distinguisher A making q queries.

20

	Indifferentiability of Truncated Random Permutations
	Introduction
	Preliminaries
	Indifferentiability of TRP
	Regular Indifferentiability of TRP
	Public Indifferentiability of TRP

	Tightness of Regular Indifferentiability
	Indistinguishability of TRP

